1
|
Alves BM, Siqueira JD, Garrido MM, Botelho OM, Prellwitz IM, Ribeiro SR, Soares EA, Soares MA. Characterization of HIV-1 Near Full-Length Proviral Genome Quasispecies from Patients with Undetectable Viral Load Undergoing First-Line HAART Therapy. Viruses 2017; 9:v9120392. [PMID: 29257103 PMCID: PMC5744166 DOI: 10.3390/v9120392] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Increased access to highly active antiretroviral therapy (HAART) by human immunodeficiency virus postive (HIV+) individuals has become a reality worldwide. In Brazil, HAART currently reaches over half of HIV-infected subjects. In the context of a remarkable HIV-1 genetic variability, highly related variants, called quasispecies, are generated. HIV quasispecies generated during infection can influence virus persistence and pathogenicity, representing a challenge to treatment. However, the clinical relevance of minority quasispecies is still uncertain. In this study, we have determined the archived proviral sequences, viral subtype and drug resistance mutations from a cohort of HIV+ patients with undetectable viral load undergoing HAART as first-line therapy using next-generation sequencing for near full-length virus genome (NFLG) assembly. HIV-1 consensus sequences representing NFLG were obtained for eleven patients, while for another twelve varying genome coverage rates were obtained. Phylogenetic analysis showed the predominance of subtype B (83%; 19/23). Considering the minority variants, 18 patients carried archived virus harboring at least one mutation conferring antiretroviral resistance; for six patients, the mutations correlated with the current ARVs used. These data highlight the importance of monitoring HIV minority drug resistant variants and their clinical impact, to guide future regimen switches and improve HIV treatment success.
Collapse
Affiliation(s)
- Brunna M Alves
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Juliana D Siqueira
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Marianne M Garrido
- Serviço de Doenças Infecciosas, Hospital Federal de Ipanema, Rio de Janeiro 22411-020, Brazil.
| | - Ornella M Botelho
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Isabel M Prellwitz
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Sayonara R Ribeiro
- Serviço de Doenças Infecciosas, Hospital Federal de Ipanema, Rio de Janeiro 22411-020, Brazil.
| | - Esmeralda A Soares
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Marcelo A Soares
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil.
| |
Collapse
|
2
|
Barral MF, Sousa AK, Santos AF, Abreu CM, Tanuri A, Soares MA, for the Brazilian Consortium for th. Identification of Novel Resistance-Related Polymorphisms in HIV-1 Subtype C RT Connection and RNase H Domains from Patients Under Virological Failure in Brazil. AIDS Res Hum Retroviruses 2017; 33:465-471. [PMID: 27875905 DOI: 10.1089/aid.2015.0376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mutations in the connection and RNase H C-terminal reverse transcriptase (RT) domains of HIV-1 have been shown to impact drug resistance to RT inhibitors. However, their impact in the context of non-B subtypes has been poorly assessed. This study aimed to characterize resistance-related mutations in the C-terminal portions of RT in treatment-failing patients from southern Brazil, a region with endemic HIV-1 subtype C (HIV-1C). Viral RNA was isolated and reverse transcribed from 280 infected subjects, and genomic regions were analyzed by polymerase chain reaction, DNA sequencing, and phylogenetic analysis. Two novel mutations, M357R and E529D, were evidenced in Brazilian HIV-1C strains from treatment-failing patients. In global viral isolates of subjects on treatment, M357R was selected in HIV-1C and CRF01_AE and E529D was selected in HIV-1 subtype B (HIV-1B). While most C-terminal RT mutations described for HIV-1B also occur in HIV-1C, this work pinpointed novel mutations that display subtype-specific predominance or occurrence.
