1
|
Siddiqui S, Perez S, Gao Y, Doyle-Meyers L, Foley BT, Li Q, Ling B. Persistent Viral Reservoirs in Lymphoid Tissues in SIV-Infected Rhesus Macaques of Chinese-Origin on Suppressive Antiretroviral Therapy. Viruses 2019; 11:v11020105. [PMID: 30691203 PMCID: PMC6410399 DOI: 10.3390/v11020105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
Understanding HIV latent reservoirs in tissues is essential for the development of new strategies targeting these sites for eradication. Here, we assessed the size of latent reservoirs and the source of residual viruses in multiple lymphoid tissues of SIV-infected and fully suppressed rhesus macaques of Chinese-origin (cRMs). Eight cRMs were infected with SIVmac251 and treated with tenofovir and emtricitabine daily for 24 weeks initiated 4 weeks post-infection. Four of the eight animals reached sustained full viral suppression with undetectable viremia. The levels of cell-associated SIV DNA varied in peripheral blood mononuclear cells (PBMCs) and multiple lymphoid tissues, but with higher levels in the mesenteric lymph nodes (MesLNs). The levels of cell-associated SIV RNA also varied in different tissues. The higher frequency of viral RNA detection in the MesLNs was also observed by in situ hybridization. Consistently, the infection unit per million cells (IUPM) in the MesLNs was higher than in PBMCs and other tested lymphoid tissues by quantitative viral outgrowth assay (QVOA). Furthermore, env gp120 from tissue SIV RNA was amplified by single genome amplification. Phylogenetic analysis revealed diverse variants from tissues parallel to the viral inoculum in all viral suppressed animals. These results demonstrate that the latency and viral reservoirs in the lymphoid tissues still exist in aviremic macaques under full suppressive therapy. Moreover, the size of viral latent reservoirs differs in various lymphoid tissues with a relatively larger size in the MesLNs.
Collapse
Affiliation(s)
- Summer Siddiqui
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA.
| | - Stefanie Perez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA.
| | - Yong Gao
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Lara Doyle-Meyers
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA.
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Brian T Foley
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Binhua Ling
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA.
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA.
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
2
|
Aravantinou M, Mizenina O, Calenda G, Kenney J, Frank I, Lifson JD, Szpara M, Jing L, Koelle DM, Teleshova N, Grasperge B, Blanchard J, Gettie A, Martinelli E, Derby N. Experimental Oral Herpes Simplex Virus-1 (HSV-1) Co-infection in Simian Immunodeficiency Virus (SIV)-Infected Rhesus Macaques. Front Microbiol 2017; 8:2342. [PMID: 29259582 PMCID: PMC5723348 DOI: 10.3389/fmicb.2017.02342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/14/2017] [Indexed: 01/27/2023] Open
Abstract
Herpes simplex virus 1 and 2 (HSV-1/2) similarly initiate infection in mucosal epithelia and establish lifelong neuronal latency. Anogenital HSV-2 infection augments the risk for sexual human immunodeficiency virus (HIV) transmission and is associated with higher HIV viral loads. However, whether oral HSV-1 infection contributes to oral HIV susceptibility, viremia, or oral complications of HIV infection is unknown. Appropriate non-human primate (NHP) models would facilitate this investigation, yet there are no published studies of HSV-1/SIV co-infection in NHPs. Thus, we performed a pilot study for an oral HSV-1 infection model in SIV-infected rhesus macaques to describe the feasibility of the modeling and resultant immunological changes. Three SIV-infected, clinically healthy macaques became HSV-1-infected by inoculation with 4 × 108 pfu HSV-1 McKrae on buccal, tongue, gingiva, and tonsils after gentle abrasion. HSV-1 DNA was shed in oral swabs for up to 21 days, and shedding recurred in association with intra-oral lesions after periods of no shedding during 56 days of follow up. HSV-1 DNA was detected in explant cultures of trigeminal ganglia collected at euthanasia on day 56. In the macaque with lowest baseline SIV viremia, SIV plasma RNA increased following HSV-1 infection. One macaque exhibited an acute pro-inflammatory response, and all three animals experienced T cell activation and mobilization in blood. However, T cell and antibody responses to HSV-1 were low and atypical. Through rigorous assessesments, this study finds that the virulent HSV-1 strain McKrae resulted in a low level HSV-1 infection that elicited modest immune responses and transiently modulated SIV infection.
