1
|
Bernard P, Nelles C, Fervers P, Schwan J, Dankov K, Maintz D, Zopfs D, Große Hokamp N, Persigehl T, Lennartz S. Adrenal lesion classification revisited: validation and adjustment of dual-energy CT derived virtual unenhanced attenuation thresholds. Abdom Radiol (NY) 2025:10.1007/s00261-025-04939-3. [PMID: 40285793 DOI: 10.1007/s00261-025-04939-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/24/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025]
Abstract
OBJECTIVES Dual-energy CT (DECT)-derived virtual unenhanced (VUE) images have been investigated for adrenal lesion differentiation, yet previously reported thresholds vary, hampering clinical application. We aimed to test previous VUE thresholds for adrenal lesion differentiation in a large retrospective cohort, to provide a cross-validated threshold based on our data, and to investigate the influence of underlying malignancies on differentiation accuracy. METHODS 290 patients with 348 adrenal lesions (169 metastases, 179 adenomas) were included. Dual-layer DECT-derived VUE thresholds from 3 previous studies were retrieved, applied to our cohort and corresponding sensitivity/specificity/accuracy was calculated. Optimal threshold based on our data were determined using ROC-analysis with five-fold cross validation. Moreover, a threshold with similar specificity to the 10 HU threshold in unenhanced images was calculated. Subgroup analysis of adrenal lesion differentiation depending on underlying malignancies was performed. RESULTS The previously suggested thresholds were 20, 22 and 29 HU, and corresponding sensitivity/specificity/accuracy was 0.61/0.92/0.76, 0.67/0.91/0.78, and 0.82/0.59/0.71, respectively. The threshold determined from our cohort was 24.7 HU, yielding a sensitivity/specificity/accuracy of 0.76/0.81/0.79. Differentiation in disease-specific subgroups showed similar sensitivity/specificity/accuracy (Melanoma:0.78/0.84/0.79; Lung cancer:0.78/0.8/0.78; RCC:0.78/1/0.79). The VUE threshold to achieve a 0.98 specificity similar to the unenhanced 10 HU cutoff was 17.3 HU, yielding a sensitivity of 0.49. CONCLUSION Previous VUE attenuation thresholds showed a varying accuracy for differentiation between adenomas and metastases. A cross-validated VUE threshold of 24.7 HU yielded a mean accuracy of 0.79, whereas a threshold of 17.3 HU was best for achieving comparable specificity as reported for the 10 HU threshold in unenhanced images.
Collapse
Affiliation(s)
- Pascale Bernard
- Institute for Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christian Nelles
- Institute for Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Philipp Fervers
- Institute for Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Joline Schwan
- Institute for Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Kaloyan Dankov
- Institute for Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - David Maintz
- Institute for Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - David Zopfs
- Institute for Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thorsten Persigehl
- Institute for Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Jeon SK, Joo I, Park J, Yoo J. Automated hepatic steatosis assessment on dual-energy CT-derived virtual non-contrast images through fully-automated 3D organ segmentation. LA RADIOLOGIA MEDICA 2024; 129:967-976. [PMID: 38869829 PMCID: PMC11252222 DOI: 10.1007/s11547-024-01833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE To evaluate the efficacy of volumetric CT attenuation-based parameters obtained through automated 3D organ segmentation on virtual non-contrast (VNC) images from dual-energy CT (DECT) for assessing hepatic steatosis. MATERIALS AND METHODS This retrospective study included living liver donor candidates having liver DECT and MRI-determined proton density fat fraction (PDFF) assessments. Employing a 3D deep learning algorithm, the liver and spleen were automatically segmented from VNC images (derived from contrast-enhanced DECT scans) and true non-contrast (TNC) images, respectively. Mean volumetric CT attenuation values of each segmented liver (L) and spleen (S) were measured, allowing for liver attenuation index (LAI) calculation, defined as L minus S. Agreements of VNC and TNC parameters for hepatic steatosis, i.e., L and LAI, were assessed using intraclass correlation coefficients (ICC). Correlations between VNC parameters and MRI-PDFF values were assessed using the Pearson's correlation coefficient. Their performance to identify MRI-PDFF ≥ 5% and ≥ 10% was evaluated using receiver operating characteristic (ROC) curve analysis. RESULTS Of 252 participants, 56 (22.2%) and 16 (6.3%) had hepatic steatosis with MRI-PDFF ≥ 5% and ≥ 10%, respectively. LVNC and LAIVNC showed excellent agreement with LTNC and LAITNC (ICC = 0.957 and 0.968) and significant correlations with MRI-PDFF values (r = - 0.585 and - 0.588, Ps < 0.001). LVNC and LAIVNC exhibited areas under the ROC curve of 0.795 and 0.806 for MRI-PDFF ≥ 5%; and 0.916 and 0.932, for MRI-PDFF ≥ 10%, respectively. CONCLUSION Volumetric CT attenuation-based parameters from VNC images generated by DECT, via automated 3D segmentation of the liver and spleen, have potential for opportunistic hepatic steatosis screening, as an alternative to TNC images.
