1
|
Mirzaei A, Mashhadi R, Aghsaeifard Z, Izadi M, Dougaheh SNH, Omid R, Guitynavard F, Nikoofar P, Aghamir SMK. Sex-Dependent Paracrine Effect of Conditioned Media From Adipose Tissue Derived Mesenchymal Stem Cells on Prostate Cancer Cells. J Cell Mol Med 2025; 29:e70569. [PMID: 40356028 PMCID: PMC12069013 DOI: 10.1111/jcmm.70569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Considering the different behaviour of cells in response to diseases in different conditions and sex hormone-dependent cancers, we addressed the possible effect of the sex of the source of these cells from adipose tissue on prostate cancer cells. In this in vitro study, we evaluated the effects of male and female MSC Conditioned Media (MCM, FCM) on prostate cancer cells. The assessment included Hoechst dye staining, a scratch-wound assay, a colony formation assay, and a flow cytometric analysis of apoptosis and the cell cycle. We also performed real-time PCR to examine various genes, including apoptosis-related genes, epithelial-mesenchymal transition (EMT) genes, angiogenesis-related genes, and cell growth and survival biomarkers. Our results indicated that the IC50 values were 50% and 75% media in MCM and FCM in each of the three prostate cancer cell lines, respectively. An evaluation of gene expression revealed that in all three prostate cancer cell lines, treatment with MCM was more effective than FCM in reducing the expression of N-Cadherin and Vimentin, EGFR and BCL2 genes (p < 0.001). Furthermore, the MCM significantly increased the expression of BAX and E-Cadherin genes (p < 0.001) in the PC3 cell line. MCM proved to be more effective than FCM in reducing the expression of the epithelial-mesenchymal transition pathway, EGFR gene, and Apoptosis Regulator (BCL2) in the PC3 cell line. Due to its potential in regenerative medicine and cell therapy, this approach may serve as an effective treatment option for advanced prostate cancer.
Collapse
Affiliation(s)
- Akram Mirzaei
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | - Rahil Mashhadi
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | - Ziba Aghsaeifard
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | - Mehrnaz Izadi
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | | | - Reza Omid
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | | | - Parsa Nikoofar
- Department of UrologyThunder Bay Regional Health Research InstituteThunder BayOntarioCanada
| | | |
Collapse
|
2
|
Gallo MC, Elias A, Reynolds J, Ball JR, Lieberman JR. Regional Gene Therapy for Bone Tissue Engineering: A Current Concepts Review. Bioengineering (Basel) 2025; 12:120. [PMID: 40001640 PMCID: PMC11852166 DOI: 10.3390/bioengineering12020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
The management of segmental bone defects presents a complex reconstruction challenge for orthopedic surgeons. Current treatment options are limited by efficacy across the spectrum of injury, morbidity, and cost. Regional gene therapy is a promising tissue engineering strategy for bone repair, as it allows for local implantation of nucleic acids or genetically modified cells to direct specific protein expression. In cell-based gene therapy approaches, a variety of different cell types have been described including mesenchymal stem cells (MSCs) derived from multiple sources-bone marrow, adipose, skeletal muscle, and umbilical cord tissue, among others. MSCs, in particular, have been well studied, as they serve as a source of osteoprogenitor cells in addition to providing a vehicle for transgene delivery. Furthermore, MSCs possess immunomodulatory properties, which may support the development of an allogeneic "off-the-shelf" gene therapy product. Identifying an optimal cell type is paramount to the successful clinical translation of cell-based gene therapy approaches. Here, we review current strategies for the management of segmental bone loss in orthopedic surgery, including bone grafting, bone graft substitutes, and operative techniques. We also highlight regional gene therapy as a tissue engineering strategy for bone repair, with a focus on cell types and cell sources suitable for this application.
