1
|
Hannan R, Salamekh S, Desai NB, Garant A, Folkert MR, Costa DN, Mannala S, Ahn C, Mohamad O, Laine A, Kim DWN, Dickinson T, Raj GV, Shah RB, Wang J, Jia X, Choy H, Roehrborn CG, Lotan Y, Timmerman RD. SAbR for High-Risk Prostate Cancer-A Prospective Multilevel MRI-Based Dose Escalation Trial. Int J Radiat Oncol Biol Phys 2021; 113:290-301. [PMID: 34774676 DOI: 10.1016/j.ijrobp.2021.10.137] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE Radiation dose intensification improves outcome in men with high-risk prostate cancer (HR-PCa). A prospective trial was conducted to determine safety, feasibility, and maximal tolerated dose of multilevel magnetic resonance imaging (MRI)-based 5-fraction SAbR in patients with HR-PCa. METHODS AND MATERIALS This phase I clinical trial enrolled patients with HR-PCa with grade group ≥4, prostate-specific antigen (PSA) ≥20 ng/mL, or radiographic ≥T3, and well-defined prostatic lesions on multiparametric MRI (mpMRI) into 4 dose-escalation cohorts. The initial cohort received 47.5 Gy to the prostate, 50 Gy to mpMRI-defined intraprostatic lesion(s), and 22.5 Gy to pelvic lymph nodes in 5 fractions. Radiation doses were escalated for pelvic nodes to 25 Gy and mpMRI lesion(s) to 52.5 Gy and then 55 Gy. Escalation was performed sequentially according to rule-based trial design with 7 to 15 patients per cohort and a 90-day observation period. All men received peri-rectal hydrogel spacer, intraprostatic fiducial placement, and 2 years of androgen deprivation. The primary endpoint was maximal tolerated dose according to a 90-day acute dose-limiting toxicity (DLT) rate <33%. DLT was defined as National Cancer Institute Common Toxicity Criteria for Adverse Events ≥grade 3 treatment-related toxicity. Secondary outcomes included acute and delayed gastrointestinal (GI)/genitourinary (GU) toxicity graded with Common Toxicity Criteria for Adverse Events. RESULTS Fifty-five of the 62 enrolled patients were included in the analysis. Dose was escalated through all 4 cohorts without observing any DLTs. Median overall follow-up was 18 months, with a median follow-up of 42, 24, 12, and 7.5 months for cohorts 1 to 4 respectively. Acute and late grade 2 GU toxicities were 25% and 20%, while GI were 13% and 7%, respectively. Late grade 3 GU and GI toxicities were 2% and 0%, respectively. CONCLUSIONS SAbR dose for HR-PCa was safely escalated with multilevel dose painting of 47.5 Gy to prostate, 55 Gy to mpMRI-defined intraprostatic lesions, and 25 Gy to pelvic nodal region in 5 fractions. Longer and ongoing follow-up will be required to assess late toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chul Ahn
- Population and Data Science, Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas
| | - Osama Mohamad
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Aaron Laine
- The Center for Cancer and Blood Disorders, Fort Worth, Texas
| | | | | | | | | | | | - Xun Jia
- Departments of Radiation Oncology
| | - Hak Choy
- Departments of Radiation Oncology
| | | | | | - Robert D Timmerman
- Departments of Radiation Oncology; Neurosurgery, Simmons Comprehensive Cancer Center, University of Texas at Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
2
|
