1
|
Kahts M, Guo H, Kommidi H, Yang Y, Sayman HB, Summers B, Ting R, Zeevaart JR, Sathekge M, Aras O. 89Zr-leukocyte labelling for cell trafficking: in vitro and preclinical investigations. EJNMMI Radiopharm Chem 2023; 8:36. [PMID: 37930454 PMCID: PMC10628102 DOI: 10.1186/s41181-023-00223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The non-invasive imaging of leukocyte trafficking to assess inflammatory areas and monitor immunotherapy is currently generating great interest. There is a need to develop more robust cell labelling and imaging approaches to track living cells. Positron emission tomography (PET), a highly sensitive molecular imaging technique, allows precise signals to be produced from radiolabelled moieties. Here, we developed a novel leukocyte labelling approach with the PET radioisotope zirconium-89 (89Zr, half-life of 78.4 h). Experiments were carried out using human leukocytes, freshly isolated from whole human blood. RESULTS The 89Zr-leukocyte labelling efficiency ranged from 46 to 87% after 30-60 min. Radioactivity concentrations of labelled cells were up to 0.28 MBq/1 million cells. Systemically administered 89Zr-labelled leukocytes produced high-contrast murine PET images at 1 h-5 days post injection. Murine biodistribution data showed that cells primarily distributed to the lung, liver, and spleen at 1 h post injection, and are then gradually trafficked to liver and spleen over 5 days. Histological analysis demonstrated that exogenously 89Zr-labelled human leukocytes were present in the lung, liver, and spleen at 1 h post injection. However, intravenously injected free [89Zr]Zr4+ ion showed retention only in the bone with no radioactivity in the lung at 5 days post injection, which implied good stability of radiolabelled leukocytes in vivo. CONCLUSIONS Our study presents a stable and generic radiolabelling technique to track leukocytes with PET imaging and shows great potential for further applications in inflammatory cell and other types of cell trafficking studies.
Collapse
Affiliation(s)
- Maryke Kahts
- Pharmaceutical Sciences Department, School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, 0208, South Africa.
| | - Hua Guo
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, 10065, USA
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Harikrishna Kommidi
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yanping Yang
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, 10065, USA
| | - Haluk Burcak Sayman
- Department of Nuclear Medicine, Cerrahpasa Medical Faculty, Istanbul University, 34303, Fatih, Istanbul, Turkey
| | - Beverley Summers
- Pharmaceutical Sciences Department, School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, 0208, South Africa
| | - Richard Ting
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jan Rijn Zeevaart
- Radiochemistry, The South African Nuclear Energy Corporation, Pelindaba, Hartebeespoort, 0240, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
- DST/NWU, Preclinical Drug Development Platform, North West University, Potchefstroom, 2520, South Africa
| | - Mike Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
2
|
Arslan M, Haider A, Khurshid M, Abu Bakar SSU, Jani R, Masood F, Tahir T, Mitchell K, Panchagnula S, Mandair S. From Pixels to Pathology: Employing Computer Vision to Decode Chest Diseases in Medical Images. Cureus 2023; 15:e45587. [PMID: 37868395 PMCID: PMC10587792 DOI: 10.7759/cureus.45587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Radiology has been a pioneer in the healthcare industry's digital transformation, incorporating digital imaging systems like picture archiving and communication system (PACS) and teleradiology over the past thirty years. This shift has reshaped radiology services, positioning the field at a crucial junction for potential evolution into an integrated diagnostic service through artificial intelligence and machine learning. These technologies offer advanced tools for radiology's transformation. The radiology community has advanced computer-aided diagnosis (CAD) tools using machine learning techniques, notably deep learning convolutional neural networks (CNNs), for medical image pattern recognition. However, the integration of CAD tools into clinical practice has been hindered by challenges in workflow integration, unclear business models, and limited clinical benefits, despite development dating back to the 1990s. This comprehensive review focuses on detecting chest-related diseases through techniques like chest X-rays (CXRs), magnetic resonance imaging (MRI), nuclear medicine, and computed tomography (CT) scans. It examines the utilization of computer-aided programs by researchers for disease detection, addressing key areas: the role of computer-aided programs in disease detection advancement, recent developments in MRI, CXR, radioactive tracers, and CT scans for chest disease identification, research gaps for more effective development, and the incorporation of machine learning programs into diagnostic tools.
