1
|
Schwarzmüller M, Lozano C, Schanz M, Abela IA, Grosse-Holz S, Epp S, Curcio M, Greshake J, Rusert P, Huber M, Kouyos RD, Günthard HF, Trkola A. Decoupling HIV-1 antiretroviral drug inhibition from plasma antibody activity to evaluate broadly neutralizing antibody therapeutics and vaccines. Cell Rep Med 2024; 5:101702. [PMID: 39216479 PMCID: PMC11524982 DOI: 10.1016/j.xcrm.2024.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
The development of broadly neutralizing antibody (bnAb)-based therapeutic HIV-1 vaccines and cure concepts depends on monitoring bnAb plasma activity in people with HIV (PWH) on suppressive antiretroviral therapy (ART). To enable this, analytical strategies must be defined to reliably distinguish antibody-based neutralization from drug inhibition. Here, we explore strategies that either utilize drug-resistant viruses or remove drugs from plasma. We develop ART-DEX (ART dissociation and size exclusion), an approach which quantitatively separates drugs from plasma proteins following pH-triggered release allowing accurate definition of antibody-based neutralization. We demonstrate that ART-DEX, alone or combined with ART-resistant viruses, provides a highly effective and scalable means of assessing antibody neutralization during ART. Implementation of ART-DEX in standard neutralization protocols should be considered to enhance the analytical capabilities of studies evaluating bnAb therapeutics and therapeutic vaccines, furthering the development of advanced ART and HIV-1 cure strategies.
Collapse
Affiliation(s)
| | - Cristina Lozano
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Merle Schanz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Irene A Abela
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Silvan Grosse-Holz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Martina Curcio
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Jule Greshake
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Roger D Kouyos
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Huldrych F Günthard
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
2
|
Sun J, Kessl JJ. Optimizing the Multimerization Properties of Quinoline-Based Allosteric HIV-1 Integrase Inhibitors. Viruses 2024; 16:200. [PMID: 38399977 PMCID: PMC10892445 DOI: 10.3390/v16020200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Allosteric HIV-1 Integrase (IN) Inhibitors or ALLINIs bind at the dimer interface of the IN, away from the enzymatic catalytic site, and disable viral replication by inducing over-multimerization of IN. Interestingly, these inhibitors are capable of impacting both the early and late stages of viral replication. To better understand the important binding features of multi-substituted quinoline-based ALLINIs, we have surveyed published studies on IN multimerization and antiviral properties of various substituted quinolines at the 4, 6, 7, and 8 positions. Here we show how the efficacy of these inhibitors can be modulated by the nature of the substitutions at those positions. These features not only improve the overall antiviral potencies of these compounds but also significantly shift the selectivity toward the viral maturation stage. Thus, to fully maximize the potency of ALLINIs, the interactions between the inhibitor and multiple IN subunits need to be simultaneously optimized.
Collapse
Affiliation(s)
- Jian Sun
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Jacques J. Kessl
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
3
|
SeyedAlinaghi S, Afsahi AM, Moradi A, Parmoon Z, Habibi P, Mirzapour P, Dashti M, Ghasemzadeh A, Karimi E, Sanaati F, Hamedi Z, Molla A, Mehraeen E, Dadras O. Current ART, determinants for virologic failure and implications for HIV drug resistance: an umbrella review. AIDS Res Ther 2023; 20:74. [PMID: 37884997 PMCID: PMC10604802 DOI: 10.1186/s12981-023-00572-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE The purpose of this study is to investigate the incidence of determinants for virologic failure and to identify predisposing factors to enhance treatment efficacy. Tackling this global public health issue is the key to reducing the rate of virological failure and increasing the success of treatment for those living with HIV. METHODS This umbrella review delves into various aspects of current anti-retroviral therapy (ART) which is the primary treatment for human immunodeficiency virus (HIV) infection. Comprehensive searches were conducted in online databases including PubMed, Embase, Scopus, and Web of Science, up to May 26, 2023. Following the screening and selection of relevant articles, eligible articles were included in the data extraction. This study adhered to the PRISMA guideline to report the results and employed the NIH quality and bias risk assessment tool to ensure the quality of included studies. RESULTS In total, 40 review studies published from 2015 to 2023 were included. The bulk of these studies concurred on several major factors contributing to HIV drug resistance and virological failure. Key among these were medication adherence, baseline and therapeutic CD4 levels, the presence of co-infections, and the advanced clinical stage of the infection. CONCLUSION The resistance to HIV drugs and instances of determinants for virologic failure have a profound impact on the life quality of those infected with HIV. Primary contributors to this scenario include insufficient adherence to treatment, decreased CD4 T-cell count, elevated viral levels, and certain treatment regimens. Implementing appropriate interventions could address these issues. Sub-Saharan Africa exhibits elevated rates of determinants for virologic failure, attributed to the delay in HIV testing and diagnosis, and late initiation of antiretroviral therapy (ART). It is essential to undertake further research aimed at enhancing the detection of resistance in HIV patients and mitigating viral failure by addressing these underlying causes.
Collapse
Affiliation(s)
- SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Masoud Afsahi
- Department of Radiology, School of Medicine, University of California, San Diego (UCSD), San Diego, CA, USA
| | - Ali Moradi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohal Parmoon
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Habibi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Mirzapour
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Dashti
- Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Ghasemzadeh
- Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Foziye Sanaati
- School of Nursing and Allied Medical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zahra Hamedi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ayoob Molla
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Esmaeil Mehraeen
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, 5681761351, Iran.
| | - Omid Dadras
- Bergen Addiction Research, Department of Addiction Medicine, Haukland University Hospital, Bergen, Norway
| |
Collapse
|
4
|
Bonnard D, Le Rouzic E, Singer MR, Yu Z, Le Strat F, Batisse C, Batisse J, Amadori C, Chasset S, Pye VE, Emiliani S, Ledoussal B, Ruff M, Moreau F, Cherepanov P, Benarous R. Biological and Structural Analyses of New Potent Allosteric Inhibitors of HIV-1 Integrase. Antimicrob Agents Chemother 2023; 67:e0046223. [PMID: 37310224 PMCID: PMC10353390 DOI: 10.1128/aac.00462-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/08/2023] [Indexed: 06/14/2023] Open
Abstract
HIV-1 integrase-LEDGF allosteric inhibitors (INLAIs) share the binding site on the viral protein with the host factor LEDGF/p75. These small molecules act as molecular glues promoting hyper-multimerization of HIV-1 IN protein to severely perturb maturation of viral particles. Herein, we describe a new series of INLAIs based on a benzene scaffold that display antiviral activity in the single digit nanomolar range. Akin to other compounds of this class, the INLAIs predominantly inhibit the late stages of HIV-1 replication. A series of high-resolution crystal structures revealed how these small molecules engage the catalytic core and the C-terminal domains of HIV-1 IN. No antagonism was observed between our lead INLAI compound BDM-2 and a panel of 16 clinical antiretrovirals. Moreover, we show that compounds retained high antiviral activity against HIV-1 variants resistant to IN strand transfer inhibitors and other classes of antiretroviral drugs. The virologic profile of BDM-2 and the recently completed single ascending dose phase I trial (ClinicalTrials.gov identifier: NCT03634085) warrant further clinical investigation for use in combination with other antiretroviral drugs. Moreover, our results suggest routes for further improvement of this emerging drug class.
Collapse
Affiliation(s)
| | | | - Matthew R. Singer
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, United Kingdom
| | - Zhe Yu
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, United Kingdom
| | | | - Claire Batisse
- IGBMC, INSERM, CNRS, Université de Strasbourg, Illkirch, France
| | - Julien Batisse
- IGBMC, INSERM, CNRS, Université de Strasbourg, Illkirch, France
| | - Céline Amadori
- Biodim, Romainville, France
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | | | - Valerie E. Pye
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, United Kingdom
| | | | | | - Marc Ruff
- IGBMC, INSERM, CNRS, Université de Strasbourg, Illkirch, France
| | | | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, London, United Kingdom
| | | |
Collapse
|
5
|
Mbhele N, Gordon M. Structural effects of HIV-1 subtype C integrase mutations on the activity of integrase strand transfer inhibitors in South African patients. J Biomol Struct Dyn 2022; 40:12546-12556. [PMID: 34488561 DOI: 10.1080/07391102.2021.1972840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HIV-1 integrase enzyme is responsible for the integration of viral DNA into the host genomic DNA. Integrase strand transfer inhibitors (INSTIs) are highly potent antiretroviral agents that inhibit this process, and are internationally approved for the treatment of both naïve and treated HIV-1 patients. However, their long-term efficacy is threatened by development of drug resistance strains resulting in resistance mutations. This work aimed to examine the effect of INSTI resistance-associated mutations (RAMs) and polymorphisms on the structure of HIV-1 subtype C (HIV-1C) integrase. Genetic analysis was performed on seven HIV-1C infected individuals with virologic failure after at least 6 months of INSTI-based antiretroviral therapy, presenting at the King Edward VIII hospital in Durban, South Africa. These were compared with sequences from 41 INSTI-naïve isolates. Integrase structures of selected isolates were modeled on the SWISS model online server. Molecular docking and dynamics simulations were also conducted using AutoDock-Vina and AMBER 18 force fields, respectively. Only one INSTI-treated isolate (14.28%) harboured major mutations (G140A + Q148R) as well as the E157Q minor mutation. Interestingly, S119T and V151I were only found in patients failing raltegravir (an INSTI drug). Molecular modeling and docking showed that RAMs and polymorphisms associated with INSTI-based therapy affect protein stability and this is supported by their weakened hydrogen-bond interactions compared to the wild-type. To the best of our knowledge, this is the first study to identify a double mutant in the 140's loop region from South African HIV-1C isolates and study its effects on Raltegravir, Elvitegravir, and Dolutegravir binding.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nokuzola Mbhele
- Department of Virology, College of Health Sciences, University of KwaZulu-Natal, Doris Duke Medical Research Institute, Durban, South Africa
| | - Michelle Gordon
- Department of Virology, College of Health Sciences, University of KwaZulu-Natal, Doris Duke Medical Research Institute, Durban, South Africa
| |
Collapse
|
6
|
A clinical review of HIV integrase strand transfer inhibitors (INSTIs) for the prevention and treatment of HIV-1 infection. Retrovirology 2022; 19:22. [PMID: 36273165 PMCID: PMC9588231 DOI: 10.1186/s12977-022-00608-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022] Open
Abstract
Integrase strand transfer inhibitors (INSTIs) have improved the treatment of human immunodeficiency virus (HIV). There are currently four approved for use in treatment-naïve individuals living with HIV; these include first generation raltegravir, elvitegravir, and second generation dolutegravir and bictegravir. The most recent INSTI, cabotegravir, is approved for (1) treatment of HIV infection in adults to replace current antiretroviral therapy in individuals who maintain virologic suppression on a stable antiretroviral regimen without history of treatment failure and no known resistance to its components and (2) pre-exposure prophylaxis in individuals at risk of acquiring HIV-1 infection. Cabotegravir can be administered intramuscularly as a monthly or bi-monthly injection depending on the indication. This long-acting combination has been associated with treatment satisfaction in clinical studies and may be helpful for individuals who have difficulty taking daily oral medications. Worldwide, second generation INSTIs are preferred for treatment-naïve individuals. Advantages of these INSTIs include their high genetic barrier to resistance, limited drug-drug interactions, excellent rates of virologic suppression, and favorable tolerability. Few INSTI resistance-associated mutations have been reported in clinical trials involving dolutegravir, bictegravir and cabotegravir. Other advantages of specific INSTIs include their use in various populations such as infants and children, acute HIV infection, and individuals of childbearing potential. The most common adverse events observed in clinical studies involving INSTIs included diarrhea, nausea, insomnia, fatigue, and headache, with very low rates of treatment discontinuation versus comparator groups. The long-term clinical implications of weight gain associated with second generation INSTIs dolutegravir and bictegravir warrants further study. This review summarizes key clinical considerations of INSTIs in terms of clinical pharmacology, drug-drug interactions, resistance, and provides perspective on clinical decision-making. Additionally, we summarize major clinical trials evaluating the efficacy and safety of INSTIs in treatment-naïve patients living with HIV as well as individuals at risk of acquiring HIV infection.