Deal M, Bardet F, Walker PM, de la Vega MF, Cochet A, Cormier L, Bentellis I, Loffroy R. Three-dimensional nuclear magnetic resonance spectroscopy: a complementary tool to multiparametric magnetic resonance imaging in the identification of aggressive prostate cancer at 3.0T. Quant Imaging Med Surg 2021; 11:3749-3766. [PMID: 34341747 DOI: 10.21037/qims-21-331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Background The limitations of the assessment of tumor aggressiveness by Prostate Imaging Reporting and Data System (PI-RADS) and biopsies suggest that the diagnostic algorithm could be improved by quantitative measurements in some chosen indications. We assessed the tumor high-risk predictive performance of 3.0 Tesla (3.0T) multiparametric magnetic resonance imaging (mp-MRI) combined with nuclear magnetic resonance spectroscopic sequences (NMR-S) in order to show that the metabolic analysis could bring out an evocative result for the aggressive form of prostate cancer. Methods We conducted a retrospective study of 26 patients (mean age, 62.4 years) who had surgery for prostate cancer between 2009 and 2016 after pre-therapeutic assessment with 3.0T mp-MRI and NMR-S. Groups within the intermediate range of the D'Amico risk classification were divided into two categories, low risk (n=20) and high risk (n=6), according to the International Society of Urological Pathology (ISUP) 2-3 limit. Histoprognostic discordances within various risk groups were compared with the corresponding predictive MRI values. The performance of predictive models was assessed based on sensitivity, specificity, and the area under the curve (AUC) of receiver operating characteristic (ROC) curves. Results After prostatectomy, histological analysis reclassified 18 patients as high-risk, including 16 who were T3 MRI grade, of whom 13 (81.3%) were found to be pT3. Among the patients who had cT1 or cT2 digital rectal examinations, the T3 MRI factor multiplied by 8.7 [odds ratio (OR), 8.7; 95% confidence interval (CI), 1.3-56.2; P=0.024] the relative risk of being pT3 and by 5.8 (OR, 5.8; 95% CI, 0.95-35.7; P=0.05) the relative risk of being pGleason (pGS) > GS-prostate biopsy. Spectroscopic data showed that the choline concentration was significantly higher (P=0.001) in aggressive disease. Conclusions The predictive model of tumor aggressiveness combining mp-MRI plus NMR-S was better than the mp-MRI model alone (AUC, 0.95 vs. 0.86). Information obtained by mp-MRI coupled with spectroscopy may improve the detection of occult aggressive disease, helping in the discrimination of intermediate risks.
Collapse
Affiliation(s)
- Michael Deal
- Department of Urology and Andrology, Arnault Tzanck Private Institute, Mougins Sophia-Antipolis, Mougins Cedex, France.,Department of Urology and Andrology, François-Mitterrand University Hospital, Dijon, France
| | - Florian Bardet
- Department of Urology and Andrology, François-Mitterrand University Hospital, Dijon, France
| | - Paul-Michael Walker
- Department of Spectroscopy and Nuclear Magnetic Resonance, François-Mitterrand University Hospital, Dijon, France.,ImViA Laboratory, EA-7535, Training and Research Unit in Health Sciences, University of Bourgogne/Franche-Comté, Dijon, France
| | | | - Alexandre Cochet
- Department of Spectroscopy and Nuclear Magnetic Resonance, François-Mitterrand University Hospital, Dijon, France.,ImViA Laboratory, EA-7535, Training and Research Unit in Health Sciences, University of Bourgogne/Franche-Comté, Dijon, France
| | - Luc Cormier
- Department of Urology and Andrology, François-Mitterrand University Hospital, Dijon, France
| | - Imad Bentellis
- Department of Urology and Andrology, Sophia Antipolis University Hospital, Nice, France
| | - Romaric Loffroy
- ImViA Laboratory, EA-7535, Training and Research Unit in Health Sciences, University of Bourgogne/Franche-Comté, Dijon, France.,Department of Radiology and Medical Imaging, François-Mitterrand University Hospital, Dijon, France
| |
Collapse
|
3
|