Collapse
Affiliation(s)
- Muhammad Arslan
- Department of Emergency Medicine, Royal Infirmary of Edinburgh, National Health Service (NHS) Lothian, Edinburgh, GBR
| | - Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat, PAK
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, PAK
| | | | - Rutva Jani
- Department of Internal Medicine, C. U. Shah Medical College and Hospital, Gujarat, IND
| | - Fatima Masood
- Department of Internal Medicine, Gulf Medical University, Ajman, ARE
| | - Tuba Tahir
- Department of Business Administration, Iqra University, Karachi, PAK
| | - Kyle Mitchell
- Department of Internal Medicine, University of Science, Arts and Technology, Olveston, MSR
| | - Smruthi Panchagnula
- Department of Internal Medicine, Ganni Subbalakshmi Lakshmi (GSL) Medical College, Hyderabad, IND
| | - Satpreet Mandair
- Department of Internal Medicine, Medical University of the Americas, Charlestown, KNA
| |
Collapse
|
3
|
Kheyrolahzadeh K, Tohidkia MR, Tarighatnia A, Shahabi P, Nader ND, Aghanejad A. Theranostic chimeric antigen receptor (CAR)-T cells: Insight into recent trends and challenges in solid tumors. Life Sci 2023; 328:121917. [PMID: 37422069 DOI: 10.1016/j.lfs.2023.121917] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/15/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Cell therapy has reached significant milestones in various life-threatening diseases, including cancer. Cell therapy using fluorescent and radiolabeled chimeric antigen receptor (CAR)-T cell is a successful strategy for diagnosing or treating malignancies. Since cell therapy approaches have different results in cancers, the success of hematological cancers has yet to transfer to solid tumor therapy, leading to more casualties. Therefore, there are many areas for improvement in the cell therapy platform. Understanding the therapeutic barriers associated with solid cancers through cell tracking and molecular imaging may provide a platform for effectively delivering CAR-T cells into solid tumors. This review describes CAR-T cells' role in treating solid and non-solid tumors and recent advances. Furthermore, we discuss the main obstacles, mechanism of action, novel strategies and solutions to overcome the challenges from molecular imaging and cell tracking perspectives.
Collapse
Affiliation(s)
- Keyvan Kheyrolahzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighatnia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Mulgaonkar A, Udayakumar D, Yang Y, Harris S, Öz OK, Ramakrishnan Geethakumari P, Sun X. Current and potential roles of immuno-PET/-SPECT in CAR T-cell therapy. Front Med (Lausanne) 2023; 10:1199146. [PMID: 37441689 PMCID: PMC10333708 DOI: 10.3389/fmed.2023.1199146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have evolved as breakthrough treatment options for the management of hematological malignancies and are also being developed as therapeutics for solid tumors. However, despite the impressive patient responses from CD19-directed CAR T-cell therapies, ~ 40%-60% of these patients' cancers eventually relapse, with variable prognosis. Such relapses may occur due to a combination of molecular resistance mechanisms, including antigen loss or mutations, T-cell exhaustion, and progression of the immunosuppressive tumor microenvironment. This class of therapeutics is also associated with certain unique toxicities, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other "on-target, off-tumor" toxicities, as well as anaphylactic effects. Furthermore, manufacturing limitations and challenges associated with solid tumor infiltration have delayed extensive applications. The molecular imaging modalities of immunological positron emission tomography and single-photon emission computed tomography (immuno-PET/-SPECT) offer a target-specific and highly sensitive, quantitative, non-invasive platform for longitudinal detection of dynamic variations in target antigen expression in the body. Leveraging these imaging strategies as guidance tools for use with CAR T-cell therapies may enable the timely identification of resistance mechanisms and/or toxic events when they occur, permitting effective therapeutic interventions. In addition, the utilization of these approaches in tracking the CAR T-cell pharmacokinetics during product development and optimization may help to assess their efficacy and accordingly to predict treatment outcomes. In this review, we focus on current challenges and potential opportunities in the application of immuno-PET/-SPECT imaging strategies to address the challenges encountered with CAR T-cell therapies.