Collapse
|
7
|
Abstract
Integration of the reverse-transcribed genome is a critical step of the retroviral life cycle. Strand-transfer inhibitors (INSTIs) used for antiretroviral therapy inhibit integration but can lead to resistance mutations in the integrase gene, the enzyme involved in this reaction. A significant proportion of INSTI treatment failures, particularly those with second-generation INSTIs, show no mutation in the integrase gene. Here, we show that replication of a selected dolutegravir-resistant virus with mutations in the 3'-PPT (polypurine tract) was effective, although no integrated viral DNA was detected, due to the accumulation of unintegrated viral DNA present as 1-LTR circles. Our results show that mutation in the 3'-PPT leads to 1-LTR circles and not linear DNA as classically reported. In conclusion, our data provide a molecular basis to explain a new mechanism of resistance to INSTIs, without mutation of the integrase gene and highlights the importance of unintegrated viral DNA in HIV-1 replication. IMPORTANCE Our work highlights the role of HIV-1 unintegrated viral DNA in viral replication. A virus, resistant to strand-transfer inhibitors, has been selected in vitro. This virus highlights a mutation in the 3'PPT region and not in the integrase gene. This mutation modifies the reverse transcription step leading to the accumulation of 1-LTR circles and not the linear DNA. This accumulation of 1-LTR circles leads to viral replication without integration of the viral genome.
Collapse
|
8
|
Multi-Substituted Quinolines as HIV-1 Integrase Allosteric Inhibitors. Viruses 2022; 14:v14071466. [PMID: 35891446 PMCID: PMC9324412 DOI: 10.3390/v14071466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/25/2023] Open
Abstract
Allosteric HIV-1 integrase (IN) inhibitors, or ALLINIs, are a new class of antiviral agents that bind at the dimer interface of the IN, away from the enzymatic catalytic site and block viral replication by triggering an aberrant multimerization of the viral enzyme. To further our understanding of the important binding features of multi-substituted quinoline-based ALLINIs, we have examined the IN multimerization and antiviral properties of substitution patterns at the 6 or 8 position. We found that the binding properties of these ALLINIs are negatively impacted by the presence of bulky substitutions at these positions. In addition, we have observed that the addition of bromine at either the 6 (6-bromo) or 8 (8-bromo) position conferred better antiviral properties. Finally, we found a significant loss of potency with the 6-bromo when tested with the ALLINI-resistant IN A128T mutant virus, while the 8-bromo analog retained full effectiveness.
Collapse
|
9
|
Passos DO, Li M, Craigie R, Lyumkis D. Retroviral integrase: Structure, mechanism, and inhibition. Enzymes 2021; 50:249-300. [PMID: 34861940 DOI: 10.1016/bs.enz.2021.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The retroviral protein Integrase (IN) catalyzes concerted integration of viral DNA into host chromatin to establish a permanent infection in the target cell. We learned a great deal about the mechanism of catalytic integration through structure/function studies over the previous four decades of IN research. As one of three essential retroviral enzymes, IN has also been targeted by antiretroviral drugs to treat HIV-infected individuals. Inhibitors blocking the catalytic integration reaction are now state-of-the-art drugs within the antiretroviral therapy toolkit. HIV-1 IN also performs intriguing non-catalytic functions that are relevant to the late stages of the viral replication cycle, yet this aspect remains poorly understood. There are also novel allosteric inhibitors targeting non-enzymatic functions of IN that induce a block in the late stages of the viral replication cycle. In this chapter, we will discuss the function, structure, and inhibition of retroviral IN proteins, highlighting remaining challenges and outstanding questions.
Collapse
Affiliation(s)
| | - Min Li
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Robert Craigie
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, CA, United States; The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
10
|
Sánchez D, Arazi Caillaud S, Zapiola I, Fernandez Giuliano S, Bologna R, Mangano A, Aulicino PC. Impact of genotypic diversity on selection of subtype-specific drug resistance profiles during raltegravir-based therapy in individuals infected with B and BF recombinant HIV-1 strains. J Antimicrob Chemother 2021; 75:1567-1574. [PMID: 32125378 DOI: 10.1093/jac/dkaa042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Current knowledge on HIV-1 resistance to integrase inhibitors (INIs) is based mostly on subtype B strains. This contrasts with the increasing use of INIs in low- and middle-income countries, where non-B subtypes predominate. MATERIALS AND METHODS HIV-1 drug resistance genotyping was performed in 30 HIV-1-infected individuals undergoing virological failure to raltegravir. Drug resistance mutations (DRMs) and HIV-1 subtype were characterized using Stanford HIVdb and phylogenetic analyses. RESULTS Of the 30 integrase (IN) sequences, 14 were characterized as subtype F (47%), 8 as subtype B (27%), 7 as BF recombinants (23%) and 1 as a putative CRF05_DF (3%). In 25 cases (83%), protease and reverse transcriptase (PR-RT) sequences from the same individuals confirmed the presence of different BF recombinants. Stanford HIVdb genotyping was concordant with phylogenetic inference in 70% of IN and 60% of PR-RT sequences. INI DRMs differed between B and F IN subtypes, with Q148K/R/H, G140S and E138K/A being more prevalent in subtype B (63% versus 0%, P = 0.0021; 50% versus 0%, P = 0.0096; and 50% versus 0%, P = 0.0096, respectively). These differences were independent of the time on raltegravir therapy or viral load at the time of genotyping. INI DRMs in subtype F IN genomes predicted a lower level of resistance to raltegravir and no cross-resistance to second-generation INIs. CONCLUSIONS Alternative resistance pathways to raltegravir develop in subtypes B and F IN genomes, with implications for clinical practice. Evaluating the role of HIV-1 subtype in development and persistence of mutations that confer resistance to INIs will be important to improve algorithms for resistance testing and optimize the use of INIs.
Collapse
Affiliation(s)
- Daniela Sánchez
- Laboratorio de Biología Celular y Retrovirus-CONICET, Unidad de Virología y Epidemiología Molecular, Hospital de Pediatría "Juan P. Garrahan", Buenos Aires, Argentina.,Centro Provincial VIH/SIDA y Hepatitis Virales de la Provincia de Buenos Aires, Instituto Biológico Dr Tomás Perón, La Plata, Argentina
| | - Solange Arazi Caillaud
- Servicio de Epidemiología e Infectología, Hospital de Pediatría "Juan P. Garrahan", Buenos Aires, Argentina
| | - Ines Zapiola
- Unidad de Virología, Hospital de Infecciosas "Francisco J. Muñiz", Buenos Aires, Argentina
| | | | - Rosa Bologna
- Servicio de Epidemiología e Infectología, Hospital de Pediatría "Juan P. Garrahan", Buenos Aires, Argentina
| | - Andrea Mangano
- Laboratorio de Biología Celular y Retrovirus-CONICET, Unidad de Virología y Epidemiología Molecular, Hospital de Pediatría "Juan P. Garrahan", Buenos Aires, Argentina
| | - Paula C Aulicino
- Laboratorio de Biología Celular y Retrovirus-CONICET, Unidad de Virología y Epidemiología Molecular, Hospital de Pediatría "Juan P. Garrahan", Buenos Aires, Argentina
| |
Collapse
|
11
|
Isaguliants M, Krotova O, Petkov S, Jansons J, Bayurova E, Mezale D, Fridrihsone I, Kilpelainen A, Podschwadt P, Agapkina Y, Smirnova O, Kostic L, Saleem M, Latyshev O, Eliseeva O, Malkova A, Gorodnicheva T, Wahren B, Gordeychuk I, Starodubova E, Latanova A. Cellular Immune Response Induced by DNA Immunization of Mice with Drug Resistant Integrases of HIV-1 Clade A Offers Partial Protection against Growth and Metastatic Activity of Integrase-Expressing Adenocarcinoma Cells. Microorganisms 2021; 9:1219. [PMID: 34199989 PMCID: PMC8226624 DOI: 10.3390/microorganisms9061219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic DNA-vaccination against drug-resistant HIV-1 may hinder emergence and spread of drug-resistant HIV-1, allowing for longer successful antiretroviral treatment (ART) up-to relief of ART. We designed DNA-vaccines against drug-resistant HIV-1 based on consensus clade A integrase (IN) resistant to raltegravir: IN_in_r1 (L74M/E92Q/V151I/N155H/G163R) or IN_in_r2 (E138K/G140S/Q148K) carrying D64V abrogating IN activity. INs, overexpressed in mammalian cells from synthetic genes, were assessed for stability, route of proteolytic degradation, and ability to induce oxidative stress. Both were found safe in immunotoxicity tests in mice, with no inherent carcinogenicity: their expression did not enhance tumorigenic or metastatic potential of adenocarcinoma 4T1 cells. DNA-immunization of mice with INs induced potent multicytokine T-cell response mainly against aa 209-239, and moderate IgG response cross-recognizing diverse IN variants. DNA-immunization with IN_in_r1 protected 60% of mice from challenge with 4Tlluc2 cells expressing non-mutated IN, while DNA-immunization with IN_in_r2 protected only 20% of mice, although tumor cells expressed IN matching the immunogen. Tumor size inversely correlated with IN-specific IFN-γ/IL-2 T-cell response. IN-expressing tumors displayed compromised metastatic activity restricted to lungs with reduced metastases size. Protective potential of IN immunogens relied on their immunogenicity for CD8+ T-cells, dependent on proteasomal processing and low level of oxidative stress.
Collapse
Affiliation(s)
- Maria Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Olga Krotova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Juris Jansons
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Ekaterina Bayurova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Dzeina Mezale
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
| | - Ilze Fridrihsone
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
| | - Athina Kilpelainen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Philip Podschwadt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Yulia Agapkina
- Department of Chemistry and Belozersky Institute of Physicochemical Biology, Moscow State University, 119991 Moscow, Russia;
| | - Olga Smirnova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Linda Kostic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Mina Saleem
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Oleg Latyshev
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
| | - Olesja Eliseeva
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
| | - Anastasia Malkova
- Institute of Medical Biological Research and Technologies, 143090 Krasnoznamensk, Russia;
| | | | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Ilya Gordeychuk
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 127994 Moscow, Russia
| | - Elizaveta Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia Latanova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
12
|
López P, Tirado G, Arias A, Sánchez R, Rodríguez-López ER, Rivera-Amill V. Short Communication: Integrase Strand Transfer Inhibitors Drug Resistance Mutations in Puerto Rico HIV-Positive Individuals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052719. [PMID: 33800269 PMCID: PMC7967446 DOI: 10.3390/ijerph18052719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022]
Abstract
The HIV-1 integrase viral protein is responsible for incorporating the viral DNA into the genomic DNA. The inhibition of viral integration into host cell DNA is part of recent therapeutic procedures. Combination therapy with protease and reverse transcriptase inhibitors has demonstrated good synergistic results in reducing viral replication. The purpose of this study is to assess the occurrence of integrase drug resistance mutations from the period comprising 2013 through 2018 in Puerto Rico (PR). We analyzed 131 nucleotide sequences available in our HIV genotyping database, and we performed drug resistance mutation analyses using the Stanford HIV Drug Resistance Database. Twenty-one sequences (16.03%) harbored major or resistance-associated mutations. We identified the Q148HKR, G140S, Y143R, N155H, S147G, and E138EA major drug resistance mutations and the D232DN, T97TA, E157Q, G163GART accessory mutations. We detected high-level drug resistance to Elvitegravir and Raltegravir (76.19% and 85.71%). Moreover, we identified sequences harboring drug resistance mutations that could provide resistance to Dolutegravir. The transmission of strains with integrase antiretroviral resistance has been previously documented in treatment naïve patients. Given the increase of patients treated with integrase inhibitors, surveillance of drug resistance mutations is an essential aspect of PR's clinical management of HIV infection.
