1
|
Wang H, Li P, Zhang M, Bi J, He Y, Li F, Yu R, Gao F, Kong W, Yu B, Chen L, Yu X. Vaccine with bacterium-like particles displaying HIV-1 gp120 trimer elicits specific mucosal responses and neutralizing antibodies in rhesus macaques. Microb Biotechnol 2022; 15:2022-2039. [PMID: 35290714 PMCID: PMC9249329 DOI: 10.1111/1751-7915.14022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/06/2022] [Indexed: 11/27/2022] Open
Abstract
Preclinical studies have shown that the induction of secretory IgA (sIgA) in mucosa and neutralizing antibodies (NAbs) in sera is essential for designing vaccines that can effectively block the transmission of HIV-1. We previously showed that a vaccine consisting of bacterium-like particles (BLPs) displaying Protan-gp120AE-MTQ (PAM) could induce mucosal immune responses through intranasal (IN) immunization in mice and NAbs through intramuscular (IM) immunization in guinea pigs. Here, we evaluated the ability of this vaccine BLP-PAM to elicit HIV-1-specific mucosal and systemic immune responses through IN and IM immunization combination strategies in rhesus macaques. First, the morphology, antigenicity and epitope accessibility of the vaccine were analysed by transmission electron microscopy, bio-layer interferometry and ELISA. In BLP-PAM-immunized macaques, HIV-1-specific sIgA were rapidly induced through IN immunization in situ and distant mucosal sites, although the immune responses are relatively weak. Furthermore, the HIV-1-specific IgG and IgA antibody levels in mucosal secretions were enhanced and maintained, while production of serum NAbs against heterologous HIV-1 tier 1 and 2 pseudoviruses was elicited after IM boost. Additionally, situ mucosal responses and systemic T cell immune responses were improved by rAd2-gp120AE boost immunization via the IN and IM routes. These results suggested that BLP-based delivery in combination with the IN and IM immunization approach represents a potential vaccine strategy against HIV-1.
Collapse
Affiliation(s)
- Huaiyu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mo Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jinpeng Bi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yizi He
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangshen Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Rongzhen Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510060, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
2
|
Abstract
BACKGROUND Early steps of HIV infection are mediated by the binding of the envelope to mucosal receptors as α4β7 and the C-type lectins DC-SIGN and langerin. Previously Env-specific B-cell responses have been reported in highly exposed seronegative individuals (HESN). METHOD Here, we studied gp120-specific antibodies ability to block HIV interaction with α4β7, DC-SIGN and/or langerinin HESN. New cell-based assays were developed to analyze whether antibodies that can alter gp120 binding to α4β7, DC-SIGN and/or langerin are induced in HESN. A mucosal blocking score (MBS) was defined based on the ability of antibodies to interfere with gp120/α4β7, gp120/DC-SIGN, and gp120/langerin binding. A new MBS was evaluated in a cohort of 86 HESN individuals and compared with HIV+ patients or HIV- unexposed healthy individuals. RESULTS Antibodies reducing gp120 binding to both α4β7 and DC-SIGN were present in HESN serum but also in mucosal secretions, whereas antibodies from HIV+ patients facilitated gp120 binding to DC-SIGN. Any correlation was observed between MBS and the capacity of antibodies to neutralize infection of α4β7 CD4+ T cells with primary isolates. CONCLUSIONS MBS is significantly associated with protection in HESN and might reflect altered HIV spreading to mucosal-associated lymphoid tissues.
Collapse
|
3
|
Williams KL, Stumpf M, Naiman NE, Ding S, Garrett M, Gobillot T, Vézina D, Dusenbury K, Ramadoss NS, Basom R, Kim PS, Finzi A, Overbaugh J. Identification of HIV gp41-specific antibodies that mediate killing of infected cells. PLoS Pathog 2019; 15:e1007572. [PMID: 30779811 PMCID: PMC6396944 DOI: 10.1371/journal.ppat.1007572] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/01/2019] [Accepted: 01/08/2019] [Indexed: 11/19/2022] Open
Abstract
Antibodies that mediate killing of HIV-infected cells through antibody-dependent cellular cytotoxicity (ADCC) have been implicated in protection from HIV infection and disease progression. Despite these observations, these types of HIV antibodies are understudied compared to neutralizing antibodies. Here we describe four monoclonal antibodies (mAbs) obtained from one individual that target the HIV transmembrane protein, gp41, and mediate ADCC activity. These four mAbs arose from independent B cell lineages suggesting that in this individual, multiple B cell responses were induced by the gp41 antigen. Competition and phage peptide display mapping experiments suggested that two of the mAbs target epitopes in the cysteine loop that are highly conserved and a common target of HIV gp41-specific antibodies. The amino acid sequences that bind these mAbs are overlapping but distinct. The two other mAbs were competed by mAbs that target the C-terminal heptad repeat (CHR) and the fusion peptide proximal region (FPPR) and appear to both target a similar unique conformational epitope. These gp41-specific mAbs mediated killing of infected cells that express high levels of Env due to either pre-treatment with interferon or deletion of vpu to increase levels of BST-2/Tetherin. They also mediate killing of target cells coated with various forms of the gp41 protein, including full-length gp41, gp41 ectodomain or a mimetic of the gp41 stump. Unlike many ADCC mAbs that target HIV gp120, these gp41-mAbs are not dependent on Env structural changes associated with membrane-bound CD4 interaction. Overall, the characterization of these four new mAbs that target gp41 and mediate ADCC provides evidence for diverse gp41 B cell lineages with overlapping but distinct epitopes within an individual. Such antibodies that can target various forms of envelope protein could represent a common response to a relatively conserved HIV epitope for a vaccine.