Collapse
Affiliation(s)
- Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center Seoul National University Hospital, Seoul, Korea.
| | - Junghoan Park
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeongin Yoo
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Verstraeten S, Ansems J, van Ommen W, van der Linden D, Looijmans F, Tesselaar E. Comparison of true non-contrast and virtual non-contrast images in the characterization of renal lesions using detector-based spectral CT. Br J Radiol 2023; 96:20220157. [PMID: 37334964 PMCID: PMC10461284 DOI: 10.1259/bjr.20220157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/24/2023] [Accepted: 05/19/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVES Renal lesions are sometimes incidentally detected during computed tomography (CT) examinations in which an unenhanced series is not included, preventing the lesions from being fully characterized. The aim of this study was to investigate the feasibility to use virtual non-contrast (VNC) images, acquired using a detector-based dual-energy CT, for the characterization of renal lesions. METHODS Twenty-seven patients (12 women) underwent a renal CT scan, including a non-contrast, an arterial, and a venous phase contrast-enhanced series, using a detector-based dual-energy CT scanner. VNC images were reconstructed from the venous contrast-enhanced series. The mean attenuation values of 65 renal lesions in both the VNC and true non-contrast (TNC) images were measured and compared quantitatively. Three radiologists blindly assessed all lesions using either VNC or TNC images in combination with contrast-enhanced images. RESULTS Sixteen patients had cystic lesions, five had angiomyolipoma (AML), and six had suspected renal cell carcinomas (RCC). Attenuation values in VNC and TNC images were strongly correlated (ρ = 0.7, mean difference -6.0 ± 13 HU). The largest differences were found for unenhanced high-attenuation lesions. Radiologists classified 86% of the lesions correctly using VNC images. CONCLUSIONS In 70% of the patients, incidentally detected renal lesions could be accurately characterized using VNC images, resulting in less patient burden and a reduction in radiation exposure. ADVANCES IN KNOWLEDGE This study shows that renal lesions can be accurately characterized using VNC images acquired by detector-based dual-energy CT, which is in agreement with previous studies using dual-source and rapid X-ray tube potential switching technique.
Collapse
Affiliation(s)
| | - Janneke Ansems
- Department of Medical Physics, Bravis Hospital, Roosendaal, Netherlands
| | - Wenzel van Ommen
- Department of Radiology, Bravis Hospital, Roosendaal, Netherlands
| | | | - Frank Looijmans
- Department of Radiology, Bravis Hospital, Roosendaal, Netherlands
| | | |
Collapse
|
4
|
Al-Difaie Z, Scheepers MHMC, Bouvy ND, Engelen S, Havekes B, Postma AA. Can virtual non-contrast imaging replace true non-contrast imaging in multiphase scanning of the neck region? Acta Radiol Open 2023; 12:20584601231205159. [PMID: 37767056 PMCID: PMC10521284 DOI: 10.1177/20584601231205159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Background Dual-energy computed tomography (DECT) is an advanced imaging method that enables reconstruction of virtual non-contrast (VNC) images from a contrast-enhanced acquisition. This has the potential to reduce radiation exposure by eliminating the need for a true non-contrast (TNC) phase. Purpose The purpose is to evaluate the feasibility of VNC images in the neck region. Materials and methods A total of 100 patients underwent a DECT scan as part of diagnostic workup of primary hyperparathyroidism. VNC images were reconstructed from 30 s (arterial) and 50 s (venous) post-contrast scans. Regions of interest (ROIs) were placed in thyroid tissue, lymph node, carotid artery, jugular vein, fat, and sternocleidomastoid muscle. Mean densities of all anatomical structures were compared between VNC and TNC images. Results For all anatomical structures except the thyroid gland, the difference in mean density between TNC and VNC images was less than 15 HU. The mean difference in density between TNC and VNC images of the thyroid was 53.2 HU (95% CI 46.8; 59.6, p = <0.001). Conclusion This study demonstrated an acceptable agreement in density between true non-contrast and virtual non-contrast images for most anatomical structures in the neck region. Therefore, VNC images may have the potential to replace TNC images in the neck. However, due to significant differences in CT density of thyroid tissue, true non-contrast imaging cannot be directly substituted by virtual non-contrast imaging when examining the thyroid and its surrounding tissue.
