1
|
Aleid AM, Alrasheed AS, Aldanyowi SN, Almalki SF. Advanced magnetic resonance imaging for glioblastoma: Oncology-radiology integration. Surg Neurol Int 2024; 15:309. [PMID: 39246787 PMCID: PMC11380898 DOI: 10.25259/sni_498_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Background Aggressive brain tumors like glioblastoma multiforme (GBM) pose a poor prognosis. While magnetic resonance imaging (MRI) is crucial for GBM management, distinguishing it from other lesions using conventional methods can be difficult. This study explores advanced MRI techniques better to understand GBM properties and their link to patient outcomes. Methods We studied MRI scans of 157 GBM surgery patients from January 2020 to March 2024 to extract radiomic features and analyze the impact of fluid-attenuated inversion recovery (FLAIR) resection on survival using statistical methods, proportional hazards regression, and Kaplan-Meier survival analysis. Results Predictive models achieved high accuracy (area under the curve of 0.902) for glioma-grade prediction. FLAIR abnormality resection significantly improved survival, while diffusion-weighted image best-depicted tumor infiltration. Glioblastoma infiltration was best seen with advanced MRI compared to metastasis. Glioblastomas showed distinct features, including irregular shape, margins, and enhancement compared to metastases, which were oval or round, with clear edges and even contrast, and extensive peritumoral changes. Conclusion Advanced radiomic and machine learning analysis of MRI can provide noninvasive glioma grading and characterization of tumor properties with clinical relevance. Combining advanced neuroimaging with histopathology may better integrate oncology and radiology for optimized glioblastoma management. However, further studies are needed to validate these findings with larger datasets and assess additional MRI sequences and radiomic features.
Collapse
Affiliation(s)
| | | | - Saud Nayef Aldanyowi
- Department of Surgery, College of Medicine, King Faisal University, AlAhsa, Saudi Arabia
| | - Sami Fadhel Almalki
- Department of Surgery, College of Medicine, King Faisal University, AlAhsa, Saudi Arabia
| |
Collapse
|
2
|
Kas A, Rozenblum L, Pyatigorskaya N. Clinical Value of Hybrid PET/MR Imaging: Brain Imaging Using PET/MR Imaging. Magn Reson Imaging Clin N Am 2023; 31:591-604. [PMID: 37741643 DOI: 10.1016/j.mric.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Hybrid PET/MR imaging offers a unique opportunity to acquire MR imaging and PET information during a single imaging session. PET/MR imaging has numerous advantages, including enhanced diagnostic accuracy, improved disease characterization, and better treatment planning and monitoring. It enables the immediate integration of anatomic, functional, and metabolic imaging information, allowing for personalized characterization and monitoring of neurologic diseases. This review presents recent advances in PET/MR imaging and highlights advantages in clinical practice for neuro-oncology, epilepsy, and neurodegenerative disorders. PET/MR imaging provides valuable information about brain tumor metabolism, perfusion, and anatomic features, aiding in accurate delineation, treatment response assessment, and prognostication.
Collapse
Affiliation(s)
- Aurélie Kas
- Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, APHP Sorbonne Université, Paris, France; Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris F-75006, France.
| | - Laura Rozenblum
- Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, APHP Sorbonne Université, Paris, France; Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris F-75006, France
| | - Nadya Pyatigorskaya
- Neuroradiology Department, Pitié-Salpêtrière Hospital, APHP Sorbonne Université, Paris, France; Sorbonne Université, UMR S 1127, CNRS UMR 722, Institut du Cerveau, Paris, France
| |
Collapse
|
3
|
Dadgar H, Vafaee MS, Khorasanchi A, Moghadam PK, Nemati R, Shooli H, Jafari E, Assadi M. Initial Experience of 18 F-FET PET-MR Image Fusion for Evaluation of Recurrent Primary Brain Tumors. World J Nucl Med 2023; 22:183-190. [PMID: 37854091 PMCID: PMC10581759 DOI: 10.1055/s-0043-1771282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Background An accurate monitoring technique is crucial in brain tumors to choose the best treatment approach after surgery and/or chemoradiation. Radiological assessment of brain tumors is widely based on the magnetic resonance imaging (MRI) modality in this regard; however, MRI criteria are unable to precisely differentiate tumoral tissue from treatment-related changes. This study was conducted to evaluate whether fused MRI and O-(2- 18 F-fluoroethyl)-L-tyrosine ( 18 F-FET) positron emission tomography (PET) can improve the diagnostic accuracy of the practitioners to discriminate treatment-related changes from true recurrence of brain tumor. Methods We retrospectively analyzed 18 F-FET PET/computed tomography (CT) of 11 patients with histopathologically proven brain tumors that were suspicious for recurrence changes after 3 to 4 months of surgery. All the patients underwent MRI and 18 F-FET PET/CT. As a third assessment, fused 18 F-FET PET/MRI was also acquired. Finally, the diagnostic accuracy of the applied modalities was compared. Results Eleven patients aged 27 to 73 years with a mean age of 47 ± 13 years were enrolled. According to the results, 9/11 cases (82%) showed positive MRI and 6 cases (55%) showed positive PET/CT and PET/MRI. Tumoral recurrence was observed in six patients (55%) in the follow-up period. Based on the follow-up results, accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 64, 85, 25, 67, and 50%, respectively, for MRI alone and 91, 85, 100, 100, and 80%, respectively, for both PET/CT and PET/MRI. Conclusion This study found that 18 F-FET PET-MR image fusion in the management of brain tumors might improve recurrence detection; however, further well-designed studies are needed to verify these preliminary data.
Collapse
Affiliation(s)
- Habibollah Dadgar
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran
| | - Manouchehr Seyedi Vafaee
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Translational Neuroscience, BRIDGE, University of Southern Denmark, Odense, Denmark
- Department of Psychiatry, Odense University Hospital, Odense, Denmark
| | - Amirreza Khorasanchi
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran
| | - Parastoo Kordestani Moghadam
- Social Determinants of Health Research Center (Division of Cognitive Neuroscience), Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Reza Nemati
- Department of Neurology, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Shooli
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Esmail Jafari
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
4
|
Li H, Zhang M, Lin Z, Deng Z, Cao C, Zhan S, Liu W, Sun B. Utility of hybrid PET/MRI in stereoelectroencephalography guided radiofrequency thermocoagulation in MRI negative epilepsy patients. Front Neurosci 2023; 17:1163946. [PMID: 37378015 PMCID: PMC10291085 DOI: 10.3389/fnins.2023.1163946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) is a novel advanced non-invasive presurgical examination tool for patients with drug-resistant epilepsy (DRE). This study aims to evaluate the utility of PET/MRI in patients with DRE who undergo stereoelectroencephalography-guided radiofrequency thermocoagulation (SEEG-guided RFTC). Methods This retrospective study included 27 patients with DRE who underwent hybrid PET/MRI and SEEG-guided RFTC. Surgery outcome was assessed using a modified Engel classification, 2 years after RFTC. Potential areas of the seizure onset zone (SOZ) were identified on PET/MRI and confirmed by SEEG. Results Fifteen patients (55%) became seizure-free after SEEG-guided RFTC. Engel class II, III, and IV were achieved in six, two, and four patients, respectively at the 2 years follow-up. MRI was negative in 23 patients and structural abnormalities were found in four patients. Hybrid PET/MRI contributed to the identification of new structural or metabolic lesions in 22 patients. Concordant results between PET/MRI and SEEG were found in 19 patients in the identification of SOZ. Among the patients with multifocal onset, seizure-free status was achieved in 50% (6/12). Conclusion SEEG-guided RFTC is an effective and safe treatment for drug-resistant epilepsy. Hybrid PET/MRI serves as a useful tool for detecting the potential SOZs in MRI-negative patients and guide the implantation of SEEG electrodes. Patients with multifocal epilepsy may also benefit from this palliative treatment.
Collapse
Affiliation(s)
- Hongyang Li
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyu Lin
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengdao Deng
- Research Group of Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Chunyan Cao
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shikun Zhan
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Polyanskaya M, Demushkina A, Kostylev F, Vasilyev I, Kholin A, Zavadenko N, Alikhanov A. The presurgical evaluation of patients with drug-resistant epilepsy. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:12-20. [DOI: 10.17116/jnevro202212208112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Suzuki M, Fushimi Y, Okada T, Hinoda T, Nakamoto R, Arakawa Y, Sawamoto N, Togashi K, Nakamoto Y. Quantitative and qualitative evaluation of sequential PET/MRI using a newly developed mobile PET system for brain imaging. Jpn J Radiol 2021; 39:669-680. [PMID: 33641056 DOI: 10.1007/s11604-021-01105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE To evaluate the clinical feasibility of a newly developed mobile PET system with MR-compatibility (flexible PET; fxPET), compared with conventional PET (cPET)/CT for brain imaging. METHODS Twenty-one patients underwent cPET/CT with subsequent fxPET/MRI using 18F-FDG. As qualitative evaluation, we visually rated image quality of MR and PET images using a four-point scoring system. We evaluated overall image quality for MR, while we evaluated overall image quality, sharpness and lesion contrast. As quantitative evaluation, we compared registration accuracy between two modalities [(fxPET and MRI) and (cPET and CT)] measuring spatial coordinates. We also examined the accuracy of regional 18F-FDG uptake. RESULTS All acquired images were of diagnostic quality and the number of detected lesions did not differ significantly between fxPET/MR and cPET/CT. Mean misregistration was significantly larger with fxPET/MRI than with cPET/CT. SUVmax and SUVmean for fxPET and cPET showed high correlations in the lesions (R = 0.84, 0.79; P < 0.001, P = 0.002, respectively). In normal structures, we also showed high correlations of SUVmax (R = 0.85, 0.87; P < 0.001, P < 0.001, respectively) and SUVmean (R = 0.83, 0.87; P < 0.001, P < 0.001, respectively) in bilateral caudate nuclei and a moderate correlation of SUVmax (R = 0.65) and SUVmean (R = 0.63) in vermis. CONCLUSIONS The fxPET/MRI system showed image quality within the diagnostic range, registration accuracy below 3 mm and regional 18F-FDG uptake highly correlated with that of cPET/CT.