Collapse
Affiliation(s)
- Matthew C. Gallo
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Aura Elias
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Julius Reynolds
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Jacob R. Ball
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
3
|
Vogt A, Faher A, Kucharczak J, Birch M, McCaskie A, Khan W. The Effects of Gender on Mesenchymal Stromal Cell (MSC) Proliferation and Differentiation In Vitro: A Systematic Review. Int J Mol Sci 2024; 25:13585. [PMID: 39769346 PMCID: PMC11677156 DOI: 10.3390/ijms252413585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Mesenchymal stromal cells (MSCs) have the potential for novel treatments of several musculoskeletal conditions due to their ability to differentiate into several cell lineages including chondrocytes, adipocytes and osteocytes. Researchers are exploring whether this could be utilized for novel therapies for joint afflictions. The role of gender in the ability of MSCs to differentiate and proliferate into different cells has not been clearly defined. This systematic review aims to report the current literature on studies, characterized by high quality and in-depth analysis even though quantitatively limited, that have looked at the role of gender in the differentiation and proliferation of MSCs. Sixteen studies were identified during the literature search, reporting 533 patients, of which 202 were male and 331 were female. MSC proliferation, phenotypic analysis and differentiation are reported and contrasted in terms of donor gender. Heterogeneity in methodologies across studies likely contributes to the inconclusive findings presented here, with no discernible statistical disparity observed between genders in differentiation traits. Nevertheless, the proliferation results indicate a notable gender-related impact. Future investigations should aim to ascertain the potential influence of gender on MSC proliferation capacities more conclusively, emphasizing the necessity of standardized protocols for MSC analyses to enhance accuracy and comparability across studies.
Collapse
Affiliation(s)
- Antonia Vogt
- Division of Trauma & Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK; (A.V.)
| | - Anissa Faher
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 2SP, UK
| | - Joanna Kucharczak
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 2SP, UK
| | - Mark Birch
- Division of Trauma & Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK; (A.V.)
| | - Andrew McCaskie
- Division of Trauma & Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK; (A.V.)
| | - Wasim Khan
- Division of Trauma & Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK; (A.V.)
| |
Collapse
|
4
|
Kolliopoulos V, Tiffany A, Polanek M, Harley BAC. Donor Sex and Passage Conditions Influence MSC Osteogenic Response in Mineralized Collagen Scaffolds. Adv Healthc Mater 2024; 13:e2400039. [PMID: 39036820 PMCID: PMC11518655 DOI: 10.1002/adhm.202400039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/13/2024] [Indexed: 07/23/2024]
Abstract
Contemporary tissue engineering efforts often seek to use mesenchymal stem cells (MSCs) due to their multi-potent potential and ability to generate a pro-regenerative secretome. While many have reported the influence of matrix environment on MSC osteogenic response, few have investigated the effects of donor and sex. Here, a well-defined mineralized collagen scaffold is used to study the influence of passage number and donor-reported sex on MSC proliferation and osteogenic potential. A library of bone marrow and adipose tissue-derived stem cells from eight donors to examine donor viability in osteogenic capacity in mineralized collagen scaffolds is obtained. MSCs displayed reduced proliferative capacity as a function of passage duration. Further, MSCs showed significant sex-associated variability in osteogenic capacity. Notably, MSCs from male donors displayed significantly higher cell proliferation while MSCs from female donors displayed significantly higher osteogenic response via increased alkaline phosphate activity, osteoprotegerin release, and mineral formation in vitro. The study highlights the essentiality of including donor-reported sex as an experimental variable and reporting culture expansion in future studies of biomaterial regenerative potential.