Collapse
Affiliation(s)
- Meropi Aravantinou
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Olga Mizenina
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Giulia Calenda
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Jessica Kenney
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Ines Frank
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Moriah Szpara
- Departments of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Benaroya Research Institute, Seattle, WA, United States
| | - Natalia Teleshova
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Brooke Grasperge
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, United States
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, NY, United States
| |
Collapse
|
3
|
Nonhuman Primate Models for Studies of AIDS Virus Persistence During Suppressive Combination Antiretroviral Therapy. Curr Top Microbiol Immunol 2017; 417:69-109. [PMID: 29026923 DOI: 10.1007/82_2017_73] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nonhuman primate (NHP) models of AIDS represent a potentially powerful component of the effort to understand in vivo sources of AIDS virus that persist in the setting of suppressive combination antiretroviral therapy (cART) and to develop and evaluate novel strategies for more definitive treatment of HIV infection (i.e., viral eradication "cure", or sustained off-cART remission). Multiple different NHP models are available, each characterized by a particular NHP species, infecting virus, and cART regimen, and each with a distinct capacity to recapitulate different aspects of HIV infection. Given these different biological characteristics, and their associated strengths and limitations, different models may be preferred to address different questions pertaining to virus persistence and cure research, or to evaluate different candidate intervention approaches. Recent developments in improved cART regimens for use in NHPs, new viruses, a wider array of sensitive virologic assay approaches, and a better understanding of pathogenesis should allow even greater contributions from NHP models to this important area of HIV research in the future.
Collapse
|
4
|
Aravantinou M, Frank I, Hallor M, Singer R, Tharinger H, Kenney J, Gettie A, Grasperge B, Blanchard J, Salazar A, Piatak M, Lifson JD, Robbiani M, Derby N. PolyICLC Exerts Pro- and Anti-HIV Effects on the DC-T Cell Milieu In Vitro and In Vivo. PLoS One 2016; 11:e0161730. [PMID: 27603520 PMCID: PMC5014349 DOI: 10.1371/journal.pone.0161730] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022] Open
Abstract
Myeloid dendritic cells (mDCs) contribute to both HIV pathogenesis and elicitation of antiviral immunity. Understanding how mDC responses to stimuli shape HIV infection outcomes will inform HIV prevention and treatment strategies. The long double-stranded RNA (dsRNA) viral mimic, polyinosinic polycytidylic acid (polyIC, PIC) potently stimulates DCs to focus Th1 responses, triggers direct antiviral activity in vitro, and boosts anti-HIV responses in vivo. Stabilized polyICLC (PICLC) is being developed for vaccine adjuvant applications in humans, making it critical to understand how mDC sensing of PICLC influences HIV infection. Using the monocyte-derived DC (moDC) model, we sought to describe how PICLC (vs. other dsRNAs) impacts HIV infection within DCs and DC-T cell mixtures. We extended this work to in vivo macaque rectal transmission studies by administering PICLC with or before rectal SIVmac239 (SIVwt) or SIVmac239ΔNef (SIVΔNef) challenge. Like PIC, PICLC activated DCs and T cells, increased expression of α4β7 and CD169, and induced type I IFN responses in vitro. The type of dsRNA and timing of dsRNA exposure differentially impacted in vitro DC-driven HIV infection. Rectal PICLC treatment similarly induced DC and T cell activation and pro- and anti-HIV factors locally and systemically. Importantly, this did not enhance SIV transmission in vivo. Instead, SIV acquisition was marginally reduced after a single high dose challenge. Interestingly, in the PICLC-treated, SIVΔNef-infected animals, SIVΔNef viremia was higher, in line with the importance of DC and T cell activation in SIVΔNef replication. In the right combination anti-HIV strategy, PICLC has the potential to limit HIV infection and boost HIV immunity.