Collapse
Affiliation(s)
- Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Durga Udayakumar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yaxing Yang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shelby Harris
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Praveen Ramakrishnan Geethakumari
- Section of Hematologic Malignancies/Transplant and Cell Therapy, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
5
|
Yitbarek D, Dagnaw GG. Application of Advanced Imaging Modalities in Veterinary Medicine: A Review. Vet Med (Auckl) 2022; 13:117-130. [PMID: 35669942 PMCID: PMC9166686 DOI: 10.2147/vmrr.s367040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022]
Abstract
Veterinary anatomy has traditionally relied on detailed dissections to produce anatomical illustrations, but modern imaging modalities, now represent an enormous resource that allows for fast non-invasive visualizations in living animals for clinical and research purposes. In this review, advanced anatomical imaging modalities and their applications, safety issues, challenges, and future prospects of the techniques commonly employed for animal imaging would be highlighted. The quality of diagnostic imaging equipment in veterinary practice has greatly improved. Recent advances made in veterinary advanced imaging specifically about cross-sectional modalities (CT and MRI), nuclear medicine (PET, SPECT), and dual imaging modalities (PET/CT, PET/MR, and SPECT/CT) have become widely available, leading to greater demands and expectations from veterinary clients. These modalities allow for the creation of three-dimensional representations that can be of considerable value in the dissemination of clinical diagnosis and anatomical studies. Despite, the modern imaging modalities well established in developed countries across the globe, it is yet to remain in its infancy stage in veterinary practice in developing countries due to heavy initial investment and maintenance costs, lack of expert interpretation, a requirement of specialized technical staff and need of adjustable machines to accommodate the different range of animal sizes. Therefore, veterinarians should take advantage of these imaging techniques in designing future experiments by considering the availability of these varied imaging modalities and the creation of three-dimensional graphical representations of internal structures.
Collapse
Affiliation(s)
| | - Gashaw Getaneh Dagnaw
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
- Correspondence: Gashaw Getaneh Dagnaw, Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, P.O. Box: 196, Gondar, Ethiopia, Email
| |
Collapse
|
6
|
Wang XY, Wang Y, Wu Q, Liu JJ, Liu Y, Pan DH, Qi W, Wang LZ, Yan JJ, Xu YP, Wang GJ, Miao LY, Yu L, Yang M. Feasibility study of 68Ga-labeled CAR T cells for in vivo tracking using micro-positron emission tomography imaging. Acta Pharmacol Sin 2021; 42:824-831. [PMID: 32901086 DOI: 10.1038/s41401-020-00511-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
Abstract
Clinical tracking of chimeric antigen receptor (CAR) T cells in vivo by positron emission tomography (PET) imaging is an area of intense interest. But the long-lived positron emitter-labeled CAR T cells stay in the liver and spleen for days or even weeks. Thus, the excessive absorbed effective dose becomes a major biosafety issue leading it difficult for clinical translation. In this study we used 68Ga, a commercially available short-lived positron emitter, to label CAR T cells for noninvasive cell tracking in vivo. CAR T cells could be tracked in vivo by 68Ga-PET imaging for at least 6 h. We showed a significant correlation between the distribution of 89Zr and 68Ga-labeled CAR T cells in the same tissues (lungs, liver, and spleen). The distribution and homing behavior of CAR T cells at the early period is highly correlated with the long-term fate of CAR T cells in vivo. And the effective absorbed dose of 68Ga-labeled CAR T cells is only one twenty-fourth of 89Zr-labeled CAR T cells, which was safe for clinical translation. We conclude the feasibility of 68Ga instead of 89Zr directly labeling CAR T cells for noninvasive tracking of the cells in vivo at an early stage based on PET imaging. This method provides a potential solution to the emerging need for safe and practical PET tracer for cell tracking clinically.
Collapse
|
7
|
Abstract
Purpose of Review The main goal of the article is to familiarize the reader with commonly and uncommonly used nuclear medicine procedures that can significantly contribute to improved patient care. The article presents examples of specific modality utilization in the chest including assessment of lung ventilation and perfusion, imaging options for broad range of infectious and inflammatory processes, and selected aspects of oncologic imaging. In addition, rapidly developing new techniques utilizing molecular imaging are discussed. Recent Findings The article describes nuclear medicine imaging modalities including gamma camera, SPECT, PET, and hybrid imaging (SPECT/CT, PET/CT, and PET/MR) in the context of established and emerging clinical applications. Areas of potential future development in nuclear medicine are discussed with emphasis on molecular imaging and implementation of new targeted tracers used in diagnostics and therapeutics (theranostics). Summary Nuclear medicine and molecular imaging provide many unique and novel options for the diagnosis and treatment of pulmonary diseases. This article reviews current applications for nuclear medicine and molecular imaging and selected future applications for radiopharmaceuticals and targeted molecular imaging techniques.
