1
|
Coimbra S, Rocha S, Viana SD, Rebelo R, Rocha-Pereira P, Lousa I, Valente MJ, Catarino C, Belo L, Bronze-da-Rocha E, Reis F, Santos-Silva A. Gadoteric Acid and Gadolinium: Exploring Short- and Long-Term Effects on Healthy Animals. J Xenobiot 2025; 15:34. [PMID: 40126252 PMCID: PMC11932278 DOI: 10.3390/jox15020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Regarding the safety of gadolinium (Gd (III))-based contrast agents, we aimed to evaluate the short- and long-term effects following a single exposure to gadoteric acid (DOTA) or to free Gd (III) using animal models. Biomarkers of kidney injury, inflammation, iron metabolism, dyslipidemia, hepatic and hematologic disturbances and kidney histopathological and differential gene expression (DGE) analyses were evaluated. In the short-term study, compared to the controls, exposure to Gd (III) was associated with higher inflammation; changes in lipid, iron and hepatic metabolisms; hematological alterations; and kidney damage. Exposure to DOTA revealed changes in hematological, lipid and hepatic biomarkers. In the long-term study, compared to the controls, exposure to Gd (III) or to DOTA showed much fewer changes than the short-term exposure. Comparing the kidney gene expression of Gd (III) or DOTA exposure versus the control, we found clearly different DGE patterns and a lower number of differently expressed genes in the long-term study, for both compounds. Our data show that a single-dose exposure to these compounds induces several short-term changes which over time return to normal or are sustained, although with less severity, especially in the case of DOTA.
Collapse
Affiliation(s)
- Susana Coimbra
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO i4HB, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Susana Rocha
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Sofia D Viana
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- ESTESC-Coimbra Health School, Polytechnic Institute of Coimbra, 3046-854 Coimbra, Portugal
- H&TRC-Health and Technology Research Center, Coimbra Health School, Polytechnic University of Coimbra, 3046-854 Coimbra, Portugal
| | - Rute Rebelo
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Petronila Rocha-Pereira
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- Health Science Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Irina Lousa
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria João Valente
- National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Cristina Catarino
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Luís Belo
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Elsa Bronze-da-Rocha
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Alice Santos-Silva
- UCIBIO i4HB, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Coimbra S, Rocha S, Sousa NR, Catarino C, Belo L, Bronze-da-Rocha E, Valente MJ, Santos-Silva A. Toxicity Mechanisms of Gadolinium and Gadolinium-Based Contrast Agents-A Review. Int J Mol Sci 2024; 25:4071. [PMID: 38612881 PMCID: PMC11012457 DOI: 10.3390/ijms25074071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Gadolinium-based contrast agents (GBCAs) have been used for more than 30 years to improve magnetic resonance imaging, a crucial tool for medical diagnosis and treatment monitoring across multiple clinical settings. Studies have shown that exposure to GBCAs is associated with gadolinium release and tissue deposition that may cause short- and long-term toxicity in several organs, including the kidney, the main excretion organ of most GBCAs. Considering the increasing prevalence of chronic kidney disease worldwide and that most of the complications following GBCA exposure are associated with renal dysfunction, the mechanisms underlying GBCA toxicity, especially renal toxicity, are particularly important. A better understanding of the gadolinium mechanisms of toxicity may contribute to clarify the safety and/or potential risks associated with the use of GBCAs. In this work, a review of the recent literature concerning gadolinium and GBCA mechanisms of toxicity was performed.
Collapse
Affiliation(s)
- Susana Coimbra
- 1H-TOXRUN—1H-Toxicology Research Unit, University Institute of Health Sciences, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Advanced Polytechnic and University Cooperative, CRL, 4585-116 Gandra, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Susana Rocha
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Nícia Reis Sousa
- Departamento de Ciências e Tecnologia da Saúde, Instituto Superior Politécnico de Benguela, Benguela, Angola
| | - Cristina Catarino
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Luís Belo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Elsa Bronze-da-Rocha
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria João Valente
- National Food Institute, Technical University of Denmark, Kongens Lyngby, 2800 Copenhagen, Denmark
| | - Alice Santos-Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Biological Sciences, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Parillo M, Mallio CA, Van der Molen AJ, Rovira À, Ramalho J, Ramalho M, Gianolio E, Karst U, Radbruch A, Stroomberg G, Clement O, Dekkers IA, Nederveen AJ, Quattrocchi CC. Skin Toxicity After Exposure to Gadolinium-Based Contrast Agents in Normal Renal Function, Using Clinical Approved Doses: Current Status of Preclinical and Clinical Studies. Invest Radiol 2023; 58:530-538. [PMID: 37185158 DOI: 10.1097/rli.0000000000000973] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
OBJECTIVES The aim of this study was to summarize the current preclinical and clinical evidence on the association between exposure to gadolinium (Gd) compounds and skin toxicity in a setting similar to clinical practice. MATERIALS AND METHODS A search of MEDLINE and PubMed references from January 2000 to December 2022 was performed using keywords related to gadolinium deposition and its effects on the skin, such as "gadolinium," "gadolinium-based contrast agents," "skin," "deposition," and "toxicity." In addition, cross-referencing was added when appropriate. For preclinical in vitro studies, we included all the studies that analyzed the response of human dermal fibroblasts to exposure to various gadolinium compounds. For preclinical animal studies and clinical studies, we included only those that analyzed animals or patients with preserved renal function (estimated glomerular filtration rate >30 mL/min/1.73 m 2 ), using a dosage of gadolinium-based contrast agents (GBCAs) similar to that commonly applied (0.1 mmol/kg). RESULTS Forty studies were selected. Preclinical findings suggest that Gd compounds can produce profibrotic responses in the skin in vitro, through the activation and proliferation of dermal fibroblasts and promoting their myofibroblast differentiation. Gadolinium influences the process of collagen production and the collagen content of skin, by increasing the levels of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1. Preclinical animal studies show that Gd can deposit in the skin with higher concentrations when linear GBCAs are applied. However, these deposits decrease over time and are not associated with obvious macroscopic or histological modifications. The clinical relevance of GBCAs in inducing small fiber neuropathy remains to be determined. Clinical studies show that Gd is detectable in the skin and hair of subjects with normal renal function in higher concentrations after intravenous administration of linear compared with macrocyclic GBCA. However, these deposits decrease over time and are not associated with cutaneous or histological modifications. Also, subclinical dermal involvement related to linear GBCA exposure may be detectable on brain MRI. There is no conclusive evidence to support a causal relationship between GBCA administration at the clinical dose and cutaneous manifestations in patients with normal renal function. CONCLUSIONS Gadolinium can produce profibrotic responses in the skin, especially acting on fibroblasts, as shown by preclinical in vitro studies. Gadolinium deposits are detectable in the skin even in subjects with normal renal function with higher concentrations when linear GBCAs are used, as confirmed by both preclinical animal and human studies. There is no proof to date of a cause-effect relationship between GBCA administration at clinical doses and cutaneous consequences in patients with normal renal function. Multiple factors, yet to be determined, should be considered for sporadic patients with normal renal function who develop clinical skin manifestations temporally related to GBCA administration.