Collapse
Affiliation(s)
- Maria F.M. Barral
- Departamento de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Arielly K.P. Sousa
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André F. Santos
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celina M. Abreu
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo A. Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | |
Collapse
|
3
|
Muniz CP, Soares MA, Santos AF. Early selection of resistance-associated mutations in HIV-1 RT C-terminal domains across different subtypes: role of the genetic barrier to resistance. J Antimicrob Chemother 2014; 69:2741-5. [DOI: 10.1093/jac/dku214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
4
|
Prellwitz IM, Alves BM, Ikeda MLR, Kuhleis D, Picon PD, Jarczewski CA, Osório MR, Sánchez A, Seuánez HN, Larouzé B, Soares MA, Soares EA. HIV behind bars: human immunodeficiency virus cluster analysis and drug resistance in a reference correctional unit from southern Brazil. PLoS One 2013; 8:e69033. [PMID: 23874857 PMCID: PMC3706441 DOI: 10.1371/journal.pone.0069033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/05/2013] [Indexed: 02/06/2023] Open
Abstract
People deprived of liberty in prisons are at higher risk of infection by the human immunodeficiency virus (HIV) due to their increased exposure through intravenous drug use, unprotected sexual activity, tattooing in prison and blood exposure in fights and rebellions. Yet, the contribution of intramural HIV transmission to the epidemic is scarcely known, especially in low- and middle-income settings. In this study, we surveyed 1,667 inmates incarcerated at Presídio Central de Porto Alegre, located in southern Brazil, for HIV infection and molecular characterization. The HIV seroprevalence was 6.6% (110/1,667). Further analyses were carried out on 40 HIV-seropositive inmates to assess HIV transmission clusters and drug resistance within the facility with the use of molecular and phylogenetic techniques. The molecular epidemiology of HIV-1 subtypes observed was similar to the one reported for the general population in southern Brazil, with the predominance of HIV-1 subtypes C, B, CRF31_BC and unique BC recombinants. In particular, the high rate (24%) of URF_BC found here may reflect multiple exposures of the population investigated to HIV infection. We failed to find HIV-infected inmates sharing transmission clusters with each other. Importantly, the analysis of HIV-1 pol genomic fragments evidenced high rates of HIV primary and secondary (acquired) drug resistance and an alarming proportion of virologic failure among patients under treatment, unveiling suboptimal access to antiretroviral therapy (ARV), low ARV adherence and dissemination of drug resistant HIV strains in primary infections. Our results call for immediate actions of public authority to implement preventive measures, serological screening and, for HIV-seropositive subjects, clinical and treatment follow-up in order to control HIV infection and limit the spread of drug resistance strains in Brazilian prisons.
Collapse
Affiliation(s)
| | - Brunna M. Alves
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Maria Letícia R. Ikeda
- Secretaria de Saúde de Viamão, Prefeitura de Viamão, Viamão, Brazil
- Departamento de Ensino e Pesquisa, Hospital Sanatório Partenon, Porto Alegre, Brazil
| | - Daniele Kuhleis
- Secretaria de Segurança Pública, Governo do Estado do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro D. Picon
- Secretaria de Segurança Pública, Governo do Estado do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla A. Jarczewski
- Departamento de Ensino e Pesquisa, Hospital Sanatório Partenon, Porto Alegre, Brazil
| | - Marta R. Osório
- Fundação Estadual de Produção e Pesquisa em Saúde, Governo do Estado do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandra Sánchez
- Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Secretaria de Estado de Administração Penitenciária, Governo do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Héctor N. Seuánez
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bernard Larouzé
- Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- INSERM U707, Paris, France
- Université Pierre et Marie Curie - Paris 6, Paris, France
| | - Marcelo A. Soares
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Esmeralda A. Soares
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
5
|
Delviks-Frankenberry KA, Lengruber RB, Santos AF, Silveira JM, Soares MA, Kearney MF, Maldarelli F, Pathak VK. Connection subdomain mutations in HIV-1 subtype-C treatment-experienced patients enhance NRTI and NNRTI drug resistance. Virology 2013; 435:433-41. [PMID: 23068886 PMCID: PMC3534945 DOI: 10.1016/j.virol.2012.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 08/31/2012] [Accepted: 09/21/2012] [Indexed: 11/21/2022]
Abstract
Mutations in the connection subdomain (CN) and RNase H domain (RH) of HIV-1 reverse transcriptase (RT) from subtype B-infected patients enhance nucleoside and nonnucleoside RT inhibitor (NRTI and NNRTI) resistance by affecting the balance between polymerization and RNase H activity. To determine whether CN mutations in subtype C influence drug sensitivity, single genome sequencing was performed on Brazilian subtype C-infected patients failing RTI therapy. CN mutations identified were similar to subtype B, including A376S, A400T, Q334D, G335D, N348I, and A371V, and increased AZT resistance in the presence of thymidine analog mutations. CN mutations also enhanced NNRTI resistance in the presence of classical NNRTI mutations: etravirine resistance was enhanced 6- to 11-fold in the presence of L100I/K103N/Y181C. These results indicate that selection of CN mutations in treatment-experienced patients also occurs in subtype-C-infected patients and are likely to provide valuable information in predicting clinical RTI resistance.