Collapse
Affiliation(s)
- Mizue Suzuki
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Tomohisa Okada
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takuya Hinoda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryusuke Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
7
|
Assessment of localization accuracy and postsurgical prediction of simultaneous 18F-FDG PET/MRI in refractory epilepsy patients. Eur Radiol 2021; 31:6974-6982. [PMID: 33638688 DOI: 10.1007/s00330-021-07738-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To evaluate the accuracies of simultaneous 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging ([18F]-FDG PET/MRI) in preoperative localization and the postsurgical prediction. METHODS This retrospective study was performed on ninety-eight patients diagnosed with refractory epilepsy whose presurgical evaluation included [18F]-FDG PET/MRI, with 1-year post-surgery follow-up between August 2016 and December 2018. PET/MRI images were interpreted by two radiologists and a nuclear medicine physician to localize the EOZ using standard visual analysis and asymmetry index based on standard uptake value (SUV). The localization accuracy and predictive performance of simultaneous 18F-FDG PET/MRI based on the surgial pathology and postsurgical outcome were evaluated. RESULTS A total of 41.8% (41/98) patients were found to have a definitely structural abnormality on the MR portion of PET/MRI; 93.9% (92/98) were shown hypometabolism on the PET portion of the hybrid PET/MRI. PET/MRI identified 18 cases with subtle structural abnormalities on MRI re-read. Six percent (6/98) of patients PET/MRI were negative. A total of 65.3% (64/98) patients showed seizure-free at 1-year follow-up after epilepsy surgery. The sensitivity, specificity, and accuracy of [18F]-FDG PET/MRI was 95.3%, 8.8%, and 65.3% for seizure onset localization based on surgical pathology and postsurgical outcome, respectively. Multivariate regression analysis indicated that concordant of EOZ localization between PET/MRI and surgical resection range, which was a good positive predictor of seizure freedom (Engel I) (OR = 14.741, 95% CI 3.934-55.033, p < 0.001). CONCLUSIONS [18F]-FDG PET/MRI used as two combined modalities providing additional sensitivity when detecting possible epileptic foci and will probably improve the surgical outcome. KEY POINTS • Sensitivity, specificity, and accuracy of [18F]-FDG PET/MRI were 95.3%, 8.8%, and 65.3% for seizure onset localization based on surgical pathology and postsurgical outcome, respectively. • Concordance of EOZ localization between PET/MRI and surgical resection range was a good positive predictor of seizure freedom; presurgical [18F]-FDG PET/MRI will probably improve the surgical outcome.
Collapse
|
8
|
Abstract
OBJECTIVE. The purpose of this article is to summarize the role of molecular imaging of the brain by use of SPECT, FDG PET, and non-FDG PET radiotracers in epilepsy. CONCLUSION. Quantitative image analysis with PET and SPECT has increased the diagnostic utility of these modalities in localizing epileptogenic onset zones. A multi-modal platform approach integrating the functional imaging of PET and SPECT with the morphologic information from MRI in presurgical evaluation of epilepsy can greatly improve outcomes.
Collapse
|
9
|
Snyder SE, Butch ER, Shulkin BL. Radiopharmaceuticals in Pediatric Nuclear Medicine. HANDBOOK OF RADIOPHARMACEUTICALS 2020:653-701. [DOI: 10.1002/9781119500575.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Zhang M, Liu W, Huang P, Lin X, Huang X, Meng H, Wang J, Hu K, Li J, Lin M, Sun B, Zhan S, Li B. Utility of hybrid PET/MRI multiparametric imaging in navigating SEEG placement in refractory epilepsy. Seizure 2020; 81:295-303. [PMID: 32932134 DOI: 10.1016/j.seizure.2020.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/09/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Stereo-electroencephalography (SEEG) implantation before epilepsy surgery is critical for precise localization and complete resection of the seizure onset zone (SOZ). Combined metabolic and morphological imaging using hybrid PET/MRI may provide supportive information for the optimization of the SEEG coverage of brain structures. In this study, we originally imported PET/MRI images into the SEEG positioning system to evaluate the application of PET/MRI in guiding SEEG implantation in refractory epilepsy patients. MATERIALS Forty-two patients undergoing simultaneous PET/MRI examinations were recruited. All the patients underwent SEEG implantation guided by hybrid PET/MRI and surgical resection or ablation of epileptic lesion. Surgery outcome was assessed using a modified Engel classification one year (13.60 ± 2.49 months) after surgery. Areas of SOZ were identified using hybrid PET/MRI and concordance with SEEG was evaluated. Logistic regression analysis was used to predict the presence of a favorable outcome with the coherence of concordance of PET/MRI and SEEG. RESULTS Hybrid PET/MRI (including visual PET, MRI, plus MI Neuro) identified SOZ lesions in 38 epilepsy patients (90.47 %). PET/MRI showed the same SOZ localization with SEEG in 29 patients (69.05 %), which was considered to be concordant. The concordance between the PET/MRI and SEEG findings was significantly predictive of a successful surgery outcome (odds ratio = 20.41; 95 % CI = 2.75-151.4, P = 0.003**). CONCLUSION Hybrid PET/MRI combined visual PET, multiple sequences MRI and SPM PET helps identify epilepsy lesions particularly in subtle hypometabolic areas. Patients with concordant epileptic lesion localization on PET/MRI and SEEG demonstrated a more favorable outcome than those with inconsistent localization between modalities.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Liu
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Peng Huang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaozhu Lin
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyun Huang
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongping Meng
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Wang
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kejia Hu
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Li
- Clinical Research Center, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mu Lin
- MR Collaborations, Siemens Healthcare Ltd., Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shikun Zhan
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Biao Li
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
11
|
Shaikh Z, Torres A, Takeoka M. Neuroimaging in Pediatric Epilepsy. Brain Sci 2019; 9:E190. [PMID: 31394851 PMCID: PMC6721420 DOI: 10.3390/brainsci9080190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 12/27/2022] Open
Abstract
Pediatric epilepsy presents with various diagnostic challenges. Recent advances in neuroimaging play an important role in the diagnosis, management and in guiding the treatment of pediatric epilepsy. Structural neuroimaging techniques such as CT and MRI can identify underlying structural abnormalities associated with epileptic focus. Functional neuroimaging provides further information and may show abnormalities even in cases where MRI was normal, thus further helping in the localization of the epileptogenic foci and guiding the possible surgical management of intractable/refractory epilepsy when indicated. A multi-modal imaging approach helps in the diagnosis of refractory epilepsy. In this review, we will discuss various imaging techniques, as well as aspects of structural and functional neuroimaging and their application in the management of pediatric epilepsy.
Collapse
Affiliation(s)
- Zakir Shaikh
- Department of Pediatrics, Division of Pediatric Neurology, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alcy Torres
- Department of Pediatrics, Division of Pediatric Neurology, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Masanori Takeoka
- Department of Pediatric Neurology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Kaltoft NS, Marner L, Larsen VA, Hasselbalch SG, Law I, Henriksen OM. Hybrid FDG PET/MRI vs. FDG PET and CT in patients with suspected dementia - A comparison of diagnostic yield and propagated influence on clinical diagnosis and patient management. PLoS One 2019; 14:e0216409. [PMID: 31048902 PMCID: PMC6497285 DOI: 10.1371/journal.pone.0216409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/21/2019] [Indexed: 12/03/2022] Open
Abstract
Background Both 18F-fluoro-deoxy-glucose (FDG) positron emission tomography (PET), computed tomography (CT) and magnetic resonance imaging (MRI) are routinely used in the evaluation of memory clinic patients. Hybrid PET/MR systems now allow simultaneous PET and MRI imaging within the duration of the PET emission scan. Purpose To compare the diagnostic yield of PET/MRI using an abbreviated MR protocol with that of separate PET and CT in a mixed memory clinic population, and the propagated influences on clinical diagnosis and patient management. Material and methods Consecutive memory clinic patients (n = 78) undergoing both CT and hybrid FDG PET/MRI scans were identified retrospectively. MRI and CT were separately evaluated for vascular and structural pathology. PET scans were classified according to the presence of neurodegenerative or vascular disease using CT or MRI, respectively, for anatomical guiding. A memory clinic expert assessed the clinical impact of the additional findings and/or change of PET classification achieved by MRI anatomical guiding as compared to CT guiding. Results MRI lead to significantly higher Fazekas scores, higher medial temporal and global cortical atrophy scores, and identified more patients with infarcts (28 vs 8, p<0.001) compared to CT. MRI changed PET classification in 13 (17%) patients. Addition of MRI to CT had minor clinical impact in 4/78 (5%) and major clinical impact in 13/78 (17%) of patients. Conclusion The study demonstrates the capabilities of PET/MRI systems for routine clinical imaging of memory clinic patients, and that even an abbreviated hybrid PET/MRI protocol provides significant additional information influencing clinical diagnosis and patient management in a substantial fraction of patients when compared to separate PET and CT.