Collapse
Affiliation(s)
- Marco Parillo
- From the Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Carlo A Mallio
- From the Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Aart J Van der Molen
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joana Ramalho
- Department of Neuroradiology, Centro Hospitalar Universitário de Lisboa Central, Lisbon
| | - Miguel Ramalho
- Department of Radiology, Hospital Garcia de Orta, EPE, Almada, Portugal
| | - Eliana Gianolio
- Department of Molecular Biotechnologies and Health Science, University of Turin, Turin, Italy
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster
| | - Alexander Radbruch
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Gerard Stroomberg
- RIWA-Rijn-Association of River Water Works, Nieuwegein, the Netherlands
| | - Olivier Clement
- Université de Paris, AP-HP, Hôpital Européen Georges Pompidou, DMU Imagina, Service de Radiologie, Paris, France
| | - Ilona A Dekkers
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
4
|
Zheng Q, Zou Y, Teng P, Chen Z, Wu Y, Dai X, Li X, Hu Z, Wu S, Xu Y, Zou W, Song H, Ma L. Mechanosensitive Channel PIEZO1 Senses Shear Force to Induce KLF2/4 Expression via CaMKII/MEKK3/ERK5 Axis in Endothelial Cells. Cells 2022; 11:cells11142191. [PMID: 35883633 PMCID: PMC9317998 DOI: 10.3390/cells11142191] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
Shear stress exerted by the blood stream modulates endothelial functions through altering gene expression. KLF2 and KLF4, the mechanosensitive transcription factors, are promoted by laminar flow to maintain endothelial homeostasis. However, how the expression of KLF2/4 is regulated by shear stress is poorly understood. Here, we showed that the activation of PIEZO1 upregulates the expression of KLF2/4 in endothelial cells. Mice with endothelial-specific deletion of Piezo1 exhibit reduced KLF2/4 expression in thoracic aorta and pulmonary vascular endothelial cells. Mechanistically, shear stress activates PIEZO1, which results in a calcium influx and subsequently activation of CaMKII. CaMKII interacts with and activates MEKK3 to promote MEKK3/MEK5/ERK5 signaling and ultimately induce the transcription of KLF2/4. Our data provide the molecular insight into how endothelial cells sense and convert mechanical stimuli into a biological response to promote KLF2/4 expression for the maintenance of endothelial function and homeostasis.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Q.Z.); (P.T.); (Z.C.); (X.D.); (S.W.)
| | - Yonggang Zou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; (Y.Z.); (Y.W.); (X.L.); (Z.H.); (Y.X.)
| | - Peng Teng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Q.Z.); (P.T.); (Z.C.); (X.D.); (S.W.)
| | - Zhenghua Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Q.Z.); (P.T.); (Z.C.); (X.D.); (S.W.)
| | - Yuefeng Wu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; (Y.Z.); (Y.W.); (X.L.); (Z.H.); (Y.X.)
| | - Xiaoyi Dai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Q.Z.); (P.T.); (Z.C.); (X.D.); (S.W.)
| | - Xiya Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; (Y.Z.); (Y.W.); (X.L.); (Z.H.); (Y.X.)
| | - Zonghao Hu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; (Y.Z.); (Y.W.); (X.L.); (Z.H.); (Y.X.)
| | - Shengjun Wu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Q.Z.); (P.T.); (Z.C.); (X.D.); (S.W.)
| | - Yanhua Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; (Y.Z.); (Y.W.); (X.L.); (Z.H.); (Y.X.)
| | - Weiguo Zou
- CAS Center for Excellence in Molecular Cell Sciences, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (W.Z.); (H.S.); (L.M.)
| | - Hai Song
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; (Y.Z.); (Y.W.); (X.L.); (Z.H.); (Y.X.)
- Correspondence: (W.Z.); (H.S.); (L.M.)
| | - Liang Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Q.Z.); (P.T.); (Z.C.); (X.D.); (S.W.)
- Correspondence: (W.Z.); (H.S.); (L.M.)
| |
Collapse
|
5
|
Brain tissue gadolinium retention in pediatric patients after contrast-enhanced magnetic resonance exams: pathological confirmation. Pediatr Radiol 2020; 50:388-396. [PMID: 31989188 DOI: 10.1007/s00247-019-04535-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/31/2019] [Accepted: 09/10/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Retained gadolinium from gadolinium-based contrast agents (GBCAs) used in MR exams has been inferred based on signal changes on serial brain MRI and subsequently demonstrated pathologically in adults. Retention has been similarly inferred in children but pathological demonstration in pediatric patients is limited. The long-term effects of retained gadolinium are unknown but are potentially of greater concern in children given their increased vulnerability from continuing development and their expected longer period of exposure. Several factors can influence gadolinium retention. In adults as well as in children, greater accumulation has been demonstrated based on MR signal changes with linear compared with macrocyclic gadolinium chelates, attributed to lower chelate affinity with linear agents. Effects of age at exposure on retention are unknown, while differences in GBCA washout rates are still under investigation and might affect gadolinium retention relative to time of GBCA administration. OBJECTIVE The purpose of this study was to confirm whether gadolinium brain deposits are present in pediatric patients who received GBCAs and to quantify the amounts present. MATERIALS AND METHODS Brain autopsy specimens from 10 pediatric patients between 1 year and 13 years of age who underwent at least one contrast-enhanced MR exam were analyzed for elemental gadolinium using inductively coupled plasma mass spectrometry. Brain samples included white matter, basal ganglia (putamen, globus pallidus), thalamus, dentate nucleus and tumor tissue as available. Type and dose of contrast agent, number and timing of contrast-enhanced MR exams and renal function (estimated glomerular filtration rate [eGFR]) were documented for each child. RESULTS Patient exposures ranged from 1 dose to 20 doses of GBCAs including both macrocyclic and linear ionic agents. Gadolinium was found to be present in brain tissue in all children and was generally highest in the globus pallidus. Those who received only macrocyclic agents showed lower levels of gadolinium retention. CONCLUSION This study demonstrates pathological confirmation of gadolinium retention in brain tissue of a series of pediatric patients exposed to GBCAs including not only linear ionic agents but also macrocyclic agents with both nonionic and ionic compounds. The distribution and deposition levels in this small pediatric population are comparable with the findings in adults. While the clinical significance of these deposits remains unknown, at this point it would be prudent to exert caution and avoid unnecessary use of GBCAs in pediatric patients.