Collapse
Affiliation(s)
- Krista A. Delviks-Frankenberry
- Viral Mutation Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA
| | - Renan B. Lengruber
- Laboratório de Virologia Humana, Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andre F. Santos
- Laboratório de Virologia Humana, Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jussara M. Silveira
- Faculty of Medicine, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Marcelo A. Soares
- Laboratório de Virologia Humana, Department of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Mary F. Kearney
- Virology Core Facility, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA
| | - Frank Maldarelli
- Host-Virus Interaction Branch, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA
| |
Collapse
|
6
|
Connection domain mutations during antiretroviral treatment failure in Mali: frequencies and impact on reverse transcriptase inhibitor activity. J Acquir Immune Defic Syndr 2013; 61:293-6. [PMID: 22828721 DOI: 10.1097/qai.0b013e31826a4b34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mutations in the connection domain (CD) of reverse transcriptase have been implicated in reverse transcriptase inhibitor (RTI) resistance, but this is controversial and little is known in non-B subtype HIV-1. We determined CD mutations prevalence in a population infected predominantly with CRF02_AG and investigated associations with phenotypic RTI resistance. Detected CD mutations were G335D (82.3%), A371V (69.8%), E399D (9.4%), N348I (5.2%), V365I (4.2), Y318F (2.1%), G333E (2.1%), and A360V (2.1%). Mutations were largely polymorphic and did not confer RTI resistance. The observed trend toward reduced likelihood of etravirine or nevirapine resistance in the presence of G335D should be investigated further.
Collapse
|
7
|
Lee CK, Lee HK, Loh TP, Sethi SK, Koay ESC, Tang JWT. An in-house HIV genotyping assay for the detection of drug resistance mutations in Southeast Asian patients infected with HIV-1. J Med Virol 2012; 84:394-401. [PMID: 22246824 DOI: 10.1002/jmv.23202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Genotyping for HIV drug resistance is costly and beyond the means for many Southeast Asian patients, who are self-funded. This prompted the development of a more cost-effective, in-house assay for an ethnically diverse, Southeast Asian population at the National University Hospital in Singapore, using Sanger-based sequencing. Plasma samples from 20 treatment-failure patients with a broad spectrum of HIV drug resistance mutations were used to validate this assay clinically. Blinded testing gave concordant results for 7/7 (100%) protease drug resistance-related mutations, including one major and six minor mutations, and 111/116 (95.7%) reverse-transcriptase (RT) drug resistance-related mutations, including 65 nucleoside RT inhibitors (NRTI) and 46 non-nucleoside RT inhibitors (NNRTI) mutations. There were five discordant results, involving three NRTI- and two NNRTI-resistance-associated mutations. Highly conserved primers designed to have a wide coverage of the HIV pol gene (covering the entire protease and 395 codons of the RT region) enabled efficient multi-ethnic population-based genotyping. Reagents for this in-house test cost around 60% less than those for commercially available assays (SGD150 vs. SGD350 per sample). In addition, this assay also identified mutations located within the C-terminal domain (codons 312-560) of RT that are beyond the reach of most published and commercial GRTs. Currently, most research on C-terminal drug-resistance-related mutations has been conducted on HIV subtype B infections. Therefore this assay enables further study of these C-terminal mutations in Southeast Asian populations, where there is a high prevalence of CRF01_AE and other non-subtype B HIV infections.