Impact of the Number of Cores on the Prostate Cancer Detection Rate in Men Undergoing in-Bore Magnetic Resonance Imaging-Guided Targeted Biopsies. J Comput Assist Tomogr 2021; 45:203-209. [PMID: 33273160 DOI: 10.1097/rct.0000000000001115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the incremental detection rate of clinically significant prostate cancer (csPCa) provided by sequential cores during in-bore magnetic resonance imaging (MRI)-guided prostate biopsies. METHODS Single-center, retrospective interpretation of prospectively acquired data in men without previous diagnosis of csPCa who underwent in-bore MRI-guided prostate biopsy between May 2017 and December 2019. Endpoints included detection of csPCa (grade group [GG] ≥ 2) and rate of GG upgrade provided by additional cores. Descriptive statistics presented as mean and standard deviation for the continuous variables, and frequency and percentage for the categorical variables. RESULTS Four hundred and forty-three men with 747 lesions met eligibility criteria. Clinically significant prostate cancer was detected in 43.1% (322/747) of the biopsied lesions and GG 2 PCa or greater was identified by the first core in 78.3% (252/322) of them. On a per-core basis, cores 2, 3, 4, and 5 found new csPCa in 6% (42/744), 4% (26/719), 1% (2/137), and 0% (0/11) of the cases. Core biopsy 2, 3, 4, and 5 resulted in GG upgrade in 12% (91/744), 7% (49/719), 7% (9/137), and 0% (0/11) of the lesions, respectively. Each additional core was associated with a mean increase of 5 minutes in the duration of the biopsy. CONCLUSIONS In men undergoing in-bore MRI-guided prostate biopsies, 3 targeted cores per lesion provide an optimal trade-off between detection of clinically significant tumors and biopsy duration.
Collapse
|
4
|
Magnetic Resonance Imaging–guided In-bore and Magnetic Resonance Imaging-transrectal Ultrasound Fusion Targeted Prostate Biopsies: An Adjusted Comparison of Clinically Significant Prostate Cancer Detection Rate. Eur Urol Oncol 2019; 2:397-404. [DOI: 10.1016/j.euo.2018.08.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/19/2018] [Accepted: 08/25/2018] [Indexed: 11/13/2022]
|
5
|
Shukla-Dave A, Obuchowski NA, Chenevert TL, Jambawalikar S, Schwartz LH, Malyarenko D, Huang W, Noworolski SM, Young RJ, Shiroishi MS, Kim H, Coolens C, Laue H, Chung C, Rosen M, Boss M, Jackson EF. Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging 2019; 49:e101-e121. [PMID: 30451345 PMCID: PMC6526078 DOI: 10.1002/jmri.26518] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability, the methods and studies on how to reduce measurement error and bias in the derived imaging metrics is still lacking in the literature. This is of paramount importance because the objective is to translate these quantitative imaging biomarkers (QIBs) into clinical trials, and ultimately in clinical practice. Standardization of the image acquisition using appropriate phantoms is the first step from a technical performance standpoint. The next step is to assess whether the imaging metrics have clinical value and meet the requirements for being a QIB as defined by the Radiological Society of North America's Quantitative Imaging Biomarkers Alliance (QIBA). The goal and mission of QIBA and the National Cancer Institute Quantitative Imaging Network (QIN) initiatives are to provide technical performance standards (QIBA profiles) and QIN tools for producing reliable QIBs for use in the clinical imaging community. Some of QIBA's development of quantitative diffusion-weighted imaging and dynamic contrast-enhanced QIB profiles has been hampered by the lack of literature for repeatability and reproducibility of the derived QIBs. The available research on this topic is scant and is not in sync with improvements or upgrades in MRI technology over the years. This review focuses on the need for QIBs in oncology applications and emphasizes the importance of the assessment of their reproducibility and repeatability. Level of Evidence: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;49:e101-e121.
