1
|
De Mol W, Bos S, Beeckmans H, Lagrou K, Spriet I, Verleden GM, Vos R. Antifungal Prophylaxis After Lung Transplantation: Where Are We Now? Transplantation 2021; 105:2538-2545. [PMID: 33982907 DOI: 10.1097/tp.0000000000003717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lung transplantation is an important treatment option for various end-stage lung diseases. However, survival remains limited due to graft rejection and infections. Despite that fungal infections are frequent and carry a bad prognosis, there is currently no consensus on efficacy, optimal drug, route, or duration of antifungal prophylaxis. This narrative review summarizes current strategies for antifungal prophylaxis after lung transplantation. METHODS English language articles in Embase, Pubmed, UptoDate, and bibliographies were used to assess the efficacy and safety of available antifungal agents for prophylaxis in adult lung transplant recipients. RESULTS Overall, there are limited high-quality data. Universal prophylaxis is more widely used and may be preferable over targeted prophylaxis. Both formulations of inhaled amphotericin B and systemic azoles are effective at reducing fungal infection rates, yet with their own specific advantages and disadvantages. The benefit of combination regimens has yet to be proven. Considering the post-transplant timing of the onset of fungal infections, postoperative prophylaxis during the first postoperative months seems indicated for most patients. CONCLUSIONS Based on existing literature, universal antifungal prophylaxis with inhaled amphotericin B and systemic voriconazole for at least 3-6 mo after lung transplantation may be advisable, with a slight preference for amphotericin B because of its better safety profile.
Collapse
Affiliation(s)
- Wim De Mol
- Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Saskia Bos
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | | | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department Pharmacy, University Hospitals Leuven, Leuven, Belgium
| | - Geert M Verleden
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
- Department CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
- Department CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Effects of Multidrug-resistant Bacteria in Donor Lower Respiratory Tract on Early Posttransplant Pneumonia in Lung Transplant Recipients Without Pretransplant Infection. Transplantation 2020; 104:e98-e106. [PMID: 31895333 DOI: 10.1097/tp.0000000000003102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Multidrug-resistant (MDR) bacteria in the lower respiratory tracts of allografts may be risk factors for early posttransplant pneumonia (PTP) that causes detrimental outcomes in lung transplant recipients (LTRs). We evaluated the effects of immediate changes in MDR bacteria in allografts on early PTP and mortality rates in LTRs. METHODS We reviewed 90 adult bilateral LTRs without pretransplant infections who underwent lung transplantation between October 2012 and May 2018. Quantitative cultures were performed with the bronchoalveolar lavage fluids of the allografts preanastomosis and within 3 days posttransplant. The International Society for Heart and Lung Transplantation consensus defines early PTP as pneumonia acquired within 30 days posttransplant and not associated with acute rejection. RESULTS MDR Acinetobacter baumannii (11/34, 32.4%) and Staphylococcus aureus (9/34, 26.5%) were identified in 24.4% (22/90) of the preanastomosis allografts. Four LTRs had the same MDR bacteria in allografts preanastomosis and posttransplant. Allograft MDR bacteria disappeared in 50% of the LTRs within 3 days posttransplant. Early PTP and all-cause in-hospital mortality rates were not different between LTRs with and without preanastomosis MDR bacteria (P = 0.75 and 0.93, respectively). MDR bacteria ≥10 CFU/mL in the lungs within 3 days posttransplant was associated with early PTP (odds ratio, 5.8; 95% confidence interval, 1.3-27.0; P = 0.03). CONCLUSIONS High levels of preexisting MDR bacteria in allografts did not increase early PTP and mortality rates in LTRs. Despite the small and highly selective study population, lung allografts with MDR bacteria may be safely transplanted with appropriate posttransplant antibiotic therapy.