Collapse
Affiliation(s)
- Nicolai Stefan Kaltoft
- Department of Radiology, Rigshospitalet Blegdamsvej, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lisbeth Marner
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Blegdamsvej, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vibeke Andree Larsen
- Department of Radiology, Rigshospitalet Blegdamsvej, Copenhagen University Hospital, Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Centre, Dept. of Neurology, Rigshospitalet Blegdamsvej, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Blegdamsvej, Copenhagen University Hospital, Copenhagen, Denmark
| | - Otto Mølby Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Blegdamsvej, Copenhagen University Hospital, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
13
|
Fitsiori A, Hiremath SB, Boto J, Garibotto V, Vargas MI. Morphological and Advanced Imaging of Epilepsy: Beyond the Basics. CHILDREN (BASEL, SWITZERLAND) 2019; 6:E43. [PMID: 30862078 PMCID: PMC6462967 DOI: 10.3390/children6030043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 12/26/2022]
Abstract
The etiology of epilepsy is variable and sometimes multifactorial. Clinical course and response to treatment largely depend on the precise etiology of the seizures. Along with the electroencephalogram (EEG), neuroimaging techniques, in particular, magnetic resonance imaging (MRI), are the most important tools for determining the possible etiology of epilepsy. Over the last few years, there have been many developments in data acquisition and analysis for both morphological and functional neuroimaging of people suffering from this condition. These innovations have increased the detection of underlying structural pathologies, which have till recently been classified as "cryptogenic" epilepsy. Cryptogenic epilepsy is often refractory to anti-epileptic drug treatment. In drug-resistant patients with structural or consistent functional lesions related to the epilepsy syndrome, surgery is the only treatment that can offer a seizure-free outcome. The pre-operative detection of the underlying structural condition increases the odds of successful surgical treatment of pharmacoresistant epilepsy. This article provides a comprehensive overview of neuroimaging techniques in epilepsy, highlighting recent advances and innovations and summarizes frequent etiologies of epilepsy in order to improve the diagnosis and management of patients suffering from seizures, especially young patients and children.
Collapse
Affiliation(s)
- Aikaterini Fitsiori
- Unit of Neurodiagnostic, Division of Neuroradiology, Geneva University Hospital, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
| | | | - José Boto
- Unit of Neurodiagnostic, Division of Neuroradiology, Geneva University Hospital, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital and Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland.
| | - Maria Isabel Vargas
- Unit of Neurodiagnostic, Division of Neuroradiology, Geneva University Hospital, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
| |
Collapse
|
14
|
Ocular Biodistribution of 89Zr-Bevacizumab in New Zealand Rabbits Determined Using PET/MRI: A Feasibility Study. IRANIAN JOURNAL OF RADIOLOGY 2019. [DOI: 10.5812/iranjradiol.68697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Ladefoged CN, Marner L, Hindsholm A, Law I, Højgaard L, Andersen FL. Deep Learning Based Attenuation Correction of PET/MRI in Pediatric Brain Tumor Patients: Evaluation in a Clinical Setting. Front Neurosci 2019; 12:1005. [PMID: 30666184 PMCID: PMC6330282 DOI: 10.3389/fnins.2018.01005] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/13/2018] [Indexed: 11/13/2022] Open
Abstract
Aim: Positron emission tomography (PET) imaging is a useful tool for assisting in correct differentiation of tumor progression from reactive changes. O-(2-18F-fluoroethyl)-L-tyrosine (FET)-PET in combination with MRI can add valuable information for clinical decision making. Acquiring FET-PET/MRI simultaneously allows for a one-stop-shop that limits the need for a second sedation or anesthesia as with PET and MRI in sequence. PET/MRI is challenged by lack of a direct measure of photon attenuation. Accepted solutions for attenuation correction (AC) might not be applicable to pediatrics. The aim of this study was to evaluate the use of the subject-specific MR-derived AC method RESOLUTE, modified to a pediatric cohort, against the performance of an MR-AC technique based on deep learning in a pediatric brain tumor cohort. Methods: The modifications to RESOLUTE and the implementation of a deep learning method were performed using 79 pediatric patient examinations. We analyzed the 36 of these with active brain tumor area above 1 mL. We measured background (B), tumor mean and maximal activity (TMEAN, TMAX), biological tumor volume (BTV), and calculated the clinical metrics TMEAN/B and TMAX/B. Results: Overall, we found both RESOLUTE and our DeepUTE methodologies to accurately reproduce the CT-AC clinical metrics. Regardless of age, both methods were able to obtain AC maps similar to the CT-AC, albeit with DeepUTE producing the most similar based on both quantitative metrics and visual inspection. In the patient-by-patient analysis DeepUTE was the only technique with all patients inside the predefined acceptable clinical limits. It also had a higher precision with relative %-difference to the reference CT-AC (TMAX/B mean: -0.1%, CI: [-0.8%, 0.5%], p = 0.54) compared to RESOLUTE (TMAX/B mean: 0.3%, CI: [-0.6%, 1.2%], p = 0.67) and DIXON-AC (TMAX/B mean: 5.9%, CI: [4.5%, 7.4%], p < 0.0001). Conclusion: Overall, we found DeepUTE to be the AC method that most robustly reproduced the CT-AC clinical metrics per se, closely followed by RESOLUTE modified to pediatric cohorts. The added accuracy due to better noise handling of DeepUTE, ease of use, as well as the improved runtime makes DeepUTE the method of choice for PET/MRI attenuation correction.
Collapse
Affiliation(s)
- Claes Nøhr Ladefoged
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Lisbeth Marner
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Amalie Hindsholm
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Liselotte Højgaard
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
16
|
Sollini M, Berchiolli R, Kirienko M, Rossi A, Glaudemans AWJM, Slart R, Erba PA. PET/MRI in Infection and Inflammation. Semin Nucl Med 2018; 48:225-241. [PMID: 29626940 DOI: 10.1053/j.semnuclmed.2018.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hybrid positron emission tomography/magnetic resonance imaging (PET/MR) systems are now more and more available for clinical use. PET/MR combines the unique features of MR including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most of the evidence of the potential clinical utility of PET/MRI is available for neuroimaging. Other areas, where PET/MR can play a larger role include head and neck, upper abdominal, and pelvic tumours. Although the role of PET/MR in infection and inflammation of the cardiovascular system and in musculoskeletal applications are promising, these areas of clinical investigation are still in the early phase and it may be a little longer before these areas reach their full potential in clinical practice. In this review, we outline the potential of hybrid PET/MR for imaging infection and inflammation. A background to the main radiopharmaceuticals and some technical considerations are also included.
Collapse
Affiliation(s)
- Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Raffaella Berchiolli
- Vascular Surgery Unit Department of Translational Research and Advanced Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Margarita Kirienko
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Alexia Rossi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - A W J M Glaudemans
- University of Groningen, University Medical Center Groningen, Medical Imaging Center, Groningen, The Netherlands
| | - Riemer Slart
- University of Groningen, University Medical Center Groningen, Medical Imaging Center, Groningen, The Netherlands.; University of Twente, Faculty of Science and Technology, Biomedical Photonic Imaging, Enschede, The Netherlands
| | - Paola Anna Erba
- Regional Center of Nuclear Medicine, Department of Translational Research and Advanced, Technologies in Medicine, University of Pisa, Pisa, Italy..
| |
Collapse
|
17
|
Shang K, Wang J, Fan X, Cui B, Ma J, Yang H, Zhou Y, Zhao G, Lu J. Clinical Value of Hybrid TOF-PET/MR Imaging-Based Multiparametric Imaging in Localizing Seizure Focus in Patients with MRI-Negative Temporal Lobe Epilepsy. AJNR Am J Neuroradiol 2018; 39:1791-1798. [PMID: 30237304 DOI: 10.3174/ajnr.a5814] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Temporal lobe epilepsy is the most common type of epilepsy. Early surgical treatment is superior to prolonged medical therapy in refractory temporal lobe epilepsy. Successful surgical operations depend on the correct localization of the epileptogenic zone. This study aimed to evaluate the clinical value of hybrid TOF-PET/MR imaging-based multiparametric imaging in localizing the epileptogenic zone in patients with MR imaging-negative for temporal lobe epilepsy. MATERIALS AND METHODS Twenty patients with MR imaging-negative temporal lobe epilepsy who underwent preoperative evaluation and 10 healthy controls were scanned using PET/MR imaging with simultaneous acquisition of PET and arterial spin-labeling. On the basis of the standardized uptake value and cerebral blood flow, receiver operating characteristic analysis and a logistic regression model were used to evaluate the predictive value for the localization. Statistical analyses were performed using statistical parametric mapping. The values of the standardized uptake value and cerebral blood flow, as well as the asymmetries of metabolism and perfusion, were compared between the 2 groups. Histopathologic findings were used as the criterion standard. RESULTS Complete concordance was noted in lateralization and localization among the PET, arterial spin-labeling, and histopathologic findings in 12/20 patients based on visual assessment. Concordance with histopathologic findings was also obtained for the remaining 8 patients based on the complementary PET and arterial spin-labeling information. Receiver operating characteristic analysis showed that the sensitivity and specificity of PET, arterial spin-labeling, and combined PET and arterial spin-labeling were 100% and 81.8%, 83.3% and 54.5%, and 100% and 90.9%, respectively. When we compared the metabolic abnormalities in patients with those in healthy controls, hypometabolism was detected in the middle temporal gyrus (P < .001). Metabolism and perfusion asymmetries were also located in the temporal lobe (P < .001). CONCLUSIONS PET/MR imaging-based multiparametric imaging involving arterial spin-labeling may increase the clinical value of localizing the epileptogenic zone by providing concordant and complementary information in patients with MR imaging-negative temporal lobe epilepsy.