Collapse
|
6
|
Ravi S, Sayed CJ. Fibrotic Signaling Pathways of Skin Fibroblasts in Nephrogenic Systemic Fibrosis. CURRENT GERIATRICS REPORTS 2019. [DOI: 10.1007/s13670-019-00306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Elbeshlawi I, AbdelBaki MS. Safety of Gadolinium Administration in Children. Pediatr Neurol 2018; 86:27-32. [PMID: 30390954 DOI: 10.1016/j.pediatrneurol.2018.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/22/2018] [Indexed: 01/08/2023]
Abstract
The introduction of paramagnetic contrast in the late 1980s constituted a paradigm shift boosting the efficacy of magnetic resonance imaging. Due to its high magnetic moment, gadolinium-based contrast agent made its way smoothly as the flagship paramagnetic contrast. With the widespread application, reports of untoward effects started to surface. Allergic reactions, nephrogenic systemic sclerosis, and deposition in brain tissue dented the safety profile of gadolinium-based contrast agent. Better understanding of these adverse effects prompted preventive measures. This article elucidates the gadolinium-based contrast agent toxicity in the pediatric population based on the current available evidence.
Collapse
Affiliation(s)
- Ismail Elbeshlawi
- Division of Paediatric Hematology, Oncology and Bone Marrow Transplant, Great Ormond Street Hospital, London, United Kingdom.
| | - Mohamed S AbdelBaki
- Division of Hematology, Oncology and Bone Marrow Transplant, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio
| |
Collapse
|
8
|
De Vriese K, Costa A, Beeckman T, Vanneste S. Pharmacological Strategies for Manipulating Plant Ca 2+ Signalling. Int J Mol Sci 2018; 19:E1506. [PMID: 29783646 PMCID: PMC5983822 DOI: 10.3390/ijms19051506] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 11/20/2022] Open
Abstract
Calcium is one of the most pleiotropic second messengers in all living organisms. However, signalling specificity is encoded via spatio-temporally regulated signatures that act with surgical precision to elicit highly specific cellular responses. How this is brought about remains a big challenge in the plant field, in part due to a lack of specific tools to manipulate/interrogate the plant Ca2+ toolkit. In many cases, researchers resort to tools that were optimized in animal cells. However, the obviously large evolutionary distance between plants and animals implies that there is a good chance observed effects may not be specific to the intended plant target. Here, we provide an overview of pharmacological strategies that are commonly used to activate or inhibit plant Ca2+ signalling. We focus on highlighting modes of action where possible, and warn for potential pitfalls. Together, this review aims at guiding plant researchers through the Ca2+ pharmacology swamp.
Collapse
Affiliation(s)
- Kjell De Vriese
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
- Instititute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy.
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
- Lab of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Korea.
| |
Collapse
|
9
|
Abstract
Gadolinium-based contrast agents (GBCAs), once believed to be safe for patients with renal disease, have been strongly associated with nephrogenic systemic fibrosis (NSF), a severe systemic fibrosing disorder that predominantly afflicts individuals with advanced renal dysfunction. We provide a historical perspective on the appearance and disappearance of NSF, including its initial recognition as a discrete clinical entity, its association with GBCA exposure, and the data supporting a causative relationship between GBCA exposure and NSF. On the basis of this body of evidence, we propose that the name gadolinium-induced fibrosis (GIF) more accurately reflects the totality of knowledge regarding this disease. Use of high-risk GBCAs, such as formulated gadodiamide, should be avoided in patients with renal disease. Restriction of GBCA use in this population has almost completely eradicated new cases of this debilitating condition. Emerging antifibrotic therapies may be useful for patients who suffer from GIF.
Collapse
Affiliation(s)
- Derrick J Todd
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.,Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Jonathan Kay
- Division of Rheumatology, Department of Medicine, UMass Memorial Medical Center and University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| |
Collapse
|
10
|
Balanced regulation of the CCN family of matricellular proteins: a novel approach to the prevention and treatment of fibrosis and cancer. J Cell Commun Signal 2015; 9:327-39. [PMID: 26698861 DOI: 10.1007/s12079-015-0309-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022] Open
Abstract
The CCN family of matricellular signaling proteins is emerging as a unique common link across multiple diseases and organs related to injury and repair. They are now being shown to play a central role in regulating the pathways to the initiation and resolution of normal wound healing and fibrosis in response to multiple forms of injury. Similarly, it is also emerging that they play a key role in regulating the establishment, growth, metastases and tissue regeneration in many forms of cancer via the interaction of cancer cells with the tumor stroma. Evidence has been recently provided that these proteins do not act independently but are co-regulated working in a yin/yang manner to alter the outcome of both normal physiological processes as well as pathology. The purpose of this review is to twofold. First, it will summarize work to date supporting CCN2 as a therapeutic target in the formation and progression of renal, skin, and other organ fibrosis, as well as cancer stroma formation. Second, it will highlight recent evidence for CCN3 as a counter-regulator and a potential therapeutic agent in these diseases with an exciting, novel potential to both treat and then restore tissue homeostasis in those afflicted by these devastating disorders.
Collapse
|
11
|
Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-Based Contrast Agent Accumulation and Toxicity: An Update. AJNR Am J Neuroradiol 2015; 37:1192-8. [PMID: 26659341 DOI: 10.3174/ajnr.a4615] [Citation(s) in RCA: 294] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In current practice, gadolinium-based contrast agents have been considered safe when used at clinically recommended doses in patients without severe renal insufficiency. The causal relationship between gadolinium-based contrast agents and nephrogenic systemic fibrosis in patients with renal insufficiency resulted in new policies regarding the administration of these agents. After an effective screening of patients with renal disease by performing either unenhanced or reduced-dose-enhanced studies in these patients and by using the most stable contrast agents, nephrogenic systemic fibrosis has been largely eliminated since 2009. Evidence of in vivo gadolinium deposition in bone tissue in patients with normal renal function is well-established, but recent literature showing that gadolinium might also deposit in the brain in patients with intact blood-brain barriers caught many individuals in the imaging community by surprise. The purpose of this review was to summarize the literature on gadolinium-based contrast agents, tying together information on agent stability and animal and human studies, and to emphasize that low-stability agents are the ones most often associated with brain deposition.
Collapse
Affiliation(s)
- J Ramalho
- From the Departments of Neuroradiology (J.R., R.H.N., M.C.) Centro Hospitalar de Lisboa Central (J.R.), Lisbon, Portugal
| | - R C Semelka
- Radiology (R.C.S., M.R., R.H.N., M.A.), University of North Carolina Hospital, Chapel Hill, North Carolina
| | - M Ramalho
- Radiology (R.C.S., M.R., R.H.N., M.A.), University of North Carolina Hospital, Chapel Hill, North Carolina Hospital Garcia de Orta (M.R.), Almada, Portugal
| | - R H Nunes
- From the Departments of Neuroradiology (J.R., R.H.N., M.C.) Radiology (R.C.S., M.R., R.H.N., M.A.), University of North Carolina Hospital, Chapel Hill, North Carolina Santa Casa de Misericórdia de São Paulo (R.H.N.), São Paulo, Brazil
| | - M AlObaidy
- Radiology (R.C.S., M.R., R.H.N., M.A.), University of North Carolina Hospital, Chapel Hill, North Carolina King Faisal Specialist Hospital and Research Center (M.A.), Riyadh, Saudi Arabia
| | - M Castillo
- From the Departments of Neuroradiology (J.R., R.H.N., M.C.)