Collapse
|
13
|
Onoriode Digban T, Chucks Iweriebor B, Chikwelu Obi L, Nwodo U, Ifeanyi Okoh A. Analyses of HIV-1 integrase gene sequences among treatment-naive patients in the Eastern Cape, South Africa. J Med Virol 2020; 92:1165-1172. [PMID: 31889319 DOI: 10.1002/jmv.25661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/21/2019] [Indexed: 01/11/2023]
Abstract
Drug resistance has been recognized in all available therapeutic class of medications for the management of human immunodeficiency virus-1 (HIV-1) infected patients. This makes the continuous study of HIV drug resistance and new treatment options pertinent to patients and researchers globally. The aim of this study is to analyze the complete HIV-1 integrase gene for the possible occurrence of resistance mutations or polymorphisms. We performed genetic analyses on 48 treatment-naive HIV-1-infected patients using nested polymerase chain reaction. Integrase drug-related resistance mutation (DRMs) analysis was performed on all generated sequences according to Stanford HIV drug interpretation program and the International AIDS Society-USA guidelines while phylogenetic analysis was inferred using MEGA 6. The study revealed no major resistance-associated mutation. However, E157Q (2.1%), L74M/I (4.2%), and P142T (2.1%) were the observed accessory and polymorphic mutations. Naturally occurring polymorphism observed were E11D, K14R, D25E, V31I, M50I, V72I, P90T, F100Y, L101I, T124A, T125A, K136Q, D167E, V201I, L234I, A265V, A269K, D278A, and S283G. Phylogenetic analysis delineated all the sequences as HIV-1 subtype C. The study revealed the absence of major integrase inhibitors associated resistance mutations in a setting where integrase inhibitor is administered as salvage therapy in patients developing resistance to first and second-line antiretroviral treatment. However minor and natural polymorphisms were observed and thus may influence the outcome of each treatment regimen. However, additional studies are required to precisely evaluate the impact of these mutations on integrase inhibitors in the Eastern Cape of South Africa.
Collapse
Affiliation(s)
- Tennison Onoriode Digban
- South Africa Medical Research Council and Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa.,Applied Environmental and Microbiology Research Group, University of Fort Hare, Alice, Eastern Cape, South Africa.,Department of Microbiology and Biochemistry, University of Fort Hare, Alice, Eastern Cape, South Africa
| | - Benson Chucks Iweriebor
- School of Science and Technology, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, South Africa
| | - Larry Chikwelu Obi
- School of Science and Technology, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, South Africa
| | - Uchechuwku Nwodo
- South Africa Medical Research Council and Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa.,Applied Environmental and Microbiology Research Group, University of Fort Hare, Alice, Eastern Cape, South Africa.,Department of Microbiology and Biochemistry, University of Fort Hare, Alice, Eastern Cape, South Africa
| | - Anthony Ifeanyi Okoh
- South Africa Medical Research Council and Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa.,Applied Environmental and Microbiology Research Group, University of Fort Hare, Alice, Eastern Cape, South Africa.,Department of Microbiology and Biochemistry, University of Fort Hare, Alice, Eastern Cape, South Africa
| |
Collapse
|
14
|
Yang F, Zheng G, Fu T, Li X, Tu G, Li YH, Yao X, Xue W, Zhu F. Prediction of the binding mode and resistance profile for a dual-target pyrrolyl diketo acid scaffold against HIV-1 integrase and reverse-transcriptase-associated ribonuclease H. Phys Chem Chem Phys 2019; 20:23873-23884. [PMID: 29947629 DOI: 10.1039/c8cp01843j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The rapid emergence of drug-resistant variants is one of the most common causes of highly active antiretroviral therapeutic (HAART) failure in patients infected with HIV-1. Compared with the existing HAART, the recently developed pyrrolyl diketo acid scaffold targeting both HIV-1 integrase (IN) and reverse transcriptase-associated ribonuclease H (RNase H) is an efficient approach to counteract the failure of anti-HIV treatment due to drug resistance. However, the binding mode and potential resistance profile of these inhibitors with important mechanistic principles remain poorly understood. To address this issue, an integrated computational method was employed to investigate the binding mode of inhibitor JMC6F with HIV-1 IN and RNase H. By using per-residue binding free energy decomposition analysis, the following residues: Asp64, Thr66, Leu68, Asp116, Tyr143, Gln148 and Glu152 in IN, Asp443, Glu478, Trp536, Lys541 and Asp549 in RNase H were identified as key residues for JMC6F binding. And then computational alanine scanning was carried to further verify the key residues. Moreover, the resistance profile of the currently known major mutations in HIV-1 IN and 2 mutations in RNase H against JMC6F was predicted by in silico mutagenesis studies. The results demonstrated that only three mutations in HIV-1 IN (Y143C, Q148R and N155H) and two mutations in HIV-1 RNase H (Y501R and Y501W) resulted in a reduction of JMC6F potency, thus indicating their potential role in providing resistance to JMC6F. These data provided important insights into the binding mode and resistance profile of the inhibitors with a pyrrolyl diketo acid scaffold in HIV-1 IN and RNase H, which would be helpful for the development of more effective dual HIV-1 IN and RNase H inhibitors.
Collapse
Affiliation(s)
- Fengyuan Yang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kamelian K, Lepik KJ, Chau W, Yip B, Zhang WW, Lima VD, Robbins MA, Woods C, Olmstead A, Joy JB, Barrios R, Harrigan PR. Prevalence of Human Immunodeficiency Virus-1 Integrase Strand Transfer Inhibitor Resistance in British Columbia, Canada Between 2009 and 2016: A Longitudinal Analysis. Open Forum Infect Dis 2019; 6:ofz060. [PMID: 30895202 PMCID: PMC6419991 DOI: 10.1093/ofid/ofz060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/06/2019] [Indexed: 11/12/2022] Open
Abstract
Background Integrase strand transfer inhibitors (INSTIs) are highly efficacious and well tolerated antiretrovirals with fewer adverse side-effects relative to other classes of antiretrovirals. The use of INSTIs raltegravir, elvitegravir, and dolutegravir has increased dramatically over recent years. However, there is limited information about the evolution and prevalence of INSTI resistance mutations in clinical human immunodeficiency virus populations. Methods Human immunodeficiency virus-1-positive individuals ≥19 years were included if they received ≥1 dispensed prescription of antiretroviral therapy (ART) in British Columbia between 2009 and 2016 (N = 9358). Physician-ordered drug resistance tests were analyzed and protease inhibitor (PI), reverse-transcriptase inhibitor (RT), and INSTI resistance were defined as having ≥1 sample with a combined, cumulative score ≥30 by Stanford HIV Drug Resistance Algorithm version 7.0.1. Results Although most ART-treated individuals were tested for PI and RT resistance, INSTI resistance testing lagged behind the uptake of INSTIs among INSTI-treated individuals (11% in 2009; 34% in 2016). The prevalence of INSTI resistance was relatively low, but it increased from 1 to 7 per 1000 ART-treated individuals between 2009 and 2016 (P < .0001, R2 = 0.98). Integrase strand transfer inhibitor resistance mutations increased at integrase codons 66, 97, 140, 148, 155, and 263. Conclusions The prevalence of INSTI resistance remains low compared with PI and RT resistance in ART-treated populations but is expanding with increased INSTI use.
Collapse
Affiliation(s)
- Kimia Kamelian
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada.,University of British Columbia, Department of Medicine, Division of AIDS, Vancouver, Canada
| | - Katherine J Lepik
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada.,Pharmacy Department, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - William Chau
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Benita Yip
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Wendy W Zhang
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada.,University of British Columbia, Department of Medicine, Division of AIDS, Vancouver, Canada
| | - Viviane Dias Lima
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada.,University of British Columbia, Department of Medicine, Division of AIDS, Vancouver, Canada
| | - Marjorie A Robbins
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Conan Woods
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Andrea Olmstead
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada.,University of British Columbia, Department of Medicine, Division of AIDS, Vancouver, Canada
| | - Jeffrey B Joy
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada.,University of British Columbia, Department of Medicine, Division of AIDS, Vancouver, Canada
| | - Rolando Barrios
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada.,University of British Columbia, School of Population and Public Health, Vancouver, Canada
| | - P Richard Harrigan
- University of British Columbia, Department of Medicine, Division of AIDS, Vancouver, Canada
| |
Collapse
|
16
|
Modica S, Rossetti B, Lombardi F, Lagi F, Maffeo M, D'Autilia R, Pecorari M, Vicenti I, Bruzzone B, Magnani G, Paolucci S, Francisci D, Penco G, Sacchini D, Zazzi M, De Luca A, Di Biagio A. Prevalence and determinants of resistance mutations in HIV-1-infected patients exposed to integrase inhibitors in a large Italian cohort. HIV Med 2018; 20:137-146. [PMID: 30461149 DOI: 10.1111/hiv.12692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The aim of the study was to analyse the prevalence of integrase resistance mutations in integrase strand transfer inhibitor (INSTI)-experienced HIV-1-infected patients and its predictors. METHODS We selected HIV-1 integrase sequences from the Antiviral Response Cohort Analysis (ARCA) database, derived from INSTI-experienced patients between 2008 and 2017. Differences in the prevalence of resistance to raltegravir (RAL), elvitegravir (EVG) and dolutegravir (DTG) were assessed by χ2 test and predictors of resistance were analysed by logistic regression. RESULTS We included 462 genotypes from INSTI-exposed individuals: 356 'INSTI-failing' patients and 106 'previously INSTI-exposed' patients (obtained a median of 42 weeks after INSTI discontinuation [interquartile range (IQR) 17-110 weeks]). Overall, at least low-level resistance (LLR) to any INSTI (Stanford 8.5 algorithm) was detected in 198 (42.9%) cases. The most frequent INSTI resistance mutation was N155H, followed by Q148H/K/R, G140A/C/S, E138A/K/T and Y143C/H/R. Y143R and E138A were more prevalent in viral subtype B versus non-B [5.2 versus 1.5%, respectively (P = 0.04), and 3.1 versus 0%, respectively (P = 0.02)]. Overall, the Q148H/K/R plus G140A/C/S and/or E138A/K/T pattern, defining an intermediate level of resistance to DTG, was detected in 70 (15%) cases. Independent predictors of at least LLR to any INSTI were current use versus past use of INSTIs, a lower genotypic sensitivity score (GSS) for contemporary antiretroviral drugs used, and having an integrase sequence obtained in calendar year 2016 as compared to 2008-2009. CONCLUSIONS The results support integrase resistance testing in INSTI-experienced patients. Emergence of INSTI resistance is facilitated by the reduced genetic barrier of the regimen as a consequence of resistance to companion drugs. However, INSTI resistance may become undetectable by standard population sequencing upon INSTI discontinuation.