Collapse
Affiliation(s)
- Vasiliki Kolliopoulos
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aleczandria Tiffany
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maxwell Polanek
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
5
|
Maged G, Abdelsamed MA, Wang H, Lotfy A. The potency of mesenchymal stem/stromal cells: does donor sex matter? Stem Cell Res Ther 2024; 15:112. [PMID: 38644508 PMCID: PMC11034072 DOI: 10.1186/s13287-024-03722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a promising therapeutic tool in cell therapy and tissue engineering because of their multi-lineage differentiation capacity, immunomodulatory effects, and tissue protective potential. To achieve optimal results as a therapeutic tool, factors affecting MSC potency, including but not limited to cell source, donor age, and cell batch, have been investigated. Although the sex of the donor has been attributed as a potential factor that can influence MSC potency and efficacy, the impact of donor sex on MSC characteristics has not been carefully investigated. In this review, we summarize published studies demonstrating donor-sex-related MSC heterogeneity and emphasize the importance of disclosing donor sex as a key factor affecting MSC potency in cell therapy.
Collapse
Affiliation(s)
- Ghada Maged
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Menna A Abdelsamed
- Biotechnology and Life Sciences Department, Faculty of Postgraduate studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, 29425, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Ahmed Lotfy
- Department of Surgery, Medical University of South Carolina, 29425, Charleston, SC, USA.
| |
Collapse
|
6
|
Yan W, Li Y, Yin J, Liu Q, Shi Y, Tan J, Wang Y, Zhang S, Zhang J, Li J, Yan S. Protective effect of human epicardial adipose-derived stem cells on myocardial injury driven by poly-lactic acid nanopillar array. Biotechnol Appl Biochem 2024; 71:110-122. [PMID: 37904285 DOI: 10.1002/bab.2525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/07/2023] [Indexed: 11/01/2023]
Abstract
We investigated if poly-lactic acid (PLA) nanopillar array can trigger the differentiation of human epicardial (ADSCs) (heADSCs) into cardiomyocyte-like cells and explored the effects of these cardiomyocyte-like cells on myocardial infarction (MI) in vivo. PLA nanopillar array (200 nm diameter) and plain PLA film (PLA planar) induced heADSCs were marked with carboxyfluorescein. After 7 days, the expressions of myocardiocyte-specific genes were significantly enhanced in cells seeded on PLA nanopillar array compared with that on PLA planar, especially CACNA1C, KCNH2, and MYL2 genes (p < 0.05). However, the expressions of cardiac troponin T (cTNT), KCNQ1, and KCNA5 were lower than those in PLA planar-induced heADSCs (p < 0.05), whereas GATA4 tended to increase with time. The cells with positively stained α-actinin and cTNT were elevated in heADSCs induced by PLA nanopillar array compared with those induced by PLA planar only (p < 0.05). In vivo experiments showed that cardiac function was improved after injecting PLA-nanopillar array-induced heADSCs into the ischemic heart (p < 0.05, compared with PLA planar + MI group). Furthermore, tyrosine hydroxylase density was significantly lower (p < 0.05). PLA nanopillar array directly drives the differentiation of heADSCs into cardiomyocyte-like cells, and the induced heADSCs exhibit a protective effect on ischemic myocardium by improving cardiac function in MI rats.
