1
|
Chen H, Zhang Y, Pan Y, Wu L, Wang W, Zhang H, Lou H. Antibiotic-induced microbiome depletion promotes intestinal colonization by Campylobacter jejuni in mice. BMC Microbiol 2024; 24:156. [PMID: 38724913 PMCID: PMC11080253 DOI: 10.1186/s12866-024-03313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND To establish a method to induce Campylobacter jejuni colonization in the intestines of C57BL/6 mice through antibiotic-induced microbiome depletion. RESULTS Fifty-four female C57BL/6 mice were divided into the normal, control, and experimental groups. The experimental group was administered intragastric cefoperazone sodium and sulbactam sodium (50 mg/mL) for 2 days; then, the experimental and control mice were intragastrically administered 200 µL C. jejuni, which was repeated once more after 2 days. Animal feces were collected, and the HipO gene of C. jejuni was detected using TaqMan qPCR from day 1 to day 14 after modeling completion. Immunofluorescence was used to detect intestinal C. jejuni colonization on day 14, and pathological changes were observed using hematoxylin and eosin staining. Additionally, 16S rDNA analyses of the intestinal contents were conducted on day 14. In the experimental group, C. jejuni was detected in the feces from days 1 to 14 on TaqMan qPCR, and immunofluorescence-labeled C. jejuni were visibly discernable in the intestinal lumen. The intestinal mucosa was generally intact and showed no significant inflammatory-cell infiltration. Diversity analysis of the colonic microbiota showed significant inter-group differences. In the experimental group, the composition of the colonic microbiota differed from that in the other 2 groups at the phylum level, and was characterized by a higher proportion of Bacteroidetes and a lower proportion of Firmicutes. CONCLUSIONS Microbiome depletion induced by cefoperazone sodium and sulbactam sodium could promote long-term colonization of C. jejuni in the intestines of mice.
Collapse
Affiliation(s)
- Haohao Chen
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, No. 1188 Wuzhou Street, Wucheng District, Jinhua, Zhejiang Province, P.R. China.
| | - Yanfang Zhang
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, No. 1188 Wuzhou Street, Wucheng District, Jinhua, Zhejiang Province, P.R. China
| | - Yi Pan
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, No. 1188 Wuzhou Street, Wucheng District, Jinhua, Zhejiang Province, P.R. China
| | - Lin Wu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, No. 1188 Wuzhou Street, Wucheng District, Jinhua, Zhejiang Province, P.R. China
| | - Wenqian Wang
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, No. 1188 Wuzhou Street, Wucheng District, Jinhua, Zhejiang Province, P.R. China
| | - Hui Zhang
- Animal Center, Jinhua Food and Drug Inspection and Testing Research Institute, Jinhua, Zhejiang Province, P.R. China
| | - Hongqiang Lou
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, No. 1188 Wuzhou Street, Wucheng District, Jinhua, Zhejiang Province, P.R. China.
| |
Collapse
|
2
|
Heimesaat MM, Mousavi S, Bandick R, Bereswill S. Campylobacter jejuni infection induces acute enterocolitis in IL-10-/- mice pretreated with ampicillin plus sulbactam. Eur J Microbiol Immunol (Bp) 2022; 12:73-83. [PMID: 36069779 PMCID: PMC9530677 DOI: 10.1556/1886.2022.00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
Gut microbiota depletion is a pivotal prerequisite to warrant Campylobacter jejuni infection and induced inflammation in IL-10-/- mice used as acute campylobacteriosis model. We here assessed the impact of an 8-week antibiotic regimen of ampicillin, ciprofloxacin, imipenem, metronidazole, and vancomycin (ABx) as compared to ampicillin plus sulbactam (A/S) on gut microbiota depletion and immunopathological responses upon oral C. jejuni infection. Our obtained results revealed that both antibiotic regimens were comparably effective in depleting the murine gut microbiota facilitating similar pathogenic colonization alongside the gastrointestinal tract following oral infection. Irrespective of the preceding microbiota depletion regimen, mice were similarly compromised by acute C. jejuni induced enterocolitis as indicated by comparable clinical scores and macroscopic as well as microscopic sequelae such as colonic histopathology and apoptosis on day 6 post-infection. Furthermore, innate and adaptive immune cell responses in the large intestines were similar in both infected cohorts, which also held true for intestinal, extra-intestinal and even systemic secretion of pro-inflammatory cytokines such as TNF-α, IFN-γ, and IL-6. In conclusion, gut microbiota depletion in IL-10-/- mice by ampicillin plus sulbactam is sufficient to investigate both, C. jejuni infection and the immunopathological features of acute campylobacteriosis.
Collapse
Affiliation(s)
- Markus M. Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203, Berlin, Germany
| | - Soraya Mousavi
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203, Berlin, Germany
| | - Rasmus Bandick
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203, Berlin, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203, Berlin, Germany
| |
Collapse
|
3
|
Immune-Modulatory Effects upon Oral Application of Cumin-Essential-Oil to Mice Suffering from Acute Campylobacteriosis. Pathogens 2021; 10:pathogens10070818. [PMID: 34209990 PMCID: PMC8308722 DOI: 10.3390/pathogens10070818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/24/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Human campylobacteriosis, commonly caused by Campylobacter jejuni, is a food-borne infection with rising prevalence causing significant health and socioeconomic burdens worldwide. Given the threat from emerging antimicrobial resistances, the treatment of infectious diseases with antibiotics-independent natural compounds is utmost appreciated. Since the health-beneficial effects of cumin-essential-oil (EO) have been known for centuries, its potential anti-pathogenic and immune-modulatory effects during acute experimental campylobacteriosis were addressed in the present study. Therefore, C. jejuni-challenged secondary abiotic IL-10-/- mice were treated perorally with either cumin-EO or placebo starting on day 2 post-infection. On day 6 post-infection, cumin-EO treated mice harbored lower ileal pathogen numbers and exhibited a better clinical outcome when compared to placebo controls. Furthermore, cumin-EO treatment alleviated enteropathogen-induced apoptotic cell responses in colonic epithelia. Whereas, on day 6 post-infection, a dampened secretion of pro-inflammatory mediators, including nitric oxide and IFN-γ to basal levels, could be assessed in mesenteric lymph nodes of cumin-EO treated mice, systemic MCP-1 concentrations were elevated in placebo counterparts only. In conclusion, our preclinical intervention study provides first evidence for promising immune-modulatory effects of cumin-EO in the combat of human campylobacteriosis. Future studies should address antimicrobial and immune-modulatory effects of natural compounds as adjunct antibiotics-independent treatment option for infectious diseases.
Collapse
|
4
|
Heimesaat MM, Mousavi S, Weschka D, Bereswill S. Garlic Essential Oil as Promising Option for the Treatment of Acute Campylobacteriosis-Results from a Preclinical Placebo-Controlled Intervention Study. Microorganisms 2021; 9:microorganisms9061140. [PMID: 34070612 PMCID: PMC8227651 DOI: 10.3390/microorganisms9061140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Since human infections with Campylobacter jejuni including antibiotic-resistant strains are rising worldwide, natural compounds might constitute promising antibiotics-independent treatment options for campylobacteriosis. Since the health-beneficial properties of garlic have been known for centuries, we here surveyed the antimicrobial and immune-modulatory effects of garlic essential oil (EO) in acute experimental campylobacteriosis. Therefore, secondary abiotic IL-10-/- mice were orally infected with C. jejuni strain 81-176 and garlic-EO treatment via the drinking water was initiated on day 2 post-infection. Mice from the garlic-EO group displayed less severe clinical signs of acute campylobacteriosis as compared to placebo counterparts that were associated with lower ileal C. jejuni burdens on day 6 post-infection. Furthermore, when compared to placebo application, garlic-EO treatment resulted in alleviated colonic epithelia cell apoptosis, in less pronounced C. jejuni induced immune cell responses in the large intestines, in dampened pro-inflammatory mediator secretion in intestinal and extra-intestinal compartments, and, finally, in less frequent translocation of viable pathogens from the intestines to distinct organs. Given its potent immune-modulatory and disease-alleviating effects as shown in our actual preclinical placebo-controlled intervention study, we conclude that garlic-EO may be considered as promising adjunct treatment option for acute campylobacteriosis in humans.