Collapse
|
8
|
Galli F, Aguilera JV, Palermo B, Markovic SN, Nisticò P, Signore A. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J Exp Clin Cancer Res 2020; 39:89. [PMID: 32423420 PMCID: PMC7236372 DOI: 10.1186/s13046-020-01586-y] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor-infiltrating immune cells play a key role against cancer. However, malignant cells are able to evade the immune response and establish a very complex balance in which different immune subtypes may drive tumor progression, metastatization and resistance to therapy. New immunotherapeutic approaches aim at restoring the natural balance and increase immune response against cancer by different mechanisms. The complexity of these interactions and the heterogeneity of immune cell subpopulations are a real challenge when trying to develop new immunotherapeutics and evaluate or predict their efficacy in vivo. To this purpose, molecular imaging can offer non-invasive diagnostic tools like radiopharmaceuticals, contrast agents or fluorescent dyes. These agents can be useful for preclinical and clinical purposes and can overcome [18F]FDG limitations in discriminating between true-progression and pseudo-progression. This review provides a comprehensive overview of immune cells involved in microenvironment, available immunotherapies and imaging agents to highlight the importance of new therapeutic biomarkers and their in vivo evaluation to improve the management of cancer patients.
Collapse
Affiliation(s)
- Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, S. Andrea University Hospital, Roma, Italy.
| | - Jesus Vera Aguilera
- Department of oncology and Department of Immunology, Mayo Clinic, (MN), Rochester, USA
| | - Belinda Palermo
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Svetomir N Markovic
- Department of oncology and Department of Immunology, Mayo Clinic, (MN), Rochester, USA
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, S. Andrea University Hospital, Roma, Italy
| |
Collapse
|
9
|
Israel O, Pellet O, Biassoni L, De Palma D, Estrada-Lobato E, Gnanasegaran G, Kuwert T, la Fougère C, Mariani G, Massalha S, Paez D, Giammarile F. Two decades of SPECT/CT - the coming of age of a technology: An updated review of literature evidence. Eur J Nucl Med Mol Imaging 2019; 46:1990-2012. [PMID: 31273437 PMCID: PMC6667427 DOI: 10.1007/s00259-019-04404-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE Single-photon emission computed tomography (SPECT) combined with computed tomography (CT) was introduced as a hybrid SPECT/CT imaging modality two decades ago. The main advantage of SPECT/CT is the increased specificity achieved through a more precise localization and characterization of functional findings. The improved diagnostic accuracy is also associated with greater diagnostic confidence and better inter-specialty communication. METHODS This review presents a critical assessment of the relevant literature published so far on the role of SPECT/CT in a variety of clinical conditions. It also includes an update on the established evidence demonstrating both the advantages and limitations of this modality. CONCLUSIONS For the majority of applications, SPECT/CT should be a routine imaging technique, fully integrated into the clinical decision-making process, including oncology, endocrinology, orthopaedics, paediatrics, and cardiology. Large-scale prospective studies are lacking, however, on the use of SPECT/CT in certain clinical domains such as neurology and lung disorders. The review also presents data on the complementary role of SPECT/CT with other imaging modalities and a comparative analysis, where available.
Collapse
Affiliation(s)
- Ora Israel
- Rappaport School of Medicine, Israel Institute of Technology, Haifa, Israel.