Collapse
Affiliation(s)
- Wenju Yan
- Cheeloo College of Medicine, Shandong University& Shandong Qianfoshan Hospital, Jinan, China
- Department of Vasculocardiology, Taian City Central Hospital, Taian, China
| | - Yan Li
- Department of Cardiology, The First Hospital Affiliated to Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jie Yin
- Department of Cardiology, The First Hospital Affiliated to Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qian Liu
- Cheeloo College of Medicine, Shandong University& Shandong Qianfoshan Hospital, Jinan, China
| | - Yugen Shi
- Department of Cardiology, The First Hospital Affiliated to Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiayu Tan
- Department of Cardiology, The First Hospital Affiliated to Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yu Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shan Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, China
| | - Junyi Zhang
- Cheeloo College of Medicine, Shandong University& Shandong Qianfoshan Hospital, Jinan, China
| | - Jingxin Li
- Cheeloo College of Medicine, Shandong University& Shandong Qianfoshan Hospital, Jinan, China
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Suhua Yan
- Cheeloo College of Medicine, Shandong University& Shandong Qianfoshan Hospital, Jinan, China
- Department of Cardiology, The First Hospital Affiliated to Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
7
|
Qu Y, Zhang S, Mu D, Luan J. Effects of Age on the Biological Properties of Cryopreserved Adipose-Derived Stem Cells and ASC-Enriched Fat Grafts. Aesthetic Plast Surg 2023; 47:2734-2744. [PMID: 37563434 DOI: 10.1007/s00266-023-03521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Donor age is an important factor affecting the biological characteristics of human adipose-derived stem cells. The aim of this study was to compare the effects of age on the biological properties of cryopreserved adipose-derived stem cells and fat survival of cell-assisted lipotransfer. METHODS Human lipoaspirates were obtained from 60 healthy female patients (aged 18-65 years) who underwent abdominal liposuction. Samples were divided into three groups according to donor age: group A, 18-29 years; group B, 30-49 years; and group C, 50-65 years. Adipose-derived stem cells were obtained by in vitro culture at the second passage and cryopreserved for 4 weeks. The cryopreserved ASCs were examined for biological characteristics, including cell proliferation, wound healing and adipogenic differentiation. Then, the fat survival of cryopreserved ASC-assisted fat transplantation was compared at different ages. RESULTS SVF viability decreased with increasing age. Moreover, there was a decline in cell proliferation and migration of ASCs with increasing age. A significant difference was found in the adipogenic differentiation of ASCs in the three groups. There were significant differences in graft retention in different age groups. ASC-assisted fat grafting was more effective in young people than in elderly people. CONCLUSIONS Honor age affects the proliferation and migration of adipose-derived stem cells but not the adipogenic differentiation potential of ASCs. Cryopreserved ASCs from younger people more effectively improved the fat survival of grafts. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Yaping Qu
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Sihang Zhang
- School of Public Health, Peking University, Beijing, China
| | - Dali Mu
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Jie Luan
- Breast Plastic and Reconstructive Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, China.
| |
Collapse
|
8
|
Guimarães LB, Machado DPD, Carvalho Versiani Caldeira BF, Vieira LTM, Santos GA, Araújo FR, Machado LT, Gomes DA, Ocarino NDM, Serakides R, Reis AMS. Kisspeptin (Kp-10) inhibits in vitro osteogenic differentiation of multipotent mesenchymal stromal cells extracted from the bone marrow of adult rats. Acta Histochem 2023; 125:152112. [PMID: 37948785 DOI: 10.1016/j.acthis.2023.152112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Kisspeptin (Kp-10) is a neuropeptide that binds to GPR54 receptors, exerting several functions mainly in the nervous and reproductive systems of the body. However, its effects and mechanisms of action on the skeletal system remain poorly understood. This study evaluated the effects of different concentrations of Kp-10 on in vitro osteogenic differentiation of multipotent mesenchymal stromal cells (MSCs) extracted from the bone marrow (BM) of adult Wistar rats. Two-month-old female rats were euthanized to extract BM from long bones to obtain MSCs. Four experimental groups were established in vitro: a control and Kp-10 at concentrations of 0.01, 0.05 and, 0.1 µg/mL. After induction of osteogenic differentiation, cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl tetrazolium bromide (MTT) assay, alkaline phosphatase activity, collagen synthesis, percentage of area covered by MSCs/field and mineralized nodules/field, and immunocytochemistry of the GPR54 receptor tests. Furthermore, evaluation of gene transcripts for type I collagen, Runx-2, Bmp-2, bone sialoprotein, osteocalcin and osteopontin was performed using real-time RT-qPCR. It was observed that MSCs expressed GPR54 receptor to which Kp-10 binds during osteogenic differentiation, promoting a negative effect on osteogenic differentiation. This effect was observed at all the Kp-10 concentrations in a concentration-dependent manner, characterized by a decrease in the activity of alkaline phosphatase, collagen synthesis, mineralized nodules, and decreased expression of gene transcripts for type I collagen, osteocalcin, osteopontin, and Runx-2. Thus, Kp-10 inhibits in vitro osteogenic differentiation of MSCs extracted from the BM of adult Wistar rats.