Collapse
Affiliation(s)
- Markus M. Heimesaat
- Correspondence: (M.M.H.); (S.M.); Tel.: +49-30-450524318 (M.M.H); +49-30-450524315 (S.M.)
| | - Soraya Mousavi
- Correspondence: (M.M.H.); (S.M.); Tel.: +49-30-450524318 (M.M.H); +49-30-450524315 (S.M.)
| | | | | |
Collapse
|
5
|
Mousavi S, Bereswill S, Heimesaat MM. Murine Models for the Investigation of Colonization Resistance and Innate Immune Responses in Campylobacter Jejuni Infections. Curr Top Microbiol Immunol 2021; 431:233-263. [PMID: 33620654 DOI: 10.1007/978-3-030-65481-8_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human infections with the food-borne pathogen Campylobacter jejuni are progressively increasing worldwide and constitute a significant socioeconomic burden to mankind. Intestinal campylobacteriosis in humans is characterized by bloody diarrhea, fever, abdominal pain, and severe malaise. Some individuals develop chronic post-infectious sequelae including neurological and autoimmune diseases such as reactive arthritis and Guillain-Barré syndrome. Studies unraveling the molecular mechanisms underlying campylobacteriosis and post-infectious sequelae have been hampered by the scarcity of appropriate experimental in vivo models. Particularly, conventional laboratory mice are protected from C. jejuni infection due to the physiological colonization resistance exerted by the murine gut microbiota composition. Additionally, as compared to humans, mice are up to 10,000 times more resistant to C. jejuni lipooligosaccharide (LOS) constituting a major pathogenicity factor responsible for the immunopathological host responses during campylobacteriosis. In this chapter, we summarize the recent progress that has been made in overcoming these fundamental obstacles in Campylobacter research in mice. Modification of the murine host-specific gut microbiota composition and sensitization of the mice to C. jejuni LOS by deletion of genes encoding interleukin-10 or a single IL-1 receptor-related molecule as well as by dietary zinc depletion have yielded reliable murine infection models resembling key features of human campylobacteriosis. These substantial improvements pave the way for a better understanding of the molecular mechanisms underlying pathogen-host interactions. The ongoing validation and standardization of these novel murine infection models will provide the basis for the development of innovative treatment and prevention strategies to combat human campylobacteriosis and collateral damages of C. jejuni infections.
Collapse
Affiliation(s)
- Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
6
|
Mousavi S, Bereswill S, Heimesaat MM. Novel Clinical Campylobacter jejuni Infection Models Based on Sensitization of Mice to Lipooligosaccharide, a Major Bacterial Factor Triggering Innate Immune Responses in Human Campylobacteriosis. Microorganisms 2020; 8:E482. [PMID: 32231139 PMCID: PMC7232424 DOI: 10.3390/microorganisms8040482] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
: Human Campylobacter jejuni infections inducing campylobacteriosis including post-infectious sequelae such as Guillain-Barré syndrome and reactive arthritis are rising worldwide and progress into a global burden of high socioeconomic impact. Intestinal immunopathology underlying campylobacteriosis is a classical response of the innate immune system characterized by the accumulation of neutrophils and macrophages which cause tissue destruction, barrier defects and malabsorption leading to bloody diarrhea. Clinical studies revealed that enteritis and post-infectious morbidities of human C. jejuni infections are strongly dependent on the structure of pathogenic lipooligosaccharides (LOS) triggering the innate immune system via Toll-like-receptor (TLR)-4 signaling. Compared to humans, mice display an approximately 10,000 times weaker TLR-4 response and a pronounced colonization resistance (CR) against C. jejuni maintained by the murine gut microbiota. In consequence, investigations of campylobacteriosis have been hampered by the lack of experimental animal models. We here summarize recent progress made in the development of murine C. jejuni infection models that are based on the abolishment of CR by modulating the murine gut microbiota and by sensitization of mice to LOS. These advances support the major role of LOS driven innate immunity in pathogenesis of campylobacteriosis including post-infectious autoimmune diseases and promote the preclinical evaluation of novel pharmaceutical strategies for prophylaxis and treatment.
Collapse
|
7
|
Wang G, He Y, Jin X, Zhou Y, Chen X, Zhao J, Zhang H, Chen W. The Effect of Co-infection of Food-Borne Pathogenic Bacteria on the Progression of Campylobacter jejuni Infection in Mice. Front Microbiol 2018; 9:1977. [PMID: 30186279 PMCID: PMC6113366 DOI: 10.3389/fmicb.2018.01977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
Campylobacter is a well-known food-borne pathogen that causes human gastroenteritis. Food products that contain Campylobacter may also be contaminated by other pathogens, however, whether this multiple contamination leads to more severe infection remains unclear. In this study, mice were gavaged with Campylobacter jejuni and other food-borne pathogenic bacteria to mimic a multiple infection. It was demonstrated that the C. jejuni load was elevated when the mice were co-infected with C. jejuni and Salmonella typhimurium, and the campylobacteriosis that followed was also enhanced, with features of decreased body weight, heavier bloody stools and more pronounced inflammatory changes to the colon. In addition, infection with C. jejuni was also promoted by co-infection with entero-invasive Escherichia coli but unaffected over time. In contrast to S. typhimurium and entero-invasive E. coli, co-infection by Listeria monocytogenes showed little effect on C. jejuni infection and even hindered its progress. In addition, the intestinal microecology was also affected by co-infection of C. jejuni with other pathogens, with an increased relative abundance of unclassified Enterobacteriaceae, decreased levels of butyric acid and changes in the abundance of several genera of gut microbe, which suggests that some food-borne pathogenic bacteria might affect the progression of C. jejuni infection in mice by influencing the composition of the gut microbiota and the resulting changes in SCFA levels. Collectively, our findings suggest that co-infection of Campylobacter with other pathogenic bacteria can impact on the progression of infection by C. jejuni in mice, which may also have implication for the etiology of Campylobacter on human health.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yufeng He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xing Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yonghua Zhou
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Xiaohua Chen
- College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China.,Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Institute of Food Biotechnology, Jiangnan University, Yangzhou, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
8
|
Fiebiger U, Bereswill S, Heimesaat MM. Dissecting the Interplay Between Intestinal Microbiota and Host Immunity in Health and Disease: Lessons Learned from Germfree and Gnotobiotic Animal Models. Eur J Microbiol Immunol (Bp) 2016; 6:253-271. [PMID: 27980855 PMCID: PMC5146645 DOI: 10.1556/1886.2016.00036] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
This review elaborates the development of germfree and gnotobiotic animal models and their application in the scientific field to unravel mechanisms underlying host-microbe interactions and distinct diseases. Strictly germfree animals are raised in isolators and not colonized by any organism at all. The germfree state is continuously maintained by birth, raising, housing and breeding under strict sterile conditions. However, isolator raised germfree mice are exposed to a stressful environment and exert an underdeveloped immune system. To circumvent these physiological disadvantages depletion of the bacterial microbiota in conventionally raised and housed mice by antibiotic treatment has become an alternative approach. While fungi and parasites are not affected by antibiosis, the bacterial microbiota in these "secondary abiotic mice" have been shown to be virtually eradicated. Recolonization of isolator raised germfree animals or secondary abiotic mice results in a gnotobiotic state. Both, germfree and gnotobiotic mice have been successfully used to investigate biological functions of the conventional microbiota in health and disease. Particularly for the development of novel clinical applications germfree mice are widely used tools, as summarized in this review further focusing on the modulation of bacterial microbiota in laboratory mice to better mimic conditions in the human host.