Collapse
Affiliation(s)
- S Modica
- Infectious Diseases Unit, Siena University Hospital, Siena, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - B Rossetti
- Infectious Diseases Unit, Siena University Hospital, Siena, Italy
| | - F Lombardi
- Institute of Clinical Infectious Diseases, Catholic University of the Sacred Heart, Rome, Italy
| | - F Lagi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - M Maffeo
- Infectious Diseases Unit, Siena University Hospital, Siena, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - R D'Autilia
- Department of Mathematics, University of Roma Tre, Rome, Italy
| | - M Pecorari
- Unit of Microbiology and Virology, Modena University Hospital, Modena, Italy
| | - I Vicenti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - B Bruzzone
- Hygiene Unit, Policlinico San Martino Hospital, Genoa, Italy
| | - G Magnani
- Department of Infectious Diseases, S. Maria Nuova IRCCS Hospital, Reggio Emilia, Italy
| | - S Paolucci
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - D Francisci
- Infectious Diseases Clinic, Perugia University Hospital, Perugia, Italy
| | - G Penco
- Department of Infectious Diseases, Galliera Hospital, Genoa, Italy
| | - D Sacchini
- Clinic of Infectious Diseases, 'Guglielmo da Saliceto' Hospital, Piacenza, Italy
| | - M Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - A De Luca
- Infectious Diseases Unit, Siena University Hospital, Siena, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - A Di Biagio
- Infectious Diseases Clinic, Policlinico San Martino Hospital, Genoa, Italy
| |
Collapse
|
17
|
Hill L, Smith SR, Karris MY. Profile of bictegravir/emtricitabine/tenofovir alafenamide fixed dose combination and its potential in the treatment of HIV-1 infection: evidence to date. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2018; 10:203-213. [PMID: 30464641 PMCID: PMC6214311 DOI: 10.2147/hiv.s145529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Modern pharmacologic management of people living with HIV involves the use of fixed dose combinations of antiretrovirals that are simple to take, well tolerated, and highly effective. Specific recent pharmacologic advancements include 1) the second-generation integrase strand transfer inhibitors (dolutegravir and bictegravir) that consistently show less side effects, high tolerability, minimal drug interactions, and rapid rates of HIV viral load decline and 2) tenofovir alafenamide, a prodrug of tenofovir that concentrates in lymphoid tissue and minimizes off target effects. Bictegravir/emtricitabine/tenofovir alafenamide or B/F/TAF is a recently approved fixed dose combination that incorporates these new advancements in the management of HIV. This review focuses on the data supporting the use of B/F/TAF, reviews clinically relevant findings, and highlights the unanswered questions that may limit its clinical utility.
Collapse
Affiliation(s)
- Lucas Hill
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, CA, USA,
| | - Shawn R Smith
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, CA, USA,
| | - Maile Young Karris
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
18
|
Jentsch NG, Hart AP, Hume JD, Sun J, McNeely KA, Lama C, Pigza JA, Donahue MG, Kessl JJ. Synthesis and Evaluation of Aryl Quinolines as HIV-1 Integrase Multimerization Inhibitors. ACS Med Chem Lett 2018; 9:1007-1012. [PMID: 30344908 DOI: 10.1021/acsmedchemlett.8b00269] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/14/2018] [Indexed: 12/25/2022] Open
Abstract
HIV-1 integrase multimerization inhibitors have recently been established as an effective class of antiretroviral agents due to their potent ability to inhibit viral replication. Specifically, quinoline-based inhibitors have been shown to effectively impair HIV-1 replication, highlighting the importance of these heterocyclic scaffolds. Pursuant of our endeavors to further develop a library of quinoline-based candidates, we have implemented a structure-activity relationship study of trisubstituted 4-arylquinoline scaffolds that examined the integrase multimerization properties of substitution patterns at the 4-position of the quinoline. Compounds consisting of substituted phenyl rings, heteroaromatics, or polycyclic moieties were examined utilizing an integrase aberrant multimerization in vitro assay. para-Chloro-4-phenylquinoline 11b and 2,3-benzo[b][1,4]dioxine 15f showed noteworthy EC50 values of 0.10 and 0.08 μM, respectively.
Collapse
Affiliation(s)
- Nicholas G. Jentsch
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Alison P. Hart
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jared D. Hume
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jian Sun
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Kaitlin A. McNeely
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Chiyang Lama
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Julie A. Pigza
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Matthew G. Donahue
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jacques J. Kessl
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
19
|
Requena S, Treviño A, Cabezas T, Garcia-Delgado R, Amengual MJ, Lozano AB, Peñaranda M, Fernández JM, Soriano V, de Mendoza C. Drug resistance mutations in HIV-2 patients failing raltegravir and influence on dolutegravir response. J Antimicrob Chemother 2018; 72:2083-2088. [PMID: 28369593 DOI: 10.1093/jac/dkx090] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/28/2017] [Indexed: 11/14/2022] Open
Abstract
Background A broader extent of amino acid substitutions in the integrase of HIV-2 compared with HIV-1 might enable greater cross-resistance between raltegravir and dolutegravir in HIV-2 infection. Few studies have examined the virological response to dolutegravir in HIV-2 patients that failed raltegravir. Methods All patients recorded in the HIV-2 Spanish cohort were examined. The integrase coding region was sequenced in viraemic patients. Changes associated with resistance to raltegravir and dolutegravir in HIV-1 were recorded. Results From 319 HIV-2-infected patients recorded in the HIV-2 Spanish cohort, 53 integrase sequences from 30 individuals were obtained (20 raltegravir naive and 10 raltegravir experienced). Only one secondary mutation (E138A) was found in one of the 20 raltegravir-naive HIV-2 patients. For raltegravir-experienced individuals, the resistance mutation profile in 9 of 10 viraemic patients was as follows: N155H + A153G/S (four); Y143G + A153S (two); Q148R + G140A/S (two); and Y143C + Q91R (one). Of note, all patients with Y143G and N155H developed a rare non-polymorphic mutation at codon 153. Rescue therapy with dolutegravir was given to 5 of these 10 patients. After >6 months on dolutegravir therapy, three patients with baseline N155H experienced viral rebound. In two of them N155H was replaced by Q148K/R and in another by G118R. Conclusions A wide repertoire of resistance mutations in the integrase gene occur in HIV-2-infected patients failing on raltegravir. Although dolutegravir may allow successful rescue in most HIV-2 raltegravir failures, we report and characterize three cases of dolutegravir resistance in HIV-2 patients, emerging variants Q148K and Q148R and a novel change G118R.
Collapse
Affiliation(s)
- Silvia Requena
- Puerta de Hierro University Hospital, Majadahonda, Madrid, Spain
| | - Ana Treviño
- Puerta de Hierro University Hospital, Majadahonda, Madrid, Spain
| | | | | | | | | | | | | | - Vicente Soriano
- La Paz University Hospital & Autonomous University, Madrid, Spain
| | | | | |
Collapse
|
20
|
Brado D, Obasa AE, Ikomey GM, Cloete R, Singh K, Engelbrecht S, Neogi U, Jacobs GB. Analyses of HIV-1 integrase sequences prior to South African national HIV-treatment program and available of integrase inhibitors in Cape Town, South Africa. Sci Rep 2018; 8:4709. [PMID: 29549274 PMCID: PMC5856838 DOI: 10.1038/s41598-018-22914-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/01/2018] [Indexed: 01/16/2023] Open
Abstract
HIV-Integrase (IN) has proven to be a viable target for highly specific HIV-1 therapy. We aimed to characterize the HIV-1 IN gene in a South African context and identify resistance-associated mutations (RAMs) against available first and second generation Integrase strand-transfer inhibitors (InSTIs). We performed genetic analyses on 91 treatment-naïve HIV-1 infected patients, as well as 314 treatment-naive South African HIV-1 IN-sequences, downloaded from Los Alamos HIV Sequence Database. Genotypic analyses revealed the absence of major RAMs in the cohort collected before the broad availability of combination antiretroviral therapy (cART) and INSTI in South Africa, however, occurred at a rate of 2.85% (9/314) in database derived sequences. RAMs were present at IN-positions 66, 92, 143, 147 and 148, all of which may confer resistance to Raltegravir (RAL) and Elvitegravir (EVG), but are unlikely to affect second-generation Dolutegravir (DTG), except mutations in the Q148 pathway. Furthermore, protein modeling showed, naturally occurring polymorphisms impact the stability of the intasome-complex and therefore may contribute to an overall potency against InSTIs. Our data suggest the prevalence of InSTI RAMs, against InSTIs, is low in South Africa, but natural polymorphisms and subtype-specific differences may influence the effect of individual treatment regimens.
Collapse
Affiliation(s)
- Dominik Brado
- Division of Virology, Institute for Virology and Immunobiology, Faculty of Medicine, University of Wuerzburg, 97080, Wuerzburg, Germany
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Adetayo Emmanuel Obasa
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa.
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, University of Stockholm, Stockholm, Sweden.
| | - George Mondinde Ikomey
- CSCCD, Faculty of Medicine and Biomedical Sciences, University of Yaoundé, Yaoundé, Cameroon
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Western Cape, South Africa
| | - Kamalendra Singh
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, University of Stockholm, Stockholm, Sweden
- Department of Molecular Microbiology and Immunology, Columbia, MO, 65211, USA
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Susan Engelbrecht
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, University of Stockholm, Stockholm, Sweden
| | - Graeme Brendon Jacobs
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| |
Collapse
|
21
|
HIV-1 Resistance to Dolutegravir Is Affected by Cellular Histone Acetyltransferase Activity. J Virol 2017; 91:JVI.00912-17. [PMID: 28835492 DOI: 10.1128/jvi.00912-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/11/2017] [Indexed: 12/18/2022] Open
Abstract
Integrase strand transfer inhibitors (INSTIs) are the newest class of antiretrovirals to be approved for the treatment of HIV infection. Canonical resistance to these competitive inhibitors develops through substitutions in the integrase active site that disrupt drug-protein interactions. However, resistance against the newest integrase inhibitor, dolutegravir (DTG), is associated with an R263K substitution at the C terminus of integrase that causes resistance through an unknown mechanism. The integrase C-terminal domain is involved in many processes over the course of infection and is posttranslationally modified via acetylation of three lysine residues that are important for enzyme activity, integrase multimerization, and protein-protein interactions. Here we report that regulation of the acetylation of integrase is integral to the replication of HIV in the presence of DTG and that the R263K mutation specifically disrupts this regulation, likely due to enhancement of interactions with the histone deacetylase I complex, as suggested by coimmunoprecipitation assays. Although no detectable differences in the levels of cell-free acetylation of the wild-type (WT) and mutated R263K enzymes were observed, the inhibition of cellular histone acetyltransferase enzymes sensitized the NL4.3WT virus to DTG, while NL4.3R263K was almost completely unaffected. When levels of endogenous acetylation were manipulated in virus-producing cells, inhibitors of acetylation enhanced the replication of NL4.3R263K, whereas inhibition of deacetylation greatly diminished the replication of NL4.3WT Taken together, these results point to a pivotal role of acetylation in the resistance mechanism of HIV to some second-generation integrase strand transfer inhibitors, such as DTG.IMPORTANCE This is, to our knowledge, the first report of the influence of posttranslational modifications on HIV drug resistance. Both viral replication and resistance to second-generation integrase strand transfer inhibitors of both WT and INSTI-resistant HIV strains were differentially affected by acetylation, likely as a result of altered interactions between integrase and the cellular deacetylation machinery. Many "shock and kill" strategies to eradicate HIV manipulate endogenous levels of acetylation in order to reactivate latent HIV. However, our results suggest that some drug-resistant viruses may differentially respond to such stimulation, which may complicate the attainment of this goal. Our future work will further illuminate the mechanisms involved.
