1
|
Silva ADSN, Silva CP, Barata RR, da Silva PVR, Monteiro PDJ, Lamarão L, Burbano RMR, Nunes MRT, de Lima PDL. Human pegivirus (HPgV, GBV-C) RNA in volunteer blood donors from a public hemotherapy service in Northern Brazil. Virol J 2020; 17:153. [PMID: 33054824 PMCID: PMC7556973 DOI: 10.1186/s12985-020-01427-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/06/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Human pegivirus (HPgV)-formerly known as GBV-C-is a member of the Flaviviridae family and belongs to the species Pegivirus C. It is a non-pathogenic virus and is transmitted among humans mainly through the exposure to contaminated blood and is often associated with human immunodeficiency virus (HIV) infection, among other viruses. This study aimed to determine the prevalence of HPgV viremia, its association with HIV and clinical epidemiological factors, as well as the full-length sequencing and genome characterization of HPgV recovered from blood donors of the HEMOPA Foundation in Belém-PA-Brazil. METHODS Plasma samples were obtained from 459 donors, tested for the presence of HPgV RNA by the RT-qPCR. From these, a total of 26 RT-qPCR positive samples were submitted to the NGS sequencing approach in order to obtain the full genome. Genome characterization and phylogenetic analysis were conducted. RESULTS The prevalence of HPgV was 12.42%. We observed the highest prevalences among donors aged between 18 and 30 years old (16.5%), with brown skin color (13.2%) and men (15.8%). The newly diagnosed HIV-1 prevalence was 26.67%. The HPgV genotype 2 (2a and 2b) was identified. No data on viral load value was found to corroborate the protective effect of HPgV on HIV evolution. CONCLUSIONS This study provided information regarding the HPgV infection among blood donors from HEMOPA Foundation. Furthermore, we genetically characterized the HPgV circulating strains and described by the first time nearly complete genomes of genotype 2 in Brazilian Amazon.
Collapse
Affiliation(s)
- Aniel de Sarom Negrão Silva
- Center for Life Science and Health, Pará State University, Travessa. Perebebuí, 2623, Marco, Belém, Pará, 66087-662, Brazil.
| | - Clayton Pereira Silva
- Evandro Chagas Institute, Rodovia BR-316, km 7 s/n, Levilândia, Ananindeua , Pará, 67030-000, Brazil
| | - Rafael Ribeiro Barata
- Evandro Chagas Institute, Rodovia BR-316, km 7 s/n, Levilândia, Ananindeua , Pará, 67030-000, Brazil
| | - Pedro Victor Reis da Silva
- Center for Life Science and Health, Pará State University, Travessa. Perebebuí, 2623, Marco, Belém, Pará, 66087-662, Brazil
| | - Patrícia Danin Jordão Monteiro
- Foundation Center for Hemotherapy and Hematology of Pará (HEMOPA Foundation), Travessa Padre Eutíquio, 2109, Batista Campos, Belém, Pará, 66033-000, Brazil
| | - Letícia Lamarão
- Foundation Center for Hemotherapy and Hematology of Pará (HEMOPA Foundation), Travessa Padre Eutíquio, 2109, Batista Campos, Belém, Pará, 66033-000, Brazil
| | | | | | - Patrícia Danielle Lima de Lima
- Center for Life Science and Health, Pará State University, Travessa. Perebebuí, 2623, Marco, Belém, Pará, 66087-662, Brazil
| |
Collapse
|
2
|
Heffron AS, Lauck M, Somsen ED, Townsend EC, Bailey AL, Sosa M, Eickhoff J, Capuano III S, Newman CM, Kuhn JH, Mejia A, Simmons HA, O’Connor DH. Discovery of a Novel Simian Pegivirus in Common Marmosets ( Callithrix jacchus) with Lymphocytic Enterocolitis. Microorganisms 2020; 8:microorganisms8101509. [PMID: 33007921 PMCID: PMC7599636 DOI: 10.3390/microorganisms8101509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022] Open
Abstract
From 2010 to 2015, 73 common marmosets (Callithrix jacchus) housed at the Wisconsin National Primate Research Center (WNPRC) were diagnosed postmortem with lymphocytic enterocolitis. We used unbiased deep-sequencing to screen the blood of deceased enterocolitis-positive marmosets for viruses. In five out of eight common marmosets with lymphocytic enterocolitis, we discovered a novel pegivirus not present in ten matched, clinically normal controls. The novel virus, which we named Southwest bike trail virus (SOBV), is most closely related (68% nucleotide identity) to a strain of simian pegivirus A isolated from a three-striped night monkey (Aotus trivirgatus). We screened 146 living WNPRC common marmosets for SOBV, finding an overall prevalence of 34% (50/146). Over four years, 85 of these 146 animals died or were euthanized. Histological examination revealed 27 SOBV-positive marmosets from this cohort had lymphocytic enterocolitis, compared to 42 SOBV-negative marmosets, indicating no association between SOBV and disease in this cohort (p = 0.0798). We also detected SOBV in two of 33 (6%) clinically normal marmosets screened during transfer from the New England Primate Research Center, suggesting SOBV could be exerting confounding influences on comparisons of common marmoset studies from multiple colonies.