Collapse
Affiliation(s)
- K Shang
- From the Departments of Nuclear Medicine (K.S., J.W., B.C., J.M., H.Y., J.L.)
| | - J Wang
- From the Departments of Nuclear Medicine (K.S., J.W., B.C., J.M., H.Y., J.L.)
| | - X Fan
- Neurosurgery (X.F., G.Z.)
| | - B Cui
- From the Departments of Nuclear Medicine (K.S., J.W., B.C., J.M., H.Y., J.L.)
| | - J Ma
- From the Departments of Nuclear Medicine (K.S., J.W., B.C., J.M., H.Y., J.L.)
| | - H Yang
- From the Departments of Nuclear Medicine (K.S., J.W., B.C., J.M., H.Y., J.L.)
| | - Y Zhou
- Department of Radiology (Y.Z.), Johns Hopkins University, Baltimore, Maryland
| | - G Zhao
- Neurosurgery (X.F., G.Z.)
| | - J Lu
- From the Departments of Nuclear Medicine (K.S., J.W., B.C., J.M., H.Y., J.L.) .,Radiology (J.L.), Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Deuschl C, Kirchner J, Poeppel TD, Schaarschmidt B, Kebir S, El Hindy N, Hense J, Quick HH, Glas M, Herrmann K, Umutlu L, Moenninghoff C, Radbruch A, Forsting M, Schlamann M. 11C-MET PET/MRI for detection of recurrent glioma. Eur J Nucl Med Mol Imaging 2017; 45:593-601. [PMID: 29282517 DOI: 10.1007/s00259-017-3916-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/11/2017] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Radiological assessment of brain tumors is widely based on the Radiology Assessment of Neuro-Oncology (RANO) criteria that consider non-specific T1 and T2 weighted images. Limitation of the RANO criteria is that they do not include metabolic imaging techniques that have been reported to be helpful to differentiate treatment related changes from true tumor progression. In the current study, we assessed if the combined use of MRI and PET with hybrid 11C-MET PET/MRI can improve diagnostic accuracy and diagnostic confidence of the readers to differentiate treatment related changes from true progression in recurrent glioma. METHODS Fifty consecutive patients with histopathologically proven glioma were prospectively enrolled for a hybrid 11C-MET PET/MRI to differentiate recurrent glioma from treatment induced changes. Sole MRI data were analyzed based on RANO. Sole PET data and in a third evaluation hybrid 11C-MET-PET/MRI data were assessed for metabolic respectively metabolic and morphologic glioma recurrence. Diagnostic performance and diagnostic confidence of the reader were calculated for the different modalities, and the McNemar test and Mann-Whitney U Test were applied for statistical analysis. RESULTS Hybrid 11C-MET PET/MRI was successfully performed in all 50 patients. Glioma recurrence was diagnosed in 35 of the 50 patients (70%). Sensitivity and specificity were calculated for MRI (86.11% and 71.43%), for 11C-MET PET (96.77% and 73.68%), and for hybrid 11C-MET-PET/MRI (97.14% and 93.33%). For diagnostic accuracy hybrid 11C-MET-PET/MRI (96%) showed significantly higher values than MRI alone (82%), whereas no significant difference was found for 11C-MET PET (88%). Furthermore, by rating on a five-point Likert scale significantly higher scores were found for diagnostic confidence when comparing 11C-MET PET/MRI (4.26 ± 0,777) to either PET alone (3.44 ± 0.705) or MRI alone (3.56 ± 0.733). CONCLUSION This feasibility study showed that hybrid PET/MRI might strengthen RANO classification by adding metabolic information to conventional MRI information. Future studies should evaluate the clinical utility of the combined use of 11C-MET PET/MRI in larger patient cohorts.
Collapse
Affiliation(s)
- C Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany.
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany.
| | - J Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Duesseldorf, Duesseldorf, Germany
| | - T D Poeppel
- Clinic for Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - B Schaarschmidt
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Duesseldorf, Duesseldorf, Germany
| | - S Kebir
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, Essen, Germany
| | - N El Hindy
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
| | - J Hense
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - H H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - M Glas
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, Essen, Germany
| | - K Herrmann
- Clinic for Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - L Umutlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - C Moenninghoff
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - A Radbruch
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - M Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - M Schlamann
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
19
|
Castaneda Vega S, Weinl C, Calaminus C, Wang L, Harant M, Ehrlichmann W, Thiele D, Kohlhofer U, Reischl G, Hempel JM, Ernemann U, Quintanilla Martinez L, Nordheim A, Pichler BJ. Characterization of a novel murine model for spontaneous hemorrhagic stroke using in vivo PET and MR multiparametric imaging. Neuroimage 2017; 155:245-256. [DOI: 10.1016/j.neuroimage.2017.04.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/29/2017] [Accepted: 04/29/2017] [Indexed: 01/07/2023] Open
|
20
|
Abstract
PET/MR imaging benefits neurologic clinical care and research by providing spatially and temporally matched anatomic MR imaging, advanced MR physiologic imaging, and metabolic PET imaging. MR imaging sequences and PET tracers can be modified to target physiology specific to a neurologic disease process, with applications in neurooncology, epilepsy, dementia, cerebrovascular disease, and psychiatric and neurologic research. Simultaneous PET/MR imaging provides efficient acquisition of multiple temporally matched datasets, and opportunities for motion correction and improved anatomic assignment of PET data. Current challenges include optimizing MR imaging-based attenuation correction and necessity for dual expertise in PET and MR imaging.
Collapse
Affiliation(s)
- Michelle M Miller-Thomas
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, Campus Box 8131, St Louis, MO 63110, USA.
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, Campus Box 8131, St Louis, MO 63110, USA
| |
Collapse
|
21
|
Jena A, Taneja S, Jha A, Damesha NK, Negi P, Jadhav GK, Verma SM, Sogani SK. Multiparametric Evaluation in Differentiating Glioma Recurrence from Treatment-Induced Necrosis Using Simultaneous 18F-FDG-PET/MRI: A Single-Institution Retrospective Study. AJNR Am J Neuroradiol 2017; 38:899-907. [PMID: 28341716 DOI: 10.3174/ajnr.a5124] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/21/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Differentiating glioma recurrence from treatment-induced necrosis can be a challenge on conventional imaging. This study aimed to assess the diagnostic performance of each functional MR imaging and PET parameter derived by using simultaneous FDG-PET/MR imaging individually and in combination in the evaluation of suspected glioma recurrence. MATERIALS AND METHODS Thirty-five treated glioma patients with 41 enhancing lesions (World Health Organization grade II = 9, III = 13, IV = 19) on MR imaging after an operation followed by radiation therapy and/or chemotherapy formed part of this study. Using PET/MR imaging, we calculated the normalized mean relative CBV, mean ADC, Cho/Cr, and maximum and mean target-to-background ratios. Statistical analysis was performed to determine the diagnostic performance of each parameter by receiver operating characteristic analysis individually and in combination with multivariate receiver operating characteristic analysis for the detection of glioma recurrence. Histopathology or clinicoradiologic follow-up was considered the criterion standard. RESULTS Of 35 patients, 25 (30 lesions) were classified as having a recurrence and 10 (11 lesions) patients as having treatment-induced necrosis. Parameters like rCBVmean (mean relative CBV), ADCmean, Cho/Cr, and maximum and mean target-to-background ratios were statistically significant in the detection of recurrent lesions with an accuracy of 77.5%, 78.0%, 90.9%, 87.8%, and 87.8%, respectively. On multivariate receiver operating characteristic analysis, the combination of all 3 MR imaging parameters resulted in an area under the curve of 0.913 ± 0.053. Furthermore, an area under the curve of 0.935 ± 0.046 was obtained when MR imaging parameters (ADCmean and Cho/Cr) were combined with the PET parameter (mean target-to-background ratio), demonstrating an increase in diagnostic accuracy. CONCLUSIONS Simultaneous PET/MR imaging with FDG offers correlative and synergistic multiparametric assessment of glioma recurrence with increased accuracy and clinical utility.
Collapse
Affiliation(s)
- A Jena
- From the PET SUITE (A. Jena, S.T., A. Jha, P.N.)
| | - S Taneja
- From the PET SUITE (A. Jena, S.T., A. Jha, P.N.)
| | - A Jha
- From the PET SUITE (A. Jena, S.T., A. Jha, P.N.)
| | - N K Damesha
- Neurosurgery (N.K.D., S.K.S.), Indraprastha Apollo Hospitals, Sarita Vihar, New Delhi, India
| | - P Negi
- From the PET SUITE (A. Jena, S.T., A. Jha, P.N.)
| | - G K Jadhav
- Departments of Molecular Imaging and Nuclear Medicine, Radiation Oncology (G.K.J., S.M.V.)
| | - S M Verma
- Departments of Molecular Imaging and Nuclear Medicine, Radiation Oncology (G.K.J., S.M.V.)
| | - S K Sogani
- Neurosurgery (N.K.D., S.K.S.), Indraprastha Apollo Hospitals, Sarita Vihar, New Delhi, India
| |
Collapse
|
22
|
|
23
|
Abstract
A previous review published in 2012 demonstrated the role of clinical PET for diagnosis and management of brain tumors using mainly FDG, amino acid tracers, and 18F-fluorothymidine. This review provides an update on clinical PET studies, most of which are motivated by prediction of prognosis and planning and monitoring of therapy in gliomas. For FDG, there has been additional evidence supporting late scanning, and combination with 13N ammonia has yielded some promising results. Large neutral amino acid tracers have found widespread applications mostly based on 18F-labeled compounds fluoroethyltyrosine and fluorodopa for targeting biopsies, therapy planning and monitoring, and as outcome markers in clinical trials. 11C-alpha-methyltryptophan (AMT) has been proposed as an alternative to 11C-methionine, and there may also be a role for cyclic amino acid tracers. 18F-fluorothymidine has shown strengths for tumor grading and as an outcome marker. Studies using 18F-fluorocholine (FCH) and 68Ga-labeled compounds are promising but have not yet clearly defined their role. Studies on radiotherapy planning have explored the use of large neutral amino acid tracers to improve the delineation of tumor volume for irradiation and the use of hypoxia markers, in particular 18F-fluoromisonidazole. Many studies employed the combination of PET with advanced multimodal MR imaging methods, mostly demonstrating complementarity and some potential benefits of hybrid PET/MR.