Collapse
|
22
|
Zhao XZ, Smith SJ, Maskell DP, Métifiot M, Pye VE, Fesen K, Marchand C, Pommier Y, Cherepanov P, Hughes SH, Burke TR. Structure-Guided Optimization of HIV Integrase Strand Transfer Inhibitors. J Med Chem 2017; 60:7315-7332. [PMID: 28737946 PMCID: PMC5601359 DOI: 10.1021/acs.jmedchem.7b00596] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Indexed: 12/16/2022]
Abstract
Integrase mutations can reduce the effectiveness of the first-generation FDA-approved integrase strand transfer inhibitors (INSTIs), raltegravir (RAL) and elvitegravir (EVG). The second-generation agent, dolutegravir (DTG), has enjoyed considerable clinical success; however, resistance-causing mutations that diminish the efficacy of DTG have appeared. Our current findings support and extend the substrate envelope concept that broadly effective INSTIs can be designed by filling the envelope defined by the DNA substrates. Previously, we explored 1-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides as an INSTI scaffold, making a limited set of derivatives, and concluded that broadly effective INSTIs can be developed using this scaffold. Herein, we report an extended investigation of 6-substituents as well the first examples of 7-substituted analogues of this scaffold. While 7-substituents are not well-tolerated, we have identified novel substituents at the 6-position that are highly effective, with the best compound (6p) retaining better efficacy against a broad panel of known INSTI resistant mutants than any analogues we have previously described.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical
Biology Laboratory and HIV Dynamics and Replication Program, Center
for Cancer Research, National Cancer Institute,
National Institutes of Health, Frederick, Maryland 21702, United States
| | - Steven J. Smith
- Chemical
Biology Laboratory and HIV Dynamics and Replication Program, Center
for Cancer Research, National Cancer Institute,
National Institutes of Health, Frederick, Maryland 21702, United States
| | - Daniel P. Maskell
- Chromatin
Structure and Mobile DNA, The Francis Crick
Institute, London NW1 1AT, United Kingdom
| | - Mathieu Métifiot
- Developmental
Therapeutics Branch and Laboratory of Molecular Pharmacology, Center
for Cancer Research, National Cancer Institute,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Valerie E. Pye
- Chromatin
Structure and Mobile DNA, The Francis Crick
Institute, London NW1 1AT, United Kingdom
| | - Katherine Fesen
- Developmental
Therapeutics Branch and Laboratory of Molecular Pharmacology, Center
for Cancer Research, National Cancer Institute,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Christophe Marchand
- Developmental
Therapeutics Branch and Laboratory of Molecular Pharmacology, Center
for Cancer Research, National Cancer Institute,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yves Pommier
- Developmental
Therapeutics Branch and Laboratory of Molecular Pharmacology, Center
for Cancer Research, National Cancer Institute,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peter Cherepanov
- Chromatin
Structure and Mobile DNA, The Francis Crick
Institute, London NW1 1AT, United Kingdom
- Imperial
College London, St-Mary’s
Campus, Norfolk Place, London W2 1PG, United Kingdom
| | - Stephen H. Hughes
- Developmental
Therapeutics Branch and Laboratory of Molecular Pharmacology, Center
for Cancer Research, National Cancer Institute,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Terrence R. Burke
- Chemical
Biology Laboratory and HIV Dynamics and Replication Program, Center
for Cancer Research, National Cancer Institute,
National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
23
|
HIV drug resistance against strand transfer integrase inhibitors. Retrovirology 2017; 14:36. [PMID: 28583191 PMCID: PMC5460515 DOI: 10.1186/s12977-017-0360-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/30/2017] [Indexed: 12/03/2022] Open
Abstract
Integrase strand transfer inhibitors (INSTIs) are the newest class of antiretroviral drugs to be approved for treatment and act by inhibiting the essential HIV protein integrase from inserting the viral DNA genome into the host cell’s chromatin. Three drugs of this class are currently approved for use in HIV-positive individuals: raltegravir (RAL), elvitegravir (EVG), and dolutegravir (DTG), while cabotegravir (CAB) and bictegravir (BIC) are currently in clinical trials. RAL and EVG have been successful in clinical settings but have relatively low genetic barriers to resistance. Furthermore, they share a high degree of cross-resistance, which necessitated the development of so-called second-generation drugs of this class (DTG, CAB, and BIC) that could retain activity against these resistant variants. In vitro selection experiments have been instrumental to the clinical development of INSTIs, however they cannot completely recapitulate the situation in an HIV-positive individual. This review summarizes and compares all the currently available information as it pertains to both in vitro and in vivo selections with all five INSTIs, and the measured fold-changes in resistance of resistant variants in in vitro assays. While the selection of resistance substitutions in response to RAL and EVG bears high similarity in patients as compared to laboratory studies, there is less concurrence regarding the “second-generation” drugs of this class. This highlights the unpredictability of HIV resistance to these inhibitors, which is of concern as CAB and BIC proceed in their clinical development.
Collapse
|
24
|
Maraolo AE. HIV-1 Integrase Inhibitors Resistance: Update of the Current Literature. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2017. [DOI: 10.1007/s40506-017-0113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Antiviral Activity of Bictegravir (GS-9883), a Novel Potent HIV-1 Integrase Strand Transfer Inhibitor with an Improved Resistance Profile. Antimicrob Agents Chemother 2016; 60:7086-7097. [PMID: 27645238 PMCID: PMC5118987 DOI: 10.1128/aac.01474-16] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/02/2016] [Indexed: 11/28/2022] Open
Abstract
Bictegravir (BIC; GS-9883), a novel, potent, once-daily, unboosted inhibitor of HIV-1 integrase (IN), specifically targets IN strand transfer activity (50% inhibitory concentration [IC50] of 7.5 ± 0.3 nM) and HIV-1 integration in cells. BIC exhibits potent and selective in vitro antiretroviral activity in both T-cell lines and primary human T lymphocytes, with 50% effective concentrations ranging from 1.5 to 2.4 nM and selectivity indices up to 8,700 relative to cytotoxicity. BIC exhibits synergistic in vitro antiviral effects in pairwise combinations with tenofovir alafenamide, emtricitabine, or darunavir and maintains potent antiviral activity against HIV-1 variants resistant to other classes of antiretrovirals. BIC displayed an in vitro resistance profile that was markedly improved compared to the integrase strand transfer inhibitors (INSTIs) raltegravir (RAL) and elvitegravir (EVG), and comparable to that of dolutegravir (DTG), against nine INSTI-resistant site-directed HIV-1 mutants. BIC displayed statistically improved antiviral activity relative to EVG, RAL, and DTG against a panel of 47 patient-derived HIV-1 isolates with high-level INSTI resistance; 13 of 47 tested isolates exhibited >2-fold lower resistance to BIC than DTG. In dose-escalation experiments conducted in vitro, BIC and DTG exhibited higher barriers to resistance than EVG, selecting for HIV-1 variants with reduced phenotypic susceptibility at days 71, 87, and 20, respectively. A recombinant virus with the BIC-selected M50I/R263K dual mutations in IN exhibited only 2.8-fold reduced susceptibility to BIC compared to wild-type virus. All BIC-selected variants exhibited low to intermediate levels of cross-resistance to RAL, DTG, and EVG (<8-fold) but remained susceptible to other classes of antiretrovirals. A high barrier to in vitro resistance emergence for both BIC and DTG was also observed in viral breakthrough studies in the presence of constant clinically relevant drug concentrations. The overall virologic profile of BIC supports its ongoing clinical investigation in combination with other antiretroviral agents for both treatment-naive and -experienced HIV-infected patients.
Collapse
|
26
|
Heger E, Theis AA, Remmel K, Walter H, Pironti A, Knops E, Di Cristanziano V, Jensen B, Esser S, Kaiser R, Lübke N. Development of a phenotypic susceptibility assay for HIV-1 integrase inhibitors. J Virol Methods 2016; 238:29-37. [PMID: 27737783 DOI: 10.1016/j.jviromet.2016.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 09/02/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
Abstract
Phenotypic resistance analysis is an indispensable method for determination of HIV-1 resistance and cross-resistance to novel drug compounds. Since integrase inhibitors are essential components of recent antiretroviral combination therapies, phenotypic resistance data, in conjunction with the corresponding genotypes, are needed for improving rules-based and data-driven tools for resistance prediction, such as HIV-Grade and geno2pheno[integrase]. For generation of phenotypic resistance data to recent integrase inhibitors, a recombinant phenotypic integrase susceptibility assay was established. For validation purposes, the phenotypic resistance to raltegravir, elvitegravir and dolutegravir of nine subtype-B virus strains, isolated from integrase inhibitor-naïve and raltegravir-treated patients was determined. Genotypic resistance analysis identified four virus strains harbouring RAL resistance-associated mutations. Phenotypic resistance analysis was performed as follows. The HIV-1 integrase genes were cloned into a modified pNL4-3 vector and transfected into 293T cells for the generation of recombinant virus. The integrase-inhibitor susceptibility of the recombinant viruses was determined via an indicator cell line. While raltegravir resistance profiles presented a high cross-resistance to elvitegravir, dolutegravir maintained in-vitro activity in spite of the Y143R and N155H mutations, confirming the strong activity of dolutegravir against raltegravir-resistant viruses. Solely a Q148H+G140S variant presented reduced susceptibility to dolutegravir. In conclusion, our phenotypic susceptibility assay permits resistance analysis of the integrase gene of patient-derived viruses for integrase inhibitors by replication-competent recombinants. Thus, this assay can be used to analyze phenotypic drug resistance of integrase inhibitors in vitro. It provides the possibility to determine the impact of newly appearing mutational patterns to drug resistance of recent integrase inhibitors.
Collapse
Affiliation(s)
- Eva Heger
- Institute of Virology, University of Cologne, Germany
| | | | - Klaus Remmel
- Institute of Virology, University of Cologne, Germany
| | - Hauke Walter
- Medical Center for Infectiology, Berlin, and Medical Laboratory Stendal, Stendal, Germany
| | - Alejandro Pironti
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Elena Knops
- Institute of Virology, University of Cologne, Germany
| | | | - Björn Jensen
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, University Hospital Düsseldorf, Germany
| | - Stefan Esser
- Department of Dermatology and Venerology, University Hospital Duisburg-Essen, Germany
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, Germany
| | - Nadine Lübke
- Institute of Virology, University of Cologne, Germany.