Collapse
|
3
|
Unterman A, Izhakian S, Geffen Y, Rosengarten D, Shtraichman O, Pertzov B, Vainshelboim B, Alon H, Raviv Y, Kramer MR. Routine comprehensive Aspergillus screening of bronchoalveolar lavage samples in lung transplant recipients. Clin Transplant 2020; 34:e13811. [DOI: 10.1111/ctr.13811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 12/08/2019] [Accepted: 01/23/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Avraham Unterman
- Pulmonary Division Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University Petah Tikva Israel
| | - Shimon Izhakian
- Pulmonary Division Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University Petah Tikva Israel
| | - Yuval Geffen
- Clinical Microbiology Laboratory Rambam Health Care Campus Haifa Israel
| | - Dror Rosengarten
- Pulmonary Division Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University Petah Tikva Israel
| | - Osnat Shtraichman
- Pulmonary Division Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University Petah Tikva Israel
| | - Barak Pertzov
- Pulmonary Division Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University Petah Tikva Israel
| | - Baruch Vainshelboim
- Pulmonary Division Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University Petah Tikva Israel
| | - Hagar Alon
- Pulmonary Division Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University Petah Tikva Israel
| | - Yael Raviv
- Pulmonary Institute Soroka Medical Center and Ben‐Gurion University Beer‐Sheva Israel
| | - Mordechai R. Kramer
- Pulmonary Division Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University Petah Tikva Israel
| |
Collapse
|
4
|
Garaix F, Stern M, Lamy FX, Dubel L, Kamar N. Tacrolimus Granules for Oral Suspension as Post-Transplant Immunosuppression in Routine Medical Practice in France: The OPTIMOD Study. Ann Transplant 2018; 23:561-571. [PMID: 30093607 PMCID: PMC6248292 DOI: 10.12659/aot.908522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Different pharmaceutical forms of oral tacrolimus allow tailored administration. The granular formulation facilitates accurate dose adjustment of tacrolimus according to patient characteristics, such as weight, or potential concomitant drug interactions. Currently, there are no data describing the use of tacrolimus granules in transplant recipients in France. Material/Methods OPTIMOD was a 6-month prospective, observational multicenter study that aimed to describe patient characteristics and conditions of use of tacrolimus granules. The 25 participating centers enrolled patients at time of tacrolimus granules initiation and were to collect patient and treatment data at initiation and after 6 months of follow-up. All analyses were descriptive. Results Of 61 patients included, 55.7% were children (mainly kidney graft recipients) and 44.3% were adults (mostly lung graft recipients). Overall, 24.6% of patients (all children) initiated tacrolimus granules immediately post-transplant; the remaining 75.4% converted to tacrolimus granules from ciclosporin or immediate-release tacrolimus hard capsules. The main reasons for initiating tacrolimus granules, irrespective of whether first- or second-line therapy, were to offset potential drug–drug interactions in adults by adjusting dose, and to adapt to the particular needs of children as patients. Most patients (78.7%) underwent ≥1 dose modification during follow-up. Eleven rejection episodes occurred during follow-up, of which none led to graft loss. The adverse-event profile of the tacrolimus granules was similar to that of other tacrolimus formulations and 7 treatment-related adverse events were recorded. Conclusions Results suggest that tacrolimus granules are well tolerated and effective in preventing transplant rejection when administered in routine practice in France.