Collapse
Affiliation(s)
| | | | - Markus M. Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology and Hygiene, Charité – University Medicine Berlin, Campus Benjamin Franklin
| |
Collapse
|
9
|
V K, E M, K B, R H, V R, D S, A K, M L, M L, A L, Z Š, M L. TLR4 and TLR21 expression, MIF, IFN-β, MD-2, CD14 activation, and sIgA production in chickens administered with EFAL41 strain challenged with Campylobacter jejuni. Folia Microbiol (Praha) 2016; 62:89-97. [PMID: 27696326 DOI: 10.1007/s12223-016-0475-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/21/2016] [Indexed: 01/26/2023]
Abstract
The protective effect of Enterococcus faecium EFAL41 on chicken's caecum in relation to the TLR (TLR4 and TLR21) activation and production of luminal IgA challenged with Campylobacter jejuni CCM6191 was assessed. The activation of MIF, IFN-β, MD-2 and CD14 was followed-up after bacterial infection. Day-old chicks (40) were divided into four groups (n = 10): control (C), E. faecium AL41 (EFAL41), C. jejuni (CJ) and combined E. faecium AL41+C. jejuni (EFAL41+CJ). Relative mRNA expression of TLR4, TLR21 and CD14 was upregulated in the probiotic strain and infected (combined) group on day 4 and 7 post infection (p.i.). The caecal relative MD-2 mRNA expression was upregulated on day 4 p.i. in the EFAL41+CJ and CJ groups. MIF and IFN-β reached the highest levels in the combined groups on day 7 p.i. The concentration of the sIgA in intestinal flush was upregulated in EFAL41+CJ group on day 4 p.i. The results demonstrated that E. faecium EFAL41 probiotic strain can modulate the TLRs expression and modify the activation of MIF, IFN-β, MD-2 and CD14 molecules in the chickens caecum challenged with C. jejuni CCM 6191. The counts of EFAL41 were sufficient and high, similarly the counts of enterococci in both, caecum and faeces but without reduction of Campylobacter counts.
Collapse
Affiliation(s)
- Karaffová V
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81, Košice, Slovak Republic.
| | - Marcinková E
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81, Košice, Slovak Republic
| | - Bobíková K
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81, Košice, Slovak Republic
| | - Herich R
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81, Košice, Slovak Republic
| | - Revajová V
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81, Košice, Slovak Republic
| | - Stašová D
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81, Košice, Slovak Republic
| | - Kavuľová A
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81, Košice, Slovak Republic
| | - Levkutová M
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81, Košice, Slovak Republic
| | - Levkut M
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81, Košice, Slovak Republic
| | - Lauková A
- Institute of Animal Physiology, Slovak Academy of Sciences, Soltésovej 4-6, 04001, Kosice, Slovak Republic
| | - Ševčíková Z
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81, Košice, Slovak Republic
| | - Levkut M
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81, Košice, Slovak Republic.,Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10, Bratislava, Slovak Republic
| |
Collapse
|
10
|
Polymicrobial–Host Interactions during Infection. J Mol Biol 2016; 428:3355-71. [DOI: 10.1016/j.jmb.2016.05.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 02/08/2023]
|
11
|
Heimesaat MM, Grundmann U, Alutis ME, Fischer A, Göbel UB, Bereswill S. The IL-23/IL-22/IL-18 axis in murine Campylobacter jejuni infection. Gut Pathog 2016; 8:21. [PMID: 27385977 PMCID: PMC4934010 DOI: 10.1186/s13099-016-0106-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/12/2016] [Indexed: 01/29/2023] Open
Abstract
Background Human Campylobacter jejuni infections are worldwide on the rise. Information about the distinct molecular mechanisms underlying campylobacteriosis, however, are scarce. In the present study we investigated whether cytokines including IL-23, IL-22 and IL-18 sharing pivotal functions in host immunity were involved in mediating immunopathological responses upon C. jejuni infection. Results To address this, conventionally colonized IL-23p19−/−, IL-22−/− and IL-18−/− mice were perorally infected with C. jejuni strain ATCC 43431. Respective gene-deficient, but not wildtype mice were susceptible to C. jejuni infection and could be readily colonized with highest pathogenic loads in the terminal ileum and colon at day 14 postinfection (p.i.). In IL-23p19−/−, IL-22−/− and IL-18−/− mice viable C. jejuni were detected in MLNs, but did not translocate to spleen, liver, kidney and blood in the majority of cases. Susceptible IL-22−/−, but neither IL-23p19−/−, nor IL-18−/− mice harbored higher intestinal commensal E. coli loads when compared to resistant wildtype mice. Alike C. jejuni, commensal E. coli did not translocate from the intestinal to extra-intestinal tissue sites. Despite C. jejuni infection, mice lacking IL-23p19, IL-22 or IL-18 exhibited less apoptotic cells, but higher numbers of proliferating cells in their colonic epithelium as compared to wildtype mice at day 14 p.i. Less pronounced apoptosis was parallelled by lower abundance of neutrophils within the colonic mucosa and lamina propria of infected IL-23p19−/− and IL-22−/− as compared to wildtype control mice, whereas less distinct colonic TNF secretion could be measured in IL-22−/− and IL-18−/− than in wildtype mice at day 14 p.i. Notably, in infected IL-22−/− mice, colonic IL-23p19 mRNA levels were lower, whereas the other way round, colonic IL-22 expression rates were lower in IL-23p19−/− mice as compared to wildtype controls. Moreover, IL-18 mRNA was less distinctly expressed in large intestines of naive and infected IL-22−/− mice, but not vice versa, given that IL-22 mRNA levels did not differ between in IL-18−/− and wildtype mice. Conclusion Cytokines belonging to the IL-23/IL-22/IL-18 axis mediate immunopathological responses upon murine C. jejuni infection in a differentially orchestrated manner. Future studies need to further unravel the underlying regulatory mechanisms orchestrating pathogenic-host interaction. Electronic supplementary material The online version of this article (doi:10.1186/s13099-016-0106-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Marie E Alutis
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité-University Medicine Berlin, CC5, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| |
Collapse
|
12
|
Bronowski C, James CE, Winstanley C. Role of environmental survival in transmission of Campylobacter jejuni. FEMS Microbiol Lett 2014; 356:8-19. [PMID: 24888326 DOI: 10.1111/1574-6968.12488] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 11/29/2022] Open
Abstract
Campylobacter species are the most common cause of bacterial gastroenteritis, with C. jejuni responsible for the majority of these cases. Although it is clear that livestock, and particularly poultry, are the most common source, it is likely that the natural environment (soil and water) plays a key role in transmission, either directly to humans or indirectly via farm animals. It has been shown using multilocus sequence typing that some clonal complexes (such as ST-45) are more frequently isolated from environmental sources such as water, suggesting that strains vary in their ability to survive in the environment. Although C. jejuni are fastidious microaerophiles generally unable to grow in atmospheric levels of oxygen, C. jejuni can adapt to survival in the environment, exhibiting aerotolerance and starvation survival. Biofilm formation, the viable but nonculturable state, and interactions with other microorganisms can all contribute to survival outside the host. By exploiting high-throughput technologies such as genome sequencing and RNA Seq, we are well placed to decipher the mechanisms underlying the variations in survival between strains in environments such as soil and water and to better understand the role of environmental persistence in the transmission of C. jejuni directly or indirectly to humans.
Collapse
Affiliation(s)
- Christina Bronowski
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
13
|
Naz N, Mills DC, Wren BW, Dorrell N. Enteric bacterial invasion of intestinal epithelial cells in vitro is dramatically enhanced using a vertical diffusion chamber model. J Vis Exp 2013:e50741. [PMID: 24192850 DOI: 10.3791/50741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The interactions of bacterial pathogens with host cells have been investigated extensively using in vitro cell culture methods. However as such cell culture assays are performed under aerobic conditions, these in vitro models may not accurately represent the in vivo environment in which the host-pathogen interactions take place. We have developed an in vitro model of infection that permits the coculture of bacteria and host cells under different medium and gas conditions. The Vertical Diffusion Chamber (VDC) model mimics the conditions in the human intestine where bacteria will be under conditions of very low oxygen whilst tissue will be supplied with oxygen from the blood stream. Placing polarized intestinal epithelial cell (IEC) monolayers grown in Snapwell inserts into a VDC creates separate apical and basolateral compartments. The basolateral compartment is filled with cell culture medium, sealed and perfused with oxygen whilst the apical compartment is filled with broth, kept open and incubated under microaerobic conditions. Both Caco-2 and T84 IECs can be maintained in the VDC under these conditions without any apparent detrimental effects on cell survival or monolayer integrity. Coculturing experiments performed with different C. jejuni wild-type strains and different IEC lines in the VDC model with microaerobic conditions in the apical compartment reproducibly result in an increase in the number of interacting (almost 10-fold) and intracellular (almost 100-fold) bacteria compared to aerobic culture conditions. The environment created in the VDC model more closely mimics the environment encountered by C. jejuni in the human intestine and highlights the importance of performing in vitro infection assays under conditions that more closely mimic the in vivo reality. We propose that use of the VDC model will allow new interpretations of the interactions between bacterial pathogens and host cells.