Collapse
Affiliation(s)
- Karl Herholz
- The University of Manchester, Division of Neuroscience and Experimental Psychology Wolfson Molecular Imaging Centre, Manchester, England, United Kingdom.
| |
Collapse
|
24
|
Leemans EL, Kotasidis F, Wissmeyer M, Garibotto V, Zaidi H. Qualitative and Quantitative Evaluation of Blob-Based Time-of-Flight PET Image Reconstruction in Hybrid Brain PET/MR Imaging. Mol Imaging Biol 2016; 17:704-13. [PMID: 25634260 PMCID: PMC4768229 DOI: 10.1007/s11307-015-0824-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Purpose Many neurological diseases affect small structures in the brain and, as such, reliable visual evaluation and accurate quantification are required. Recent technological developments made the clinical use of hybrid positron emission tomography/magnetic resonance (PET/MR) systems possible, providing both functional and anatomical information in a single imaging session. Nevertheless, there is a trade-off between spatial resolution and image quality (contrast and noise), which is dictated mainly by the chosen acquisition and reconstruction protocols. Image reconstruction algorithms using spherical symmetric basis functions (blobs) for image representation have a number of additional parameters that impact both the qualitative and quantitative image characteristics. Hence, a detailed investigation of the blob-based reconstruction characteristics using different parameters is needed to achieve optimal reconstruction results. Procedures This work evaluated the impact of a range of blob parameters on image quality and quantitative accuracy of brain PET images acquired on the Ingenuity Time-of-Flight (TOF) PET/MR system. Two different phantoms were used to simulate brain imaging applications. Image contrast and noise characteristics were assessed using an image quality phantom. Quantitative performance in a clinical setting was investigated using the Hoffman 3D brain phantom at various count levels. Furthermore, the visual quality of four clinical studies was scored blindly by two experienced physicians to qualitatively evaluate the influence of different reconstruction protocols, hereby providing indications on parameters producing the best image quality. Results Quantitative evaluation using the image quality phantom showed that larger basis function radii result in lower contrast recovery (∼2 %) and lower variance levels (∼15 %). The brain phantom and clinical studies confirmed these observations since lower contrast was seen between anatomical structures. High and low count statistics gave comparable values. The qualitative evaluation of the clinical studies, based on the assessment performed by the physicians, showed a preference towards lower image variance levels with a slightly lower contrast, favoring higher radii and four iterations. Conclusion This study systematically evaluated a number of basis function parameters and their quantitative and qualitative effect within PET image reconstruction in the context of brain imaging. A range of blob parameters can minimize error and provided optimal image quality, where the anatomical structures could be recognized but the exact delineation of these structures is simplified in scans with lower image variance levels and thus, higher radii should be preferred. With the optimization of blob parameters, the reconstructed images were found to be qualitatively improved (optimum parameters {d = 2.0375, alpha = 10.4101, radius = 3.9451}) as assessed by the physicians compared to the current clinical protocol. However, this qualitative improvement is task specific, depending on the desired image characteristics to be extracted. Finally, this work could be used as a guide for application-specific optimal parameter selection. Electronic supplementary material The online version of this article (doi:10.1007/s11307-015-0824-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva L Leemans
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland.,Technical Medicine, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Fotis Kotasidis
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland
| | - Michael Wissmeyer
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland. .,Geneva Neuroscience Center, Geneva University, 1205, Geneva, Switzerland. .,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, Netherlands.
| |
Collapse
|
25
|
Recent Developments in Combined PET/MRI. CURRENT RADIOLOGY REPORTS 2016. [DOI: 10.1007/s40134-016-0149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Shen G, Hu S, Liu B, Kuang A. Diagnostic Performance of Whole-Body PET/MRI for Detecting Malignancies in Cancer Patients: A Meta-Analysis. PLoS One 2016; 11:e0154497. [PMID: 27124545 PMCID: PMC4849712 DOI: 10.1371/journal.pone.0154497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/14/2016] [Indexed: 02/05/2023] Open
Abstract
Background As an evolving imaging modality, PET/MRI is preliminarily applied in clinical practice. The aim of this study was to assess the diagnostic performance of PET/MRI for tumor staging in patients with various types of cancer. Methods Relevant articles about PET/MRI for cancer staging were systematically searched in PubMed, EMBASE, EBSCO and the Cochrane Library. Two researchers independently selected studies, extracted data and assessed the methodological quality using the QUADAS tool. The pooled sensitivity, specificity, diagnostic odds ratio (DOR), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were calculated per patient and per lesion. The summary receiver-operating characteristic (SROC) curves were also constructed, and the area under the curve (AUC) and Q* estimates were obtained. Results A total of 38 studies that involved 753 patients and 4234 lesions met the inclusion criteria. On a per-patient level, the pooled sensitivity and specificity with 95% confidence intervals (CIs) were 0.93 (0.90–0.95) and 0.92 (0.89–0.95), respectively. On a per-lesion level, the corresponding estimates were 0.90 (0.88–0.92) and 0.95 (0.94–0.96), respectively. The pooled PLR, NLR and DOR estimates were 6.67 (4.83–9.19), 0.12 (0.07–0.21) and 75.08 (42.10–133.91) per patient and 10.91 (6.79–17.54), 0.13 (0.08–0.19) and 102.53 (59.74–175.97) per lesion, respectively. Conclusion According to our results, PET/MRI has excellent diagnostic potential for the overall detection of malignancies in cancer patients. Large, multicenter and prospective studies with standard scanning protocols are required to evaluate the diagnostic value of PET/MRI for individual cancer types.
Collapse
Affiliation(s)
- Guohua Shen
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Shuang Hu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Bin Liu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Anren Kuang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, People’s Republic of China
- * E-mail:
| |
Collapse
|
27
|
Barthel H, Schroeter ML, Hoffmann KT, Sabri O. PET/MR in dementia and other neurodegenerative diseases. Semin Nucl Med 2016; 45:224-33. [PMID: 25841277 DOI: 10.1053/j.semnuclmed.2014.12.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The spectrum of neurodegenerative diseases covers the dementias, parkinsonian syndromes, Huntington disease, amyotrophic lateral sclerosis, and prion diseases. In these entities, brain MRI is often used in clinical routine to exclude other pathologies and to demonstrate specific atrophy patterns. [18F]FDG PET delivers early and sensitive readouts of neural tissue loss, and more specific PET tracers currently in use clinically target β-amyloid plaques or dopaminergic deficiency. The recent integration of PET into MR technology offers a new chance to improve early and differential diagnosis of many neurodegenerative diseases. Initial evidence in the literature is available to support this notion. New emerging PET tracers, such as tracers that bind to tau or α-synuclein aggregates, as well as MR techniques, like diffusion-tensor imaging, resting-state functional MRI, and arterial spin labeling, have the potential to broaden the diagnostic capabilities of combined PET/MRI to image dementias, Parkinson disease, and other neurodegenerative diseases. The ultimate goal is to establish combined PET/MRI as a first-line imaging technique to provide, in a one-stop-shop fashion with improved patient comfort, all biomarker information required to increase diagnostic confidence toward specific diagnoses. The technical challenge of accurate PET data attenuation correction within PET/MRI systems needs yet to be solved. Apart from the projected clinical routine applications, future research would need to answer the questions of whether combined brain PET/MRI is able to improve basic research of neurodegenerative diseases and antineurodegeneration drug testing.
Collapse
Affiliation(s)
- Henryk Barthel
- Department of Nuclear Medicine, Leipzig University Hospital, Leipzig, Germany.
| | - Matthias L Schroeter
- Clinic for Cognitive Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | | | - Osama Sabri
- Department of Nuclear Medicine, Leipzig University Hospital, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| |
Collapse
|
28
|
Bailey DL, Antoch G, Bartenstein P, Barthel H, Beer AJ, Bisdas S, Bluemke DA, Boellaard R, Claussen CD, Franzius C, Hacker M, Hricak H, la Fougère C, Gückel B, Nekolla SG, Pichler BJ, Purz S, Quick HH, Sabri O, Sattler B, Schäfer J, Schmidt H, van den Hoff J, Voss S, Weber W, Wehrl HF, Beyer T. Combined PET/MR: The Real Work Has Just Started. Summary Report of the Third International Workshop on PET/MR Imaging; February 17-21, 2014, Tübingen, Germany. Mol Imaging Biol 2016; 17:297-312. [PMID: 25672749 PMCID: PMC4422837 DOI: 10.1007/s11307-014-0818-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This paper summarises the proceedings and discussions at the third annual workshop held in Tübingen, Germany, dedicated to the advancement of the technical, scientific and clinical applications of combined PET/MRI systems in humans. Two days of basic scientific and technical instructions with "hands-on" tutorials were followed by 3 days of invited presentations from active researchers in this and associated fields augmented by round-table discussions and dialogue boards with specific themes. These included the use of PET/MRI in paediatric oncology and in adult neurology, oncology and cardiology, the development of multi-parametric analyses, and efforts to standardise PET/MRI examinations to allow pooling of data for evaluating the technology. A poll taken on the final day demonstrated that over 50 % of those present felt that while PET/MRI technology underwent an inevitable slump after its much-anticipated initial launch, it was now entering a period of slow, progressive development, with new key applications emerging. In particular, researchers are focusing on exploiting the complementary nature of the physiological (PET) and biochemical (MRI/MRS) data within the morphological framework (MRI) that these devices can provide. Much of the discussion was summed up on the final day when one speaker commented on the state of PET/MRI: "the real work has just started".