Collapse
Affiliation(s)
- Florentine Garaix
- Department of Paediatric Nephrology, Hôpital La Timone, Marseille, France
| | - Marc Stern
- Department of Pulmonology, Hôpital Foch, Suresnes, France
| | | | - Laurence Dubel
- Department of Scientific and Medical Affairs Transplantation, Astellas France, Levallois-Perret Cedex, France
| | - Nassim Kamar
- Department of Nephrology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
5
|
Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, Lass-Flörl C, Lewis RE, Munoz P, Verweij PE, Warris A, Ader F, Akova M, Arendrup MC, Barnes RA, Beigelman-Aubry C, Blot S, Bouza E, Brüggemann RJM, Buchheidt D, Cadranel J, Castagnola E, Chakrabarti A, Cuenca-Estrella M, Dimopoulos G, Fortun J, Gangneux JP, Garbino J, Heinz WJ, Herbrecht R, Heussel CP, Kibbler CC, Klimko N, Kullberg BJ, Lange C, Lehrnbecher T, Löffler J, Lortholary O, Maertens J, Marchetti O, Meis JF, Pagano L, Ribaud P, Richardson M, Roilides E, Ruhnke M, Sanguinetti M, Sheppard DC, Sinkó J, Skiada A, Vehreschild MJGT, Viscoli C, Cornely OA. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 2018; 24 Suppl 1:e1-e38. [PMID: 29544767 DOI: 10.1016/j.cmi.2018.01.002] [Citation(s) in RCA: 947] [Impact Index Per Article: 135.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
The European Society for Clinical Microbiology and Infectious Diseases, the European Confederation of Medical Mycology and the European Respiratory Society Joint Clinical Guidelines focus on diagnosis and management of aspergillosis. Of the numerous recommendations, a few are summarized here. Chest computed tomography as well as bronchoscopy with bronchoalveolar lavage (BAL) in patients with suspicion of pulmonary invasive aspergillosis (IA) are strongly recommended. For diagnosis, direct microscopy, preferably using optical brighteners, histopathology and culture are strongly recommended. Serum and BAL galactomannan measures are recommended as markers for the diagnosis of IA. PCR should be considered in conjunction with other diagnostic tests. Pathogen identification to species complex level is strongly recommended for all clinically relevant Aspergillus isolates; antifungal susceptibility testing should be performed in patients with invasive disease in regions with resistance found in contemporary surveillance programmes. Isavuconazole and voriconazole are the preferred agents for first-line treatment of pulmonary IA, whereas liposomal amphotericin B is moderately supported. Combinations of antifungals as primary treatment options are not recommended. Therapeutic drug monitoring is strongly recommended for patients receiving posaconazole suspension or any form of voriconazole for IA treatment, and in refractory disease, where a personalized approach considering reversal of predisposing factors, switching drug class and surgical intervention is also strongly recommended. Primary prophylaxis with posaconazole is strongly recommended in patients with acute myelogenous leukaemia or myelodysplastic syndrome receiving induction chemotherapy. Secondary prophylaxis is strongly recommended in high-risk patients. We strongly recommend treatment duration based on clinical improvement, degree of immunosuppression and response on imaging.
Collapse
Affiliation(s)
- A J Ullmann
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J M Aguado
- Infectious Diseases Unit, University Hospital Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - S Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D W Denning
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; European Confederation of Medical Mycology (ECMM)
| | - A H Groll
- Department of Paediatric Haematology/Oncology, Centre for Bone Marrow Transplantation, University Children's Hospital Münster, Münster, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - K Lagrou
- Department of Microbiology and Immunology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lass-Flörl
- Institute of Hygiene, Microbiology and Social Medicine, ECMM Excellence Centre of Medical Mycology, Medical University Innsbruck, Innsbruck, Austria; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R E Lewis
- Infectious Diseases Clinic, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - P Munoz
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - P E Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - A Warris
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - F Ader
- Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France; Inserm 1111, French International Centre for Infectious Diseases Research (CIRI), Université Claude Bernard Lyon 1, Lyon, France; European Respiratory Society (ERS)
| | - M Akova
- Department of Medicine, Section of Infectious Diseases, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M C Arendrup
- Department Microbiological Surveillance and Research, Statens Serum Institute, Copenhagen, Denmark; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R A Barnes
- Department of Medical Microbiology and Infectious Diseases, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; European Confederation of Medical Mycology (ECMM)
| | - C Beigelman-Aubry
- Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; European Respiratory Society (ERS)
| | - S Blot
- Department of Internal Medicine, Ghent University, Ghent, Belgium; Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, Australia; European Respiratory Society (ERS)
| | - E Bouza
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R J M Brüggemann
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG)
| | - D Buchheidt
- Medical Clinic III, University Hospital Mannheim, Mannheim, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Cadranel
- Department of Pneumology, University Hospital of Tenon and Sorbonne, University of Paris, Paris, France; European Respiratory Society (ERS)
| | - E Castagnola
- Infectious Diseases Unit, Istituto Giannina Gaslini Children's Hospital, Genoa, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - A Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India; European Confederation of Medical Mycology (ECMM)
| | - M Cuenca-Estrella
- Instituto de Salud Carlos III, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - G Dimopoulos
- Department of Critical Care Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; European Respiratory Society (ERS)
| | - J Fortun
- Infectious Diseases Service, Ramón y Cajal Hospital, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J-P Gangneux
- Univ Rennes, CHU Rennes, Inserm, Irset (Institut de Recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Garbino
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - W J Heinz
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R Herbrecht
- Department of Haematology and Oncology, University Hospital of Strasbourg, Strasbourg, France; ESCMID Fungal Infection Study Group (EFISG)
| | - C P Heussel
- Diagnostic and Interventional Radiology, Thoracic Clinic, University Hospital Heidelberg, Heidelberg, Germany; European Confederation of Medical Mycology (ECMM)
| | - C C Kibbler
- Centre for Medical Microbiology, University College London, London, UK; European Confederation of Medical Mycology (ECMM)
| | - N Klimko
- Department of Clinical Mycology, Allergy and Immunology, North Western State Medical University, St Petersburg, Russia; European Confederation of Medical Mycology (ECMM)
| | - B J Kullberg
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lange
- International Health and Infectious Diseases, University of Lübeck, Lübeck, Germany; Clinical Infectious Diseases, Research Centre Borstel, Leibniz Center for Medicine & Biosciences, Borstel, Germany; German Centre for Infection Research (DZIF), Tuberculosis Unit, Hamburg-Lübeck-Borstel-Riems Site, Lübeck, Germany; European Respiratory Society (ERS)
| | - T Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany; European Confederation of Medical Mycology (ECMM)
| | - J Löffler
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Lortholary
- Department of Infectious and Tropical Diseases, Children's Hospital, University of Paris, Paris, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Maertens
- Department of Haematology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Marchetti
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland; Department of Medicine, Ensemble Hospitalier de la Côte, Morges, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - L Pagano
- Department of Haematology, Universita Cattolica del Sacro Cuore, Roma, Italy; European Confederation of Medical Mycology (ECMM)
| | - P Ribaud
- Quality Unit, Pôle Prébloc, Saint-Louis and Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - M Richardson
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - E Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece; Hippokration General Hospital, Thessaloniki, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Ruhnke
- Department of Haematology and Oncology, Paracelsus Hospital, Osnabrück, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Sanguinetti
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Rome, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D C Sheppard
- Division of Infectious Diseases, Department of Medicine, Microbiology and Immunology, McGill University, Montreal, Canada; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Sinkó
- Department of Haematology and Stem Cell Transplantation, Szent István and Szent László Hospital, Budapest, Hungary; ESCMID Fungal Infection Study Group (EFISG)
| | - A Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M J G T Vehreschild
- Department I of Internal Medicine, ECMM Excellence Centre of Medical Mycology, University Hospital of Cologne, Cologne, Germany; Centre for Integrated Oncology, Cologne-Bonn, University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; European Confederation of Medical Mycology (ECMM)
| | - C Viscoli
- Ospedale Policlinico San Martino and University of Genova (DISSAL), Genova, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O A Cornely
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; Clinical Trials Center Cologne, University Hospital of Cologne, Cologne, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM); ESCMID European Study Group for Infections in Compromised Hosts (ESGICH).