Collapse
Affiliation(s)
- Zaid Al-Difaie
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Max HMC Scheepers
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Nicole D Bouvy
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sanne Engelen
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Bas Havekes
- Division of Endocrinology and Metabolic Disease, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, School for Mental Health and Neuroscience, Neuroradiology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
5
|
Xu JJ, Ulriksen PS, Bjerrum CW, Achiam MP, Resch TA, Lönn L, Lindskov Hansen K. Characterizing incidental mass lesions in abdominal dual-energy CT compared to conventional contrast-enhanced CT. Acta Radiol 2023; 64:945-950. [PMID: 35918808 DOI: 10.1177/02841851221116306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Incidental findings are common in abdominal computed tomography (CT) and often warrant further investigations with economic implications as well as implications for patients. PURPOSE To evaluate the potential of dual-energy CT (DECT) in the identification and/or characterization of abdominal incidental mass lesions compared to conventional contrast-enhanced CT. MATERIAL AND METHODS This retrospective study from a major tertiary hospital included 96 patients, who underwent contrast-enhanced abdominal DECT. Incidental lesions in adrenals, kidneys, liver, and pancreas were evaluated by two board-certified abdominal radiologists. Observer 1 only had access to standard CT reconstructions, while observer 2 had access to standard CT as well as DECT reconstructions. Disagreements were resolved by consensus review and used as a reference for observers using McNemar's test. RESULTS Observers 1 and 2 identified a total of 40 and 34 findings, respectively. Furthermore, observer 1 registered 13 lesions requiring follow-up, of which seven (two renal and five adrenal lesions) were resolved following consensus review using DECT (P = 0.008). The inter-observer agreement was near perfect (κ = 0.82). CONCLUSION DECT has the potential to improve the immediate characterization of incidental findings when compared to conventional CT for abdominal imaging.
Collapse
Affiliation(s)
- Jack Junchi Xu
- Department of Diagnostic Radiology, Copenhagen University Hospital, 53146Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Peter Sommer Ulriksen
- Department of Diagnostic Radiology, Copenhagen University Hospital, 53146Rigshospitalet, Copenhagen, Denmark
| | - Camilla Wium Bjerrum
- Department of Diagnostic Radiology, Copenhagen University Hospital, 53146Rigshospitalet, Copenhagen, Denmark
| | - Michael Patrick Achiam
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Surgical Gastroenterology, Copenhagen University Hospital, 53146Rigshospitalet, Copenhagen, Denmark
| | - Timothy Andrew Resch
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Vascular Surgery, Copenhagen University Hospital, 53146Rigshospitalet, Copenhagen, Denmark
| | - Lars Lönn
- Department of Diagnostic Radiology, Copenhagen University Hospital, 53146Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Lindskov Hansen
- Department of Diagnostic Radiology, Copenhagen University Hospital, 53146Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Lee JS, Choi GM, Kim BS, Ko SY, Lee KR, Kim JJ, Kim DR. [Comparison of True and Virtual Non-Contrast Images of Liver Obtained with Single-Source Twin Beam and Dual-Source Dual-Energy CT]. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2023; 84:170-184. [PMID: 36818703 PMCID: PMC9935954 DOI: 10.3348/jksr.2021.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/14/2022] [Accepted: 05/02/2022] [Indexed: 06/18/2023]
Abstract
PURPOSE To assess the magnitude of differences between attenuation values of the true non-contrast image (TNC) and virtual non-contrast image (VNC) derived from twin-beam dual-energy CT (tbDECT) and dual-source DECT (dsDECT). MATERIALS AND METHODS This retrospective study included 62 patients who underwent liver dynamic DECT with tbDECT (n = 32) or dsDECT (n = 30). Arterial VNC (AVNC), portal VNC (PVNC), and delayed VNC (DVNC) were reconstructed using multiphasic DECT. Attenuation values of multiple intra-abdominal organs (n = 11) on TNCs were subsequently compared to those on multiphasic VNCs. Further, we investigated the percentage of cases with an absolute difference between TNC and VNC of ≤ 10 Hounsfield units (HU). RESULTS For the mean attenuation values of TNC and VNC, 33 items for each DECT were compared according to the multiphasic VNCs and organs. More than half of the comparison items for each DECT showed significant differences (tbDECT 17/33; dsDECT 19/33; Bonferroni correction p < 0.0167). The percentage of cases with an absolute difference ≤ 10 HU was 56.7%, 69.2%, and 78.6% in AVNC, PVNC, and DVNC in tbDECT, respectively, and 70.5%, 78%, and 78% in dsDECT, respectively. CONCLUSION VNCs derived from the two DECTs were insufficient to replace TNCs because of the considerable difference in attenuation values.
Collapse
|
7
|
Sauerbeck J, Adam G, Meyer M. Spectral CT in Oncology. ROFO-FORTSCHR RONTG 2023; 195:21-29. [PMID: 36167316 DOI: 10.1055/a-1902-9949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Spectral CT is gaining increasing clinical importance with multiple potential applications, including oncological imaging. Spectral CT-specific image data offers multiple advantages over conventional CT image data through various post-processing algorithms, which will be highlighted in the following review. METHODOLOGY The purpose of this review article is to provide an overview of potential useful oncologic applications of spectral CT and to highlight specific spectral CT pitfalls. The technical background, clinical advantages of primary and follow-up spectral CT exams in oncology, and the application of appropriate spectral tools will be highlighted. RESULTS/CONCLUSIONS Spectral CT imaging offers multiple advantages over conventional CT imaging, particularly in the field of oncology. The combination of virtual native and low monoenergetic images leads to improved detection and characterization of oncologic lesions. Iodine-map images may provide a potential imaging biomarker for assessing treatment response. KEY POINTS · The most important spectral CT reconstructions for oncology imaging are virtual unenhanced, iodine map, and virtual monochromatic reconstructions.. · The combination of virtual unenhanced and low monoenergetic reconstructions leads to better detection and characterization of the vascularization of solid tumors.. · Iodine maps can be a surrogate parameter for tumor perfusion and potentially used as a therapy monitoring parameter.. · For radiotherapy planning, the relative electron density and the effective atomic number of a tissue can be calculated.. CITATION FORMAT · Sauerbeck J, Adam G, Meyer M. Onkologische Bildgebung mittels Spektral-CT. Fortschr Röntgenstr 2023; 195: 21 - 29.