Collapse
Affiliation(s)
- Katherine L. Williams
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
| | - Megan Stumpf
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
| | - Nicole Elise Naiman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA United States of America
- Medical Scientist Training Program, University of Washington, Seattle WA, United States of America
| | - Shilei Ding
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Meghan Garrett
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA United States of America
| | - Theodore Gobillot
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA United States of America
- Medical Scientist Training Program, University of Washington, Seattle WA, United States of America
| | - Dani Vézina
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Katharine Dusenbury
- Medical Scientist Training Program, University of Washington, Seattle WA, United States of America
- Divisions of Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Nitya S. Ramadoss
- Stanford ChEM-H and Department of Biochemistry, Stanford University, Stanford, CA, United States of America
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Peter S. Kim
- Stanford ChEM-H and Department of Biochemistry, Stanford University, Stanford, CA, United States of America
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
| | - Andrés Finzi
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle WA, United States of America
| |
Collapse
|
4
|
Kordy K, Tobin NH, Aldrovandi GM. HIV and SIV in Body Fluids: From Breast Milk to the Genitourinary Tract. ACTA ACUST UNITED AC 2019; 15:139-152. [PMID: 33312088 DOI: 10.2174/1573395514666180605085313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV-1 is present in many secretions including oral, intestinal, genital, and breast milk. However, most people exposed to HIV-1 within these mucosal compartments do not become infected despite often frequent and repetitive exposure over prolonged periods of time. In this review, we discuss what is known about the levels of cell-free HIV RNA, cell-associated HIV DNA and cell-associated HIV RNA in external secretions. Levels of virus are usually lower than contemporaneously obtained blood, increased in settings of inflammation and infection, and decreased in response to antiretroviral therapy. Additionally, each mucosal compartment has unique innate and adaptive immune responses that affect the composition and presence of HIV-1 within each external secretion. We discuss the current state of knowledge about the types and amounts of virus present in the various excretions, touch on innate and adaptive immune responses as they affect viral levels, and highlight important areas for further study.
Collapse
Affiliation(s)
- Kattayoun Kordy
- Department of Pediatrics, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Nicole H Tobin
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Grace M Aldrovandi
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Verrier B, Paul S, Terrat C, Bastide L, Ensinas A, Phelip C, Chanut B, Bulens-Grassigny L, Jospin F, Guillon C. Exploiting Natural Cross-reactivity between Human Immunodeficiency Virus (HIV)-1 p17 Protein and Anti-gp41 2F5 Antibody to Induce HIV-1 Neutralizing Responses In Vivo. Front Immunol 2017; 8:770. [PMID: 28713388 PMCID: PMC5491952 DOI: 10.3389/fimmu.2017.00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/16/2017] [Indexed: 11/26/2022] Open
Abstract
Anti-p17 antibodies are able to neutralize human immunodeficiency virus (HIV) entry in a mouse model. In this study, we identified a region of sequence similarity between the epitopes of anti-p17 neutralizing antibodies and anti-gp41 neutralizing 2F5 antibody and verified cross-reactivity between p17 and 2F5 in vitro. The p17 sequence was modified to increase sequence identity between the p17 and 2F5 epitopes, which resulted in enhanced cross-reactivity in vitro. Immunogenicity of wild-type and modified p17 was characterized in a rabbit model. Both wild-type and mutated p17 induced anti-gp41 responses in rabbits; sera from these animals reacted with gp41 from different HIV clades. Moreover, introduction of the 2F5 sequence in p17 resulted in induction of antibodies with partially neutralizing activity. Based upon these data, we suggest that the natural cross-reactivity between HIV-1 p17 protein and 2F5 antibody can be exploited to induce antibodies with neutralizing activity in an animal model.