| |
Collapse
|
27
|
Varadarajan J, McWilliams MJ, Mott BT, Thomas CJ, Smith SJ, Hughes SH. Drug resistant integrase mutants cause aberrant HIV integrations. Retrovirology 2016; 13:71. [PMID: 27682062 PMCID: PMC5041404 DOI: 10.1186/s12977-016-0305-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022] Open
Abstract
Background
HIV-1 integrase is the target for three FDA-approved drugs, raltegravir, elvitegravir, and dolutegravir. All three drugs bind at the active site of integrase and block the strand transfer step of integration. We previously showed that sub-optimal doses of the anti-HIV drug raltegravir can cause aberrant HIV integrations that are accompanied by a variety of deletions, duplications, insertions and inversions of the adjacent host sequences. Results We show here that a second drug, elvitegravir, also causes similar aberrant integrations. More importantly, we show that at least two of the three clinically relevant drug resistant integrase mutants we tested, N155H and G140S/Q148H, which reduce the enzymatic activity of integrase, can cause the same sorts of aberrant integrations, even in the absence of drugs. In addition, these drug resistant mutants have an elevated IC50 for anti-integrase drugs, and concentrations of the drugs that would be optimal against the WT virus are suboptimal for the mutants. Conclusions We previously showed that suboptimal doses of a drug that binds to the HIV enzyme integrase and blocks the integration of a DNA copy of the viral genome into host DNA can cause aberrant integrations that involve rearrangements of the host DNA. We show here that suboptimal doses of a second anti-integrase drug can cause similar aberrant integrations. We also show that drug-resistance mutations in HIV integrase can also cause aberrant integrations, even in the absence of an anti-integrase drug. HIV DNA integrations in the oncogenes BACH2 and MKL2 that do not involve rearrangements of the viral or host DNA can stimulate the proliferation of infected cells. Based on what is known about the association of DNA rearrangements and the activation of oncogenes in human tumors, it is possible that some of the deletions, duplications, insertions, and inversions of the host DNA that accompany aberrant HIV DNA integrations could increase the chances that HIV integrations could lead to the development of a tumor. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0305-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janani Varadarajan
- HIV Dynamics and Replication Program, Vector Design and Replication Section, National Cancer Institute-Frederick, 1050 Boyles Street, Bldg. 539, Room 130A, Frederick, MD, 21702, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Mary Jane McWilliams
- HIV Dynamics and Replication Program, Vector Design and Replication Section, National Cancer Institute-Frederick, 1050 Boyles Street, Bldg. 539, Room 130A, Frederick, MD, 21702, USA
| | - Bryan T Mott
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Steven J Smith
- HIV Dynamics and Replication Program, Vector Design and Replication Section, National Cancer Institute-Frederick, 1050 Boyles Street, Bldg. 539, Room 130A, Frederick, MD, 21702, USA
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, Vector Design and Replication Section, National Cancer Institute-Frederick, 1050 Boyles Street, Bldg. 539, Room 130A, Frederick, MD, 21702, USA.
| |
Collapse
|
28
|
Differences among HIV-1 subtypes in drug resistance against integrase inhibitors. INFECTION GENETICS AND EVOLUTION 2016; 46:286-291. [PMID: 27353185 DOI: 10.1016/j.meegid.2016.06.047] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 11/22/2022]
Abstract
Three integrase strand transfer inhibitors (INSTIs), raltegravir (RAL), elvitegravir (EVG) and dolutegravir (DTG), have been approved by the FDA. Resistance against these three INSTIs have been reported and cross-resistance among them has been documented. Due to extensive and dynamic genetic diversity in different HIV-1 variants, significant differences in susceptibility to the INSTIs have been observed among HIV subtypes. This review summarizes what is known about this topic and discusses possible clinical implications.
Collapse
|
29
|
Dehority W, Abadi J, Wiznia A, Viani RM. Use of Integrase Inhibitors in HIV-Infected Children and Adolescents. Drugs 2016; 75:1483-97. [PMID: 26242765 DOI: 10.1007/s40265-015-0446-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Resistance to antiretroviral drugs is an increasingly prevalent challenge affecting both the adult and pediatric HIV-infected populations. Though data on the safety, pharmacokinetics, and efficacy of newer antiretroviral agents in children typically lags behind adult data, newer agents are becoming available for use in HIV-infected children who are failing to respond to or are experiencing toxicities with traditional antiretroviral regimens. Integrase strand transfer inhibitors are one such new class of antiretrovirals. Raltegravir has been US Food and Drug Administration (FDA) approved for use in patients over the age of 4 weeks. Elvitegravir is a second member of this class, and has the potential for use in children but does not yet have a Pediatric FDA indication. Dolutegravir, a second-generation integrase inhibitor, is approved for those older than 12 years. This review summarizes the use of integrase inhibitors in children and adolescents, and highlights the results of recent clinical trials.
Collapse
Affiliation(s)
- Walter Dehority
- Division of Infectious Diseases, Department of Pediatrics, The University of New Mexico, MSC10 5590, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA,
| | | | | | | |
Collapse
|
30
|
Dampier W, Nonnemacher MR, Mell J, Earl J, Ehrlich GD, Pirrone V, Aiamkitsumrit B, Zhong W, Kercher K, Passic S, Williams JW, Jacobson JM, Wigdahl B. HIV-1 Genetic Variation Resulting in the Development of New Quasispecies Continues to Be Encountered in the Peripheral Blood of Well-Suppressed Patients. PLoS One 2016; 11:e0155382. [PMID: 27195985 PMCID: PMC4873138 DOI: 10.1371/journal.pone.0155382] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/27/2016] [Indexed: 12/04/2022] Open
Abstract
As a result of antiretroviral therapeutic strategies, human immunodeficiency virus type 1 (HIV-1) infection has become a long-term clinically manageable chronic disease for many infected individuals. However, despite this progress in therapeutic control, including undetectable viral loads and CD4+ T-cell counts in the normal range, viral mutations continue to accumulate in the peripheral blood compartment over time, indicating either low level reactivation and/or replication. Using patients from the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort, whom have been sampled longitudinally for more than 7 years, genetic change was modeled against to the dominant integrated proviral quasispecies with respect to selection pressures such as therapeutic interventions, AIDS defining illnesses, and other factors. Phylogenetic methods based on the sequences of the LTR and tat exon 1 of the HIV-1 proviral DNA quasispecies were used to obtain an estimate of an average mutation rate of 5.3 nucleotides (nt)/kilobasepair (kb)/year (yr) prior to initiation of antiretroviral therapy (ART). Following ART the baseline mutation rate was reduced to an average of 1.02 nt/kb/yr. The post-ART baseline rate of genetic change, however, appears to be unique for each patient. These studies represent our initial steps in quantifying rates of genetic change among HIV-1 quasispecies using longitudinally sampled sequences from patients at different stages of disease both before and after initiation of combination ART. Notably, while long-term ART reduced the estimated mutation rates in the vast majority of patients studied, there was still measurable HIV-1 mutation even in patients with no detectable virus by standard quantitative assays. Determining the factors that affect HIV-1 mutation rates in the peripheral blood may lead to elucidation of the mechanisms associated with changes in HIV-1 disease severity.
Collapse
Affiliation(s)
- Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua Earl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Garth D. Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Benjamas Aiamkitsumrit
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Wen Zhong
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Katherine Kercher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Shendra Passic
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jean W. Williams
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey M. Jacobson
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Clinical and Translational Medicine, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| |
Collapse
|
31
|
Zhao XZ, Smith SJ, Maskell DP, Metifiot M, Pye VE, Fesen K, Marchand C, Pommier Y, Cherepanov P, Hughes SH, Burke TR. HIV-1 Integrase Strand Transfer Inhibitors with Reduced Susceptibility to Drug Resistant Mutant Integrases. ACS Chem Biol 2016; 11:1074-81. [PMID: 26808478 PMCID: PMC4836387 DOI: 10.1021/acschembio.5b00948] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
HIV
integrase (IN) strand transfer inhibitors (INSTIs) are among
the newest anti-AIDS drugs; however, mutant forms of IN can confer
resistance. We developed noncytotoxic naphthyridine-containing INSTIs
that retain low nanomolar IC50 values against HIV-1 variants
harboring all of the major INSTI-resistant mutations. We found by
analyzing crystal structures of inhibitors bound to the IN from the
prototype foamy virus (PFV) that the most successful inhibitors show
striking mimicry of the bound viral DNA prior to 3′-processing
and the bound host DNA prior to strand transfer. Using this concept
of “bi-substrate mimicry,” we developed a new broadly
effective inhibitor that not only mimics aspects of both the bound
target and viral DNA but also more completely fills the space they
would normally occupy. Maximizing shape complementarity and recapitulating
structural components encompassing both of the IN DNA substrates could
serve as a guiding principle for the development of new INSTIs.
Collapse
Affiliation(s)
| | | | - Daniel P. Maskell
- Clare
Hall Laboratories, The Francis Crick Institute, Blanche Lane, South Mimms, EN6 3LD, United Kingdom
| | - Mathieu Metifiot
- Developmental
Therapeutics Branch and Laboratory of Molecular Pharmacology, Center
for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Valerie E. Pye
- Clare
Hall Laboratories, The Francis Crick Institute, Blanche Lane, South Mimms, EN6 3LD, United Kingdom
| | - Katherine Fesen
- Developmental
Therapeutics Branch and Laboratory of Molecular Pharmacology, Center
for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Christophe Marchand
- Developmental
Therapeutics Branch and Laboratory of Molecular Pharmacology, Center
for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yves Pommier
- Developmental
Therapeutics Branch and Laboratory of Molecular Pharmacology, Center
for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peter Cherepanov
- Clare
Hall Laboratories, The Francis Crick Institute, Blanche Lane, South Mimms, EN6 3LD, United Kingdom
- Imperial College London, St-Mary’s
Campus, Norfolk Place, London, W2 1PG, United Kingdom
| | - Stephen H. Hughes
- Developmental
Therapeutics Branch and Laboratory of Molecular Pharmacology, Center
for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | |
Collapse
|
32
|
2-hydroxyisoquinoline-1,3(2H,4H)-diones (HIDs) as human immunodeficiency virus type 1 integrase inhibitors: Influence of the alkylcarboxamide substitution of position 4. Eur J Med Chem 2016; 117:256-68. [PMID: 27105029 DOI: 10.1016/j.ejmech.2016.03.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 11/22/2022]
Abstract
Herein, we report further insight into the biological activities displayed by the 2-hydroxyisoquinoline-1,3(2H,4H)-dione (HID) scaffold. Previous studies have evidenced the marked fruitful effect of substitution of this two-metal binding pharmacophore at position 4 by phenyl and benzyl carboxamido chains. Strong human immunodeficiency virus type 1 integrase (HIV-1 IN) inhibitors in the low nanomolar range with micromolar (even down to low nanomolar) anti-HIV activities were obtained. Keeping this essential 4-carboxamido function, we investigated the influence of the replacement of phenyl and benzyl groups by various alkyl chains. This study shows that the recurrent halogenobenzyl pharmacophore found in the INSTIs can be efficiently replaced by an n-alkyl group. With an optimal length of six carbons, we observed a biological profile and a high barrier to resistance equivalent to those of a previously reported hit compound bearing a 4-fluorobenzyl group.
Collapse
|
33
|
Wainberg MA, Han YS, Mesplède T. Might dolutegravir be part of a functional cure for HIV? Can J Microbiol 2016; 62:375-82. [PMID: 27031127 DOI: 10.1139/cjm-2015-0725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Antiretroviral therapy (ART) has greatly decreased HIV-related morbidity and mortality. However, HIV can establish viral reservoirs that evade both the immune system and ART. Dolutegravir (DTG) is a second-generation integrase strand transfer inhibitor (INSTI) related to the first-generation INSTIs raltegravir (RAL) and elvitegravir (EVG). DTG shows a higher genetic barrier to the development of HIV-1 resistance than RAL and EVG. More interestingly, clinical resistance mutations to DTG in treatment-naïve patients have not been observed to date. This review summarizes recent studies on strategies toward a cure for HIV, explores resistance profiles of DTG, and discusses how DTG might help in finding a functional cure for HIV.