Collapse
Affiliation(s)
- Neveda Naz
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine
| | | | | | | |
Collapse
|
14
|
Lone AG, Selinger LB, Uwiera RRE, Xu Y, Inglis GD. Campylobacter jejuni colonization is associated with a dysbiosis in the cecal microbiota of mice in the absence of prominent inflammation. PLoS One 2013; 8:e75325. [PMID: 24066174 PMCID: PMC3774657 DOI: 10.1371/journal.pone.0075325] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/13/2013] [Indexed: 12/11/2022] Open
Abstract
Background Campylobacter jejuni causes enterocolitis in humans, but does not incite disease in asymptomatic carrier animals. To survive in the intestine, C. jejuni must successfully compete with the microbiota and overcome the host immune defense. Campylobacter jejuni colonization success varies considerably amongst individual mice, and we examined the degree to which the intestinal microbiota was affected in mice (i.e. a model carrier animal) colonized by C. jejuni at high relative to low densities. Methods Mice were inoculated with C. jejuni or buffer, and pathogen shedding and intestinal colonization were measured. Histopathologic scoring and quantification of mRNA expression for α-defensins, toll-like receptors, and cytokine genes were conducted. Mucosa-associated bacterial communities were characterized by two approaches: multiplexed barcoded pyrosequencing and terminal restriction fragment length polymorphism analysis. Results Two C. jejuni treatments were established based on the degree of cecal and colonic colonization; C. jejuni Group A animals were colonized at high cell densities, and C. jejuni Group B animals were colonized at lower cell densities. Histological examination of cecal and colonic tissues indicated that C. jejuni did not incite visible pathologic changes. Although there was no significant difference among treatments in expression of mRNA for α-defensins, toll-like receptors, or cytokine genes, a trend for increased expression of toll-like receptors and cytokine genes was observed for C. jejuni Group A. The results of the two methods to characterize bacterial communities indicated that the composition of the cecal microbiota of C. jejuni Group A mice differed significantly from C. jejuni Group B and Control mice. This difference was due to a reduction in load, diversity and richness of bacteria associated with the cecal mucosa of C. jejuni Group A mice. Conclusions High density colonization by C. jejuni is associated with a dysbiosis in the cecal microbiota independent of prominent inflammation.
Collapse
Affiliation(s)
- Abdul G. Lone
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, Alberta, Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - L. Brent Selinger
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Richard R. E. Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Yong Xu
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - G. Douglas Inglis
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, Alberta, Canada
- * E-mail:
| |
Collapse
|
15
|
Kirkpatrick BD, Lyon CE, Porter CK, Maue AC, Guerry P, Pierce KK, Carmolli MP, Riddle MS, Larsson CJ, Hawk D, Dill EA, Fingar A, Poly F, Fimlaid KA, Hoq F, Tribble DR. Lack of homologous protection against Campylobacter jejuni CG8421 in a human challenge model. Clin Infect Dis 2013; 57:1106-13. [PMID: 23840001 DOI: 10.1093/cid/cit454] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is a common cause of diarrhea and is associated with serious postinfectious sequelae. Although symptomatic and asymptomatic infections are recognized, protective immunity is not well understood. Previous data suggests that interferon γ (IFN-γ) may be associated with protection. To better define the clinical and immunologic development of protective immunity to C. jejuni, we assessed the ability of an initial infection to prevent clinical illness after a second experimental infection. METHODS Subjects with no clinical or immunologic evidence of prior infection with C. jejuni received an initial challenge with C. jejuni CG8421 with rechallenge 3 months later. The primary endpoint was campylobacteriosis, as defined by diarrhea and/or systemic signs. Close inpatient monitoring was performed. Serum immunoglobulin A (IgA) and immunoglobulin G (IgG), fecal IgA, IgA antibody-secreting cells (ASCs), and IFN-γ production were evaluated. All subjects were treated with antibiotics and were clinically well at discharge. RESULTS Fifteen subjects underwent a primary infection with C. jejuni CG8421; 14 (93.3%) experienced campylobacteriosis. Eight subjects received the second challenge, and all experienced campylobacteriosis with similar severity. Immune responses after primary infection included serum IgA, IgG, ASC, and IFN-γ production. Responses were less robust after secondary infection. CONCLUSIONS In naive healthy adults, a single infection with CG8421 did not protect against campylobacteriosis. Although protection has been demonstrated with other strains and after continuous environmental exposure, our work highlights the importance of prior immunity, repeated exposures, and strain differences in protective immunity to C. jejuni. CLINICAL TRIALS REGISTRATION NCT01048112.
Collapse
Affiliation(s)
- Beth D Kirkpatrick
- University of Vermont College of Medicine, Unit of Infectious Diseases and Vaccine Testing Center, Burlington, Vermont
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Heimesaat MM, Plickert R, Fischer A, Göbel UB, Bereswill S. Can microbiota transplantation abrogate murine colonization resistance against Campylobacter jejuni? Eur J Microbiol Immunol (Bp) 2013; 3:36-43. [PMID: 24265916 DOI: 10.1556/eujmi.3.2013.1.5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 01/16/2013] [Indexed: 12/29/2022] Open
Abstract
Enterocolitis caused by Campylobacter jejuni represents an important socioeconomic burden worldwide. The host-specific intestinal microbiota is essential for maintaining colonization resistance (CR) against C. jejuni in conventional mice. Notably, CR is abrogated by shifts of the intestinal microbiota towards overgrowth with commensal E. coli during acute ileitis. Thus, we investigated whether oral transplantation (TX) of ileal microbiota derived from C. jejuni susceptible mice with acute ileitis overcomes CR of healthy conventional animals. Four days following ileitis microbiota TX or ileitis induction and right before C. jejuni infection, mice displayed comparable loads of main intestinal bacterial groups as shown by culture. Eight days following ileitis induction, but not ileal microbiota TX, however, C. jejuni could readily colonize the gastrointestinal tract of conventional mice and also translocate to extra-intestinal tissue sites such as mesenteric lymph nodes, spleen, liver, and blood within 4 days following oral infection. Of note, C. jejuni did not further deteriorate histopathology following ileitis induction. Lack of C. jejuni colonization in TX mice was accompanied by a decrease of commensal E. coli loads in the feces 4 days following C. jejuni infection. In summary, oral ileal microbiota TX from susceptible donors is not sufficient to abrogate murine CR against C. jejuni.
Collapse
Key Words
- Campylobacter jejuni, colonization resistance, fecal transplantation, microbiota, intestinal inflammation, acute ileitis, Toxoplasma gondii, bacterial translocation, susceptibility to infection, E. coli, pathogen–commensal interaction, pathogen–host i
Collapse
Affiliation(s)
- M M Heimesaat
- Charité-University Medicine Berlin, CC5, Department of Microbiology and Hygiene, Campus Benjamin Franklin Hindenburgdamm 27, D-12203 Berlin +49-30-8445-2194 +49-30-450-524-902 Germany
| | | | | | | | | |
Collapse
|
17
|
Riley TP, Neal-McKinney JM, Buelow DR, Konkel ME, Simasko SM. Capsaicin-sensitive vagal afferent neurons contribute to the detection of pathogenic bacterial colonization in the gut. J Neuroimmunol 2013; 257:36-45. [PMID: 23481698 DOI: 10.1016/j.jneuroim.2013.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/16/2013] [Accepted: 01/22/2013] [Indexed: 12/22/2022]
Abstract
Vagal activation can reduce inflammation and disease activity in various animal models of intestinal inflammation via the cholinergic anti-inflammatory pathway. In the current model of this pathway, activation of descending vagal efferents is dependent on a signal initiated by stimulation of vagal afferents. However, little is known about how vagal afferents are activated, especially in the context of subclinical or clinical pathogenic bacterial infection. To address this question, we first determined if selective lesions of capsaicin-sensitive vagal afferents altered c-Fos expression in the nucleus of the solitary tract (nTS) after mice were inoculated with either Campylobacter jejuni or Salmonella typhimurium. Our results demonstrate that the activation of nTS neurons by intraluminal pathogenic bacteria is dependent on intact, capsaicin sensitive vagal afferents. We next determined if inflammatory mediators could cause the observed increase in c-Fos expression in the nTS by a direct action on vagal afferents. This was tested by the use of single-cell calcium measurements in cultured vagal afferent neurons. We found that tumor necrosis factor alpha (TNFα) and lipopolysaccharide (LPS) directly activate cultured vagal afferent neurons and that almost all TNFα and LPS responsive neurons were sensitive to capsaicin. We conclude that activation of the afferent arm of the parasympathetic neuroimmune reflex by pathogenic bacteria in the gut is dependent on capsaicin sensitive vagal afferent neurons and that the release of inflammatory mediators into intestinal tissue can be directly sensed by these neurons.