| |
Collapse
|
6
|
Kolaitis NA, Duffy E, Zhang A, Lo M, Barba DT, Chen M, Soriano T, Hu J, Nabili V, Saggar R, Sayah DM, DerHovanessian A, Shino MY, Lynch JP, Kubak BM, Ardehali A, Ross DJ, Belperio JA, Elashoff D, Saggar R, Weigt SS. Voriconazole increases the risk for cutaneous squamous cell carcinoma after lung transplantation. Transpl Int 2016; 30:41-48. [PMID: 27678492 DOI: 10.1111/tri.12865] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/04/2016] [Accepted: 09/22/2016] [Indexed: 11/28/2022]
Abstract
Lung transplant recipients (LTR) are at high risk of cutaneous squamous cell carcinoma (SCC). Voriconazole exposure after lung transplant has recently been reported as a risk factor for SCC. We sought to study the relationship between fungal prophylaxis with voriconazole and the risk of SCC in sequential cohorts from a single center. We evaluated 400 adult LTR at UCLA between 7/1/2005 and 12/22/2012. On 7/1/2009, our center instituted a protocol switch from targeted to universal antifungal prophylaxis for at least 6 months post-transplant. Using Cox proportional hazards models, time to SCC was compared between targeted (N = 199) and universal (N = 201) prophylaxis cohorts. Cox models were also used to assess SCC risk as a function of time-dependent cumulative exposure to voriconazole and other antifungal agents. The risk of SCC was greater in the universal prophylaxis cohort (HR 2.02, P < 0.01). Voriconazole exposure was greater in the universal prophylaxis cohort, and the cumulative exposure to voriconazole was associated with SCC (HR 1.75, P < 0.01), even after adjustment for other important SCC risk factors. Voriconazole did not increase the risk of advanced tumors. Exposure to other antifungal agents was not associated with SCC. Voriconazole should be used cautiously in this population.
Collapse
Affiliation(s)
| | - Erin Duffy
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Alice Zhang
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michelle Lo
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - David T Barba
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Meng Chen
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Teresa Soriano
- Division of Dermatology, University of California, Los Angeles, CA, USA
| | - Jenny Hu
- Division of Dermatology, University of California, Los Angeles, CA, USA
| | - Vishad Nabili
- Department of Surgery, University of California, Los Angeles, CA, USA
| | - Rajeev Saggar
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - David M Sayah
- Department of Medicine, University of California, Los Angeles, CA, USA
| | | | - Michael Y Shino
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Joseph P Lynch
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Bernie M Kubak
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Abbas Ardehali
- Department of Surgery, University of California, Los Angeles, CA, USA
| | - David J Ross
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - John A Belperio
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - David Elashoff
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Rajan Saggar
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - S Samuel Weigt
- Department of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Patterson TF, Thompson GR, Denning DW, Fishman JA, Hadley S, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Nguyen MH, Segal BH, Steinbach WJ, Stevens DA, Walsh TJ, Wingard JR, Young JAH, Bennett JE. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 63:e1-e60. [PMID: 27365388 DOI: 10.1093/cid/ciw326] [Citation(s) in RCA: 1821] [Impact Index Per Article: 202.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 12/12/2022] Open
Abstract
It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.