Collapse
Affiliation(s)
- Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy A. Obuchowski
- Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lawrence H. Schwartz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Wei Huang
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Susan M. Noworolski
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Robert J. Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark S. Shiroishi
- Division of Neuroradiology, Department of Radiology, University of Southern California, Los Angeles, CA, USA
| | - Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham AL, USA
| | - Catherine Coolens
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Canada
| | | | - Caroline Chung
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark Rosen
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Michael Boss
- Applied Physics Division, National Institute of Standards and Technology, Boulder, CO, USA
| | - Edward F. Jackson
- Departments of Medical Physics, Radiology, and Human Oncology, University of Wisconsin School of Medicine, Madison, WI, USA
| |
Collapse
|
6
|
Hutchinson R, Lotan Y. Cost consideration in utilization of multiparametric magnetic resonance imaging in prostate cancer. Transl Androl Urol 2017; 6:345-354. [PMID: 28725576 PMCID: PMC5503976 DOI: 10.21037/tau.2017.01.13] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The screening, evaluation and management of prostate cancer changed significantly in the last decade. The recommendations regarding prostate cancer screening continue to evolve with new revelations about existing data sets and longer followup of landmark trials. Robotics has gained the vast majority of the marketplace for surgically managed prostate cancer in rapid fashion. The need for intervention in low risk prostate cancer has been closely examined and more men are being expectantly managed than ever before. Amidst all these changes, prostate magnetic resonance imaging (MRI) has emerged as a disruptive technology. Through the use of dynamic contrast-enhanced and diffusion weighted series, prostate tumors that were previously not visible have become identifiable and quantifiable. The ability of MRI to improve staging and identification of clinically significant disease has resulted in increased utilization for different aspects of prostate cancer care. The best studied use is in men with a prior negative transrectal ultrasound guided (TRUS) prostate biopsy and the performance characteristics in this role match well with the clinical question raised. The role for MRI in initial biopsy, in pre-surgical planning before prostatectomy and in men on active surveillance is less well defined. A primary concern in the use of MRI is that of cost. MRI units are expensive, both in initial outlay and ongoing use. The availability of MRI varies widely between countries and even within regions of the same country. Different healthcare models have different approaches for allocating the use of expensive resources, including MRI, in times when they are scarce. Prostate MRI can be used at multiple points in the management algorithm of prostate cancer and each implies different cost concerns. In this review we present an overview of current research in cost and cost efficacy for the use of MRI in the management of prostate cancer. By examining what is known and highlighting areas of ongoing research we hope to provide the reader with a solid foundation for understanding these complex, ever-changing issues.
Collapse
Affiliation(s)
- Ryan Hutchinson
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Borofsky S, Haji-Momenian S, Shah S, Taffel M. Multiparametric MRI of the prostate gland: technical aspects. Future Oncol 2016; 12:2445-2462. [DOI: 10.2217/fon-2016-0218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
8
|
Abstract
Multiparametric MR imaging (mpMRI) combine different sequences that, properly tailored, can provide qualitative and quantitative information about the tumor microenvironment beyond traditional tumor size measures and/or morphologic assessments. This article focuses on mpMRI in the evaluation of urogenital tract malignancies by first reviewing technical aspects and then discussing its potential clinical role. This includes insight into histologic subtyping and grading of renal cell carcinoma and assessment of tumor response to targeted therapies. The clinical utility of mpMRI in the staging and grading of ureteral and bladder tumors is presented. Finally, the evolving role of mpMRI in prostate cancer is discussed.