Collapse
Affiliation(s)
- Julia Sauerbeck
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Hamburg, Germany
| | - Mathias Meyer
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Hamburg, Germany
| |
Collapse
|
8
|
Toia GV, Mileto A, Wang CL, Sahani DV. Quantitative dual-energy CT techniques in the abdomen. Abdom Radiol (NY) 2022; 47:3003-3018. [PMID: 34468796 DOI: 10.1007/s00261-021-03266-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
Advances in dual-energy CT (DECT) technology and spectral techniques are catalyzing the widespread implementation of this technology across multiple radiology subspecialties. The inclusion of energy- and material-specific datasets has ushered overall improvements in CT image contrast and noise as well as artifacts reduction, leading to considerable progress in radiologists' ability to detect and characterize pathologies in the abdomen. The scope of this article is to provide an overview of various quantitative clinical DECT applications in the abdomen and pelvis. Several of the reviewed applications have not reached mainstream clinical use and are considered investigational. Nonetheless awareness of such applications is critical to having a fully comprehensive knowledge base to DECT and fostering future clinical implementation.
Collapse
Affiliation(s)
- Giuseppe V Toia
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Mailbox 3252, Madison, WI, 53792, USA.
| | - Achille Mileto
- Department of Radiology, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA
| | - Carolyn L Wang
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Dushyant V Sahani
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| |
Collapse
|
9
|
Shern Liang E, Wastney T, Dobeli K, Hacking C. Virtual non-contrast detector-based spectral CT predictably overestimates tissue density for the characterisation of adrenal lesions compared to true non-contrast CT. Abdom Radiol (NY) 2022; 47:2462-2467. [PMID: 35562563 DOI: 10.1007/s00261-022-03528-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE To establish if virtual non-contrast (VNC) images generated from contrast-enhanced detector-based spectral CT could replace true non-contrast (TNC) imaging for the characterisation of adrenal masses. METHODS TNC and VNC images were retrospectively reviewed for 39 patients with one or more adrenal lesions who underwent contrast-enhanced spectral CT of the upper abdomen. Lesions were categorised as either 'adenoma' or 'indeterminate/other lesion' based on current reference standards. The CT density of each lesion was measured on both image sets by two readers and compared using Wilcoxon signed-rank test. ROC analysis with Youden's J index method was performed to determine the optimal attenuation cut-off for diagnosing benign adenoma on VNC images. RESULTS Forty-four lesions were included, 37 of which were diagnosed as adenomas. There were significant differences between TNC and VNC measurements for both readers (mean difference 9.1 HU for reader 1; 9.8 HU for reader 2; p < 0.01). Optimal attenuation thresholds for diagnosing adenomas on VNC were 25.3 HU (reader 1) and 23.9 HU (reader 2) for the entire population, and 18.3 HU (reader 1) and 19.7 HU (reader 2) for lipid-rich adenomas < 10 HU on TNC imaging. CONCLUSION There is insufficient evidence to support the use of VNC as a substitute for TNC images in the characterisation of adrenal lesions. VNC using a detector-based spectral CT scanner shows a predictable increase in attenuation values compared to TNC. Thus, future studies might be better directed towards finding a new threshold value for diagnosing benign adrenal adenomas on VNC imaging.
Collapse
Affiliation(s)
- Ee Shern Liang
- Department of Medical Imaging, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
| | - Timothy Wastney
- Department of Medical Imaging, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Karen Dobeli
- Department of Medical Imaging, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Craig Hacking
- Department of Medical Imaging, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- University of Queensland, Saint Lucia, QLD, Australia
| |
Collapse
|
10
|
Adam SZ, Rabinowich A, Kessner R, Blachar A. Spectral CT of the abdomen: Where are we now? Insights Imaging 2021; 12:138. [PMID: 34580788 PMCID: PMC8476679 DOI: 10.1186/s13244-021-01082-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Spectral CT adds a new dimension to radiological evaluation, beyond assessment of anatomical abnormalities. Spectral data allows for detection of specific materials, improves image quality while at the same time reducing radiation doses and contrast media doses, and decreases the need for follow up evaluation of indeterminate lesions. We review the different acquisition techniques of spectral images, mainly dual-source, rapid kV switching and dual-layer detector, and discuss the main spectral results available. We also discuss the use of spectral imaging in abdominal pathologies, emphasizing the strengths and pitfalls of the technique and its main applications in general and in specific organs.