Collapse
Affiliation(s)
- Bernard Verrier
- Colloidal Vectors and Tissue Transport, UMR5305, Institut de Biologie et Chimie des Protéines, Université de Lyon, CNRS, Lyon, France
| | - Stéphane Paul
- Groupe sur l’Immunité des Muqueuses et Agents Pathogènes, EA3064, Faculté de Médecine Jacques Lisfranc, Université de Lyon, Saint-Etienne, France
| | - Céline Terrat
- Colloidal Vectors and Tissue Transport, UMR5305, Institut de Biologie et Chimie des Protéines, Université de Lyon, CNRS, Lyon, France
| | - Liza Bastide
- Retroviruses and Structural Biochemistry, UMR5086, Institut de Biologie et Chimie des Protéines, Université de Lyon, CNRS, Lyon, France
| | - Agathe Ensinas
- Colloidal Vectors and Tissue Transport, UMR5305, Institut de Biologie et Chimie des Protéines, Université de Lyon, CNRS, Lyon, France
- Groupe sur l’Immunité des Muqueuses et Agents Pathogènes, EA3064, Faculté de Médecine Jacques Lisfranc, Université de Lyon, Saint-Etienne, France
| | - Capucine Phelip
- Colloidal Vectors and Tissue Transport, UMR5305, Institut de Biologie et Chimie des Protéines, Université de Lyon, CNRS, Lyon, France
| | - Blandine Chanut
- Groupe sur l’Immunité des Muqueuses et Agents Pathogènes, EA3064, Faculté de Médecine Jacques Lisfranc, Université de Lyon, Saint-Etienne, France
| | - Laura Bulens-Grassigny
- Colloidal Vectors and Tissue Transport, UMR5305, Institut de Biologie et Chimie des Protéines, Université de Lyon, CNRS, Lyon, France
- Retroviruses and Structural Biochemistry, UMR5086, Institut de Biologie et Chimie des Protéines, Université de Lyon, CNRS, Lyon, France
| | - Fabienne Jospin
- Groupe sur l’Immunité des Muqueuses et Agents Pathogènes, EA3064, Faculté de Médecine Jacques Lisfranc, Université de Lyon, Saint-Etienne, France
| | - Christophe Guillon
- Retroviruses and Structural Biochemistry, UMR5086, Institut de Biologie et Chimie des Protéines, Université de Lyon, CNRS, Lyon, France
- *Correspondence: Christophe Guillon,
| |
Collapse
|
6
|
Abstract
Saliva is gaining increasing attention as a bioanalytical sample matrix. Mostly because of the easy and noninvasive collection, it is not only beneficial in endocrinological and behavioral science, but also in pediatrics. Saliva also has the advantage of being the only body fluid which can be collected even during physical exercise, for example, during sportive activities, and there are physiological characteristics that make it superior to serum/plasma or urine for specific scientific questions. This review provides an insight into the physiology of saliva formation, explaining how certain compounds enter this bodily fluid, and gives advice for collection, storage and analytical methods. Finally, it presents a number of reliable and proven applications for saliva analysis from scientific fields including endocrinology, sports medicine, forensics and immunology.
Collapse
|
7
|
Benjelloun F, Oruc Z, Thielens N, Verrier B, Champier G, Vincent N, Rochereau N, Girard A, Jospin F, Chanut B, Genin C, Cogné M, Paul S. First Membrane Proximal External Region–Specific Anti-HIV1 Broadly Neutralizing Monoclonal IgA1 Presenting Short CDRH3 and Low Somatic Mutations. THE JOURNAL OF IMMUNOLOGY 2016; 197:1979-88. [DOI: 10.4049/jimmunol.1600309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/03/2016] [Indexed: 11/19/2022]
|
8
|
Kessans SA, Linhart MD, Meador LR, Kilbourne J, Hogue BG, Fromme P, Matoba N, Mor TS. Immunological Characterization of Plant-Based HIV-1 Gag/Dgp41 Virus-Like Particles. PLoS One 2016; 11:e0151842. [PMID: 26986483 PMCID: PMC4795674 DOI: 10.1371/journal.pone.0151842] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/04/2016] [Indexed: 02/08/2023] Open
Abstract
It is widely anticipated that a prophylactic vaccine may be needed to control the HIV/AIDS epidemic worldwide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although a recent clinical trial has shown promising results. Recent studies have focused on highly conserved domains within HIV-1 such as the membrane proximal external region (MPER) of the envelope glycoprotein, gp41. MPER has been shown to play critical roles in mucosal transmission of HIV-1, though this peptide is poorly immunogenic on its own. Here we provide evidence that plant-produced HIV-1 enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the MPER, transmembrane, and cytoplasmic domains (Dgp41) provides an effective platform to display MPER for use as an HIV vaccine candidate. Prime-boost strategies combining systemic and mucosal priming with systemic boosting using two different vaccine candidates (VLPs and CTB-MPR--a fusion of MPER and the B-subunit of cholera toxin) were investigated in BALB/c mice. Serum antibody responses against both the Gag and gp41 antigens were elicited when systemically primed with VLPs. These responses could be recalled following systemic boosting with VLPs. In addition, mucosal priming with VLPs allowed for a boosting response against Gag and gp41 when boosted with either candidate. Importantly, the VLPs also induced Gag-specific CD4 and CD8 T-cell responses. This report on the immunogenicity of plant-based Gag/Dgp41 VLPs may represent an important milestone on the road towards a broadly efficacious and inexpensive subunit vaccine against HIV-1.