| |
Collapse
|
12
|
Distribution profile of gadolinium in gadolinium chelate-treated renally-impaired rats: role of pharmaceutical formulation. Eur J Pharm Sci 2015; 72:46-56. [PMID: 25736527 DOI: 10.1016/j.ejps.2015.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/02/2015] [Accepted: 02/23/2015] [Indexed: 12/30/2022]
Abstract
While not acutely toxic, chronic hepatic effect of certain gadolinium chelates (GC), used as contrast agent for magnetic resonance imaging, might represent a risk in renally-impaired patients due to free gadolinium accumulation in the liver. To answer this question, this study investigated the consequences of the presence of small amounts of either a soluble gadolinium salt ("free" Gd) or low-stability chelating impurity in the pharmaceutical solution of gadoteric acid, a macrocyclic GC with high thermodynamic and kinetic stabilities, were investigated in renally-impaired rats. Renal failure was induced by adding 0.75% adenine in the diet for three weeks. The pharmaceutical and commercial solution of gadoteric acid was administered (5 daily intravenous injections of 2.5 mmol Gd/kg) either alone or after being spiked with either "free" gadolinium (i.e., 0.04% w/v) or low-stability impurity (i.e., 0.06 w/v). Another GC, gadodiamide (low thermodynamic and kinetic stabilities) was given as its commercial solution at a similar dose. Non-chelated gadolinium was tested at two doses (0.005 and 0.01 mmol Gd/kg) as acetate salt. Gadodiamide induced systemic toxicity (mortality, severe epidermal and dermal lesions) and substantial tissue Gd retention. The addition of very low amounts of "free", non-chelated gadolinium or low thermodynamic stability impurity to the pharmaceutical solution of the thermodynamically stable GC gadoteric acid resulted in substantial capture of metal by the liver, similar to what was observed in "free" gadolinium salt-treated rats. Relaxometry studies strongly suggested the presence of free and soluble gadolinium in the liver. Electron microscopy examinations revealed the presence of free and insoluble gadolinium deposits in hepatocytes and Kupffer cells of rats treated with gadoteric acid solution spiked with low-stability impurity, free gadolinium and gadodiamide, but not in rats treated with the pharmaceutical solution of gadoteric acid. The presence of impurities in the GC pharmaceutical solution may have long-term biological consequences.
Collapse
|
13
|
Idée JM, Fretellier N, Robic C, Corot C. The role of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: A critical update. Crit Rev Toxicol 2014; 44:895-913. [PMID: 25257840 DOI: 10.3109/10408444.2014.955568] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jean-Marc Idée
- Guerbet, Research & Innovation Division , Aulnay-sous-Bois , France
| | | | | | | |
Collapse
|
14
|
Osting S, Bennett A, Power S, Wackett J, Hurley SA, Alexander AL, Agbandje-Mckena M, Burger C. Differential effects of two MRI contrast agents on the integrity and distribution of rAAV2 and rAAV5 in the rat striatum. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:4. [PMID: 26015943 PMCID: PMC4365861 DOI: 10.1038/mtm.2013.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 11/10/2022]
Abstract
Intraoperative magnetic resonance imaging (MRI) has been proposed as a method to optimize intracerebral targeting and for tracking infusate distribution in gene therapy trials for nervous system disorders. We thus investigated possible effects of two MRI contrast agents, gadoteridol (Gd) and galbumin (Gab), on the distribution and levels of transgene expression in the rat striatum and their effect on integrity and stability of recombinant adeno-associated virus (rAAV) particles. MRI studies showed that contrast agent distribution did not predict rAAV distribution. However, green fluorescent protein (GFP) immunoreactivity revealed an increase in distribution of rAAV5-GFP, but not rAAV2-GFP, in the presence of Gd when compared with viral vector injected alone. In contrast, Gab increased the distribution of rAAV2-GFP not rAAV5-GFP. These observations pointed to a direct effect of infused contrast agent on the rAAV particles. Negative-stain electron microscopy (EM), DNAase treatment, and differential scanning calorimetry (DSC) were used to monitor rAAV2 and rAAV5 particle integrity and stability following contrast agent incubation. EMs of rAAV2-GFP and rAAV5-GFP particles pretreated with Gd appear morphologically similar to the untreated sample; however, Gab treatment resulted in surface morphology changes and aggregation. A compromise of particle integrity was suggested by sensitivity of the packaged genome to DNAase treatment following Gab incubation but not Gd for both vectors. However, neither agent significantly affected particle stability when analyzed by DSC. An increase in T m was observed for AAV2 in lactated Ringer's buffer. These results thus highlight potential interactions between MRI contrast agents and AAV that might affect vector distribution and stability, as well as the stabilizing effect of lactated Ringer's solution on AAV2.
Collapse
Affiliation(s)
- Sue Osting
- Department of Neurology, University of Wisconsin , Madison, Wisconsin, USA
| | - Antonette Bennett
- Department of Biochemistry, University of Florida , Gainesville, Florida, USA
| | - Shelby Power
- Department of Neurology, University of Wisconsin , Madison, Wisconsin, USA
| | - Jordan Wackett
- Department of Neurology, University of Wisconsin , Madison, Wisconsin, USA
| | - Samuel A Hurley
- Department of Medical Physics, University of Wisconsin , Madison, Wisconsin, USA
| | - Andrew L Alexander
- Department of Medical Physics, University of Wisconsin , Madison, Wisconsin, USA ; Department of Psychiatry, University of Wisconsin , Madison, Wisconsin, USA ; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin , Madison, Wisconsin, USA
| | | | - Corinna Burger
- Department of Neurology, University of Wisconsin , Madison, Wisconsin, USA
| |
Collapse
|
15
|
Vandsburger MH, Radoul M, Addadi Y, Mpofu S, Cohen B, Eilam R, Neeman M. Ovarian carcinoma: quantitative biexponential MR imaging relaxometry reveals the dynamic recruitment of ferritin-expressing fibroblasts to the angiogenic rim of tumors. Radiology 2013; 268:790-801. [PMID: 23801774 DOI: 10.1148/radiol.13122053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE To quantitatively monitor the dynamic perivascular recruitment of ferritin heavy chain (FHC)-overexpressing fibroblasts to ovarian carcinoma xenografts by using R2 mapping and biexponential magnetic resonance (MR) relaxometry. MATERIALS AND METHODS In vivo studies of female mice were approved by the institutional animal care and use committee. In vitro analysis included MR-based R2 relaxation measurements of monkey kidney cell line (CV1) fibroblasts that overexpress FHC, followed by inductively coupled plasma mass spectrometry to assess cellular iron content. For in vivo analysis, CV1-FHC fibroblasts were either mixed with fluorescent human ovarian carcinoma cells before subcutaneous implantation (coinjection) or injected intraperitoneally 4 days after the cancer cells were injected (remote recruitment). Dynamic changes in tumor R2 were used to derive CV1-FHC cell fraction in both models. In coinjection tumors, dynamic contrast material-enhanced MR imaging was used to measure tumor fractional blood volume. Whole-body fluorescence imaging and immunohistochemical staining were performed to validate MR results. One-way repeated measures analysis of variance was used to assess MR and fluorescence imaging results and tumor volume, and one-way analysis of variance was used to assess spectrometric results, fractional blood volume, and immunohistochemical evaluation. RESULTS CV1-FHC fibroblasts (vs CV1 fibroblasts) showed enhanced iron uptake (1.8 mmol ± 0.5 × 10(-8) vs 0.9 mmol ± 0.5 × 10(-8); P < .05), retention (1.6 mmol ± 0.5 × 10(-8) vs 0.5 mmol ± 0.5 × 10(-8), P < .05), and cell density-dependent R2 contrast. R2 mapping in vivo revealed preferential recruitment of CV1-FHC cells to the tumor rim in both models. Measurement of fractional blood volume was similar in all tumors (2.6 AU ± 0.5 × 10(-3) for CV1, 2.3 AU ± 0.3 × 10(-3) for CV1-FHC, 2.9 ± 0.3 × 10(-3) for CV1-FHC-ferric citrate). Dynamic changes in CV1-FHC cell fraction determined at MR relaxometry in both models were confirmed at immunohistochemical analysis. CONCLUSION FHC overexpression, when combined with R2 mapping and MR relaxometry, enabled in vivo detection of the dynamic recruitment of exogenously administered fibroblasts to the vasculature of solid tumors.