Collapse
Affiliation(s)
- Laís Bitencourt Guimarães
- Departamento de Patologia Geral do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, CEP: 30.161-970 Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Portela Dias Machado
- Departamento de Farmacologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, CEP: 30.161-970 Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz Ferreira Carvalho Versiani Caldeira
- Departamento de Patologia Geral do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, CEP: 30.161-970 Belo Horizonte, Minas Gerais, Brazil
| | - Larissa Tiemi Matuzake Vieira
- Departamento de Patologia Geral do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, CEP: 30.161-970 Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela Alves Santos
- Departamento de Patologia Geral do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, CEP: 30.161-970 Belo Horizonte, Minas Gerais, Brazil
| | - Fabiana Rocha Araújo
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) do Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, campus Pampulha da UFMG, Av. Antônio Carlos 6627, Caixa Postal 567, CEP 30.123-970 Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo Teotônio Machado
- Departamento de Patologia Geral do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, CEP: 30.161-970 Belo Horizonte, Minas Gerais, Brazil
| | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, CEP: 30.161-970 Belo Horizonte, Minas Gerais, Brazil
| | - Natália de Melo Ocarino
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) do Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, campus Pampulha da UFMG, Av. Antônio Carlos 6627, Caixa Postal 567, CEP 30.123-970 Belo Horizonte, Minas Gerais, Brazil
| | - Rogéria Serakides
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) do Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, campus Pampulha da UFMG, Av. Antônio Carlos 6627, Caixa Postal 567, CEP 30.123-970 Belo Horizonte, Minas Gerais, Brazil
| | - Amanda Maria Sena Reis
- Departamento de Patologia Geral do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, CEP: 30.161-970 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Pinheiro-Machado E, Getova VE, Harmsen MC, Burgess JK, Smink AM. Towards standardization of human adipose-derived stromal cells secretomes. Stem Cell Rev Rep 2023; 19:2131-2140. [PMID: 37300663 PMCID: PMC10579120 DOI: 10.1007/s12015-023-10567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
The secretome of adipose-derived stromal cells (ASC) is a heterogeneous mixture of components with a beneficial influence on cellular microenvironments. As such, it represents a cell-free alternative in regenerative medicine therapies. Pathophysiological conditions increase the therapeutic capacity of ASC and, with this, the benefits of the secretome. Such conditions can be partially mimicked in vitro by adjusting culturing conditions. Secretomics, the unbiased analysis of a cell secretome by mass spectrometry, is a powerful tool to describe the composition of ASC secretomes. In this proteomics databases review, we compared ASC secretomic studies to retrieve persistently reported proteins resulting from the most explored types of culturing conditions used in research, i.e., exposure to normoxia, hypoxia, or cytokines. Our comparisons identified only eight common proteins within ASC normoxic secretomes, no commonalities within hypoxic ASC secretomes, and only nine within secretomes of ASC exposed to proinflammatory cytokines. Within these, and regardless of the culturing condition that stimulated secretion, a consistent presence of extracellular matrix-related pathways associated with such proteins was identified. Confounders such as donors' age, sex, body mass index, the anatomical area where ASC were harvested, secretome collection method, data description, and how the data is shared with the scientific community are discussed as factors that might explain our outcomes. We conclude that standardization is imperative as the currently available ASC secretomic studies do not facilitate solid conclusions on the therapeutic value of different ASC secretomes.