Collapse
Affiliation(s)
- Thomas F Patterson
- University of Texas Health Science Center at San Antonio and South Texas Veterans Health Care System
| | | | - David W Denning
- National Aspergillosis Centre, University Hospital of South Manchester, University of Manchester, United Kingdom
| | - Jay A Fishman
- Massachusetts General Hospital and Harvard Medical School
| | | | | | | | - Kieren A Marr
- Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Vicki A Morrison
- Hennepin County Medical Center and University of Minnesota, Minneapolis
| | | | - Brahm H Segal
- University at Buffalo Jacobs School of Medicine and Biomedical Sciences, and Roswell Park Cancer Institute, New York
| | | | | | - Thomas J Walsh
- New York-Presbyterian Hospital/Weill Cornell Medical Center, New York
| | | | | | - John E Bennett
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
8
|
Mansh M, Binstock M, Williams K, Hafeez F, Kim J, Glidden D, Boettger R, Hays S, Kukreja J, Golden J, Asgari M, Chin-Hong P, Singer J, Arron S. Voriconazole Exposure and Risk of Cutaneous Squamous Cell Carcinoma, Aspergillus Colonization, Invasive Aspergillosis and Death in Lung Transplant Recipients. Am J Transplant 2016; 16:262-70. [PMID: 26372838 PMCID: PMC4718897 DOI: 10.1111/ajt.13431] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/27/2015] [Accepted: 06/21/2015] [Indexed: 01/25/2023]
Abstract
Voriconazole is a triazole antifungal used to prevent and treat invasive fungal infections after lung transplantation, but it has been associated with an increased risk of developing cutaneous squamous cell carcinoma (SCC). Despite widespread use, there are no clear guidelines for optimal prophylactic regimens that balance the competing risks and benefits. We conducted a retrospective cohort study of all lung transplant recipients at the University of California, San Francisco, who were transplanted between October 1991 and December 2012 (n = 455) to investigate whether voriconazole exposure affected development of SCC, Aspergillus colonization, invasive aspergillosis and all-cause mortality. Voriconazole exposure was associated with a 73% increased risk of developing SCC (hazard ratio [HR] 1.73; 95% confidence interval [CI]: 1.04-2.88; p = 0.03), with each additional 30-day exposure at the standard dose increasing the risk by 3.0% (HR 1.03; 95% CI: 1.02-1.04; p < 0.001). Voriconazole exposure reduced risk of Aspergillus colonization by 50% (HR 0.50; 95% CI: 0.34-0.72; p < 0.001), but we were underpowered to detect risk reduction for invasive aspergillosis. Voriconazole exposure significantly reduced all-cause mortality among subjects who developed Aspergillus colonization (HR 0.34; 95% CI: 0.13-0.91; p = 0.03) but had no significant impact on those without colonization. Physicians should consider patient-specific factors that modify the potential risks and benefits of voriconazole for the care of lung transplant recipients.
Collapse
Affiliation(s)
- M. Mansh
- Department of Dermatology, University of California, San Francisco, California,Stanford University School of Medicine, Stanford, California
| | - M. Binstock
- Department of Dermatology, University of California, San Francisco, California
| | - K. Williams
- Department of Dermatology, University of California, San Francisco, California
| | - F. Hafeez
- Department of Dermatology, University of California, San Francisco, California
| | - J. Kim
- Department of Dermatology, University of California, San Francisco, California
| | - D. Glidden
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - R. Boettger
- Department of Clinical Pharmacy, University of California, San Francisco, California
| | - S. Hays
- Department of Medicine, University of California, San Francisco, California
| | - J. Kukreja
- Department of Surgery, University of California, San Francisco, California
| | - J. Golden
- Department of Medicine, University of California, San Francisco, California
| | - M.M. Asgari
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - P. Chin-Hong
- Department of Medicine, University of California, San Francisco, California
| | - J.P. Singer
- Department of Medicine, University of California, San Francisco, California
| | - S. Arron
- Department of Dermatology, University of California, San Francisco, California
| |
Collapse
|
9
|