Collapse
Affiliation(s)
- Mark A Wainberg
- a McGill University AIDS Centre, Lady Davis for Medical Research, Jewish General Hospital, Montréal, Que., Canada.,b Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Que., Canada.,c Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Que., Canada
| | - Ying-Shan Han
- a McGill University AIDS Centre, Lady Davis for Medical Research, Jewish General Hospital, Montréal, Que., Canada
| | - Thibault Mesplède
- a McGill University AIDS Centre, Lady Davis for Medical Research, Jewish General Hospital, Montréal, Que., Canada
| |
Collapse
|
34
|
Bollen P, Reiss P, Schapiro J, Burger D. Clinical pharmacokinetics and pharmacodynamics of dolutegravir used as a single tablet regimen for the treatment of HIV-1 infection. Expert Opin Drug Saf 2015; 14:1457-72. [PMID: 26134478 DOI: 10.1517/14740338.2015.1059818] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION With the introduction of the coformulated dolutegravir, abacavir and lamivudine , a new single tablet regimen (STR) is made available for the use in treatment-naive and treatment-experienced HIV-infected patients. This drug combination is the fourth STR that will be positioned next to the STRs with efavirenz, rilpivirine or elvitegravir as third agents, respectively. AREAS COVERED The objective of this review is to provide an overview of the efficacy and safety of the combined dolutegravir/abacavir/lamivudine coformulation. The review will focus on dolutegravir and includes both published data as well as data presented at recent major international HIV/AIDS conferences. EXPERT OPINION The dolutegravir/abacavir/lamivudine regimen is highly effective in achieving sustained suppression of HIV-1 RNA plasma concentrations. The STR has a favorable safety profile and a low potential for drug interactions, which will contribute to a prominent role in therapy. As this STR contains abacavir as backbone component, the use requires patients to be HLA-B*5701 negative, with good hepatic function. Other first-line treatment combinations are preferred for patients with hepatitis B co-infection or with a high cardiovascular risk.
Collapse
Affiliation(s)
- Pauline Bollen
- a 1 Radboud University Medical Center, Department of Pharmacy , Geert Grooteplein-Zuid 10 6525 GA Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
35
|
Tintori C, Esposito F, Morreale F, Martini R, Tramontano E, Botta M. Investigation on the sucrose binding pocket of HIV-1 Integrase by molecular dynamics and synergy experiments. Bioorg Med Chem Lett 2015; 25:3013-6. [PMID: 26048795 DOI: 10.1016/j.bmcl.2015.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/18/2022]
Abstract
Enzymes whose catalytic activity depends on multimeric assembly are targets for inhibitors that perturb the interactions between the protein subunits such as the HIV-1 Integrase (IN). Sucrose has been recently crystallized in complex with IN revealing an allosteric binding pocket at the monomer-monomer interface. Herein, molecular dynamics were applied to theoretically test the effect of this small ligand on IN. As a result, such a compound increases the mutual free energy of binding between the two interacting monomers. Biological experiments confirmed the computational forecast.
Collapse
Affiliation(s)
- Cristina Tintori
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro, 53100 Siena, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Francesca Morreale
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina, Viale Annunziata, I-98168 Messina, Italy
| | - Riccardo Martini
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro, 53100 Siena, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Maurizio Botta
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro, 53100 Siena, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, BioLife Science Bldg., Suite 333, 1900 N 12th Street, Philadelphia, PA 19122, USA.
| |
Collapse
|
36
|
Wainberg MA, Han YS. Will drug resistance against dolutegravir in initial therapy ever occur? Front Pharmacol 2015; 6:90. [PMID: 25972810 PMCID: PMC4413831 DOI: 10.3389/fphar.2015.00090] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/12/2015] [Indexed: 12/16/2022] Open
Abstract
Dolutegravir (DTG) is a second-generation integrase strand transfer inhibitor (INSTI) and INSTIs are the latest class of potent anti-HIV drugs. Compared to the first generation INSTIs, raltegravir, and elvitegravir, DTG shows a limited cross-resistance profile. More interestingly, clinical resistance mutations to DTG in treatment-naive patents have not been observed to this date. This review summarizes recent studies on resistance mutations to DTG and on our understanding of the mechanisms of resistance to DTG as well as future directions for research.
Collapse
Affiliation(s)
- Mark A Wainberg
- Lady Davis Institute for Medical Research, McGill University AIDS Centre, Jewish General Hospital Montreal, QC, Canada
| | - Ying-Shan Han
- Lady Davis Institute for Medical Research, McGill University AIDS Centre, Jewish General Hospital Montreal, QC, Canada
| |
Collapse
|
37
|
Abstract
HIV-1 replication has been intensively investigated over the past 30 years. Hsp90 is one of the most abundant proteins in human cells, important in the formation and function of several protein complexes that maintain cell homeostasis. Remarkably, the impact of Hsp90 on HIV-1 infection has started to be appreciated only recently. Hsp90 has been shown to (a) promote HIV-1 gene expression in acutely infected cells, (b) localize at the viral promoter DNA, (c) mediate enhanced replication in conditions of hyperthermia and (d) activate the P-TEFb complex, which is essential for efficient HIV-1 transcription. Hsp90 has been implicated in buffering deleterious mutations of the viral core and in the regulation of innate and acquired immune responses to HIV-1 infection. Therefore, Hsp90 is an important host factor promoting several steps of the HIV-1 life cycle. Several small Hsp90 inhibitors are in Phase II clinical trials for human cancers and might potentially be used to inhibit HIV-1 infection at multiple levels.
Collapse
|
38
|
Simian-tropic HIV as a model to study drug resistance against integrase inhibitors. Antimicrob Agents Chemother 2015; 59:1942-9. [PMID: 25583721 DOI: 10.1128/aac.04829-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drug resistance represents a key aspect of human immunodeficiency virus (HIV) treatment failure. It is important to develop nonhuman primate models for studying issues of drug resistance and the persistence and transmission of drug-resistant viruses. However, relatively little work has been conducted using either simian immunodeficiency virus (SIV) or SIV/HIV recombinant viruses for studying resistance against integrase strand transfer inhibitors (INSTIs). Here, we used a T-cell-tropic SIV/HIV recombinant virus in which the capsid and vif regions of HIV-1 were replaced with their SIV counterparts (simian-tropic HIV-1 [stHIV-1](SCA,SVIF)) to study the impact of a number of drug resistance substitutions in the integrase coding region at positions E92Q, G118R, E138K, Y143R, S153Y, N155H, and R263K on drug resistance, viral infectivity, and viral replication capacity. Our results show that each of these substitutions exerted effects that were similar to their effects in HIV-1. Substitutions associated with primary resistance against dolutegravir were more detrimental to stHIV-1(SCA,SVIF) infectiousness than were resistance substitutions associated with raltegravir and elvitegravir, consistent with data that have been reported for HIV-1. These findings support the role of stHIV-1(SCA,SVIF) as a useful model with which to evaluate the role of INSTI resistance substitutions on viral persistence, transmissibility, and pathogenesis in a nonhuman primate model.
Collapse
|
39
|
|
40
|
Hardy I, Brenner B, Quashie P, Thomas R, Petropoulos C, Huang W, Moisi D, Wainberg MA, Roger M. Evolution of a novel pathway leading to dolutegravir resistance in a patient harbouring N155H and multiclass drug resistance. J Antimicrob Chemother 2014; 70:405-11. [PMID: 25281399 DOI: 10.1093/jac/dku387] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Dolutegravir has been recently approved for treatment-naive and -experienced HIV-infected subjects, including integrase inhibitor (INI)-experienced patients. Dolutegravir is a second-generation INI that can overcome many prior raltegravir and elvitegravir failures. Here, we report the evolution of resistance to dolutegravir in a highly treatment-experienced patient harbouring the major N155H mutation consequent to raltegravir treatment failure. METHODS Genotypic and phenotypic analyses were done on longitudinal samples to determine viral resistance to INIs. Integrase amino acid sequence interactions with raltegravir and dolutegravir were assessed by molecular modelling and docking simulations. RESULTS Five mutations (A49P, L68FL, T97A, E138K and L234V) were implicated in emergent dolutegravir resistance, with a concomitant severe compromise in viral replicative capacity. Molecular modelling and docking simulations revealed that dolutegravir binding to integrase was affected by these acquired dolutegravir mutations. CONCLUSIONS Our findings identify a novel mutational pathway involving integrase mutations A49P and L234V, leading to dolutegravir resistance in a patient with the N155H raltegravir mutation.
Collapse
Affiliation(s)
- Isabelle Hardy
- Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Bluma Brenner
- McGill AIDS Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Peter Quashie
- McGill AIDS Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Réjean Thomas
- Clinique Médicale L'Actuel, Montréal, Québec, Canada
| | | | - Wei Huang
- Monogram Biosciences, South San Francisco, CA, USA
| | - Daniela Moisi
- McGill AIDS Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Mark A Wainberg
- McGill AIDS Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Michel Roger
- Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
41
|
Grobler JA, Hazuda DJ. Resistance to HIV integrase strand transfer inhibitors: in vitro findings and clinical consequences. Curr Opin Virol 2014; 8:98-103. [PMID: 25128610 DOI: 10.1016/j.coviro.2014.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 10/24/2022]
Abstract
Three integrase strand transfer inhibitors have now been approved for the treatment of HIV infection, raltegravir, cobicistat-boosted elvitegravir, and dolutegravir. Each of these agents selects for unique signature mutations; however, there can be significant cross resistance among all three drugs when multiple mutations are present or are presented in the context of different genetic backgrounds such as non B-subtypes. Many of the mutations that are associated with integrase inhibitor resistance have a profound effect on integrase function and viral replication and thus, while only one or two mutations may be sufficient to impact susceptibility, virologic failure and treatment-associated resistance have been infrequent with all three drugs to date.
Collapse
Affiliation(s)
- Jay A Grobler
- Merck and Company, 770 Sumneytown Pike, West Point, PA, United States
| | - Daria J Hazuda
- Merck and Company, 770 Sumneytown Pike, West Point, PA, United States.
| |
Collapse
|
42
|
Evolution of HIV integrase resistance mutations. Curr Opin Infect Dis 2014. [DOI: 10.1097/01.qco.0000452024.26749.7a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Evolution of HIV integrase resistance mutations. Curr Opin Infect Dis 2014. [DOI: 10.1097/01.qco.0000449810.95472.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Mobley DL, Liu S, Lim NM, Wymer KL, Perryman AL, Forli S, Deng N, Su J, Branson K, Olson AJ. Blind prediction of HIV integrase binding from the SAMPL4 challenge. J Comput Aided Mol Des 2014; 28:327-45. [PMID: 24595873 DOI: 10.1007/s10822-014-9723-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 12/11/2022]
Abstract
Here, we give an overview of the protein-ligand binding portion of the Statistical Assessment of Modeling of Proteins and Ligands 4 (SAMPL4) challenge, which focused on predicting binding of HIV integrase inhibitors in the catalytic core domain. The challenge encompassed three components--a small "virtual screening" challenge, a binding mode prediction component, and a small affinity prediction component. Here, we give summary results and statistics concerning the performance of all submissions at each of these challenges. Virtual screening was particularly challenging here in part because, in contrast to more typical virtual screening test sets, the inactive compounds were tested because they were thought to be likely binders, so only the very top predictions performed significantly better than random. Pose prediction was also quite challenging, in part because inhibitors in the set bind to three different sites, so even identifying the correct binding site was challenging. Still, the best methods managed low root mean squared deviation predictions in many cases. Here, we give an overview of results, highlight some features of methods which worked particularly well, and refer the interested reader to papers in this issue which describe specific submissions for additional details.