Collapse
Affiliation(s)
- T P Riley
- Programs in Neuroscience, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|
18
|
Patrone V, Campana R, Vallorani L, Dominici S, Federici S, Casadei L, Gioacchini AM, Stocchi V, Baffone W. CadF expression in Campylobacter jejuni strains incubated under low-temperature water microcosm conditions which induce the viable but non-culturable (VBNC) state. Antonie van Leeuwenhoek 2013; 103:979-88. [PMID: 23314927 DOI: 10.1007/s10482-013-9877-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/05/2013] [Indexed: 11/25/2022]
Abstract
Campylobacter jejuni is a major gastrointestinal pathogen that colonizes host mucosa via interactions with extracellular matrix proteins such as fibronectin. The aim of this work was to study in vitro the adhesive properties of C. jejuni ATCC 33291 and C. jejuni 241 strains, in both culturable and viable but non-culturable (VBNC) forms. To this end, the expression of the outer-membrane protein CadF, which mediates C. jejuni binding to fibronectin, was evaluated. VBNC bacteria were obtained after 46-48 days of incubation in freshwater at 4 °C. In both cellular forms, the expression of the cadF gene, assessed at different time points by RT-PCR, was at high levels until the third week of VBNC induction, while the intensity of the signal declined during the last stage of incubation. CadF protein expression by the two C. jejuni strains was analysed using 2-dimensional electrophoresis and mass spectrometry; the results indicated that the protein, although at low levels, is also present in the VBNC state. Adhesion assays with culturable and VBNC cells, evaluated on Caco-2 monolayers, showed that non-culturable bacteria retain their ability to adhere to intestinal cells, though at a reduced rate. Our results demonstrate that the C. jejuni VBNC population maintains an ability to adhere and this may thus have an important role in the pathogenicity of this microorganism.
Collapse
Affiliation(s)
- Vania Patrone
- Division of Toxicology, Hygienic and Environmental Sciences Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Campylobacter jejuni outer membrane vesicles play an important role in bacterial interactions with human intestinal epithelial cells. Infect Immun 2012; 80:4089-98. [PMID: 22966047 DOI: 10.1128/iai.00161-12] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world; however, the molecular basis of pathogenesis is unclear. Secretion of virulence factors is a key mechanism by which enteric bacterial pathogens interact with host cells to enhance survival and/or damage the host. However, C. jejuni lacks the virulence-associated secretion systems possessed by other enteric pathogens. Many bacterial pathogens utilize outer membrane vesicles (OMVs) for delivery of virulence factors into host cells. In the absence of prototypical virulence-associated secretion systems, OMVs could be an important alternative for the coordinated delivery of C. jejuni proteins into host cells. Proteomic analysis of C. jejuni 11168H OMVs identified 151 proteins, including periplasmic and outer membrane-associated proteins, but also many determinants known to be important in survival and pathogenesis, including the cytolethal distending toxin (CDT). C. jejuni OMVs contained 16 N-linked glycoproteins, indicating a delivery mechanism by which these periplasm-located yet immunogenic glycoproteins can interact with host cells. C. jejuni OMVs possess cytotoxic activity and induce a host immune response from T84 intestinal epithelial cells (IECs), which was not reduced by OMV pretreatment with proteinase K or polymyxin B prior to coincubation with IECs. Pretreatment of IECs with methyl-beta-cyclodextrin partially blocks OMV-induced host immune responses, indicating a role for lipid rafts in host cell plasma membranes during interactions with C. jejuni OMVs. OMVs isolated from a C. jejuni 11168H cdtA mutant induced interleukin-8 (IL-8) to the same extent as did wild-type OMVs, suggesting OMV induction of IL-8 is independent of CDT.
Collapse
|
20
|
Otto B, Haag LM, Fischer A, Plickert R, Kühl AA, Göbel UB, Heimesaat MM, Bereswill S. Campylobacter jejuni induces extra-intestinal immune responses via Toll-like-receptor-4 signaling in conventional IL-10 deficient mice with chronic colitis. Eur J Microbiol Immunol (Bp) 2012; 2:210-9. [PMID: 24688768 PMCID: PMC3962757 DOI: 10.1556/eujmi.2.2012.3.7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 06/27/2012] [Indexed: 11/19/2022] Open
Abstract
Campylobacter jejuni is one of the predominant causes for foodborne bacterial infections worldwide. We investigated whether signaling of C. jejuni-lipoproteins and -lipooligosaccharide via Toll-like-receptor (TLR) -2 and -4, respectively, is inducing intestinal and extra-intestinal immune responses following infection of conventional IL-10(-/-) mice with chronic colitis. At day 3 following oral infection, IL-10(-/-) mice lacking TLR-2 or TLR-4 harbored comparable C. jejuni strain ATCC 43431 loads in their colon. Interestingly, infected TLR-4(-/-) IL-10(-/-) mice displayed less compromized epithelial barrier function as indicated by lower translocation rates of live gut commensals into mesenteric lymphnodes (MLNs), and exhibited less distinct B lymphocyte responses in their colonic mucosa as compared to naїve IL-10(-/-) controls. Furthermore, in extra-intestinal compartments such as MLNs and spleens, abundance of myeloid cells was less distinct whereas relative percentages of activated T helper cells and cytotoxic T cells were higher in spleens and dendritic cells more abundant in MLNs of infected IL-10(-/-) animals lacking TLR-4 as compared to IL-10(-/-) controls. Taken together, in conventionally colonized IL-10(-/-) mice, TLR-4, but not TLR-2, is involved in mediating extra-intestinal pro-inflammatory immune responses following C. jejuni infection. Thus, conventional IL-10(-/-) mice are well suited to further dissect mechanisms underlying Campylobacter infections in vivo.
Collapse
Affiliation(s)
- B. Otto
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| | - L.-M. Haag
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| | - A. Fischer
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| | - R. Plickert
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| | - A. A. Kühl
- Department of Internal Medicine, Rheumatology and Clinical
Immunology / Research Center Immuno-Sciences (RCIS), Charité – University
Medicine BerlinBerlinGermany
| | - U. B. Göbel
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| | - M. M. Heimesaat
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| | - S. Bereswill
- Department of Microbiology and Hygiene, Charité – University
Medicine BerlinBerlinGermany
| |
Collapse
|
21
|
Campylobacter jejuni induces acute enterocolitis in gnotobiotic IL-10-/- mice via Toll-like-receptor-2 and -4 signaling. PLoS One 2012; 7:e40761. [PMID: 22808254 PMCID: PMC3393706 DOI: 10.1371/journal.pone.0040761] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/12/2012] [Indexed: 12/31/2022] Open
Abstract
Background Campylobacter jejuni is a leading cause of foodborne bacterial enterocolitis worldwide. Investigation of immunopathology is hampered by a lack of suitable vertebrate models. We have recently shown that gnotobiotic mice as well as conventional IL-10−/− animals are susceptible to C. jejuni infection and develop intestinal immune responses. However, clinical symptoms of C. jejuni infection were rather subtle and did not reflect acute bloody diarrhea seen in human campylobacteriosis. Methodology/Principal Findings In order to overcome these limitations we generated gnotobiotic IL-10−/− mice by quintuple antibiotic treatment starting right after weaning. The early treatment was essential to prevent these animals from chronic colitis. Following oral infection C. jejuni colonized the gastrointestinal tract at high levels and induced acute enterocolitis within 7 days as indicated by bloody diarrhea and pronounced histopathological changes of the colonic mucosa. Immunopathology was further characterized by increased numbers of apoptotic cells, regulatory T-cells, T- and B-lymphocytes as well as elevated TNF-α, IFN-γ, and MCP-1 concentrations in the inflamed colon. The induction of enterocolitis was specific for C. jejuni given that control animals infected with a commensal E. coli strain did not display any signs of disease. Most strikingly, intestinal immunopathology was ameliorated in mice lacking Toll-like-receptors-2 or -4 indicating that C. jejuni lipoproteins and lipooligosaccharide are essential for induction and progression of immunopathology. Conclusion/Significance Gnotobiotic IL-10−/− mice develop acute enterocolitis following C. jejuni infection mimicking severe episodes of human campylobacteriosis and are thus well suited to further dissect mechanisms underlying Campylobacter infections in vivo.