Collapse
Affiliation(s)
- Sharon Z Adam
- Department of Diagnostic Radiology, Tel Aviv Sourasky Medical Center, 6 Weizmann St., 6423906, Tel Aviv, Israel. .,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Aviad Rabinowich
- Department of Diagnostic Radiology, Tel Aviv Sourasky Medical Center, 6 Weizmann St., 6423906, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rivka Kessner
- Department of Diagnostic Radiology, Tel Aviv Sourasky Medical Center, 6 Weizmann St., 6423906, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arye Blachar
- Department of Diagnostic Radiology, Tel Aviv Sourasky Medical Center, 6 Weizmann St., 6423906, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Majeed NF, Braschi Amirfarzan M, Wald C, Wortman JR. Spectral detector CT applications in advanced liver imaging. Br J Radiol 2021; 94:20201290. [PMID: 34048285 PMCID: PMC8248211 DOI: 10.1259/bjr.20201290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Spectral detector CT (SDCT) has many applications in advanced liver imaging. If appropriately utilized, this technology has the potential to improve image quality, provide new diagnostic information, and allow for decreased radiation dose. The purpose of this review is to familiarize radiologists with the uses of SDCT in liver imaging. CONCLUSION SDCT has a variety of post-processing techniques, which can be used in advanced liver imaging and can significantly add value in clinical practice.
Collapse
Affiliation(s)
- Noor Fatima Majeed
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| | - Marta Braschi Amirfarzan
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| | - Christoph Wald
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| | - Jeremy R Wortman
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| |
Collapse
|
12
|
Sandhu R, Aslan M, Obuchowski N, Primak A, Karim W, Subhas N. Dual-energy CT arthrography: a feasibility study. Skeletal Radiol 2021; 50:693-703. [PMID: 32948903 DOI: 10.1007/s00256-020-03603-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate the feasibility of producing 2-dimensional (2D) virtual noncontrast images and 3-dimensional (3D) bone models from dual-energy computed tomography (DECT) arthrograms and to determine whether this is best accomplished using 190 keV virtual monoenergetic images (VMI) or virtual unenhanced (VUE) images. MATERIALS AND METHODS VMI and VUE images were retrospectively reconstructed from patients with internal derangement of the shoulder or knee joint who underwent DECT arthrography between September 2017 and August 2019. A region of interest was placed in the area of brightest contrast, and the mean attenuation (in Hounsfield units [HUs]) was recorded. Two blinded musculoskeletal radiologists qualitatively graded the 2D images and 3D models using scores ranging from 0 to 3 (0 considered optimal). RESULTS Twenty-six patients (mean age ± SD, 57.5 ± 16.8 years; 6 women) were included in the study. The contrast attenuation on VUE images (overall mean ± SD, 10.5 ± 16.4 HU; knee, 19.3 ± 10.7 HU; shoulder, 5.0 ± 17.2 HU) was significantly lower (p < 0.001 for all comparisons) than on VMI (overall mean ± SD, 107.7 ± 43.8 HU; knee, 104.6 ± 31.1 HU; shoulder, 109.6 ± 51.0 HU). The proportion of cases with optimal scores (0 or 1) was significantly higher with VUE than with VMI for both 2D and 3D images (p < 0.001). CONCLUSIONS DECT arthrography can be used to produce 2D virtual noncontrast images and to generate 3D bone models. The VUE technique is superior to VMI in producing virtual noncontrast images.
Collapse
Affiliation(s)
- Rashpal Sandhu
- Imaging Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Mercan Aslan
- Imaging Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Nancy Obuchowski
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Andrew Primak
- Siemens Medical Solutions USA, Inc., Malvern, PA, 19355, USA
| | - Wadih Karim
- Imaging Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Naveen Subhas
- Imaging Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
13
|
Kang HJ, Lee DH, Park SJ, Han JK. Virtual noncontrast images derived from dual-energy CT for assessment of hepatic steatosis in living liver donors. Eur J Radiol 2021; 139:109687. [PMID: 33836335 DOI: 10.1016/j.ejrad.2021.109687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE This study aimed to investigate the correlation of attenuation between virtual noncontrast (VNC) and true noncontrast (TNC) CT images and compare the diagnostic performance for hepatic steatosis using MR spectroscopy (MRS) as the reference standard. METHODS A total of 131 consecutive hepatic donor candidates who underwent dual-source dual-energy CT and MRS within one month from January 2018 to April 2019 were included. An MRS value > 5.8 % was regarded as substantial hepatic steatosis. The correlation of attenuation between TNC and VNC in the liver and spleen, and liver attenuation index (LAI), defined as hepatic minus splenic attenuation, was evaluated using Spearman's rank correlation. The diagnostic performance of the LAI for hepatic steatosis was compared using receiver operating characteristic analyses. RESULTS Twenty-three candidates (17.6 %) had substantial hepatic steatosis. The median liver attenuation (66.7 [IQR, 63.5-70.9] vs. 63.5 [IQR, 60.3-66.9], p < .001) and LAI (12.9 [9.3-16.7] vs. 7.4 [3.9-11.9], p < .001) in the VNC were higher than those in the TNC. Hepatic attenuation (r = 0.93, p < .001), splenic attenuation (r = 0.55, p < .001), and LAI (r = 0.87, p < .001) were significantly correlated between TNC and VNC. Area under the curve of LAI in TNC and VNC were 0.88 (cutoff, LAI < 3.1) and 0.84 (cutoff, LAI < 10.1), respectively, indicating no statistically significant difference (p = 0.11). CONCLUSION The LAI of VNC is significantly correlated with that of TNC and might be feasible for diagnosing substantial hepatic steatosis in living liver donor candidates using different cutoff values of LAI.