| | - O Pellet
- Nuclear Medicine and Diagnostic Imaging Section International Atomic Energy Agency, Vienna, Austria
| | - L Biassoni
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - D De Palma
- Nuclear Medicine Unit, Circolo Hospital, ASST-Settelaghi, Varese, Italy
| | - E Estrada-Lobato
- Nuclear Medicine and Diagnostic Imaging Section International Atomic Energy Agency, Vienna, Austria
| | - G Gnanasegaran
- Department of Nuclear Medicine, Royal Free NHS Foundation Trust, London, UK
| | - T Kuwert
- Clinic of Nuclear Medicine, University Hospital, Erlangen, Germany
| | - C la Fougère
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University Hospital, Tubingen, Germany
| | - G Mariani
- Regional Center of Nuclear Medicine, University of Pisa, Pisa, Italy
| | - S Massalha
- Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada
- Department of Nuclear Medicine, Rambam Healthcare Campus, Haifa, Israel
| | - D Paez
- Nuclear Medicine and Diagnostic Imaging Section International Atomic Energy Agency, Vienna, Austria
| | - F Giammarile
- Nuclear Medicine and Diagnostic Imaging Section International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
10
|
Sollini M, Raffaella B, Bandera F, Lazzeri E, Erba PA. Detection of Device Infection Using Nuclear Cardiology Imaging. ACTA ACUST UNITED AC 2018. [DOI: 10.17996/anc.18-00078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | - Berchiolli Raffaella
- Department of Translational Research and Advanced Technologies in Medicine, University of Pisa
- Vascular Surgery Unit, Azienda Ospedaliero-Universitaria Pisana
| | - Francesco Bandera
- Department of Biomedical Sciences for Health, University of Milan
- Department of Cardiology University, IRCCS Policlinico San Donato
| | - Elena Lazzeri
- Department of Translational Research and Advanced Technologies in Medicine, University of Pisa
- Regional Center of Nuclear Medicine, Azienda Ospedaliero-Universitaria
| | - Paola Anna Erba
- Department of Translational Research and Advanced Technologies in Medicine, University of Pisa
- Regional Center of Nuclear Medicine, Azienda Ospedaliero-Universitaria
| |
Collapse
|
11
|
Abstract
Positron emission tomography (PET) is a powerful noninvasive imaging technique able to measure distinct biological processes in vivo by administration of a radiolabeled probe. Whole-body measurements track the probe accumulation providing a means to measure biological changes such as metabolism, cell location, or tumor burden. PET can also be applied to both preclinical and clinical studies providing three-dimensional information. For immunotherapies (in particular understanding T cell responses), PET can be utilized for spatial and longitudinal tracking of T lymphocytes. Although PET has been utilized clinically for over 30 years, the recent development of additional PET radiotracers have dramatically expanded the use of PET to detect endogenous or adoptively transferred T cells in vivo. Novel probes have identified changes in T cell quantity, location, and function. This has enabled investigators to track T cells outside of the circulation and in hematopoietic organs such as spleen, lymph nodes, and bone marrow, or within tumors. In this review, we cover advances in PET detection of the antitumor T cell response and areas of focus for future studies.
Collapse
|
12
|
|
13
|
Defresne F, Tondreau T, Stéphenne X, Smets F, Bourgois A, Najimi M, Jamar F, Sokal EM. Biodistribution of adult derived human liver stem cells following intraportal infusion in a 17-year-old patient with glycogenosis type 1A. Nucl Med Biol 2014; 41:371-5. [PMID: 24607438 DOI: 10.1016/j.nucmedbio.2014.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Current treatment of inherited liver inborn errors of metabolism in children consists in appropriate diet and drugs and, for unstable patients, final orthotopic liver transplantation. Unfortunately, liver transplantation remains not easily available because of organ shortage and imposes inherent risks and lifelong immunosuppressive therapy. Therefore alternative treatments are required. Hepatocytes transplantation and its limitations led to consider innovative alternative such as transplantation of adult derived human liver stem cells (ADLHSC). These cells present high proliferative capacity, good resistance to cryopreservation and ability to differentiate into hepatocyte-like cells displaying mature hepatocyte functions. AIM Biodistribution of ADHLSC had never been assessed after infusion through the portal vein in patients. This information is required to determine the safety of the method. METHODS ADHLSC were efficiently labelled with 111-Indium DTPA radiotracer and SPECT imaging was used for the acquisition of whole body imaging to document short term biodistribution of ADHLSC. RESULTS Following infusion through the portal vein, ADHLSC diffused homogenously throughout the liver and remained strictly within the targeted organ. Images were acquired until 5 days after infusion. At that time, no signal was observed in any other organs except the liver. Urinary excretion of 111-Indium DTPA was also monitored. CONCLUSION For the first time, we documented the short term biodistribution of ADHLSC within the liver after infusion through the portal vein.
Collapse
Affiliation(s)
- Florence Defresne
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Avenue Hippocrate 10, 1200 Brussels, Belgium.
| | - Tatiana Tondreau
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Xavier Stéphenne
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Françoise Smets
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Annick Bourgois
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Mustapha Najimi
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - François Jamar
- Cliniques universitaires Saint-Luc, Department of Radiology, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Etienne M Sokal
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Paediatric Hepatology and Cell Therapy, Avenue Hippocrate 10, 1200 Brussels, Belgium.