Collapse
|
22
|
Haag LM, Fischer A, Otto B, Plickert R, Kühl AA, Göbel UB, Bereswill S, Heimesaat MM. Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice. PLoS One 2012; 7:e35988. [PMID: 22563475 PMCID: PMC3341396 DOI: 10.1371/journal.pone.0035988] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/28/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The zoonotic pathogen Campylobacter jejuni is a leading cause of bacterial foodborne enterocolitis in humans worldwide. The understanding of immunopathology underlying human campylobacteriosis is hampered by the fact that mice display strong colonization resistance against the pathogen due to their host specific gut microbiota composition. METHODOLOGY/PRINCIPAL FINDINGS Since the microbiota composition changes significantly during intestinal inflammation we dissected factors contributing to colonization resistance against C. jejuni in murine ileitis, colitis and in infant mice. In contrast to healthy animals C. jejuni could stably colonize mice suffering from intestinal inflammation. Strikingly, in mice with Toxoplasma gondii-induced acute ileitis, C. jejuni disseminated to mesenteric lymphnodes, spleen, liver, kidney, and blood. In infant mice C. jejuni infection induced enterocolitis. Mice suffering from intestinal inflammation and C. jejuni susceptible infant mice displayed characteristical microbiota shifts dominated by increased numbers of commensal Escherichia coli. To further dissect the pivotal role of those distinct microbiota shifts in abrogating colonization resistance, we investigated C. jejuni infection in healthy adult mice in which the microbiota was artificially modified by feeding live commensal E. coli. Strikingly, in animals harboring supra-physiological intestinal E. coli loads, colonization resistance was significantly diminished and C. jejuni infection induced enterocolitis mimicking key features of human campylobacteriosis. CONCLUSION/SIGNIFICANCE Murine colonization resistance against C. jejuni is abrogated by changes in the microbiota composition towards elevated E. coli loads during intestinal inflammation as well as in infant mice. Intestinal inflammation and microbiota shifts thus represent potential risk factors for C. jejuni infection. Corresponding interplays between C. jejuni and microbiota might occur in human campylobacteriosis. Murine models introduced here mimick key features of human campylobacteriosis and allow for further analysis of immunological and molecular mechanisms of C. jejuni-host interactions.
Collapse
Affiliation(s)
- Lea-Maxie Haag
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Bettina Otto
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Rita Plickert
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Anja A. Kühl
- Department of Internal Medicine, Rheumatology and Clinical Immunology/Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin, Berlin, Germany
| | - Ulf B. Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
23
|
Haag LM, Fischer A, Otto B, Grundmann U, Kühl AA, Göbel UB, Bereswill S, Heimesaat MM. Campylobacter jejuni infection of infant mice: acute enterocolitis is followed by asymptomatic intestinal and extra-intestinal immune responses. Eur J Microbiol Immunol (Bp) 2012; 2:2-11. [PMID: 24611115 DOI: 10.1556/eujmi.2.2012.1.2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/07/2012] [Indexed: 01/20/2023] Open
Abstract
Campylobacter (C.) jejuni is among the leading bacterial agents causing enterocolitis worldwide. Despite the high prevalence of C. jejuni infections and its significant medical and economical consequences, intestinal pathogenesis is poorly understood. This is mainly due to the lack of appropriate animal models. In the age of 3 months, adult mice display strong colonization resistance (CR) against C. jejuni. Previous studies underlined the substantial role of the murine intestinal microbiota in maintaining CR. Due to the fact that the host-specific gut flora establishes after weaning, we investigated CR against C. jejuni in 3-week-old mice and studied intestinal and extra-intestinal immunopathogenesis as well as age dependent differences of the murine colon microbiota. In infant animals infected orally immediately after weaning C. jejuni strain B2 could stably colonize the gastrointestinal tract for more than 100 days. Within six days following infection, infant mice developed acute enterocolitis as indicated by bloody diarrhea, colonic shortening, and increased apoptotic cell numbers in the colon mucosa. Similar to human campylobacteriosis clinical disease manifestations were self-limited and disappeared within two weeks. Interestingly, long-term C. jejuni infection was accompanied by distinct intestinal immune and inflammatory responses as indicated by increased numbers of T- and B-lymphocytes, regulatory T-cells, neutrophils, as well as apoptotic cells in the colon mucosa. Strikingly, C. jejuni infection also induced a pronounced influx of immune cells into extra-intestinal sites such as liver, lung, and kidney. Furthermore, C. jejuni susceptible weaned mice harbored a different microbiota as compared to resistant adult animals. These results support the essential role of the microflora composition in CR against C. jejuni and demonstrate that infant mouse models resemble C. jejuni mediated immunopathogenesis including the characteristic self-limited enterocolitis in human campylobacteriosis. Furthermore, potential clinical and immunological sequelae of chronic C. jejuni carriers in humans can be further elucidated by investigation of long-term infected infant mice. The observed extraintestinal disease manifestations might help to unravel the mechanisms causing complications such as reactive arthritis or Guillain-Barré syndrome.
Collapse
|
24
|
Increase in Campylobacter jejuni invasion of intestinal epithelial cells under low-oxygen coculture conditions that reflect the in vivo environment. Infect Immun 2012; 80:1690-8. [PMID: 22354027 DOI: 10.1128/iai.06176-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni infection often results in bloody, inflammatory diarrhea, indicating bacterial disruption and invasion of the intestinal epithelium. While C. jejuni infection can be reproduced in vitro using intestinal epithelial cell (IEC) lines, low numbers of bacteria invading IECs do not reflect these clinical symptoms. Performing in vitro assays under atmospheric oxygen conditions neither is optimal for microaerophilic C. jejuni nor reflects the low-oxygen environment of the intestinal lumen. A vertical diffusion chamber (VDC) model system creates microaerobic conditions at the apical surface and aerobic conditions at the basolateral surface of cultured IECs, producing an in vitro system that closely mimics in vivo conditions in the human intestine. Ninefold increases in interacting and 80-fold increases in intracellular C. jejuni 11168H wild-type strain bacteria were observed after 24-h coculture with Caco-2 IECs in VDCs under microaerobic conditions at the apical surface, compared to results under aerobic conditions. Increased bacterial interaction was matched by an enhanced and directional host innate immune response, particularly an increased basolateral secretion of the proinflammatory chemokine interleukin-8 (IL-8). Analysis of the invasive ability of a nonmotile C. jejuni 11168H rpoN mutant in the VDC model system indicates that motility is an important factor in the early stages of bacterial invasion. The first report of the use of a VDC model system for studying the interactions of an invasive bacterial pathogen with IECs demonstrates the importance of performing such experiments under conditions that represent the in vivo situation and will allow novel insights into C. jejuni pathogenic mechanisms.