Collapse
Affiliation(s)
- David L Mobley
- Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, 147 Bison Modular, Irvine, CA, 92697, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Xue W, Liu H, Yao X. Molecular modeling study on the allosteric inhibition mechanism of HIV-1 integrase by LEDGF/p75 binding site inhibitors. PLoS One 2014; 9:e90799. [PMID: 24599328 PMCID: PMC3944435 DOI: 10.1371/journal.pone.0090799] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 02/05/2014] [Indexed: 01/28/2023] Open
Abstract
HIV-1 integrase (IN) is essential for the integration of viral DNA into the host genome and an attractive therapeutic target for developing antiretroviral inhibitors. LEDGINs are a class of allosteric inhibitors targeting LEDGF/p75 binding site of HIV-1 IN. Yet, the detailed binding mode and allosteric inhibition mechanism of LEDGINs to HIV-1 IN is only partially understood, which hinders the structure-based design of more potent anti-HIV agents. A molecular modeling study combining molecular docking, molecular dynamics simulation, and binding free energy calculation were performed to investigate the interaction details of HIV-1 IN catalytic core domain (CCD) with two recently discovered LEDGINs BI-1001 and CX14442, as well as the LEDGF/p75 protein. Simulation results demonstrated the hydrophobic domain of BI-1001 and CX14442 engages one subunit of HIV-1 IN CCD dimer through hydrophobic interactions, and the hydrophilic group forms hydrogen bonds with HIV-1 IN CCD residues from other subunit. CX14442 has a larger tert-butyl group than the methyl of BI-1001, and forms better interactions with the highly hydrophobic binding pocket of HIV-1 IN CCD dimer interface, which can explain the stronger affinity of CX14442 than BI-1001. Analysis of the binding mode of LEDGF/p75 with HIV-1 IN CCD reveals that the LEDGF/p75 integrase binding domain residues Ile365, Asp366, Phe406 and Val408 have significant contributions to the binding of the LEDGF/p75 to HIV1-IN. Remarkably, we found that binding of BI-1001 and CX14442 to HIV-1 IN CCD induced the structural rearrangements of the 140 s loop and oration displacements of the side chains of the three conserved catalytic residues Asp64, Asp116, and Glu152 located at the active site. These results we obtained will be valuable not only for understanding the allosteric inhibition mechanism of LEDGINs but also for the rational design of allosteric inhibitors of HIV-1 IN targeting LEDGF/p75 binding site.
Collapse
Affiliation(s)
- Weiwei Xue
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
46
|
Interrogating HIV integrase for compounds that bind--a SAMPL challenge. J Comput Aided Mol Des 2014; 28:347-62. [PMID: 24532034 DOI: 10.1007/s10822-014-9721-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/25/2014] [Indexed: 12/22/2022]
Abstract
Tremendous gains and novel methods are often developed when people are challenged to do something new or difficult. This process is enhanced when people compete against each other-this can be seen in sport as well as in science and technology (e.g. the space race). The SAMPL challenges, like the CASP challenges, aim to challenge modellers and software developers to develop new ways of looking at molecular interactions so the community as a whole can progress in the accurate prediction of these interactions. In order for this challenge to occur, data must be supplied so the prospective test can be done. We have supplied unpublished data related to a drug discovery program run several years ago on HIV integrase for the SAMPL4 challenge. This paper describes the methods used to obtain these data and the chemistry involved.
Collapse
|
47
|
Le Rouzic E, Bonnard D, Chasset S, Bruneau JM, Chevreuil F, Le Strat F, Nguyen J, Beauvoir R, Amadori C, Brias J, Vomscheid S, Eiler S, Lévy N, Delelis O, Deprez E, Saïb A, Zamborlini A, Emiliani S, Ruff M, Ledoussal B, Moreau F, Benarous R. Dual inhibition of HIV-1 replication by integrase-LEDGF allosteric inhibitors is predominant at the post-integration stage. Retrovirology 2013; 10:144. [PMID: 24261564 PMCID: PMC4222603 DOI: 10.1186/1742-4690-10-144] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/15/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND LEDGF/p75 (LEDGF) is the main cellular cofactor of HIV-1 integrase (IN). It acts as a tethering factor for IN, and targets the integration of HIV in actively transcribed gene regions of chromatin. A recently developed class of IN allosteric inhibitors can inhibit the LEDGF-IN interaction. RESULTS We describe a new series of IN-LEDGF allosteric inhibitors, the most active of which is Mut101. We determined the crystal structure of Mut101 in complex with IN and showed that the compound binds to the LEDGF-binding pocket, promoting conformational changes of IN which explain at the atomic level the allosteric effect of the IN/LEDGF interaction inhibitor on IN functions. In vitro, Mut101 inhibited both IN-LEDGF interaction and IN strand transfer activity while enhancing IN-IN interaction. Time of addition experiments indicated that Mut101 behaved as an integration inhibitor. Mut101 was fully active on HIV-1 mutants resistant to INSTIs and other classes of anti-HIV drugs, indicative that this compound has a new mode of action. However, we found that Mut101 also displayed a more potent antiretroviral activity at a post-integration step. Infectivity of viral particles produced in presence of Mut101 was severely decreased. This latter effect also required the binding of the compound to the LEDGF-binding pocket. CONCLUSION Mut101 has dual anti-HIV-1 activity, at integration and post-integration steps of the viral replication cycle, by binding to a unique target on IN (the LEDGF-binding pocket). The post-integration block of HIV-1 replication in virus-producer cells is the mechanism by which Mut101 is most active as an antiretroviral. To explain this difference between Mut101 antiretroviral activity at integration and post-integration stages, we propose the following model: LEDGF is a nuclear, chromatin-bound protein that is absent in the cytoplasm. Therefore, LEDGF can outcompete compound binding to IN in the nucleus of target cells lowering its antiretroviral activity at integration, but not in the cytoplasm where post-integration production of infectious viral particles takes place.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Sylvia Eiler
- IGBMC, Inserm, CNRS, Université de Strasbourg, Illkirch 67404, France
| | - Nicolas Lévy
- IGBMC, Inserm, CNRS, Université de Strasbourg, Illkirch 67404, France
| | | | | | - Ali Saïb
- CNRS UMR7212, Inserm U944, Université Paris Diderot, Conservatoire National des Arts et Métiers, Paris, France
| | - Alessia Zamborlini
- CNRS UMR7212, Inserm U944, Université Paris Diderot, Conservatoire National des Arts et Métiers, Paris, France
| | - Stéphane Emiliani
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Université Paris Descartes, Paris 75014, France
| | - Marc Ruff
- IGBMC, Inserm, CNRS, Université de Strasbourg, Illkirch 67404, France
| | | | | | | |
Collapse
|
48
|
Biochemical analysis of the role of G118R-linked dolutegravir drug resistance substitutions in HIV-1 integrase. Antimicrob Agents Chemother 2013; 57:6223-35. [PMID: 24080645 DOI: 10.1128/aac.01835-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drug resistance mutations (DRMs) have been reported for all currently approved anti-HIV drugs, including the latest integrase strand transfer inhibitors (INSTIs). We previously used the new INSTI dolutegravir (DTG) to select a G118R integrase resistance substitution in tissue culture and also showed that secondary substitutions emerged at positions H51Y and E138K. Now, we have characterized the impact of the G118R substitution, alone or in combination with either H51Y or E138K, on 3' processing and integrase strand transfer activity. The results show that G118R primarily impacted the strand transfer step of integration by diminishing the ability of integrase-long terminal repeat (LTR) complexes to bind target DNA. The addition of H51Y and E138K to G118R partially restored strand transfer activity by modulating the formation of integrase-LTR complexes through increasing LTR DNA affinity and total DNA binding, respectively. This unique mechanism, in which one function of HIV integrase partially compensates for the defect in another function, has not been previously reported. The G118R substitution resulted in low-level resistance to DTG, raltegravir (RAL), and elvitegravir (EVG). The addition of either of H51Y or E138K to G118R did not enhance resistance to DTG, RAL, or EVG. Homology modeling provided insight into the mechanism of resistance conferred by G118R as well as the effects of H51Y or E138K on enzyme activity. The G118R substitution therefore represents a potential avenue for resistance to DTG, similar to that previously described for the R263K substitution. For both pathways, secondary substitutions can lead to either diminished integrase activity and/or increased INSTI susceptibility.
Collapse
|
49
|
Magalhães UDO, Souza AMTD, Albuquerque MG, Brito MAD, Bello ML, Cabral LM, Rodrigues CR. Hologram quantitative structure-activity relationship and comparative molecular field analysis studies within a series of tricyclic phthalimide HIV-1 integrase inhibitors. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:953-61. [PMID: 24039405 PMCID: PMC3771852 DOI: 10.2147/dddt.s47057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acquired immunodeficiency syndrome is a public health problem worldwide caused by the Human immunodeficiency virus (HIV). Treatment with antiretroviral drugs is the best option for viral suppression, reducing morbidity and mortality. However, viral resistance in HIV-1 therapy has been reported. HIV-1 integrase (IN) is an essential enzyme for effective viral replication and an attractive target for the development of new inhibitors. In the study reported here, two- and three-dimensional quantitative structure–activity relationship (2D/3D-QSAR) studies, applying hologram quantitative structure–activity relationship (HQSAR) and comparative molecular field analysis (CoMFA) methods, respectively, were performed on a series of tricyclic phthalimide HIV-1 IN inhibitors. The best HQSAR model (q2 = 0.802, r2 = 0.972) was obtained using atoms, bonds, and connectivity as the fragment distinction, a fragment size of 2–5 atoms, hologram length of 61 bins, and six components. The best CoMFA model (q2 = 0.748, r2 = 0.974) was obtained with alignment of all atoms of the tricyclic phthalimide moiety (alignment II). The HQSAR contribution map identified that the carbonyl-hydroxy-aromatic nitrogen motif made a positive contribution to the activity of the compounds. Furthermore, CoMFA contour maps suggested that bulky groups in meta and para positions in the phenyl ring would increase the biological activity of this class. The conclusions of this work may lead to a better understanding of HIV-1 IN inhibition and contribute to the design of new and more potent derivatives.
Collapse
Affiliation(s)
- Uiaran de Oliveira Magalhães
- Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Modelagem Molecular and QSAR (ModMolQSAR), Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
50
|
Quantitative analysis of the time-course of viral DNA forms during the HIV-1 life cycle. Retrovirology 2013; 10:87. [PMID: 23938039 PMCID: PMC3766001 DOI: 10.1186/1742-4690-10-87] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/02/2013] [Indexed: 01/06/2023] Open
Abstract
Background HIV-1 DNA is found both integrated in the host chromosome and unintegrated in various forms: linear (DNAL) or circular (1-LTRc, 2-LTRc or products of auto-integration). Here, based on pre-established strategies, we extended and characterized in terms of sensitivity two methodologies for quantifying 1-LTRc and DNAL, respectively, the latter being able to discriminate between unprocessed or 3′-processed DNA. Results Quantifying different types of viral DNA genome individually provides new information about the dynamics of all viral DNA forms and their interplay. For DNAL, we found that the 3′-processing reaction was efficient during the early stage of the replication cycle. Moreover, strand-transfer inhibitors (Dolutegravir, Elvitegravir, Raltegravir) affected 3′-processing differently. The comparisons of 2-LTRc accumulation mediated by either strand-transfer inhibitors or catalytic mutation of integrase indicate that 3′-processing efficiency did not influence the total 2-LTRc accumulation although the nature of the LTR-LTR junction was qualitatively affected. Finally, a significant proportion of 1-LTRc was generated concomitantly with reverse transcription, although most of the 1-LTRc were produced in the nucleus. Conclusions We describe the fate of viral DNA forms during HIV-1 infection. Our study reveals the interplay between various forms of the viral DNA genome, the distribution of which can be affected by mutations and by inhibitors of HIV-1 viral proteins. In the latter case, the quantification of 3′-processed DNA in infected cells can be informative about the mechanisms of future integrase inhibitors directly in the cell context.
Collapse
|