Collapse
Affiliation(s)
- Erika Pinheiro-Machado
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
| | - Vasilena E Getova
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin C Harmsen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Janette K Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
10
|
Mayfield CK, Lechtholz-Zey E, Ayad M, Sugiyama O, Lieberman JR. Human Bone Marrow versus Adipose-Derived Stem Cells: Influence of Donor Characteristics on Expandability and Implications for Osteogenic Ex Vivo BMP-2 Regional Gene Therapy. J Tissue Eng Regen Med 2023; 2023:8061890. [PMID: 40226412 PMCID: PMC11919156 DOI: 10.1155/2023/8061890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 04/15/2025]
Abstract
Novel treatment strategies for segmental bone loss in orthopaedic surgery remain under investigation. Regional gene therapy that involves transduction of mesenchymal stem cells with a lentiviral vector that expresses BMP-2 has gained particular interest as this strategy provides osteogenic and osteoinductive factors for bone growth. In particular, transduced adipose-derived stems cells (ASCs) and bone marrow-derived stem cells (BMSCs) have emerged as the leading candidates for the treatment of segmental defects in preclinical models. The aim of the present study was to evaluate the influence of demographic information on in vitro growth characteristics and bone morphogenetic protein-2 production following lentiviral transduction in a large cohort of human donors. We further sought to assess the effects of ASC harvest site on cell yield and growth characteristics. We evaluated a total of 187 human donors (124 adipose harvests and 63 bone marrow aspirates) in our cohort. We found that across all donors, ASCs demonstrated favorable growth characteristics and could be cultured in vitro more reliably than BMSCs regardless of patient-related factors. Furthermore, we noted that following lentiviral transduction, ASCs produced significantly higher levels of BMP-2 compared to BMSCs. Lastly, despite higher initial cell yields from lipoaspirate, posttransduction BMP-2 production was less than that of infrapatellar fat pad samples. These results support the continued investigation of ASCs as a cellular delivery vehicle for regional gene therapy to deliver osteoinductive proteins to specific anatomic bone repair sites.
Collapse
Affiliation(s)
- Cory K. Mayfield
- Keck School of Medicine of USC, Department of Orthopaedic Surgery, Los Angeles, USA
| | | | - Mina Ayad
- Keck School of Medicine of USC, Department of Orthopaedic Surgery, Los Angeles, USA
| | - Osamu Sugiyama
- Keck School of Medicine of USC, Department of Orthopaedic Surgery, Los Angeles, USA
| | - Jay R. Lieberman
- Keck School of Medicine of USC, Department of Orthopaedic Surgery, Los Angeles, USA
| |
Collapse
|
11
|
Georgiev-Hristov T, García-Arranz M, Trébol-López J, Barba-Recreo P, García-Olmo D. Searching for the Optimal Donor for Allogenic Adipose-Derived Stem Cells: A Comprehensive Review. Pharmaceutics 2022; 14:2338. [PMID: 36365156 PMCID: PMC9696054 DOI: 10.3390/pharmaceutics14112338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/22/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2023] Open
Abstract
Adipose-derived stem cells comprise several clinically beneficial qualities that have been explored in basic research and have motivated several clinical studies with promising results. After being approved in the European Union, UK, Switzerland, Israel, and Japan, allogeneic adipose-derived stem cells (darvadstrocel) have been recently granted a regenerative medicine advanced therapy (RMAT) designation by US FDA for complex perianal fistulas in adults with Crohn's disease. This huge scientific step is likely to impact the future spread of the indications of allogeneic adipose-derived stem cell applications. The current knowledge on adipose stem cell harvest describes quantitative and qualitative differences that could be influenced by different donor conditions and donor sites. In this comprehensive review, we summarize the current knowledge on the topic and propose donor profiles that could provide the optimal initial quality of this living drug, as a starting point for further applications and studies in different pathological conditions.