Collapse
Affiliation(s)
- Chun Kiat Lee
- Molecular Diagnosis Centre, Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
8
|
Santos AF, Silveira J, Muniz CP, Tornatore M, Góes LR, Mendoza-Sassi RA, Martinez AMB, Tupinambás U, Greco DB, Soares MA. Primary HIV-1 drug resistance in the C-terminal domains of viral reverse transcriptase among drug-naïve patients from Southern Brazil. J Clin Virol 2011; 52:373-6. [PMID: 21975076 DOI: 10.1016/j.jcv.2011.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/07/2011] [Accepted: 09/10/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND Major and accessory drug resistance mutations have been recently characterized in the C-terminal RT subdomains of HIV-1, connection and RNase H. However, their presence in treatment-naïve patients infected with HIV-1 non-B subtypes remains largely unknown. OBJECTIVES To characterize the patterns of primary resistance at the C-terminal RT subdomains of HIV-1 infecting subjects in the southern region of Brazil, where HIV-1 subtypes B and C co-circulate. STUDY DESIGN Plasma viral RNA was extracted from patients recently diagnosed for HIV infection (2005-2008). The protease and reverse transcriptase regions were PCR-amplified and sequenced. Infecting HIV subtypes were assigned by phylogenetic inference and drug resistance mutations were determined following the IAS consensus and recent reports on C-terminal RT mutations. RESULTS The major mutation to NNRTI T369I/V was found in 1.8% of patients, while A376S was present in another 8.3%. In the RNase H domain, the compensatory mutation D488E was more frequently observed in subtype C than in subtype B (p=0.038), while the inverse was observed for mutation Q547K (p<0.001). The calculated codon genetic barrier showed that 22% of subtype B isolates, but no subtype C, carried T360, requiring two transitions to change into the resistance mutation 360V. CONCLUSIONS Major resistance-conferring mutations to NNRTI were detected in 10% of RT connection domain viral sequences from treatment-naïve subjects. We showed for the first time that the presence of specific polymorphisms can constrain the acquisition of definite resistance mutations in the connection and RNase H subdomains of HIV-1 RT.
Collapse
Affiliation(s)
- André F Santos
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Paredes R, Puertas MC, Bannister W, Kisic M, Cozzi-Lepri A, Pou C, Bellido R, Betancor G, Bogner J, Gargalianos P, Bánhegyi D, Clotet B, Lundgren J, Menéndez-Arias L, Martinez-Picado J. A376S in the Connection Subdomain of HIV-1 Reverse Transcriptase Confers Increased Risk of Virological Failure to Nevirapine Therapy. J Infect Dis 2011; 204:741-52. [DOI: 10.1093/infdis/jir385] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Roger Paredes
- Institut de Recerca de la SIDA–IrsiCaixa
- Lluita Contra la SIDA Foundation, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | - Wendy Bannister
- Research Department of Infection & Population Health, University College London, United Kingdom
| | - Mónica Kisic
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Madrid, Spain
| | - Alessandro Cozzi-Lepri
- Research Department of Infection & Population Health, University College London, United Kingdom
| | | | | | - Gilberto Betancor
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Madrid, Spain
| | | | | | - Dénes Bánhegyi
- Immunology Department, Szent Lszl Hospital, Budapest, Hungary
| | - Bonaventura Clotet
- Institut de Recerca de la SIDA–IrsiCaixa
- Lluita Contra la SIDA Foundation, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Jens Lundgren
- Copenhagen HIV Programme, University of Copenhagen
- Department of Infectious Diseases, Centre for Viral Disease KMA, Rigshospitalet, Copenhagen, Denmark
| | | | - Javier Martinez-Picado
- Institut de Recerca de la SIDA–IrsiCaixa
- Institució Catalana de Recerca Avançada (ICREA), Barcelona, Spain
| | | |
Collapse
|
10
|
Ibe S, Sugiura W. Clinical significance of HIV reverse-transcriptase inhibitor-resistance mutations. Future Microbiol 2011; 6:295-315. [PMID: 21449841 DOI: 10.2217/fmb.11.7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this article, we summarize recent knowledge on drug-resistance mutations within HIV reverse transcriptase (RT). Several large-scale HIV-1 genotypic analyses have revealed that the most prevalent nucleos(t)ide analog RT inhibitor (NRTI)-resistance mutation is M184V/I followed by a series of thymidine analog-associated mutations: M41L, D67N, K70R, L210W, T215Y/F and K219Q/E. Among non-nucleoside RT inhibitor (NNRTI)-resistance mutations, K103N was frequently observed, followed by Y181C and G190A. Interestingly, V106M was identified in HIV-1 subtype C as a subtype-specific multi-NNRTI-resistance mutation. Regarding mutations in the HIV-1 RT C-terminal region, including the connection subdomain and RNase H domain, their clinical impacts are still controversial, although their effects on NRTI and NNRTI resistance have been confirmed in vitro. In HIV-2 infections, the high prevalence of the Q151M mutation associated with multi-NRTI resistance has been frequently observed.