Collapse
Affiliation(s)
- Hyo-Jin Kang
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Ho Lee
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea.
| | - Sae Jin Park
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea
| |
Collapse
|
14
|
Quantitative accuracy of virtual non-contrast images derived from spectral detector computed tomography: an abdominal phantom study. Sci Rep 2020; 10:21575. [PMID: 33299004 PMCID: PMC7725817 DOI: 10.1038/s41598-020-78518-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022] Open
Abstract
Dual-energy CT allows for the reconstruction of virtual non-contrast (VNC) images. VNC images have the potential to replace true non-contrast scans in various clinical applications. This study investigated the quantitative accuracy of VNC attenuation images considering different parameters for acquisition and reconstruction. An abdomen phantom with 7 different tissue types (different combinations of 3 base materials and 5 iodine concentrations) was scanned using a spectral detector CT (SDCT). Different phantom sizes (S, M, L), volume computed tomography dose indices (CTDIvol 10, 15, 20 mGy), kernel settings (soft, standard, sharp), and denoising levels (low, medium, high) were tested. Conventional and VNC images were reconstructed and analyzed based on regions of interest (ROI). Mean and standard deviation were recorded and differences in attenuation between corresponding base materials and VNC was calculated (VNCerror). Statistic analysis included ANOVA, Wilcoxon test and multivariate regression analysis. Overall, the VNCerror was − 1.4 ± 6.1 HU. While radiation dose, kernel setting, and denoising level did not influence VNCerror significantly, phantom size, iodine content and base material had a significant effect (e.g. S vs. M: − 1.2 ± 4.9 HU vs. − 2.1 ± 6.0 HU; 0.0 mg/ml vs. 5.0 mg/ml: − 4.0 ± 3.5 HU vs. 5.1 ± 5.0 HU and 35-HU-base vs. 54-HU-base: − 3.5 ± 4.4 HU vs. 0.7 ± 6.5; all p ≤ 0.05). The overall accuracy of VNC images from SDCT is high and independent from dose, kernel, and denoising settings; however, shows a dependency on patient size, base material, and iodine content; particularly the latter results in small, yet, noticeable differences in VNC attenuation.
Collapse
|
15
|
Thiravit S, Brunnquell C, Cai LM, Flemon M, Mileto A. Use of dual-energy CT for renal mass assessment. Eur Radiol 2020; 31:3721-3733. [PMID: 33210200 DOI: 10.1007/s00330-020-07426-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/11/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Although dual-energy CT (DECT) may prove useful in a variety of abdominal imaging tasks, renal mass evaluation represents the area where this technology can be most impactful in abdominal imaging compared to routinely performed contrast-enhanced-only single-energy CT exams. DECT post-processing techniques, such as creation of virtual unenhanced and iodine density images, can help in the characterization of incidentally discovered renal masses that would otherwise remain indeterminate based on post-contrast imaging only. The purpose of this article is to review the use of DECT for renal mass assessment, including its benefits and existing limitations. KEY POINTS: • If DECT is selected as the scanning mode for most common abdominal protocols, many incidentally found renal masses can be fully triaged within the same exam. • Virtual unenhanced and iodine density DECT images can provide additional information when renal masses are discovered in the post-contrast-only setting. • For renal mass evaluation, virtual unenhanced and iodine density DECT images should be interpreted side-by-side to troubleshoot pitfalls that can potentially lead to erroneous interpretation.
Collapse
Affiliation(s)
- Shanigarn Thiravit
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA.,Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Christina Brunnquell
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA
| | - Larry M Cai
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA
| | - Mena Flemon
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA
| | - Achille Mileto
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA.
| |
Collapse
|
16
|
Xu JJ, Taudorf M, Ulriksen PS, Achiam MP, Resch TA, Nielsen MB, Lönn LB, Hansen KL. Gastrointestinal Applications of Iodine Quantification Using Dual-Energy CT: A Systematic Review. Diagnostics (Basel) 2020; 10:diagnostics10100814. [PMID: 33066281 PMCID: PMC7602017 DOI: 10.3390/diagnostics10100814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Dual-energy computed tomography (DECT) can estimate tissue vascularity and perfusion via iodine quantification. The aim of this systematic review was to outline current and emerging clinical applications of iodine quantification within the gastrointestinal tract using DECT. The search was conducted with three databases: EMBASE, Pubmed and The Cochrane Library. This identified 449 studies after duplicate removal. From a total of 570 selected studies, 30 studies were enrolled for the systematic review. The studies were categorized into four main topics: gastric tumors (12 studies), colorectal tumors (8 studies), Crohn’s disease (4 studies) and miscellaneous applications (6 studies). Findings included a significant difference in iodine concentration (IC) measurements in perigastric fat between T1–3 vs. T4 stage gastric cancer, poorly and well differentiated gastric and colorectal cancer, responders vs. non-responders following chemo- or chemoradiotherapy treatment among cancer patients, and a positive correlation between IC and Crohn’s disease activity. In conclusion, iodine quantification with DECT may be used preoperatively in cancer imaging as well as for monitoring treatment response. Future studies are warranted to evaluate the capabilities and limitations of DECT in splanchnic flow.