Curbelo J, Galván JM, Aspa J. Actualización sobre Aspergillus, Pneumocystis y otras micosis pulmonares oportunistas. Arch Bronconeumol 2015; 51:647-53. [DOI: 10.1016/j.arbres.2015.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 01/15/2023]
|
10
|
Soresi S, Sabashnikov A, Leaver N, Zeriouh M, Simon AR, Popov AF, Carby M. Voriconazole tolerability in lung transplant recipients: Is N-oxide metabolite responsible for phototoxicity? J Heart Lung Transplant 2015. [DOI: 10.1016/j.healun.2015.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Lynch JP, Sayah DM, Belperio JA, Weigt SS. Lung transplantation for cystic fibrosis: results, indications, complications, and controversies. Semin Respir Crit Care Med 2015; 36:299-320. [PMID: 25826595 PMCID: PMC4780574 DOI: 10.1055/s-0035-1547347] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Survival in patients with cystic fibrosis (CF) has improved dramatically over the past 30 to 40 years, with mean survival now approximately 40 years. Nonetheless, progressive respiratory insufficiency remains the major cause of mortality in CF patients, and lung transplantation (LT) is eventually required. Timing of listing for LT is critical, because up to 25 to 41% of CF patients have died while awaiting LT. Globally, approximately 16.4% of lung transplants are performed in adults with CF. Survival rates for LT recipients with CF are superior to other indications, yet LT is associated with substantial morbidity and mortality (∼50% at 5-year survival rates). Myriad complications of LT include allograft failure (acute or chronic), opportunistic infections, and complications of chronic immunosuppressive medications (including malignancy). Determining which patients are candidates for LT is difficult, and survival benefit remains uncertain. In this review, we discuss when LT should be considered, criteria for identifying candidates, contraindications to LT, results post-LT, and specific complications that may be associated with LT. Infectious complications that may complicate CF (particularly Burkholderia cepacia spp., opportunistic fungi, and nontuberculous mycobacteria) are discussed.
Collapse
Affiliation(s)
- Joseph P. Lynch
- Division of Pulmonary, Critical Care Medicine, Clinical Immunology and Allergy, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - David M. Sayah
- Division of Pulmonary, Critical Care Medicine, Clinical Immunology and Allergy, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John A. Belperio
- Division of Pulmonary, Critical Care Medicine, Clinical Immunology and Allergy, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - S. Sam Weigt
- Division of Pulmonary, Critical Care Medicine, Clinical Immunology and Allergy, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
12
|
Eggimann P, Pittet D. Candida colonization index and subsequent infection in critically ill surgical patients: 20 years later. Intensive Care Med 2014; 40:1429-48. [PMID: 24934813 PMCID: PMC4176828 DOI: 10.1007/s00134-014-3355-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/23/2014] [Indexed: 12/25/2022]
Abstract
Introduction For decades, clinicians dealing with immunocompromised and critically ill patients have perceived a link between Candida colonization and subsequent infection. However, the pathophysiological progression from colonization to infection was clearly established only through the formal description of the colonization index (CI) in critically ill patients. Unfortunately, the literature reflects intense confusion about the pathophysiology of invasive candidiasis and specific associated risk factors. Methods We review the contribution of the CI in the field of Candida infection and its development in the 20 years following its original description in 1994. The development of the CI enabled an improved understanding of the pathogenesis of invasive candidiasis and the use of targeted empirical antifungal therapy in subgroups of patients at increased risk for infection. Results The recognition of specific characteristics among underlying conditions, such as neutropenia, solid organ transplantation, and surgical and nonsurgical critical illness, has enabled the description of distinct epidemiological patterns in the development of invasive candidiasis. Conclusions Despite its limited bedside practicality and before confirmation of potentially more accurate predictors, such as specific biomarkers, the CI remains an important way to characterize the dynamics of colonization, which increases early in patients who develop invasive candidiasis.