Collapse
Affiliation(s)
- D L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, and Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mehranian A, Arabi H, Zaidi H. Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI. Neuroimage 2016; 130:123-133. [PMID: 26853602 DOI: 10.1016/j.neuroimage.2016.01.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/07/2015] [Accepted: 01/08/2016] [Indexed: 11/24/2022] Open
Abstract
PURPOSE In quantitative PET/MR imaging, attenuation correction (AC) of PET data is markedly challenged by the need of deriving accurate attenuation maps from MR images. A number of strategies have been developed for MRI-guided attenuation correction with different degrees of success. In this work, we compare the quantitative performance of three generic AC methods, including standard 3-class MR segmentation-based, advanced atlas-registration-based and emission-based approaches in the context of brain time-of-flight (TOF) PET/MRI. MATERIALS AND METHODS Fourteen patients referred for diagnostic MRI and (18)F-FDG PET/CT brain scans were included in this comparative study. For each study, PET images were reconstructed using four different attenuation maps derived from CT-based AC (CTAC) serving as reference, standard 3-class MR-segmentation, atlas-registration and emission-based AC methods. To generate 3-class attenuation maps, T1-weighted MRI images were segmented into background air, fat and soft-tissue classes followed by assignment of constant linear attenuation coefficients of 0, 0.0864 and 0.0975 cm(-1) to each class, respectively. A robust atlas-registration based AC method was developed for pseudo-CT generation using local weighted fusion of atlases based on their morphological similarity to target MR images. Our recently proposed MRI-guided maximum likelihood reconstruction of activity and attenuation (MLAA) algorithm was employed to estimate the attenuation map from TOF emission data. The performance of the different AC algorithms in terms of prediction of bones and quantification of PET tracer uptake was objectively evaluated with respect to reference CTAC maps and CTAC-PET images. RESULTS Qualitative evaluation showed that the MLAA-AC method could sparsely estimate bones and accurately differentiate them from air cavities. It was found that the atlas-AC method can accurately predict bones with variable errors in defining air cavities. Quantitative assessment of bone extraction accuracy based on Dice similarity coefficient (DSC) showed that MLAA-AC and atlas-AC resulted in DSC mean values of 0.79 and 0.92, respectively, in all patients. The MLAA-AC and atlas-AC methods predicted mean linear attenuation coefficients of 0.107 and 0.134 cm(-1), respectively, for the skull compared to reference CTAC mean value of 0.138cm(-1). The evaluation of the relative change in tracer uptake within 32 distinct regions of the brain with respect to CTAC PET images showed that the 3-class MRAC, MLAA-AC and atlas-AC methods resulted in quantification errors of -16.2 ± 3.6%, -13.3 ± 3.3% and 1.0 ± 3.4%, respectively. Linear regression and Bland-Altman concordance plots showed that both 3-class MRAC and MLAA-AC methods result in a significant systematic bias in PET tracer uptake, while the atlas-AC method results in a negligible bias. CONCLUSION The standard 3-class MRAC method significantly underestimated cerebral PET tracer uptake. While current state-of-the-art MLAA-AC methods look promising, they were unable to noticeably reduce quantification errors in the context of brain imaging. Conversely, the proposed atlas-AC method provided the most accurate attenuation maps, and thus the lowest quantification bias.
Collapse
Affiliation(s)
- Abolfazl Mehranian
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland; Geneva Neuroscience Centre, University of Geneva, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
30
|
Abstract
Positron emission tomography (PET) is a minimally invasive imaging procedure with a wide range of clinical and research applications. PET allows for the three-dimensional mapping of administered positron-emitting radiopharmaceuticals such as (18)F-fluorodeoxyglucose (for imaging glucose metabolism). PET enables the study of biologic function in both health and disease, in contrast to magnetic resonance imaging (MRI) and computed tomography (CT), that are more suited to study a body's morphologic changes, although functional MRI can also be used to study certain brain functions by measuring blood flow changes during task performance. This chapter first provides an overview of the basic physics principles and instrumentation behind PET methodology, with an introduction to the merits of merging functional PET imaging with anatomic CT or MRI imaging. We then focus on clinical neurologic disorders, and reference research on relevant PET radiopharmaceuticals when applicable. We then provide an overview of PET scan interpretation and findings in several specific neurologic disorders such as dementias, epilepsy, movement disorders, infection, cerebrovascular disorders, and brain tumors.
Collapse
Affiliation(s)
- Katherine Lameka
- Department of Radiology, Tufts University, Boston and Department of Radiology, Baystate Medical Center, Springfield, MA, USA.
| | - Michael D Farwell
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Masanori Ichise
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa, Inage, Chiba, Japan
| |
Collapse
|
31
|
Burhan AM, Marlatt NM, Palaniyappan L, Anazodo UC, Prato FS. Role of Hybrid Brain Imaging in Neuropsychiatric Disorders. Diagnostics (Basel) 2015; 5:577-614. [PMID: 26854172 PMCID: PMC4728476 DOI: 10.3390/diagnostics5040577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/21/2015] [Accepted: 11/26/2015] [Indexed: 01/09/2023] Open
Abstract
This is a focused review of imaging literature to scope the utility of hybrid brain imaging in neuropsychiatric disorders. The review focuses on brain imaging modalities that utilize hybrid (fusion) techniques to characterize abnormal brain molecular signals in combination with structural and functional changes that have been observed in neuropsychiatric disorders. An overview of clinical hybrid brain imaging technologies for human use is followed by a selective review of the literature that conceptualizes the use of these technologies in understanding basic mechanisms of major neuropsychiatric disorders and their therapeutics. Neuronal network abnormalities are highlighted throughout this review to scope the utility of hybrid imaging as a potential biomarker for each disorder.
Collapse
Affiliation(s)
- Amer M Burhan
- St. Joseph's Health Care London, Parkwood Institute, 550 Wellington Road, London, ON N6C 0A7, Canada.
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6C 2R6, Canada.
| | - Nicole M Marlatt
- St. Joseph's Health Care London, Parkwood Institute, 550 Wellington Road, London, ON N6C 0A7, Canada.
| | - Lena Palaniyappan
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6C 2R6, Canada.
| | | | - Frank S Prato
- Lawson Health Research Institute, London, ON N6C 2R5, Canada.
| |
Collapse
|
32
|
Zhao L, Zhu J, Cheng Y, Xiong Z, Tang Y, Guo L, Shi X, Zhao J. Chlorotoxin-Conjugated Multifunctional Dendrimers Labeled with Radionuclide 131I for Single Photon Emission Computed Tomography Imaging and Radiotherapy of Gliomas. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19798-19808. [PMID: 26291070 DOI: 10.1021/acsami.5b05836] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide 131I were synthesized and utilized for targeted single photon emission computed tomography (SPECT) imaging and radiotherapy of cancer. In this study, generation five amine-terminated poly(amidoamine) dendrimers were used as a platform to be sequentially conjugated with polyethylene glycol (PEG), targeting agent chlorotoxin (CTX), and 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO). This was followed by acetylation of the remaining dendrimer terminal amines and radiolabeling with 131I to form the targeted theranostic dendrimeric nanoplatform. We show that the dendrimer platform possessing approximately 7.7 CTX and 21.1 HPAO moieties on each dendrimer displays excellent cytocompatibility in a given concentration range (0-20 μM) and can specifically target cancer cells overexpressing matrix metallopeptidase 2 (MMP2) due to the attached CTX. With the attached HPAO moiety having the phenol group, the dendrimer platform can be effectively labeled with radioactive 131I with good stability and high radiochemical purity. Importantly, the 131I labeling renders the dendrimer platform with an ability to be used for targeted SPECT imaging and radiotherapy of an MMP2-overexpressing glioma model in vivo. The developed radiolabeled multifunctional dendrimeric nanoplatform may hold great promise to be used for targeted theranostics of human gliomas.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Jingyi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, People's Republic of China
| | - Yongjun Cheng
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Yueqin Tang
- Experiment Center, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Lilei Guo
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, People's Republic of China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| |
Collapse
|
33
|
Bashir U, Mallia A, Stirling J, Joemon J, MacKewn J, Charles-Edwards G, Goh V, Cook GJ. PET/MRI in Oncological Imaging: State of the Art. Diagnostics (Basel) 2015; 5:333-57. [PMID: 26854157 PMCID: PMC4665605 DOI: 10.3390/diagnostics5030333] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 02/08/2023] Open
Abstract
Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging.
Collapse
Affiliation(s)
- Usman Bashir
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
| | - Andrew Mallia
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
| | - James Stirling
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
- PET Imaging Centre and the Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
| | - John Joemon
- PET Imaging Centre and the Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
| | - Jane MacKewn
- PET Imaging Centre and the Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
| | - Geoff Charles-Edwards
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
- Medical Physics, Guy's & St Thomas' Hospitals NHS Foundation Trust, London, SE1 7EH, UK.
| | - Vicky Goh
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
- Department of Radiology, Guy's & St Thomas' Hospitals NHS Foundation Trust, London, SE1 7EH, UK.
| | - Gary J Cook
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
- PET Imaging Centre and the Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, UK.
| |
Collapse
|
34
|
Abstract
Tremendous advances have been made in abdominopelvic MR imaging, which continue to improve image quality, and make acquisitions faster and robust. We briefly discuss the role of non-Cartesian acquisition schemes as well as dual parallel radiofrequency (RF) transmit systems in the article to further improve image quality of the abdominal MR imaging. Furthermore, the use of hybrid PET/MR systems has the potential to synergistically combine MR imaging with PET acquisition, and the evolving role of hybrid PET/MR imaging is discussed.
Collapse
Affiliation(s)
- Andrea Kierans
- Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| | - Nainesh Parikh
- Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| | - Hersh Chandarana
- Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
35
|
Shin HW, Jewells V, Sheikh A, Zhang J, Zhu H, An H, Gao W, Shen D, Hadar E, Lin W. Initial experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure 2015; 31:1-4. [PMID: 26362368 DOI: 10.1016/j.seizure.2015.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 11/29/2022] Open
Abstract
PURPOSE We aim to evaluate the utility/improved accuracy of hybrid PET/MR compared to current practice separate 3T MRI and PET-CT imaging for localization of seizure foci. METHOD In a pilot study, twenty-nine patients undergoing epilepsy surgery evaluation were imaged using PET/MR. This subject group had 29 previous clinical 3T MRI as well as 12 PET-CT studies. Prior clinical PET and MR images were read sequentially while the hybrid PET/MR was concurrently read. RESULTS The median interval between hybrid PET/MR and prior imaging studies was 5 months (range 1-77 months). In 24 patients, there was no change in the read between the clinical exams and hybrid PET/MR while new anatomical or functional lesions were identified by hybrid PET/MR in 5 patients without significant clinical change. Four new anatomical MR lesions were seen with concordant PET findings. The remaining patient revealed a new abnormal PET lesion without an MR abnormality. All new PET/MR lesions were clinically significant with concordant EEG and/or SPECT results as potential epileptic foci. CONCLUSION Our initial hybrid PET-MRI experience increased diagnostic yields for detection of potential epileptic lesions. This may be due to the unique advantage of improved co-registration and simultaneous review of both structural and functional data.