Collapse
Affiliation(s)
- Jack Junchi Xu
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.B.N.); (L.B.L.); (K.L.H.)
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.T.); (P.S.U.); (M.P.A.); (T.A.R.)
- Correspondence:
| | - Mikkel Taudorf
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.T.); (P.S.U.); (M.P.A.); (T.A.R.)
| | - Peter Sommer Ulriksen
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.T.); (P.S.U.); (M.P.A.); (T.A.R.)
| | - Michael Patrick Achiam
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.T.); (P.S.U.); (M.P.A.); (T.A.R.)
- Department of Vascular Surgery, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Timothy Andrew Resch
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.T.); (P.S.U.); (M.P.A.); (T.A.R.)
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Michael Bachmann Nielsen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.B.N.); (L.B.L.); (K.L.H.)
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.T.); (P.S.U.); (M.P.A.); (T.A.R.)
| | - Lars Birger Lönn
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.B.N.); (L.B.L.); (K.L.H.)
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.T.); (P.S.U.); (M.P.A.); (T.A.R.)
| | - Kristoffer Lindskov Hansen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.B.N.); (L.B.L.); (K.L.H.)
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.T.); (P.S.U.); (M.P.A.); (T.A.R.)
| |
Collapse
|
17
|
Hindman NM, Megibow AJ. One-Stop Shopping: Dual-Energy CT for the Confident Diagnosis of Adrenal Adenomas. Radiology 2020; 296:333-334. [PMID: 32452734 DOI: 10.1148/radiol.2020201718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nicole M Hindman
- From the Department of Radiology, NYU School of Medicine, 660 First Ave, 3rd Floor, New York, NY 10016
| | - Alec J Megibow
- From the Department of Radiology, NYU School of Medicine, 660 First Ave, 3rd Floor, New York, NY 10016
| |
Collapse
|
18
|
Yuan WH, Li AFY, Hsu HC, Hu YS, Lee RC. Initial clinical radiological findings and staging to predict prognosis of primary hepatic angiosarcoma: A retrospective analysis. PLoS One 2019; 14:e0225043. [PMID: 31710641 PMCID: PMC6844487 DOI: 10.1371/journal.pone.0225043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Primary hepatic angiosarcoma (PHA) is extremely rare and most patients die within 12 months of diagnosis. The object of the study is to determine the association of initial clinical-radiological features and staging with outcomes in patients with PHA. METHODS The medical records of adult patients with PHA were retrieved from an electronic medical record database and a pathology database and retrospectively reviewed. During 10 years, 22 eligible patients were included. Data extracted focused on the information before the first formal treatment with a pathological proof, including demographic characteristics, medical history, laboratory data, preliminary images, histopathological records, treatment, and follow-up survival period. Two radiologists blindly re-analyzed preliminary images of all 22 patients together and recorded tumor features and imaging stage based on the American Joint Committee on Cancer (AJCC) 8th edition tumor-node-metastasis (TNM) Staging System for hepatocellular carcinoma. A radiologist compiled the initial clinical data and preliminary image stage to analyze the association with patients' survival outcome. RESULTS Higher aspartate aminotransferase (AST), higher total bilirubin (TB), lower albumin (ALB), longer prothrombin time (PT) and lower platelet count of serum relative to the normal reference range were more common in patients who survived ≤ 90 days (all P < 0.05). Overall survival was much better in patients with single PHA than in those with other tumor patterns of multiple PHA (all P < 0.05). Overall survival determined by preliminary imaging showed significant differences between stage I and stage III (P = 0.044), stage I and stage IV (P = 0.011), and stage III and IV (P = 0.047). No patients were at stage II. CONCLUSIONS Initial serum levels of ALT, TB, ALB, and PT, platelet count, single mass in liver, and preliminary imaging staging could help predict survival outcomes of patients with PHA.