Collapse
Affiliation(s)
- Anna S. Heffron
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53711, USA; (A.S.H.); (M.L.); (E.D.S.); (E.C.T.); (C.M.N.)
| | - Michael Lauck
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53711, USA; (A.S.H.); (M.L.); (E.D.S.); (E.C.T.); (C.M.N.)
| | - Elizabeth D. Somsen
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53711, USA; (A.S.H.); (M.L.); (E.D.S.); (E.C.T.); (C.M.N.)
| | - Elizabeth C. Townsend
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53711, USA; (A.S.H.); (M.L.); (E.D.S.); (E.C.T.); (C.M.N.)
| | - Adam L. Bailey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Megan Sosa
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; (M.S.); (S.C.III); (A.M.); (H.A.S.)
| | - Jens Eickhoff
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Saverio Capuano III
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; (M.S.); (S.C.III); (A.M.); (H.A.S.)
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53711, USA; (A.S.H.); (M.L.); (E.D.S.); (E.C.T.); (C.M.N.)
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA;
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; (M.S.); (S.C.III); (A.M.); (H.A.S.)
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; (M.S.); (S.C.III); (A.M.); (H.A.S.)
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53711, USA; (A.S.H.); (M.L.); (E.D.S.); (E.C.T.); (C.M.N.)
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; (M.S.); (S.C.III); (A.M.); (H.A.S.)
- Correspondence: ; Tel.: +1-608-890-0845
| |
Collapse
|
3
|
de Miranda BKB, de Sá KSG, da Silva ANR, Feitosa RNM, Cayres-Vallinoto IMV, Ishak R, Vallinoto ACR. GBV-C/HIV-1 coinfection is associated with low HIV-1 viral load and high CD4 + T lymphocyte count. Arch Virol 2017; 162:3431-3438. [PMID: 28780631 DOI: 10.1007/s00705-017-3514-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/02/2017] [Indexed: 11/24/2022]
Abstract
GB virus C (GBV-C) is a lymphotropic virus with a low level or non-existent replication in the liver. The interaction between HIV-1 and GBV-C apparently reduces the progression of HIV-1 infection to AIDS and improves the quality of life of HIV-1 infected individuals. A cross-sectional study was established to determine the possible effect of HIV-1/GBV-C coinfection on HIV-1 viral load and CD4+ T lymphocyte counts. Samples from 313 HIV-1 infected persons from the Virus Laboratory of the Federal University of Pará as well as demographic and clinical information were obtained from medical records. This study used a nested PCR method to determine GBV-C viremia. The prevalence of HIV-1/GBV-C coinfection was 17%. There were no significant differences in the distribution according to age, sex or ethnicity between the groups. The differences in HIV-1 viral load and CD4+ T lymphocyte count between the HIV-1 and HIV-1/GBV-C groups were highly significant, indicating that coinfection results in lower viral loads and higher CD4+ T lymphocyte counts compared to HIV-1 mono-infection. The results indicate a protective effect among coinfected individuals.
Collapse
Affiliation(s)
| | - Keyla Santos Guedes de Sá
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará), Belem, Para, Brazil
| | - Andrea Nazaré Rangel da Silva
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará), Belem, Para, Brazil
| | - Rosimar Neris Martins Feitosa
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará), Belem, Para, Brazil
| | | | - Ricardo Ishak
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará), Belem, Para, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará), Belem, Para, Brazil.
| |
Collapse
|
4
|
Co-infections and transmission networks of HCV, HIV-1 and HPgV among people who inject drugs. Sci Rep 2015; 5:15198. [PMID: 26459957 PMCID: PMC4602306 DOI: 10.1038/srep15198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/21/2015] [Indexed: 12/20/2022] Open
Abstract
Co-infections with human immunodeficiency virus type 1 (HIV-1) and human pegivirus (HPgV) are common in hepatitis C virus (HCV)-infected individuals. However, analysis on the evolutionary dynamics and transmission network profiles of these viruses among individuals with multiple infections remains limited. A total of 228 injecting drug users (IDUs), either HCV- and/or HIV-1-infected, were recruited in Kuala Lumpur, Malaysia. HCV, HIV-1 and HPgV genes were sequenced, with epidemic growth rates assessed by the Bayesian coalescent method. Based on the sequence data, mono-, dual- and triple-infection were detected in 38.8%, 40.6% and 20.6% of the subjects, respectively. Fifteen transmission networks involving HCV (subtype 1a, 1b, 3a and 3b), HIV-1 (CRF33_01B) and HPgV (genotype 2) were identified and characterized. Genealogical estimates indicated that the predominant HCV, HIV-1 and HPgV genotypes were introduced into the IDUs population through multiple sub-epidemics that emerged as early as 1950s (HCV), 1980s (HIV-1) and 1990s (HPgV). By determining the difference in divergence times between viral lineages (ΔtMRCA), we also showed that the frequency of viral co-transmission is low among these IDUs. Despite increased access to therapy and other harm reduction interventions, the continuous emergence and coexistence of new transmission networks suggest persistent multiple viral transmissions among IDUs.
Collapse
|