Collapse
Affiliation(s)
- Hae W Shin
- Department of Neurology, University of North Carolina, Chapel Hill, NC, United States; Department of Neurosurgery, University of North Carolina, Chapel Hill, NC, United States.
| | - Valerie Jewells
- Department of Radiology, University of North Carolina, Chapel Hill, NC, United States
| | - Arif Sheikh
- Department of Radiology, University of North Carolina, Chapel Hill, NC, United States
| | - Jingwen Zhang
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Hongyu An
- Department of Radiology, University of North Carolina, Chapel Hill, NC, United States
| | - Wei Gao
- Department of Radiology, University of North Carolina, Chapel Hill, NC, United States
| | - Dinggang Shen
- Department of Radiology, University of North Carolina, Chapel Hill, NC, United States
| | - Eldad Hadar
- Department of Neurosurgery, University of North Carolina, Chapel Hill, NC, United States
| | - Weili Lin
- Department of Neurology, University of North Carolina, Chapel Hill, NC, United States; Department of Radiology, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
36
|
|
37
|
Yang BY, Moon SH, Seelam SR, Jeon MJ, Lee YS, Lee DS, Chung JK, Kim YI, Jeong JM. Development of a multimodal imaging probe by encapsulating iron oxide nanoparticles with functionalized amphiphiles for lymph node imaging. Nanomedicine (Lond) 2015; 10:1899-910. [DOI: 10.2217/nnm.15.41] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: We tried to develop a multimodal iron oxide nanoparticles (IO NP) imaging probe by an encapsulation method using specific amphiphiles for 68Ga-labeling and lymph node-targeting. Materials & methods: Nanoparticles (NPs) were encapsulated with a solution containing polysorbate 60 and the amphiphiles. The prepared NPs were labeled with 68Ga and tested in vitro and in vivo. Results: Prepared 1,4,7-triazacyclononane-1,4,7-triacetic acid-IO-Mannose (NOTA-IO-Man) showed a narrow size distribution, and no significant aggregation or degradation under harsh conditions. The relaxivity coefficient of 68Ga-NOTA-IO-Man was higher than that of ferumoxide. The accumulation of 68Ga-NOTA-IO-Man in the lymph node after injection into rat's footpad was confirmed by both positron emission tomography and MRI. Conclusion: We successfully developed PET/MRI dual-modality imaging probe targeting lymph nodes by using the facile encapsulation method.
Collapse
Affiliation(s)
- Bo Yeun Yang
- Department of Nuclear Medicine & Institute of Radiation Medicine, Seoul National University College of Medicine, 110–799, Seoul, South Korea
| | - Sung-Hyun Moon
- Department of Nuclear Medicine & Institute of Radiation Medicine, Seoul National University College of Medicine, 110–799, Seoul, South Korea
| | - Sudhakara Reddy Seelam
- Department of Nuclear Medicine & Institute of Radiation Medicine, Seoul National University College of Medicine, 110–799, Seoul, South Korea
| | - Min Jeong Jeon
- Department of Radiology, Seoul National University Hospital, 110–744, Seoul, South Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine & Institute of Radiation Medicine, Seoul National University College of Medicine, 110–799, Seoul, South Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine & Institute of Radiation Medicine, Seoul National University College of Medicine, 110–799, Seoul, South Korea
| | - June-Key Chung
- Department of Nuclear Medicine & Institute of Radiation Medicine, Seoul National University College of Medicine, 110–799, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, 110–799, Seoul, South Korea
| | - Young Il Kim
- Department of Radiology, Seoul National University Hospital, 110–744, Seoul, South Korea
| | - Jae Min Jeong
- Department of Nuclear Medicine & Institute of Radiation Medicine, Seoul National University College of Medicine, 110–799, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, 110–799, Seoul, South Korea
| |
Collapse
|
38
|
Multi-contrast attenuation map synthesis for PET/MR scanners: assessment on FDG and Florbetapir PET tracers. Eur J Nucl Med Mol Imaging 2015; 42:1447-58. [PMID: 26105119 PMCID: PMC4502321 DOI: 10.1007/s00259-015-3082-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022]
Abstract
Positron Emission Tomography/Magnetic Resonance Imaging (PET/MR) scanners are expected to offer a new range of clinical applications. Attenuation correction is an essential requirement for quantification of PET data but MRI images do not directly provide a patient-specific attenuation map. Methods We further validate and extend a Computed Tomography (CT) and attenuation map (μ-map) synthesis method based on pre-acquired MRI-CT image pairs. The validation consists of comparing the CT images synthesised with the proposed method to the original CT images. PET images were acquired using two different tracers (18F-FDG and 18F-florbetapir). They were then reconstructed and corrected for attenuation using the synthetic μ-maps and compared to the reference PET images corrected with the CT-based μ-maps. During the validation, we observed that the CT synthesis was inaccurate in areas such as the neck and the cerebellum, and propose a refinement to mitigate these problems, as well as an extension of the method to multi-contrast MRI data. Results With the improvements proposed, a significant enhancement in CT synthesis, which results in a reduced absolute error and a decrease in the bias when reconstructing PET images, was observed. For both tracers, on average, the absolute difference between the reference PET images and the PET images corrected with the proposed method was less than 2%, with a bias inferior to 1%. Conclusion With the proposed method, attenuation information can be accurately derived from MRI images by synthesising CT using routine anatomical sequences. MRI sequences, or combination of sequences, can be used to synthesise CT images, as long as they provide sufficient anatomical information.
Collapse
|
39
|
All-in-one interictal presurgical imaging in patients with epilepsy: single-session EEG/PET/(f)MRI. Eur J Nucl Med Mol Imaging 2015; 42:1133-43. [PMID: 25893383 DOI: 10.1007/s00259-015-3045-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE In patients with pharmacoresistant focal epilepsy, resection of the epileptic focus can lead to freedom from seizures or significant improvement in well-selected candidates. Localization of the epileptic focus with multimodal concordance is crucial for a good postoperative outcome. Beyond the detection of epileptogenic lesions on structural MRI and focal hypometabolism on FDG PET, EEG-based Electric Source Imaging (ESI) and simultaneous EEG and functional MRI (EEG-fMRI) are increasingly applied for mapping epileptic activity. We here report presurgical multimodal interictal imaging using a hybrid PET/MR scanner for single-session FDG PET, MRI, EEG-fMRI and ESI. METHODS This quadrimodal imaging procedure was performed in a single session in 12 patients using a high-density (256 electrodes) MR-compatible EEG system and a hybrid PET/MR scanner. EEG was used to exclude subclinical seizures during uptake of the PET tracer, to compute ESI on interictal epileptiform discharges and to guide fMRI analysis for mapping haemodynamic changes correlated with interictal epileptiform activity. RESULTS The whole multimodal recording was performed in less than 2 hours with good patient comfort and data quality. Clinically contributory examinations with at least two modalities were obtained in nine patients and with all modalities in five patients. CONCLUSION This single-session quadrimodal imaging procedure provided reliable and contributory interictal clinical data. This procedure avoids multiple scanning sessions and is associated with less radiation exposure than PET-CT. Moreover, it guarantees the same medication level and medical condition for all modalities. The procedure improves workflow and could reduce the duration and cost of presurgical epilepsy evaluations.
Collapse
|
40
|
Ramli N, Rahmat K, Lim KS, Tan CT. Neuroimaging in refractory epilepsy. Current practice and evolving trends. Eur J Radiol 2015; 84:1791-800. [PMID: 26187861 DOI: 10.1016/j.ejrad.2015.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 03/09/2015] [Accepted: 03/21/2015] [Indexed: 11/16/2022]
Abstract
Identification of the epileptogenic zone is of paramount importance in refractory epilepsy as the success of surgical treatment depends on complete resection of the epileptogenic zone. Imaging plays an important role in the locating and defining anatomic epileptogenic abnormalities in patients with medically refractory epilepsy. The aim of this article is to present an overview of the current MRI sequences used in epilepsy imaging with special emphasis of lesion seen in our practices. Optimisation of epilepsy imaging protocols are addressed and current trends in functional MRI sequences including MR spectroscopy, diffusion tensor imaging and fusion MR with PET and SPECT are discussed.
Collapse
Affiliation(s)
- N Ramli
- Department of Biomedical Imaging, University Malaya Research Imaging Centre, Malaysia
| | - K Rahmat
- Department of Biomedical Imaging, University Malaya Research Imaging Centre, Malaysia.
| | - K S Lim
- Neurology Unit, Department of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - C T Tan
- Neurology Unit, Department of Medicine, University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Werner P, Barthel H, Drzezga A, Sabri O. Current status and future role of brain PET/MRI in clinical and research settings. Eur J Nucl Med Mol Imaging 2015; 42:512-26. [PMID: 25573629 DOI: 10.1007/s00259-014-2970-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/03/2014] [Indexed: 12/11/2022]
Abstract
Hybrid PET/MRI systematically offers a complementary combination of two modalities that has often proven itself superior to the single modality approach in the diagnostic work-up of many neurological and psychiatric diseases. Emerging PET tracers, technical advances in multiparametric MRI and obvious workflow advantages may lead to a significant improvement in the diagnosis of dementia disorders, neurooncological diseases, epilepsy and neurovascular diseases using PET/MRI. Moreover, simultaneous PET/MRI is well suited to complex studies of brain function in which fast fluctuations of brain signals (e.g. related to task processing or in response to pharmacological interventions) need to be monitored on multiple levels. Initial simultaneous studies have already demonstrated that these complementary measures of brain function can provide new insights into the functional and structural organization of the brain.