Collapse
Affiliation(s)
- Wei-Hsin Yuan
- Division of Radiology, Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital), Taipei, Taiwan, Republic of China
- School of Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- * E-mail: , (WHY); (RCL)
| | - Anna Fen-Yau Li
- School of Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Hui-Chen Hsu
- Department of Medical Imaging, Taiwan Adventist Hospital, Taipei, Taiwan, Republic of China
| | - Yong-Sin Hu
- School of Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Rheun-Chuan Lee
- School of Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- * E-mail: , (WHY); (RCL)
| |
Collapse
|
19
|
Lee DH, Lee YH, Seo HS, Lee KY, Suh S, Ryoo I, You S, Kim B, Yang K. Dual‐energy CT iodine quantification for characterizing focal thyroid lesions. Head Neck 2018; 41:1024-1031. [DOI: 10.1002/hed.25524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/21/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Do Hyung Lee
- Department of RadiologyAnsan Hospital, Korea University College of Medicine Ansan Republic of Korea
| | - Young Hen Lee
- Department of RadiologyAnsan Hospital, Korea University College of Medicine Ansan Republic of Korea
| | - Hyung Suk Seo
- Department of RadiologyAnsan Hospital, Korea University College of Medicine Ansan Republic of Korea
| | - Ki Yeol Lee
- Department of RadiologyAnsan Hospital, Korea University College of Medicine Ansan Republic of Korea
| | - Sang‐il Suh
- Department of RadiologyGuro Hospital, Korea University College of Medicine Seoul Republic of Korea
| | - Inseon Ryoo
- Department of RadiologyGuro Hospital, Korea University College of Medicine Seoul Republic of Korea
| | - Sung‐Hye You
- Department of RadiologyAnam Hospital, Korea University College of Medicine Seoul Republic of Korea
| | - Byungjun Kim
- Department of RadiologyAnam Hospital, Korea University College of Medicine Seoul Republic of Korea
| | - Kyung‐Sook Yang
- Department of BiostatisticsKorea University College of Medicine Seoul Republic of Korea
| |
Collapse
|
20
|
Parakh A, Macri F, Sahani D. Dual-Energy Computed Tomography: Dose Reduction, Series Reduction, and Contrast Load Reduction in Dual-Energy Computed Tomography. Radiol Clin North Am 2018; 56:601-624. [PMID: 29936950 DOI: 10.1016/j.rcl.2018.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Evolution in computed tomography technology and image reconstruction have significantly changed practice. Dual energy computed tomography is being increasingly adopted owing to benefits of material separation, quantification, and improved contrast-to-noise ratio. The radiation dose can match that from single energy computed tomography. Spectral information derived from a polychromatic x-ray beam at different energies yields in image reconstructions that reduce the number of phases in a multiphasic examination and decrease the absolute amount of contrast media. This increased analytical and image processing capability provides new avenues for addressing radiation dose and iodine exposure concerns.
Collapse
Affiliation(s)
- Anushri Parakh
- Department of Radiology, Abdominal Imaging Division, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA 02114, USA
| | - Francesco Macri
- Department of Radiology, Abdominal Imaging Division, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA 02114, USA; Department of Radiology, University Hospital of Nimes, Place di Pr Debre, Nimes 30029, France
| | - Dushyant Sahani
- Department of Radiology, Abdominal Imaging Division, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
21
|
Morgan DE. The Role of Dual-Energy Computed Tomography in Assessment of Abdominal Oncology and Beyond. Radiol Clin North Am 2018; 56:565-585. [PMID: 29936948 DOI: 10.1016/j.rcl.2018.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The added value and strength of dual energy computed tomography for the evaluation of oncologic patients revolve around the use of lower energy reconstructed images and iodine material density images. Lower keV simulated monoenergetic images optimize soft tissue tumor to nontumoral attenuation differences and increase contrast to noise ratios to improve lesion detection. Iodine material density images or maps are helpful from a qualitative standpoint for image interpretation because they result in improved detection and characterization of tumors and lymph node involvement, and from a quantitative assessment by enabling interrogation of specific properties of tissues to predict and assess therapeutic response.
Collapse
Affiliation(s)
- Desiree E Morgan
- Department of Radiology University of Alabama at Birmingham, 619 19th Street South, JTN 456, Birmingham, AL 35249-6830, USA.
| |
Collapse
|
22
|
Megibow AJ, Kambadakone A, Ananthakrishnan L. Dual-Energy Computed Tomography. Radiol Clin North Am 2018; 56:507-520. [DOI: 10.1016/j.rcl.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Toia GV, Kim S, Dighe MK, Mileto A. Dual-Energy Computed Tomography in Body Imaging. Semin Roentgenol 2018; 53:132-146. [PMID: 29861005 DOI: 10.1053/j.ro.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Giuseppe V Toia
- Body Imaging Section, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195
| | - Sooah Kim
- Body Imaging Section, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195
| | - Manjiri K Dighe
- Body Imaging Section, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195
| | - Achille Mileto
- Body Imaging Section, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195.
| |
Collapse
|
24
|
Gore RM, Pickhardt PJ, Mortele KJ, Fishman EK, Horowitz JM, Fimmel CJ, Talamonti MS, Berland LL, Pandharipande PV. Management of Incidental Liver Lesions on CT: A White Paper of the ACR Incidental Findings Committee. J Am Coll Radiol 2017; 14:1429-1437. [DOI: 10.1016/j.jacr.2017.07.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
|
25
|
Increasing Role of Dual-Energy CT in Noninvasive Vascular Imaging. J Vasc Interv Radiol 2017; 28:1267-1268. [DOI: 10.1016/j.jvir.2017.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 11/18/2022] Open
|