Collapse
Affiliation(s)
- Meropi Aravantinou
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Ines Frank
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Magnus Hallor
- Center for Biomedical Research, Population Council, New York, NY, United States of America
- Linköping University, Linköping, Sweden
| | - Rachel Singer
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Hugo Tharinger
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Jessica Kenney
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, United States of America
| | - Brooke Grasperge
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States of America
| | | | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, United States of America
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| |
Collapse
|
5
|
Peterson CW, Younan P, Polacino PS, Maurice NJ, Miller HW, Prlic M, Jerome KR, Woolfrey AE, Hu SL, Kiem HP. Robust suppression of env-SHIV viremia in Macaca nemestrina by 3-drug ART is independent of timing of initiation during chronic infection. J Med Primatol 2014; 42:237-46. [PMID: 24025078 DOI: 10.1111/jmp.12060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nonhuman primates (NHPs) are an important model organism for studies of HIV pathogenesis and preclinical evaluation of anti-HIV therapies. The successful translation of NHP-derived data to clinically relevant anti-HIV studies will require better understanding of the viral strains and NHP species used and their responses to existing antiretroviral therapies (ART). METHODS Five pigtailed macaques (Macaca nemestrina) were productively infected with the SIV/HIV chimeric virus SHIV-1157 ipd3N4 following intravenous challenge. After 8 or 27 weeks, ART (PMPA, FTC, raltegravir) was initiated. Viral load, T-cell counts, and production of SHIV-specific antibodies were monitored throughout the course of infection and ART. RESULTS ART led to a rapid and sustained decrease in plasma viral load. Suppression of plasma viremia by ART was independent of the timing of initiation during chronic infection. CONCLUSIONS We present a new NHP model of HIV infection on antiretroviral therapy, which should prove applicable to multiple clinically relevant anti-HIV approaches.
Collapse
|
6
|
Lederman MM, Funderburg NT, Sekaly RP, Klatt NR, Hunt PW. Residual immune dysregulation syndrome in treated HIV infection. Adv Immunol 2013; 119:51-83. [PMID: 23886064 DOI: 10.1016/b978-0-12-407707-2.00002-3] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antiretroviral therapy has revolutionized the course of HIV infection, improving immune function and decreasing dramatically the mortality and morbidity due to the opportunistic complications of the disease. Nonetheless, even with sustained suppression of HIV replication, many HIV-infected persons experience a syndrome characterized by increased T cell activation and evidence of heightened inflammation and coagulation. This residual immune dysregulation syndrome or RIDS is more common in persons who fail to increase circulating CD4+ T cells to normal levels and in several epidemiologic studies it has been associated with increased morbidity and mortality. These morbid and fatal events are not the typical opportunistic infections and malignancies seen in the early AIDS era but rather comprise a spectrum of cardiovascular events, liver disease, metabolic disorders, kidney disease, bone disease, and a spectrum of malignant complications distinguishable from the opportunistic malignancies that characterized the earlier days of the AIDS epidemic. While immune activation, inflammation, and coagulopathy are characteristic of untreated HIV infection and improve with drug-induced control of HIV replication, the drivers of RIDS in treated HIV infection are incompletely understood. And while inflammation, immune activation, and coagulopathy are more common in treated persons who fail to restore circulating CD4+ T cells, it is not entirely clear how these two phenomena are linked.
Collapse
Affiliation(s)
- Michael M Lederman
- Division of Infectious Diseases and Center for AIDS Research, Case Western Reserve University and University Hospitals/Case Medical Center, Cleveland, Ohio, USA.
| | | | | | | | | |
Collapse
|
7
|
Del Prete GQ, Lifson JD. Considerations in the development of nonhuman primate models of combination antiretroviral therapy for studies of AIDS virus suppression, residual virus, and curative strategies. Curr Opin HIV AIDS 2013; 8:262-72. [PMID: 23698559 PMCID: PMC3939607 DOI: 10.1097/coh.0b013e328361cf40] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Animal models will be critical for preclinical evaluations of novel HIV eradication and/or functional cure strategies in the setting of suppressive combination antiretroviral therapy (cART). Here, the strengths, limitations, and challenges of recent efforts to develop nonhuman primate (NHP) models of cART-mediated suppression for use in studies of persistent virus and curative approaches are discussed. RECENT FINDINGS Several combinations of NHP species and viruses that recapitulate key aspects of human HIV infection have been adapted for cART-mediated suppression studies. Different cART regimens incorporating drugs targeting multiple different steps of the viral replication cycle have provided varying levels of virologic suppression, dependent in part upon the host species, virus, drug regimen and timing, and virologic monitoring assay sensitivity. New, increasingly sensitive virologic monitoring approaches for measurements of plasma viral RNA, cell-associated and tissue-associated viral RNA and DNA, and the replication-competent residual viral pool in the setting of cART in NHP models are being developed to allow for the assessment of persistent virus on cART and to evaluate the impact of viral induction/eradication strategies in vivo. SUMMARY Given the vagaries of each specific virus and host species, and cART regimen, each model will require further development and analysis to determine their appropriate application for addressing specific experimental questions.
Collapse
Affiliation(s)
- Gregory Q. Del Prete
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|