Collapse
Affiliation(s)
- Moriel H Vandsburger
- Department of Biological Regulation, Weizmann Institute of Science, 234 Herzl St, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
16
|
Ye L, Shi Z, Liu H, Yang X, Wang K. GdCl3 induced Hep G2 cell death through mitochondrial and external death pathways without significant elevation of ROS generation. Biol Trace Elem Res 2013; 151:148-55. [PMID: 23129526 DOI: 10.1007/s12011-012-9538-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 10/22/2012] [Indexed: 01/13/2023]
Abstract
Gadolinium (Gd) compounds have important applications as MRI contrast and potential anticancer agents. The present study investigated the mechanisms of the proapoptotic effect of gadolinium chloride (GdCl(3)) on hepatoblastoma cell line (Hep G2) tumor cells. The experimental results indicated that GdCl(3) induced apoptosis of Hep G2 at high concentration and with long time incubation; however, unlike the actions on normal cell lines, GdCl(3) did not cause any oxidative stress on tumor cells. Cytochrome c (Cyt c) and apoptosis inducing factor release, Bax translocation, collapse of mitochondria membrane potential, caspase 3 and 8 activation, and Bid cleavage were observed along with a sustained activation of extracellular signal-regulated kinase (ERK) and c-Jun NH2 terminal kinase (JNK). Addition of ERK and JNK inhibitor attenuated the effect of GdCl(3) induced apoptosis and Cyt c release. All the results suggested a novel mechanism that GdCl(3) induced Hep G2 cell death through intrinsic and external death pathways without significant elevation of reactive oxygen species generation. The present work provided new insight to understand the mechanisms of the biological effects of GdCl(3) and implications for the development of anticancer Gd agents.
Collapse
Affiliation(s)
- Lihua Ye
- State Key Laboratories of Natural and Biomimetic Drugs, Peking University, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Wagner B, Tan C, Barnes JL, Ahuja S, Davis TL, Gorin Y, Jimenez F. Nephrogenic systemic fibrosis: evidence for oxidative stress and bone marrow-derived fibrocytes in skin, liver, and heart lesions using a 5/6 nephrectomy rodent model. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1941-52. [PMID: 23041060 DOI: 10.1016/j.ajpath.2012.08.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 08/09/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
Abstract
Nephrogenic systemic fibrosis (NSF) is associated with gadolinium-based magnetic resonance imaging (MRI) contrast exposure in the setting of acute or chronic renal compromise. It has been proposed that circulating fibrocytes mediate the disease. A study was conducted to determine whether bone marrow-derived fibroblast precursors are involved in contributing to organ fibrosis in MRI contrast-treated rodents with renal insufficiency. Rats status post 5/6 nephrectomy underwent bone marrow transplant from human placental alkaline phosphatase (hPAP)-expressing donors. After engraftment, animals were treated with gadolinium-based MRI contrast (2.5 mmol/kg IP), during weekdays for 4 weeks, or an equivalent volume of normal saline. Dermal cellularity in the contrast-treated group was fourfold that of control. Skin cells from the contrast-treated group demonstrated greater hPAP expression with co-expression of pro-collagen I and α-smooth muscle actin-positive stress fibers. Donor and host cells expressed CD34. Dihydroethidium staining of skin was greater in the contrast-treated animals, indicating oxidative stress. This was abrogated when the animals were co-administered the superoxide dismutase mimetic tempol. In conclusion, a bone marrow-derived cell population is increased in the dermis of MRI contrast-treated rodents. The cell markers are consistent with fibrocytes mediating the disease. These changes correlate with oxidative stress and expression of Nox4, suggestive of a novel therapeutic target. Elucidation of the mechanisms of MRI contrast-induced fibrosis may aid in discovering therapies to this devastating disease.
Collapse
Affiliation(s)
- Brent Wagner
- VA Research, South Texas Veterans Health Care System, University of Texas Health Science Center at San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Attili D, Jenkins B, Aslam MN, Dame MK, Varani J. Growth control in colon epithelial cells: gadolinium enhances calcium-mediated growth regulation. Biol Trace Elem Res 2012; 150:467-76. [PMID: 23008064 PMCID: PMC3661021 DOI: 10.1007/s12011-012-9503-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/27/2012] [Indexed: 02/01/2023]
Abstract
Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1-5 μM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet.
Collapse
Affiliation(s)
- Durga Attili
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, SPC 5602, Ann Arbor, MI 48109, USA
| | - Brian Jenkins
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, SPC 5602, Ann Arbor, MI 48109, USA
| | - Muhammad Nadeem Aslam
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, SPC 5602, Ann Arbor, MI 48109, USA
| | - Michael K. Dame
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, SPC 5602, Ann Arbor, MI 48109, USA
| | - James Varani
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Street, SPC 5602, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Abstract
Nephrogenic systemic fibrosis (NSF) is a rare and a debilitating disease noted uncommonly in patients with impaired renal function when exposed to low-stability gadolinium-based contrast agents (Gd-CAs). According to experimental studies, cytokines released by the stimulation of effector cells such as skin macrophages and peripheral blood monocytes activate circulating fibroblasts which play a major role in the development of NSF lesions. The presence of permissive factors, presumably, provides an environment conducive to facilitate the process of fibrosis. Multiple treatment modalities have been tried with variable success rates. More research is necessary to elucidate the underlying pathophysiological mechanisms which could potentially target the initial steps of fibrosis in these patients. This paper attempts to collate the inferences from the in vivo and in vitro experiments to the clinical observations to understand the pathogenesis of NSF. Schematic representations of receptor-mediated molecular pathways of activation of macrophages and fibroblasts by gadolinium and the final pathway to fibrosis are incorporated in the discussion.