Collapse
|
25
|
Bereswill S, Plickert R, Fischer A, Kühl AA, Loddenkemper C, Batra A, Siegmund B, Göbel UB, Heimesaat MM. What you eat is what you get: Novel Campylobacter models in the quadrangle relationship between nutrition, obesity, microbiota and susceptibility to infection. Eur J Microbiol Immunol (Bp) 2011; 1:237-48. [PMID: 24516730 DOI: 10.1556/eujmi.1.2011.3.8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/08/2011] [Indexed: 11/19/2022] Open
Abstract
Enterocolitis caused by Campylobacter jejuni-infections represents an important socioeconomic burden worldwide. Recent results from novel murine infection models reveal that the intestinal microbiota is essential for maintaining colonization resistance against C. jejuni. We extended these studies to investigate the role of nutrition and obesity in susceptibility to C. jejuni-infection. Gnotobiotic (GB) mice generated by antibiotic treatment, which were fed with a human cafeteria diet (CAF), as well as obese (ob/ob) mice with a conventional microbiota harbored higher Escherichia coli loads in their colon as compared to respective controls. Following oral infection, C. jejuni 43431 ATCC readily colonized the intestines of CAF and ob/ob mice, whereas GB mice fed with a standard chow (MUD) eradicated the pathogen within days. Furthermore, live C. jejuni translocated into mesenteric lymph nodes of CAF, but not MUD mice. Strikingly, stably infected animals developed enterocolitis as indicated by increased numbers of immune and apoptotic cells in the colon in situ. We conclude that a specific human diet and obesity render mice susceptible to C. jejuni infection. The corresponding murine models are excellently suited for the study of C. jejuni pathogenesis and will help to get further insights into interplays between C. jejuni, microbiota, diet, obesity and immunity.
Collapse
|
26
|
Novel murine infection models provide deep insights into the "ménage à trois" of Campylobacter jejuni, microbiota and host innate immunity. PLoS One 2011; 6:e20953. [PMID: 21698299 PMCID: PMC3115961 DOI: 10.1371/journal.pone.0020953] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/13/2011] [Indexed: 12/11/2022] Open
Abstract
Background Although Campylobacter jejuni-infections have a high prevalence worldwide and represent a significant socioeconomic burden, it is still not well understood how C. jejuni causes intestinal inflammation. Detailed investigation of C. jejuni-mediated intestinal immunopathology is hampered by the lack of appropriate vertebrate models. In particular, mice display colonization resistance against this pathogen. Methodology/Principal Findings To overcome these limitations we developed a novel C. jejuni-infection model using gnotobiotic mice in which the intestinal flora was eradicated by antibiotic treatment. These animals could then be permanently associated with a complete human (hfa) or murine (mfa) microbiota. After peroral infection C. jejuni colonized the gastrointestinal tract of gnotobiotic and hfa mice for six weeks, whereas mfa mice cleared the pathogen within two days. Strikingly, stable C. jejuni colonization was accompanied by a pro-inflammatory immune response indicated by increased numbers of T- and B-lymphocytes, regulatory T-cells, neutrophils and apoptotic cells, as well as increased concentrations of TNF-α, IL-6, and MCP-1 in the colon mucosa of hfa mice. Analysis of MyD88−/−, TRIF−/−, TLR4−/−, and TLR9−/− mice revealed that TLR4- and TLR9-signaling was essential for immunopathology following C. jejuni-infection. Interestingly, C. jejuni-mutant strains deficient in formic acid metabolism and perception induced less intestinal immunopathology compared to the parental strain infection. In summary, the murine gut flora is essential for colonization resistance against C. jejuni and can be overcome by reconstitution of gnotobiotic mice with human flora. Detection of C. jejuni-LPS and -CpG-DNA by host TLR4 and TLR9, respectively, plays a key role in immunopathology. Finally, the host immune response is tightly coupled to bacterial formic acid metabolism and invasion fitness. Conclusion/Significance We conclude that gnotobiotic and “humanized” mice represent excellent novel C. jejuni-infection and -inflammation models and provide deep insights into the immunological and molecular interplays between C. jejuni, microbiota and innate immunity in human campylobacteriosis.
Collapse
|
27
|
Edwards LA, Nistala K, Mills DC, Stephenson HN, Zilbauer M, Wren BW, Dorrell N, Lindley KJ, Wedderburn LR, Bajaj-Elliott M. Delineation of the innate and adaptive T-cell immune outcome in the human host in response to Campylobacter jejuni infection. PLoS One 2010; 5:e15398. [PMID: 21085698 PMCID: PMC2976761 DOI: 10.1371/journal.pone.0015398] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/04/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is the most prevalent cause of bacterial gastroenteritis worldwide. Despite the significant health burden this infection presents, molecular understanding of C. jejuni-mediated disease pathogenesis remains poorly defined. Here, we report the characterisation of the early, innate immune response to C. jejuni using an ex-vivo human gut model of infection. Secondly, impact of bacterial-driven dendritic cell activation on T-cell mediated immunity was also sought. METHODOLOGY Healthy, control paediatric terminal ileum or colonic biopsy tissue was infected with C. jejuni for 8-12 hours. Bacterial colonisation was followed by confocal microscopy and mucosal innate immune responses measured by ELISA. Marked induction of IFNγ with modest increase in IL-22 and IL-17A was noted. Increased mucosal IL-12, IL-23, IL-1β and IL-6 were indicative of a cytokine milieu that may modulate subsequent T-cell mediated immunity. C. jejuni-driven human monocyte-derived dendritic cell activation was followed by analyses of T cell immune responses utilising flow cytometry and ELISA. Significant increase in Th-17, Th-1 and Th-17/Th-1 double-positive cells and corresponding cytokines was observed. The ability of IFNγ, IL-22 and IL-17 cytokines to exert host defence via modulation of C. jejuni adhesion and invasion to intestinal epithelia was measured by standard gentamicin protection assay. CONCLUSIONS Both innate and adaptive T cell-immunity to C. jejuni infection led to the release of IFNγ, IL-22 and IL-17A; suggesting a critical role for this cytokine triad in establishing host anti-microbial immunity during the acute and effectors phase of infection. In addition, to their known anti-microbial functions; IL-17A and IL-17F reduced the number of intracellular C. jejuni in intestinal epithelia, highlighting a novel aspect of how IL-17 family members may contribute to protective immunity against C. jejuni.
Collapse
Affiliation(s)
- Lindsey A. Edwards
- Infectious Diseases and Microbiology, Institute of Child Health, London, United Kingdom
| | - Kiran Nistala
- Rheumatology, Institute of Child Health, London, United Kingdom
| | - Dominic C. Mills
- Pathogen Molecular Biology Department, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Holly N. Stephenson
- Infectious Diseases and Microbiology, Institute of Child Health, London, United Kingdom
| | - Matthias Zilbauer
- Infectious Diseases and Microbiology, Institute of Child Health, London, United Kingdom
- Paediatric Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Brendan W. Wren
- Pathogen Molecular Biology Department, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nick Dorrell
- Pathogen Molecular Biology Department, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Keith J. Lindley
- Autoimmunity and Surgery Units, Institute of Child Health, London, United Kingdom
| | | | - Mona Bajaj-Elliott
- Infectious Diseases and Microbiology, Institute of Child Health, London, United Kingdom
| |
Collapse
|
28
|
Scott NE, Marzook NB, Deutscher A, Falconer L, Crossett B, Djordjevic SP, Cordwell SJ. Mass spectrometric characterization of the Campylobacter jejuni
adherence factor CadF reveals post-translational processing that removes immunogenicity while retaining fibronectin binding. Proteomics 2009; 10:277-88. [DOI: 10.1002/pmic.200900440] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Wine E, Gareau MG, Johnson-Henry K, Sherman PM. Strain-specific probiotic (Lactobacillus helveticus) inhibition of Campylobacter jejuni invasion of human intestinal epithelial cells. FEMS Microbiol Lett 2009; 300:146-52. [PMID: 19765084 DOI: 10.1111/j.1574-6968.2009.01781.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Campylobacter jejuni is the most common bacterial cause of enterocolitis in humans, leading to diarrhoea and chronic extraintestinal diseases. Although probiotics are effective in preventing other enteric infections, beneficial microorganisms have not been extensively studied with C. jejuni. The aim of this study was to delineate the ability of selected probiotic Lactobacillus strains to reduce epithelial cell invasion by C. jejuni. Human colon T84 and embryonic intestine 407 epithelial cells were pretreated with Lactobacillus strains and then infected with two prototypic C. jejuni pathogens. Lactobacillus helveticus, strain R0052 reduced C. jejuni invasion into T84 cells by 35-41%, whereas Lactobacillus rhamnosus R0011 did not reduce pathogen invasion. Lactobacillus helveticus R0052 also decreased invasion of one C. jejuni isolate (strain 11168) into intestine 407 cells by 55%. Lactobacillus helveticus R0052 adhered to both epithelial cell types, which suggest that competitive exclusion could contribute to protection by probiotics. Taken together, these findings indicate that the ability of selected probiotics to prevent C. jejuni-mediated disease pathogenesis depends on the pathogen strain, probiotic strain and the epithelial cell type selected. The data support the concept of probiotic strain selectivity, which is dependent on the setting in which it is being evaluated and tested.