Collapse
Affiliation(s)
- Shiro Ibe
- Department of Infection & Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | | |
Collapse
|
11
|
Lengruber RB, Delviks-Frankenberry KA, Nikolenko GN, Baumann J, Santos AF, Pathak VK, Soares MA. Phenotypic characterization of drug resistance-associated mutations in HIV-1 RT connection and RNase H domains and their correlation with thymidine analogue mutations. J Antimicrob Chemother 2011; 66:702-8. [PMID: 21393163 PMCID: PMC3058567 DOI: 10.1093/jac/dkr005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/25/2010] [Accepted: 12/28/2010] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES HIV-1 reverse transcriptase (RT) mutations associated with antiviral drug resistance have been extensively characterized in the enzyme polymerase domain. Recent studies, however, have verified the involvement of the RT C-terminal domains (connection and RNase H) in drug resistance to RT inhibitors. In this work, we have characterized the correlation of recently described C-terminal domain mutations with thymidine analogue mutations (TAMs), as well as their phenotypic impact on susceptibility to zidovudine and nevirapine. METHODS HIV-1 RT sequences from Brazilian patients and from public sequence databases for which the C-terminal RT domains and treatment status were also available were retrieved and analysed for the association of C-terminal mutations and the presence of TAMs and treatment status. Several C-terminal RT mutations previously characterized were introduced by site-directed mutagenesis into an HIV-1 subtype B molecular clone in a wild-type, TAM-1 or TAM-2 pathway context. Mutants were tested for drug susceptibility to the prototypic drugs zidovudine and nevirapine. RESULTS Subtype B-infected patient database analysis showed that mutations N348I, A360V/T, T377M and D488E were found to be selected independently of TAMs, whereas mutations R358K, G359S, A371V, A400T, K451R and K512R increased in frequency with the number of TAMs in a dose-dependent fashion. Phenotypic analysis of C-terminal mutations showed that N348I, T369V and A371V conferred reduced susceptibility to zidovudine in the context of the TAM-1 and/or TAM-2 pathway, and also conferred dual resistance to nevirapine. Other mutations, such as D488E and Q547K, showed TAM-specific enhancement of resistance to zidovudine. Finally, mutation G359S displayed a zidovudine hypersusceptibility phenotype, both per se and when combined with A371V. CONCLUSIONS This study demonstrates that distinct RT C-terminal mutations can act as primary or secondary drug resistance mutations, and are associated in a complex array of phenotypes with RT polymerase domain mutations.
Collapse
Affiliation(s)
- Renan B. Lengruber
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Galina N. Nikolenko
- HIV Drug Resistance Program, National Cancer Institute – Frederick, Frederick, MD 21702, USA
| | - Jessica Baumann
- HIV Drug Resistance Program, National Cancer Institute – Frederick, Frederick, MD 21702, USA
| | - André F. Santos
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinay K. Pathak
- HIV Drug Resistance Program, National Cancer Institute – Frederick, Frederick, MD 21702, USA
| | - Marcelo A. Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Delviks-Frankenberry KA, Nikolenko GN, Pathak VK. The "Connection" Between HIV Drug Resistance and RNase H. Viruses 2010; 2:1476-1503. [PMID: 21088701 PMCID: PMC2982141 DOI: 10.3390/v2071476] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 07/20/2010] [Accepted: 07/20/2010] [Indexed: 11/17/2022] Open
Abstract
Currently, nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs) are two classes of antiretroviral agents that are approved for treatment of HIV-1 infection. Since both NRTIs and NNRTIs target the polymerase (pol) domain of reverse transcriptase (RT), most genotypic analysis for drug resistance is limited to the first ~300 amino acids of RT. However, recent studies have demonstrated that mutations in the C-terminal domain of RT, specifically the connection subdomain and RNase H domain, can also increase resistance to both NRTIs and NNRTIs. In this review we will present the potential mechanisms by which mutations in the C-terminal domain of RT influence NRTI and NNRTI susceptibility, summarize the prevalence of the mutations in these regions of RT identified to date, and discuss their importance to clinical drug resistance.
Collapse
Affiliation(s)
- Krista A. Delviks-Frankenberry
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA; E-Mails: (K.A.D.-F.); (G.N.N.)
| | | | - Vinay K. Pathak
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA; E-Mails: (K.A.D.-F.); (G.N.N.)
| |
Collapse
|