Collapse
Affiliation(s)
- Philippe Eggimann
- Adult Critical Care Medicine and Burn Unit, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland,
| | | |
Collapse
|
13
|
Mead L, Danziger-Isakov LA, Michaels MG, Goldfarb S, Glanville AR, Benden C. Antifungal prophylaxis in pediatric lung transplantation: an international multicenter survey. Pediatr Transplant 2014; 18:393-7. [PMID: 24802346 DOI: 10.1111/petr.12263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2014] [Indexed: 11/28/2022]
Abstract
Fungal infections create a significant risk to pediatric lung transplant recipients. However, no international consensus guidelines exist for fungal infection prevention strategies. It was the aim to describe the current strategies of antifungal prophylaxis in pediatric lung transplant centers. A self-administered, web-based survey on current practices to prevent fungal infection was circulated to centers within the IPLTC. Twenty-one (88%) IPLTC centers participated, predominantly from Europe and the US. More than 50% of respondents perform adult and pediatric lung transplant operations. Twenty-four percent use universal prophylaxis, 28% give prophylaxis to all patients but stratify the antifungal coverage based on pretransplant risk, and 48% target prophylaxis to only the children with CF or pretransplantation fungal colonization. Commonly, centers aim to target Aspergillus and Candida infection. Monotherapy with either voriconazole or inhaled amphotericin B is used in the majority of centers. Institutions utilize prophylactic therapy for variable time periods (40% 3-6 months; 30% ≥12 months). Alternative drugs were prescribed for lack of tolerance, toxicity, or positive surveillance culture. TDM (itraconazole/voriconazole) was used in 86% of centers. The survey revealed a wide range of antifungal prophylaxis strategies as current international practice in pediatric lung transplant recipients.
Collapse
Affiliation(s)
- Lee Mead
- St Vincent's Hospital, Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
14
|
Quon BS, Goss CH, Ramsey BW. Inhaled antibiotics for lower airway infections. Ann Am Thorac Soc 2014; 11:425-34. [PMID: 24673698 PMCID: PMC4028738 DOI: 10.1513/annalsats.201311-395fr] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/21/2014] [Indexed: 12/29/2022] Open
Abstract
Inhaled antibiotics have been used to treat chronic airway infections since the 1940s. The earliest experience with inhaled antibiotics involved aerosolizing antibiotics designed for parenteral administration. These formulations caused significant bronchial irritation due to added preservatives and nonphysiologic chemical composition. A major therapeutic advance took place in 1997, when tobramycin designed for inhalation was approved by the U.S. Food and Drug Administration (FDA) for use in patients with cystic fibrosis (CF) with chronic Pseudomonas aeruginosa infection. Attracted by the clinical benefits observed in CF and the availability of dry powder antibiotic formulations, there has been a growing interest in the use of inhaled antibiotics in other lower respiratory tract infections, such as non-CF bronchiectasis, ventilator-associated pneumonia, chronic obstructive pulmonary disease, mycobacterial disease, and in the post-lung transplant setting over the past decade. Antibiotics currently marketed for inhalation include nebulized and dry powder forms of tobramycin and colistin and nebulized aztreonam. Although both the U.S. Food and Drug Administration and European Medicines Agency have approved their use in CF, they have not been approved in other disease areas due to lack of supportive clinical trial evidence. Injectable formulations of gentamicin, tobramycin, amikacin, ceftazidime, and amphotericin are currently nebulized "off-label" to manage non-CF bronchiectasis, drug-resistant nontuberculous mycobacterial infections, ventilator-associated pneumonia, and post-transplant airway infections. Future inhaled antibiotic trials must focus on disease areas outside of CF with sample sizes large enough to evaluate clinically important endpoints such as exacerbations. Extrapolating from CF, the impact of eradicating organisms such as P. aeruginosa in non-CF bronchiectasis should also be evaluated.
Collapse
Affiliation(s)
- Bradley S. Quon
- James Hogg Research Centre, St. Paul’s Hospital, and Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher H. Goss
- University of Washington, Department of Medicine, Pulmonary and Critical Care Medicine, University of Washington Medical Center, Seattle, Washington
| | - Bonnie W. Ramsey
- Center for Clinical and Translational Research, Seattle Children’s Research Institute and Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
15
|
Infections chez l’immunodéprimé. MEDECINE INTENSIVE REANIMATION 2014. [DOI: 10.1007/s13546-013-0747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|