Collapse
|
20
|
Riser BL, Bhagavathula N, Perone P, Garchow K, Xu Y, Fisher GJ, Najmabadi F, Attili D, Varani J. Gadolinium-induced fibrosis is counter-regulated by CCN3 in human dermal fibroblasts: a model for potential treatment of nephrogenic systemic fibrosis. J Cell Commun Signal 2012; 6:97-105. [PMID: 22648571 PMCID: PMC3368017 DOI: 10.1007/s12079-012-0164-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/26/2012] [Indexed: 12/14/2022] Open
Abstract
We recently show that CCN3 is a counter-regulatory molecule for the pro-fibrotic protein CCN2, and a potentially novel fibrosis therapy. The goal of this study was to assess the role of CCN3 in fibroproliferative/fibrotic responses in human dermal fibroblasts exposed to Omniscan, one of the gadolinium-based contrast agents associated with development of nephrogenic systemic fibrosis (NSF) a rare but life-threatening disease thought to be complication of NMR diagnostics in renal impaired patients. Human dermal fibroblasts were exposed to Omniscan; or to platelet-derived growth factor (PDGF) and transforming growth factor-β (TGF-β) as controls. Proliferation was assessed along with matrix metalloproteinase-1, tissue inhibitor of metalloproteinases-1 and type 1 procollagen in the absence and presence of CCN3. In parallel, CCN3 production was assessed in control and Omniscan-treated cells. The results showed that PDGF stimulated fibroblast proliferation, production of Timp-1 and MMP-1 whereas exogenous CCN3 inhibited, in a dose response manner, cell proliferation (approx. 50 % max.) and production of MMP-1 (approx 35 % max.) but had little effect on TIMP-1. TGF-β stimulated type 1 procollagen production but not proliferation, Timp-1 or MMP-1 compared to non-TGF-ß treated control cells, and CCN3 treatment blocked (approx. 80 % max.) this up-regulation. Interestingly, untreated, control fibroblasts produced high constitutive levels of CCN3 and concentrations of Omniscan that induced fibroproliferative/fibrogenic changes in dermal fibroblasts correspondingly suppressed CCN3 production. The use of PDGF and TGF-β as positive controls, and the study of differential responses, including that to Omniscan itself, provide the first evidence for a role of fibroblast-derived CCN3 as an endogenous regulator of pro-fibrotic changes, elucidating possible mechanism(s). In conclusion, these data support our hypothesis of a role for fibroblast-derived CCN3 as an endogenous regulator of pro-fibrotic changes in these cells, and suggest that CCN3 may be an important regulatory molecule in NSF and a target for treatment in this and other fibrotic diseases.
Collapse
Affiliation(s)
- Bruce L Riser
- Department of Physiology and Biophysics, Rosalind Franklin University of Science and Medicine, 3333 Green Bay Road, North Chicago, IL, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wermuth PJ, Jimenez SA. Gadolinium compounds signaling through TLR4 and TLR7 in normal human macrophages: establishment of a proinflammatory phenotype and implications for the pathogenesis of nephrogenic systemic fibrosis. THE JOURNAL OF IMMUNOLOGY 2012; 189:318-27. [PMID: 22649203 DOI: 10.4049/jimmunol.1103099] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nephrogenic systemic sibrosis is a progressive disorder occurring in some renal insufficiency patients exposed to gadolinium-based contrast agents (GdBCA). Previous studies demonstrated that the GdBCA Omniscan upregulated several innate immunity pathways in normal differentiated human macrophages, induced rapid nuclear localization of the transcription factor NF-κB, and increased the expression and production of numerous profibrotic/proinflammatory cytokines, chemokines, and growth factors. To further examine GdBCA stimulation of the innate immune system, cultured human embryonic kidney 293 cells expressing one of seven different human TLRs or one of two human nucleotide-binding oligomerization domain-like receptors were exposed in vitro for 24 h to various GdBCA. The signaling activity of each compound was evaluated by its ability to activate an NF-κB-inducible reporter gene. Omniscan and gadodiamide induced strong TLR4- and TLR7-mediated reporter gene activation. The other Gd compounds examined failed to induce reporter gene activation. TLR pathway inhibition using chloroquine or an inhibitor of IL-1R-associated kinases 1 and 4 in normal differentiated human macrophages abrogated Omniscan-induced gene expression. Omniscan and gadodiamide signaling via TLRs 4 and 7 resulted in increased production and expression of numerous proinflammatory/profibrotic cytokines, chemokines, and growth factors, including CXCL10, CCL2, CCL8, CXCL12, IL-4, IL-6, TGF-β, and vascular endothelial growth factor. These observations suggest that TLR activation by environmental stimuli may participate in the pathogenesis of nephrogenic systemic fibrosis and of other fibrotic disorders including systemic sclerosis.
Collapse
Affiliation(s)
- Peter J Wermuth
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
22
|
Reiter T, Ritter O, Prince MR, Nordbeck P, Wanner C, Nagel E, Bauer WR. Minimizing risk of nephrogenic systemic fibrosis in cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012; 14:31. [PMID: 22607376 PMCID: PMC3409035 DOI: 10.1186/1532-429x-14-31] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/20/2012] [Indexed: 02/08/2023] Open
Abstract
Nephrogenic Systemic Fibrosis is a rare condition appearing only in patients with severe renal impairment or failure and presents with dermal lesions and involvement of internal organs. Although many cases are mild, an estimated 5% have a progressive debilitating course. To date, there is no known effective treatment thus stressing the necessity of ample prevention measures. An association with the use of Gadolinium based contrast agents (GBCA) makes Nephrogenic Systemic Fibrosis a potential side effect of contrast enhanced magnetic resonance imaging and offers the opportunity for prevention by limiting use of gadolinium based contrast agents in renal failure patients. In itself toxic, Gadolinium is embedded into chelates that allow its safe use as a contrast agent. One NSF theory is that Gadolinium chelates distribute into the extracellular fluid compartment and set Gadolinium ions free, depending on multiple factors among which the duration of chelates exposure is directly related to the renal function. Major medical societies both in Europe and in North America have developed guidelines for the usage of GBCA. Since the establishment of these guidelines and the increased general awareness of this condition, the occurrence of NSF has been nearly eliminated. Giving an overview over the current knowledge of NSF pathobiochemistry, pathogenesis and treatment options this review focuses on the guidelines of the European Medicines Agency, the European Society of Urogenital Radiology, the FDA and the American College of Radiology from 2008 up to 2011 and the transfer of this knowledge into every day practice.