| |
Collapse
|
14
|
Griessinger CM, Kehlbach R, Bukala D, Wiehr S, Bantleon R, Cay F, Schmid A, Braumüller H, Fehrenbacher B, Schaller M, Eichner M, Sutcliffe JL, Ehrlichmann W, Eibl O, Reischl G, Cherry SR, Röcken M, Pichler BJ, Kneilling M. In Vivo Tracking of Th1 Cells by PET Reveals Quantitative and Temporal Distribution and Specific Homing in Lymphatic Tissue. J Nucl Med 2014; 55:301-7. [DOI: 10.2967/jnumed.113.126318] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
15
|
Wong KK, Piert M. Reply: Regarding Dynamic bone imaging with 99mTc-labeled diphosphonates and 18F-NaF: mechanisms and applications. J Nucl Med 2013; 54:2190-1. [PMID: 24198387 DOI: 10.2967/jnumed.113.132902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Ka Kit Wong
- University of Michigan Health System University Hospital B1G505C 1500 E. Medical Center Dr. Ann Arbor, MI 48109-0028 E-mail:
| | | |
Collapse
|
16
|
Erba PA, Leo G, Sollini M, Tascini C, Boni R, Berchiolli RN, Menichetti F, Ferrari M, Lazzeri E, Mariani G. Radiolabelled leucocyte scintigraphy versus conventional radiological imaging for the management of late, low-grade vascular prosthesis infections. Eur J Nucl Med Mol Imaging 2013; 41:357-68. [DOI: 10.1007/s00259-013-2582-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022]
|
17
|
Abstract
CLINICAL/METHODICAL ISSUE Skeletal infections are often a diagnostic and clinical challenge. STANDARD RADIOLOGICAL METHODS Nuclear imaging modalities used in the diagnostic workup of acute and chronic skeletal infections include three-phase bone scintigraphy and scintigraphy with labelled leucocytes. METHODICAL INNOVATIONS The introduction of hybrid technologies, such as single photon emission computed tomography/computed tomography (SPECT/CT) has dramatically changed nuclear medical imaging of infections. PERFORMANCE In general SPECT/CT leads to a considerably more accurate diagnosis than planar or SPECT imaging. ACHIEVEMENTS Given the integrated acquisition of metabolic, functional and morphological information, SPECT/CT has increased in particular the specificity of three-phase skeletal scanning and scintigraphy with labeled leucocytes.
Collapse
Affiliation(s)
- B Klaeser
- Universitätsklinik für Nuklearmedizin, Inselspital Bern, Freiburgstr. 10, CH-3010, Bern, Schweiz.
| | | | | |
Collapse
|
18
|
Aydın F, Kın Cengiz A, Güngör F. Tc-99m Labeled HMPAO white Blood Cell Scintigraphy in Pediatric Patients. Mol Imaging Radionucl Ther 2012; 21:13-8. [PMID: 23487346 PMCID: PMC3590957 DOI: 10.4274/mirt.165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/22/2012] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE (99m)Tc labeled hexamethylpropylene amine oxime (HMPAO) white blood cell (WBC) scintigraphy is a frequently used option for acute infection, particularly in pediatric patients. This scintigraphy is applied to detect sites of infection/inflammation in patients with fever of unknown origin, to find and follow up osteomyelitis, and to detect suspicion of acute appendicitis. The aim of this retrospective study was to evaluate the value of (99m)Tc-HMPAO labeled WBC scintigraphy in pediatric patients. MATERIAL AND METHODS The study was conducted between January 2006 and December 2008 and included 13 patients (5 boys, 8 girls; mean age 6.9±6.2 years). Those patients who had suspicion of bone infection (n=7), fever of unknown origin (n=3), and suspicion of acute appendicitis (n=3) were evaluated retrospectively. (99m)Tc-HMPAO labeled WBC scintigraphy imaging was performed to all patients. Diagnosis was done according to operation and pathological results or clinical follow-up. RESULTS (99m)Tc-HMPAO labeled WBC scintigraphy has been found to be true positive in 6 cases, true negative in 6 cases, and false negative in one patient who had fewer unknown origin. The false negative case has been found to have encephalitis with MRI. CONCLUSION Leukocyte scintigraphy has been described as a useful diagnostic tool in the diagnosis of suspicion of bone infection, fever of unknown origin and suspicion of acute appendicitis. (99m)Tc-HMPAO labeled WBC scintigraphy is a rapid and very accurate method for detecting those pathologies. Our results showed that WBC scintigraphy might be reliably used for diagnosis of suspected bone infection and acute appendicitis, fever of unknown origin, and acute appendicitis, in pediatric patient population. CONFLICT OF INTEREST None declared.
Collapse
Affiliation(s)
- Funda Aydın
- Akdeniz University Medical School, Department of Nuclear Medicine, Antalya, Turkey
| | | | | |
Collapse
|