Collapse
Affiliation(s)
- Sarah A. Kessans
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Mark D. Linhart
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Lydia R. Meador
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Jacquelyn Kilbourne
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Brenda G. Hogue
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Petra Fromme
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States of America
| | - Nobuyuki Matoba
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Tsafrir S. Mor
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
9
|
Zhou M, Ruprecht RM. Are anti-HIV IgAs good guys or bad guys? Retrovirology 2014; 11:109. [PMID: 25499540 PMCID: PMC4297362 DOI: 10.1186/s12977-014-0109-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/24/2014] [Indexed: 12/12/2022] Open
Abstract
An estimated 90% of all HIV transmissions occur mucosally. Immunoglobulin A (IgA) molecules are important components of mucosal fluids. In a vaccine efficacy study, in which virosomes displaying HIV gp41 antigens protected most rhesus monkeys (RMs) against simian-human immunodeficiency virus (SHIV), protection correlated with vaginal IgA capable of blocking HIV transcytosis in vitro. Furthermore, vaginal IgG exhibiting virus neutralization and/or antibody-dependent cellular cytotoxicity (ADCC) correlated with prevention of systemic infection. In contrast, plasma IgG had neither neutralizing nor ADCC activity. More recently, a passive mucosal immunization study provided the first direct proof that dimeric IgAs (dIgAs) can prevent SHIV acquisition in RMs challenged mucosally. This study compared dimeric IgA1 (dIgA1), dIgA2, or IgG1 versions of a human neutralizing monoclonal antibody (nmAb) targeting a conserved HIV Env epitope. While the nmAb neutralization profiles were identical in vitro, dIgA1 was significantly more protective in vivo than dIgA2. Protection was linked to a new mechanism: virion capture. Protection also correlated with inhibition of transcytosis of cell-free virus in vitro. While both of these primate model studies demonstrated protective effects of mucosal IgAs, the RV144 clinical trial identified plasma IgA responses to HIV Env as risk factors for increased HIV acquisition. In a secondary analysis of RV144, plasma IgA decreased the in vitro ADCC activity of vaccine-induced, Env-specific IgG with the same epitope specificity. Here we review the current literature regarding the potential of IgA – systemic as well as mucosal – in modulating virus acquisition and address the question whether anti-HIV IgA responses could help or harm the host.
Collapse
Affiliation(s)
- Mingkui Zhou
- Department of Virology & Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX, 78227, USA.
| | - Ruth M Ruprecht
- Department of Virology & Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX, 78227, USA. .,Southwest National Primate Research Center, 7620 NW Loop 410, San Antonio, TX, 78227, USA.
| |
Collapse
|
10
|
Abstract
In spite of several attempts over many years at developing a HIV vaccine based on classical strategies, none has convincingly succeeded to date. As HIV is transmitted primarily by the mucosal route, particularly through sexual intercourse, understanding antiviral immunity at mucosal sites is of major importance. An ideal vaccine should elicit HIV-specific antibodies and mucosal CD8⁺ cytotoxic T-lymphocyte (CTL) as a first line of defense at a very early stage of HIV infection, before the virus can disseminate into the secondary lymphoid organs in mucosal and systemic tissues. A primary focus of HIV preventive vaccine research is therefore the induction of protective immune responses in these crucial early stages of HIV infection. Numerous approaches are being studied in the field, including building upon the recent RV144 clinical trial. In this article, we will review current strategies and briefly discuss the use of adjuvants in designing HIV vaccines that induce mucosal immune responses.
Collapse
|