Collapse
Affiliation(s)
- Eytan Wine
- Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | |
Collapse
|
30
|
Scott NE, Cordwell SJ. Campylobacter proteomics: guidelines, challenges and future perspectives. Expert Rev Proteomics 2009; 6:61-74. [PMID: 19210127 DOI: 10.1586/14789450.6.1.61] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Campylobacter species are a major cause of disease in mammalian systems. The most common human etiological agent within this genus is Campylobacter jejuni - the leading cause of bacterial gastroenteritis in the developed world. While this organism has been extensively studied at the cellular level, and the genome sequences of several strains have now been elucidated, little is known regarding the role of individual proteins in virulence processes, such as adhesion, colonization and toxicity towards host cells. Proteomics encompasses the global analysis of proteins at the organism level. The technologies included under this term have now started to be utilized for understanding how Campylobacter species respond to changes in the environment, with an emphasis on the human host, as well as to map subcellular locations of proteins, in particular those that are surface-associated. C. jejuni is also of great significance as, unlike most other bacteria, it is able to post-translationally modify its proteins. The analysis of such proteins represents a major challenge in understanding this organism at the proteomic and cellular levels. This review will examine the state-of-the-art in Campylobacter proteomics, as well as provide insights into strategies that need to be undertaken to provide a comprehensive understanding of this organism at the molecular and functional level.
Collapse
Affiliation(s)
- Nichollas E Scott
- School of Molecular and Microbial Biosciences, Building GO8, Maze Crescent, The University of Sydney, Australia.
| | | |
Collapse
|
31
|
Friis LM, Keelan M, Taylor DE. Campylobacter jejuni drives MyD88-independent interleukin-6 secretion via Toll-like receptor 2. Infect Immun 2009; 77:1553-60. [PMID: 19139198 PMCID: PMC2663148 DOI: 10.1128/iai.00707-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/03/2008] [Accepted: 01/06/2009] [Indexed: 12/16/2022] Open
Abstract
Gastrointestinal disease caused by Campylobacter jejuni is characterized by localized inflammation and the destruction of the epithelial cell barrier that forms host innate protection against pathogens. This can lead to an imbalance in fluid transport across the gastrointestinal tract, resulting in severe diarrhea. The mechanisms of host cell receptor recognition of C. jejuni and downstream immune signaling pathways leading to this inflammatory disease, however, remain unclear. The aim of this study was to analyze the mechanisms involved in C. jejuni induction of the acute-phase inflammatory response regulator interleukin-6 (IL-6). Polarized intestinal epithelial Caco-2 monolayers responded to infections with Salmonella enterica serovar Typhimurium and eight isolates of C. jejuni by an increase in levels of expression and secretion of IL-6. No such IL-6 response, however, was produced upon infection with the human commensal organism Lactobacillus rhamnosus GG. The IL-6 signaling pathway was further characterized using short interfering RNA complexes to block gene expression. The inhibition of myeloid differentiation primary response protein 88 (MyD88) expression in this manner did not affect C. jejuni-induced IL-6 secretion, suggesting a MyD88-independent route to IL-6 signal transduction in C. jejuni-infected human epithelial cells. However, a significant reduction in levels of IL-6 was evident in the absence of Toll-like receptor 2 (TLR-2) expression, implying a requirement for TLR-2 in C. jejuni recognition. Caco-2 cells were also treated with heat-inactivated and purified membrane components of C. jejuni to isolate the factor responsible for triggering IL-6 signaling. The results demonstrate that C. jejuni surface polysaccharides induce IL-6 secretion from intestinal epithelial cells via TLR-2 in a MyD88-independent manner.
Collapse
Affiliation(s)
- Lorna M Friis
- Department of Medical Microbiology and Immunology, University of Alberta, 1-63 Medical Sciences Building, Edmonton T6G 2H7, Alberta, Canada.
| | | | | |
Collapse
|
32
|
Beltinger J, Buono JD, Skelly MM, Thornley J, Spiller RC, Stack WA, Hawkey CJ. Disruption of colonic barrier function and induction of mediator release by strains of Campylobacter jejuni that invade epithelial cells. World J Gastroenterol 2008; 14:7345-52. [PMID: 19109868 PMCID: PMC2778118 DOI: 10.3748/wjg.14.7345] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the mechanisms by which Campylobacter jejuni (C. jejuni) causes inflammation and diarrhea. In particular, direct interactions with intestinal epithelial cells and effects on barrier function are poorly under-stood.
METHODS: To model the initial pathogenic effects of C. jejuni on intestinal epithelium, polarized human colonic HCA-7 monolayers were grown on permeabilized filters and infected apically with clinical isolates of C. jejuni. Integrity of the monolayer was monitored by changes in monolayer resistance, release of lactate dehydrogenase, mannitol fluxes and electron microscopy. Invasion of HCA-7 cells was assessed by a modified gentamicin protection assay, translocation by counting colony forming units in the basal chamber, stimulation of mediator release by immunoassays and secretory responses in monolayers stimulated by bradykinin in an Ussing chamber.
RESULTS: All strains translocated across monolayers but only a minority invaded HCA-7 cells. Strains that invaded HCA-7 cells destroyed monolayer resistance over 6 h, accompanied by increased release of lactate dehydrogenase, a four-fold increase in permeability to [3H] mannitol, and ultrastructural disruption of tight junctions, with rounding and lifting of cells off the filter membrane. Synthesis of interleukin (IL)-8 and prostaglandin E2 was increased with strains that invaded the monolayer but not with those that did not.
CONCLUSION: These data demonstrate two distinct effects of C. jejuni on colonic epithelial cells and provide an informative model for further investigation of initial host cell responses to C. jejuni.
Collapse
|
33
|
Wine E, Chan VL, Sherman PM. Campylobacter jejuni mediated disruption of polarized epithelial monolayers is cell-type specific, time dependent, and correlates with bacterial invasion. Pediatr Res 2008; 64:599-604. [PMID: 18679160 DOI: 10.1203/pdr.0b013e31818702b9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The precise mechanism by which the most common cause of bacterial enterocolitis in humans, Campylobacter jejuni, perturbs the intestinal mucosa remains elusive. To define effects of C. jejuni infection on mucosal permeability, Madin-Darby canine kidney (MDCK)-I and T84 cell monolayers were infected with C. jejuni for up to 48 h. All three tested C. jejuni strains caused a 73-78% reduction in transepithelial electrical resistance (TER) in intestinal (T84) cell monolayers, whereas only one strain slightly reduced TER of MDCK-I cells by 25% after 48 h infection. Infection with C. jejuni strains also caused a 2.3-4.5-fold increase in dextran permeability, but only in T84 cells. C. jejuni infection of monolayers also caused morphologic changes in desmosomes, observed by transmission electron microscopy. The cell-type specificity, demonstrated by increased T84 monolayer permeability, correlated with higher bacterial invasion into these cells, relative to MDCK-I cells. In T84 cells, invasion and bacterial translocation preceded barrier disruption and inhibition of C. jejuni invasion using a pharmacological inhibitor of phosphoinositide 3-kinase, reduced the drop in TER. These findings suggest that C. jejuni disruption of monolayers is mediated by invasion, provide new insights into C. jejuni-host epithelial barrier interactions, and offer potential mechanisms of intestinal injury and chronic immune stimulation.
Collapse
Affiliation(s)
- Eytan Wine
- Department of Paediatrics, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | | | | |
Collapse
|