Collapse
Affiliation(s)
- Theresa Reiter
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Oliver Ritter
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Martin R Prince
- Department of Radiology, Cornell & Columbia Universities, New York, USA
| | - Peter Nordbeck
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Christoph Wanner
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Eike Nagel
- Division of Imaging Sciences, King’s College London, London, UK
| | - Wolfgang Rudolf Bauer
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
23
|
Fretellier N, Idée J, Bruneval P, Guerret S, Daubiné F, Jestin G, Factor C, Poveda N, Dencausse A, Massicot F, Laprévote O, Mandet C, Bouzian N, Port M, Corot C. Hyperphosphataemia sensitizes renally impaired rats to the profibrotic effects of gadodiamide. Br J Pharmacol 2012; 165:1151-62. [PMID: 21740412 DOI: 10.1111/j.1476-5381.2011.01585.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Hyperphosphataemia is common in patients with nephrogenic systemic fibrosis (NSF). NSF has been linked to administration of gadolinium (Gd) chelates (GCs) and elevated serum phosphate levels accelerate the release of Gd from linear, non-ionic GCs but not macrocyclic GCs. Hence, we determined whether hyperphosphataemia is a cofactor or risk factor for NSF by investigating the role of hyperphosphataemia in renally impaired rats. EXPERIMENTAL APPROACH Firstly, the clinical, pathological and bioanalytical consequences of hyperphosphataemia were investigated in subtotal nephrectomized (SNx) Wistar rats following i.v. administration of the non-ionic, linear GC gadodiamide (5 × 2.5 mmol·kg(-1) ·day(-1) ). Secondly, the effects of several GCs were compared in these high-phosphate diet fed rats. Total Gd concentration in skin, femur and plasma was measured by inductively coupled plasma mass spectrometry (ICP-MS) and free Gd(3+) in plasma by liquid chromatography coupled to ICP-MS. Relaxometry was used to measure dissociated Gd in skin and bone. KEY RESULTS Four out of seven SNx rats fed a high-phosphate diet administered gadodiamide developed macroscopic and microscopic (fibrotic and inflammatory) skin lesions, whereas no skin lesions were observed in SNx rats treated with saline, the other GCs and free ligands or in the normal diet, gadodiamide-treated group. Unlike the other molecules, gadodiamide gradually increased the r(1) relaxivity value, consistent with its in vivo dissociation and release of soluble Gd. CONCLUSIONS AND IMPLICATIONS Hyperphosphataemia sensitizes renally impaired rats to the profibrotic effects of gadodiamide. Unlike the other GCs investigated, gadodiamide gradually dissociates in vivo. Our data confirm that hyperphosphataemia is a risk factor for NSF.
Collapse
Affiliation(s)
- N Fretellier
- Guerbet, Research Division, Aulnay-sous-Bois, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bleavins K, Perone P, Naik M, Rehman M, Aslam MN, Dame MK, Meshinchi S, Bhagavathula N, Varani J. Stimulation of fibroblast proliferation by insoluble gadolinium salts. Biol Trace Elem Res 2012; 145:257-67. [PMID: 21882070 PMCID: PMC3273605 DOI: 10.1007/s12011-011-9176-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/12/2011] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to assess insoluble salts containing gadolinium (Gd(3+)) for effects on human dermal fibroblasts. Responses to insoluble Gd(3+) salts were compared to responses seen with Gd(3+) solubilized with organic chelators, as in the Gd(3+)-based contrast agents (GBCAs) used for magnetic resonance imaging. Insoluble particles of either Gd(3+) phosphate or Gd(3+) carbonate rapidly attached to the fibroblast cell surface and stimulated proliferation. Growth was observed at Gd(3+) concentrations between 12.5 and 125 μM, with toxicity at higher concentrations. Such a narrow window did not characterize GBCA stimulation. Proliferation induced by insoluble Gd(3+) salts was inhibited in the presence of antagonists of mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways (similar to chelated Gd(3+)) but was not blocked by an antibody to the platelet-derived growth factor receptor (different from chelated Gd(3+)). Finally, high concentrations of the insoluble Gd(3+) salts failed to prevent fibroblast lysis under low-Ca(2+) conditions, while similar concentrations of chelated Gd(3+) were effective. In conclusion, while insoluble Gd(3+) salts are capable of stimulating fibroblast proliferation, one should be cautious in assuming that GBCA dechelation must occur in vivo to produce the profibrotic changes seen in association with GBCA exposure in the subset of renal failure patients that develop nephrogenic systemic fibrosis.
Collapse
Affiliation(s)
- Katherine Bleavins
- Department of Pathology, University of Michigan, 1301 Catherine Road/Box 5602, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Current World Literature. Curr Opin Nephrol Hypertens 2012; 21:106-18. [DOI: 10.1097/mnh.0b013e32834ee42b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Jenkins W, Perone P, Walker K, Bhagavathula N, Aslam MN, DaSilva M, Dame MK, Varani J. Fibroblast response to lanthanoid metal ion stimulation: potential contribution to fibrotic tissue injury. Biol Trace Elem Res 2011; 144:621-35. [PMID: 21484406 PMCID: PMC3214234 DOI: 10.1007/s12011-011-9041-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/17/2011] [Indexed: 02/01/2023]
Abstract
The purpose of this study was to compare each of the 14 naturally occurring lanthanoid metal ions for ability to stimulate pro-fibrotic responses in human dermal fibroblasts. When fibroblasts were exposed to individual lanthanoids over the concentration range of 1-100 μM, increased proliferation was observed with each of the agents as compared with control cells that were already proliferating rapidly in a growth factor-enriched culture medium. Dose-response differences were observed among the individual metal ions. Matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 levels were also increased in response to lanthanoid exposure but type I procollagen production was not. A dose-response relationship between induction of proliferation and increased MMP-1 was observed. Non-lanthanoid transition metal ions (aluminum, copper, cobalt, iron, magnesium, manganese, nickel, and zinc) were examined in the same assays; there was little stimulation with any of these metals. When epidermal keratinocytes were examined in place of dermal fibroblasts, there was no growth stimulation with any of the lanthanoids. Several of the lanthanoid metals inhibited keratinocyte proliferation at higher concentrations (50-100 μM).
Collapse
Affiliation(s)
- William Jenkins
- The Department of Pathology, The University of Michigan Medical School, 1301 Catherine St., SPC 5602, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Li JX, Fu LJ, Yang XG, Wang K. Integrin-mediated signaling contributes to gadolinium-containing-particle-promoted cell survival and G₁ to S phase cell cycle transition by enhancing focal adhesion formation. J Biol Inorg Chem 2011; 17:375-85. [PMID: 22086330 DOI: 10.1007/s00775-011-0859-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 11/03/2011] [Indexed: 01/14/2023]
Abstract
We previously reported that Gd-containing particles formed under physiological conditions act as active entities to enhance cell survival and promote S phase entry via activation of both mitogen-activated protein kinase/extracellular-signal-regulated protein kinase (ERK) and phosphatidylinositol 3-kinase/Akt signaling pathways. However, how they transduce the extracellular signal inside the cell remains unclear. The present study demonstrates that Gd-containing particles can alleviate serum-deprivation-induced cell death and promote G₁ to S phase cell cycle progression by enhancing cell adhesion to the extracellular matrix. As an indicator of adhesion, the vinculin distribution was detected by confocal laser scanning microscopy. The control cells exhibited fewer and less typical focal adhesions. After treatment with Gd-containing particles, a large number of vinculin-containing focal adhesions were maintained. In the presence of integrin antagonists, the percentage of S phase entry induced by Gd-containing particles was decreased and the enhancement of cell viability was also attenuated, along with a decrease in both cyclin D expression and ERK phosphorylation. In summary, the present results suggest that the integrin-mediated signaling pathway plays an important role in cell survival and G₁ to S phase transition promoted by Gd-containing particles by enhancing focal adhesion formation. The results presented here provide novel evidence to advance knowledge leading to further understanding of the mechanisms of both cell proliferation and cell survival promoted by Gd and may be helpful for developing effective measures to prevent or treat nephrogenic systemic fibrosis.