Collapse
Affiliation(s)
- P Werner
- Department of Nuclear Medicine, University Hospital Leipzig, Liebigstr. 18, 04103, Leipzig, Germany
| | | | | | | |
Collapse
|
42
|
Dunkl V, Cleff C, Stoffels G, Judov N, Sarikaya-Seiwert S, Law I, Bøgeskov L, Nysom K, Andersen SB, Steiger HJ, Fink GR, Reifenberger G, Shah NJ, Coenen HH, Langen KJ, Galldiks N. The usefulness of dynamic O-(2-18F-fluoroethyl)-L-tyrosine PET in the clinical evaluation of brain tumors in children and adolescents. J Nucl Med 2014; 56:88-92. [PMID: 25525183 DOI: 10.2967/jnumed.114.148734] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Experience regarding O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) PET in children and adolescents with brain tumors is limited. METHODS Sixty-nine (18)F-FET PET scans of 48 children and adolescents (median age, 13 y; range, 1-18 y) were analyzed retrospectively. Twenty-six scans to assess newly diagnosed cerebral lesions, 24 scans for diagnosing tumor progression or recurrence, 8 scans for monitoring of chemotherapy effects, and 11 scans for the detection of residual tumor after resection were obtained. Maximum and mean tumor-to-brain ratios (TBRs) were determined at 20-40 min after injection, and time-activity curves of (18)F-FET uptake were assigned to 3 different patterns: constant increase; peak at greater than 20-40 min after injection, followed by a plateau; and early peak (≤ 20 min), followed by a constant descent. The diagnostic accuracy of (18)F-FET PET was assessed by receiver-operating-characteristic curve analyses using histology or clinical course as a reference. RESULTS In patients with newly diagnosed cerebral lesions, the highest accuracy (77%) to detect neoplastic tissue (19/26 patients) was obtained when the maximum TBR was 1.7 or greater (area under the curve, 0.80 ± 0.09; sensitivity, 79%; specificity, 71%; positive predictive value, 88%; P = 0.02). For diagnosing tumor progression or recurrence, the highest accuracy (82%) was obtained when curve patterns 2 or 3 were present (area under the curve, 0.80 ± 0.11; sensitivity, 75%; specificity, 90%; positive predictive value, 90%; P = 0.02). During chemotherapy, a decrease of TBRs was associated with a stable clinical course, and in 2 patients PET detected residual tumor after presumably complete tumor resection. CONCLUSION Our findings suggest that (18)F-FET PET can add valuable information for clinical decision making in pediatric brain tumor patients.
Collapse
Affiliation(s)
- Veronika Dunkl
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany Department of Neurology, University of Cologne, Cologne, Germany
| | - Corvin Cleff
- Department of Neurology, University of Cologne, Cologne, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Natalie Judov
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | | | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Lars Bøgeskov
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Karsten Nysom
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Sofie B Andersen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany Department of Neurology, University of Cologne, Cologne, Germany
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Heinz H Coenen
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany Department of Nuclear Medicine, University of Aachen, Aachen, Germany; and
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany Department of Neurology, University of Cologne, Cologne, Germany Center of Integrated Oncology (CIO), University of Cologne, Cologne, Germany
| |
Collapse
|
43
|
Teixeira SR, Martinez-Rios C, Hu L, Bangert BA. Clinical applications of pediatric positron emission tomography-magnetic resonance imaging. Semin Roentgenol 2014; 49:353-66. [PMID: 25498232 DOI: 10.1053/j.ro.2014.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sara R Teixeira
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Division of Radiology, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo, Brazil
| | - Claudia Martinez-Rios
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Western Reserve University, Cleveland, OH
| | | | - Barbara A Bangert
- Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH; Case Western Reserve University, Cleveland, OH.
| |
Collapse
|
44
|
Affiliation(s)
- Karl-Olof Lövblad
- Service neuro-diagnostique et neuro-interventionnel, département DISIM, hôpitaux universitaires de Genève, 1211 Geneva, Switzerland.
| |
Collapse
|
45
|
Hu Z, Yang W, Liu H, Wang K, Bao C, Song T, Wang J, Tian J. From PET/CT to PET/MRI: advances in instrumentation and clinical applications. Mol Pharm 2014; 11:3798-809. [PMID: 25058336 DOI: 10.1021/mp500321h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multimodality imaging of positron emission tomography/computed tomography (PET/CT) provides both metabolic information and the anatomic structure, which is significantly superior to either PET or CT alone and has greatly improved its clinical applications. Because of the higher soft-tissue contrast of magnetic resonance imaging (MRI) and no extra ionizing radiation, PET/MRI imaging is the hottest topic currently. PET/MRI is swiftly making its way into clinical practice. However, it has many technical difficulties to overcome, such as photomultiplier tubes, which cannot work properly in a magnetic field, and the inability to provide density information on the object for attenuation correction. This paper introduces the technique process of PET/MRI and summarizes its clinical applications, including imaging in oncology, neurology, and cardiology.
Collapse
Affiliation(s)
- Zhenhua Hu
- Institute of Automation, Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Martinez-Rios C, Muzic RF, DiFilippo FP, Hu L, Rubbert C, Herrmann KA. Artifacts and diagnostic pitfalls in positron emission tomography-magnetic resonance imaging. Semin Roentgenol 2014; 49:255-70. [PMID: 25497910 DOI: 10.1053/j.ro.2014.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Raymond F Muzic
- Department of Radiology, Case Western Reserve University, Cleveland, OH; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH
| | - Frank P DiFilippo
- Department of Nuclear Medicine, Cleveland Clinic, Imaging Institute, Cleveland, OH
| | | | - Christian Rubbert
- Institute of Diagnostic and Interventional Radiology, University Hospitals, Düsseldorf, Germany
| | - Karin A Herrmann
- Department of Radiology, Case Western Reserve University, Cleveland, OH; Department of Radiology, University Hospitals Case Medical Center, Cleveland, OH.
| |
Collapse
|
47
|
Hess S, Blomberg BA, Rakheja R, Friedman K, Kwee TC, Høilund-Carlsen PF, Alavi A. A brief overview of novel approaches to FDG PET imaging and quantification. Clin Transl Imaging 2014. [DOI: 10.1007/s40336-014-0062-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
|
49
|
Purz S, Sabri O, Viehweger A, Barthel H, Kluge R, Sorge I, Hirsch FW. Potential Pediatric Applications of PET/MR. J Nucl Med 2014; 55:32S-39S. [PMID: 24762622 DOI: 10.2967/jnumed.113.129304] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Medical imaging with multimodality and whole-body technologies has continuously improved in recent years. The advent of combined modalities such as PET/CT and PET/MR offers new tools with an exact fusion of molecular imaging and high-resolution anatomic imaging. For noninvasive pediatric diagnostics, molecular imaging and whole-body MR have become important, especially in pediatric oncology. Because it has a lower radiation exposure than PET/CT, combined PET/MR is expected to be of special use in pediatric diagnostics. This review focuses on possible pediatric applications of PET/MR hybrid imaging, particularly pediatric oncology and neurology but also the diagnosis of infectious or inflammatory diseases.
Collapse
Affiliation(s)
- Sandra Purz
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany; and
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany; and
| | - Adrian Viehweger
- Department of Pediatric Radiology, University Hospital of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany; and
| | - Regine Kluge
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany; and
| | - Ina Sorge
- Department of Pediatric Radiology, University Hospital of Leipzig, Leipzig, Germany
| | | |
Collapse
|
50
|
Jena A, Taneja S, Goel R, Renjen P, Negi P. Reliability of semiquantitative ¹⁸F-FDG PET parameters derived from simultaneous brain PET/MRI: a feasibility study. Eur J Radiol 2014; 83:1269-1274. [PMID: 24813529 DOI: 10.1016/j.ejrad.2014.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 02/01/2023]
Abstract
PURPOSE Simultaneous brain PET/MRI faces an important issue of validation of accurate MRI based attenuation correction (AC) method for precise quantitation of brain PET data unlike in PET/CT systems where the use of standard, validated CT based AC is routinely available. The aim of this study was to investigate the feasibility of evaluation of semiquantitative (18)F-FDG PET parameters derived from simultaneous brain PET/MRI using ultrashort echo time (UTE) sequences for AC and to assess their agreement with those obtained from PET/CT examination. METHODS Sixteen patients (age range 18-73 years; mean age 49.43 (19.3) years; 13 men 3 women) underwent simultaneous brain PET/MRI followed immediately by PET/CT. Quantitative analysis of brain PET images obtained from both studies was undertaken using Scenium v.1 brain analysis software package. Twenty ROIs for various brain regions were system generated and 6 semiquantitative parameters including maximum standardized uptake value (SUV max), SUV mean, minimum SUV (SUV min), minimum standard deviation (SD min), maximum SD (SD max) and SD from mean were calculated for both sets of PET data for each patient. Intra-class correlation coefficients (ICCs) were determined to assess agreement between the various semiquantitative parameters for the two PET data sets. RESULTS Intra-class co-relation between the two PET data sets for SUV max, SUV mean and SD max was highly significant (p<0.00) for all the 20 predefined brain regions with ICC>0.9. SD from mean was also found to be statistically significant for all the predefined brain regions with ICC>0.8. However, SUV max and SUV mean values obtained from PET/MRI were significantly lower compared to those of PET/CT for all the predefined brain regions. CONCLUSION PET quantitation accuracy using the MRI based UTE sequences for AC in simultaneous brain PET/MRI is reliable in a clinical setting, being similar to that obtained using PET/CT.
Collapse
Affiliation(s)
- Amarnath Jena
- Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Mathura Road, New Delhi 110076, Delhi, India.
| | - Sangeeta Taneja
- Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Mathura Road, New Delhi 110076, Delhi, India.
| | - Reema Goel
- Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Mathura Road, New Delhi 110076, Delhi, India.
| | - Pushpendranath Renjen
- Department of Neurology, Indraprastha Apollo Hospitals, Sarita Vihar, Mathura Road, New Delhi 110076, Delhi, India.
| | - Pradeep Negi
- Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Mathura Road, New Delhi 110076, Delhi, India.
| |
Collapse
|