Collapse
|
9
|
Davis R, Salmasi A, Koprowski C, Kim S, Kwon YS, Faiena I, Patel N, Elsamra SE, Kim IY. Accuracy of Multiparametric Magnetic Resonance Imaging for Extracapsular Extension of Prostate Cancer in Community Practice. Clin Genitourin Cancer 2016; 14:e617-e622. [PMID: 27188968 DOI: 10.1016/j.clgc.2016.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/13/2016] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The presence of extracapsular extension (ECE) in prostate cancer (PCa) can influence a surgeon's decision to perform a nerve-sparing approach during radical prostatectomy (RP). Preoperatively, multiparametric MRI (mp-MRI) is often used to stage PCa. More recently, the use of mp-MRI has gained wide acceptance in fusion biopsy of the prostate. In this framework, the reported accuracy of mp-MRI has been highly variable, with data often originating from large referral centers with experienced radiologists. We sought to determine the sensitivity and specificity of mp-MRI for detecting ECE in the community. MATERIALS AND METHODS We reviewed a prospectively maintained database of men with PCa who had undergone RP. We recorded the prevalence of ECE at RP and determined the sensitivity, specificity, positive predictive value, and negative predictive value of MRI for detecting ECE. We assessed these values according to the D'Amico risk groups and compared the predictive value of MRI to that of the Partin tables. RESULTS The prevalence of ECE was 11.5%, 28.1%, and 47.1% in the low-, intermediate, and high-risk groups, respectively, with an overall prevalence of 24.1%. The overall sensitivity, specificity, positive predictive value, and negative predictive value of MRI was 12.5%, 93.1%, 36.4%, and 77.0%, respectively. CONCLUSION The reduction in the sensitivity of preoperative mp-MRI to determine ECE in the community setting is significant. Even with stratification using the D'Amico criteria and Partin tables, the performance of mp-MRI was not significantly improved. Because most cases of PCa are diagnosed and treated in the community, it is questionable whether mp-MRI is a suitable staging modality in the community.
Collapse
Affiliation(s)
- Rachel Davis
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Division of Urology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Amirali Salmasi
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Division of Urology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Christopher Koprowski
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Division of Urology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Sinae Kim
- Department of Biostatistics, Rutgers School of Public Health, Piscataway, NJ
| | - Young Suk Kwon
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Division of Urology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Izak Faiena
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Division of Urology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Neal Patel
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Division of Urology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Sammy E Elsamra
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Division of Urology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Isaac Yi Kim
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Division of Urology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ.
| |
Collapse
|
10
|
Hutchinson RC, Costa DN, Lotan Y. The economic effect of using magnetic resonance imaging and magnetic resonance ultrasound fusion biopsy for prostate cancer diagnosis. Urol Oncol 2015; 34:296-302. [PMID: 26725249 DOI: 10.1016/j.urolonc.2015.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/24/2023]
Abstract
Prostate magnetic resonance imaging (MRI) is a maturing imaging modality that has been used to improve detection and staging of prostate cancer. The goal of this review is to evaluate the economic effect of the use of MRI and MRI fusion in the diagnosis of prostate cancer. A literature review was used to identify articles regarding efficacy and cost of MRI and MRI-guided biopsies. There are currently a limited number of studies evaluating cost of incorporating MRI into clinical practice. These studies are primarily models projecting cost estimates based on meta-analyses of the literature. There is considerable variance in the effectiveness of MRI-guided biopsies, both cognitive and fusion, based on user experience, type of MRI (3T vs. 1.5T), use of endorectal coil and type of scoring system for abnormalities such that there is still potential for improvement in accuracy. There is also variability in assumed costs of incorporating MRI into clinical practice. The addition of MRI to the diagnostic algorithm for prostate cancer has caused a shift in how we understand the disease and in what tumors are found on initial and repeat biopsies. Further risk stratification may allow more men to pursue noncurative therapy, which in and of itself is cost-effective in properly selected men. As prostate cancer care comes under increasing scrutiny on a national level, there is pressure on providers to be more accurate in their diagnoses. This in turn can lead to additional testing including Multiparametric MRI, which adds upfront cost. Whether the additional cost of prostate MRI is warranted in detection of prostate cancer is an area of intense research.
Collapse
Affiliation(s)
- Ryan C Hutchinson
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Daniel N Costa
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Yair Lotan
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
11
|
Lotan Y, Haddad AQ, Costa DN, Pedrosa I, Rofsky NM, Roehrborn CG. Decision analysis model comparing cost of multiparametric magnetic resonance imaging vs. repeat biopsy for detection of prostate cancer in men with prior negative findings on biopsy. Urol Oncol 2015; 33:266.e9-16. [DOI: 10.1016/j.urolonc.2015.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 01/05/2023]
|