Collapse
Affiliation(s)
- Jin-Xia Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | | | | | | |
Collapse
|
28
|
Abstract
Recent advances in diagnostic radiology are discussed on the basis of current publications in Investigative Radiology. Publications in the journal during 2009 and 2010 are reviewed, evaluating developments by modality and anatomic region. Technological advances continue to play a major role in the evolution and clinical practice of diagnostic radiology, and as such constitute a major publication focus. In the past 2 years, this includes advances in both magnetic resonance and computed tomography (in particular, the advent of dual energy computed tomography). An additional major focus of publications concerns contrast media, and in particular continuing research involving nephrogenic systemic fibrosis, its etiology, and differentiation of the gadolinium chelates on the basis of in vivo stability.
Collapse
|
29
|
Comparative in vivo dissociation of gadolinium chelates in renally impaired rats: a relaxometry study. Invest Radiol 2011; 46:292-300. [PMID: 21263333 DOI: 10.1097/rli.0b013e3182056ccf] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Investigation of dissociated versus chelated gadolinium (Gd) in plasma, skin, and bone of rats with impaired renal function after administration of ionic macrocyclic (gadoterate or Dotarem) or nonionic linear (gadodiamide or Omniscan) Gd chelates. MATERIALS AND METHODS Subtotally nephrectomized Wistar rats were subjected to receive daily injections of 2.5 mmol/kg of Omniscan, gadodiamide without excess ligand caldiamide, Dotarem, or saline (n = 7-10 rats/group) for 5 consecutive days. The Gd concentration was measured by inductively coupled plasma mass spectrometer in skin, femur epiphysis, and plasma on completion of the study (day 11), and dissociated Gd(3+) was measured in the plasma at day 11 (liquid chromatography inductively coupled plasma mass spectrometry). The r(1) relaxivity constant was measured in skin (at day 4 and day 11) and bone (day 11) to investigate the dissociated or chelated form of Gd found in tissue samples. Clinical and skin histopathologic studies were performed. RESULTS Subtotal nephrectomy decreased creatinine clearance by 60%. No macroscopic skin lesions were observed in the Dotarem and Omniscan groups in contrast with the gadodiamide group (2 rats survived the study period and 4 of 10 rats showed skin ulcerations and scabs). Skin histopathologic lesions were in the range gadodiamide > Omniscan > Dotarem (similar to control rats). At day 11, the skin Gd concentration was lower in the Dotarem group (161.0 ± 85.5 nmol/g) as compared with the Omniscan (490.5 ± 223.2 nmol/g) and gadodiamide groups (mean value, 776.1 nmol/g; n = 2 survivors). The total Gd concentration in the femur was significantly higher in the Omniscan group than in the Dotarem group. At day 11, the dissociated Gd(3+) concentration in plasma was below the limit of detection in the Dotarem group and was 1.5 ± 0.7 μmol/L in the Omniscan group corresponding to 62% ± 15% of the total Gd concentration. The dissociated Gd(3+) concentration was 1.1 μmol/L in gadodiamide rats (n = 2 survivors). In the skin, the in vivo r1 relaxivity value increased from 4.8 ± 0.7 mM(-1)s(-1) at day 4 to 10.5 ± 3.9 mM(-1)s(-1) at day 11 in the Omniscan group, P < 0.05 (in vitro r(1) in skin, 3.5 mM(-1)s(-1)) and gadodiamide group, whereas no significant change was observed in the Dotarem group (2.8 ± 0.2 and 4.9 ± 2.8 mM(-1)s(-1) at day 4 and 11, respectively, NS) (in vitro value in the skin, 3.2 mM(-1)s(-1)). In the femur, the in vivo r1 relaxivity was higher in the Omniscan group (8.9 ± 2.1 mM(-1)s(-1)) (in vitro relaxivity, 4.5 mM(-1)s(-1)) and gadodiamide group (8.8 mM(-1)s(-1), n = 2 survivors) than in the Dotarem group (3.8 mM(-1)s(-1), n = 1 rat with measurable r(1), since for 7 rats, 1/T(1) - 1/T(1(diamagnetic)) <10% of 1/T(1(diamagnetic)) because of low Gd concentration) (in vitro relaxivity value in the femur matrix, 3.1 mM(-1)s(-1)). CONCLUSIONS Unlike Dotarem, Omniscan and gadodiamide induced histologic skin lesions. At day 11, a higher Gd concentration was found in both skin and femur of Omniscan- and gadodiamide-treated rats than in Dotarem-treated rats. Relaxometry results indicate gradual in vivo dechelation and release of dissociated Gd(3+) in a soluble form in renally impaired rats receiving Omniscan and gadodiamide, whereas Dotarem remained stable over the study period.
Collapse
|
30
|
Vandsburger MH, Epstein FH. Emerging MRI methods in translational cardiovascular research. J Cardiovasc Transl Res 2011; 4:477-92. [PMID: 21452060 PMCID: PMC3134552 DOI: 10.1007/s12265-011-9275-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 03/15/2011] [Indexed: 12/11/2022]
Abstract
Cardiac magnetic resonance imaging (CMR) has become a reference standard modality for imaging of left ventricular (LV) structure and function and, using late gadolinium enhancement, for imaging myocardial infarction. Emerging CMR techniques enable a more comprehensive examination of the heart, making CMR an excellent tool for use in translational cardiovascular research. Specifically, emerging CMR methods have been developed to measure the extent of myocardial edema, changes in ventricular mechanics, changes in tissue composition as a result of fibrosis, and changes in myocardial perfusion as a function of both disease and infarct healing. New CMR techniques also enable the tracking of labeled cells, molecular imaging of biomarkers of disease, and changes in calcium flux in cardiomyocytes. In addition, MRI can quantify blood flow velocity and wall shear stress in large blood vessels. Almost all of these techniques can be applied in both pre-clinical and clinical settings, enabling both the techniques themselves and the knowledge gained using such techniques in pre-clinical research to be translated from the lab bench to the patient bedside.
Collapse
Affiliation(s)
- Moriel H Vandsburger
- Department of Biological Regulation, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | | |
Collapse
|
31
|
First-Pass and High-Resolution Steady-State Magnetic Resonance Angiography of the Peripheral Arteries With Gadobenate Dimeglumine. Invest Radiol 2011; 46:307-16. [DOI: 10.1097/rli.0b013e3182021879] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
|