Collapse
Affiliation(s)
- Tihomir Georgiev-Hristov
- Servicio de Cirugía General y del Aparato Digestivo, Hospital General Universitario de Villalba, 28400 Madrid, Spain
- Facultad de Medicina, Universidad Alfonso X, 28691 Madrid, Spain
| | - Mariano García-Arranz
- Instituto de Investigación Sanitaria, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
- Departamento de Cirugía, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Jacobo Trébol-López
- Servicio de Cirugía General y del Aparato Digestivo, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Paula Barba-Recreo
- Facultad de Medicina, Universidad Alfonso X, 28691 Madrid, Spain
- Servicio de Cirugía Maxilofacial, Hospital Universitario Rey Juan Carlos, 28933 Madrid, Spain
| | - Damián García-Olmo
- Instituto de Investigación Sanitaria, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
- Departamento de Cirugía, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
12
|
Collon K, Bell JA, Gallo MC, Chang SW, Bougioukli S, Sugiyama O, Tassey J, Hollis R, Heckmann N, Oakes DA, Longjohn DB, Evseenko D, Kohn DB, Lieberman JR. Influence of donor age and comorbidities on transduced human adipose-derived stem cell in vitro osteogenic potential. Gene Ther 2022; 30:369-376. [PMID: 36216880 PMCID: PMC10086075 DOI: 10.1038/s41434-022-00367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 01/17/2023]
Abstract
Human adipose-derived mesenchymal stem cells (ASCs) transduced with a lentiviral vector system to express bone morphogenetic protein 2 (LV-BMP-2) have been shown to reliably heal bone defects in animal models. However, the influence of donor characteristics such as age, sex, race, and medical co-morbidities on ASC yield, growth and bone regenerative capacity, while critical to the successful clinical translation of stem cell-based therapies, are not well understood. Human ASCs isolated from the infrapatellar fat pads in 122 ASC donors were evaluated for cell growth characteristics; 44 underwent additional analyses to evaluate in vitro osteogenic potential, with and without LV-BMP-2 transduction. We found that while female donors demonstrated significantly higher cell yield and ASC growth rates, age, race, and the presence of co-morbid conditions were not associated with differences in proliferation. Donor demographics or the presence of comorbidities were not associated with differences in in vitro osteogenic potential or stem cell differentiation, except that transduced ASCs from healthy donors produced more BMP-2 at day 2. Overall, donor age, sex, race, and the presence of co-morbid conditions had a limited influence on cell yield, proliferation, self-renewal capacity, and osteogenic potential for non-transduced and transduced (LV-BMP-2) ASCs. These results suggest that ASCs are a promising resource for both autologous and allogeneic cell-based gene therapy applications.
Collapse
Affiliation(s)
- Kevin Collon
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave,HMR 702, Los Angeles, CA, 90089, USA.
| | - Jennifer A Bell
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave,HMR 702, Los Angeles, CA, 90089, USA
| | - Matthew C Gallo
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave,HMR 702, Los Angeles, CA, 90089, USA
| | - Stephanie W Chang
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave,HMR 702, Los Angeles, CA, 90089, USA
| | - Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave,HMR 702, Los Angeles, CA, 90089, USA
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave,HMR 702, Los Angeles, CA, 90089, USA
| | - Jade Tassey
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave,HMR 702, Los Angeles, CA, 90089, USA
| | - Roger Hollis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Nathanael Heckmann
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave,HMR 702, Los Angeles, CA, 90089, USA
| | - Daniel A Oakes
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave,HMR 702, Los Angeles, CA, 90089, USA
| | - Donald B Longjohn
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave,HMR 702, Los Angeles, CA, 90089, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave,HMR 702, Los Angeles, CA, 90089, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, 2011 Zonal Ave,HMR 702, Los Angeles, CA, 90089, USA
| |
Collapse
|
13
|
Ren G, Peng Q, Emmersen J, Zachar V, Fink T, Porsborg SR. A Comparative Analysis of the Wound Healing-Related Heterogeneity of Adipose-Derived Stem Cells Donors. Pharmaceutics 2022; 14:2126. [PMID: 36297561 PMCID: PMC9608503 DOI: 10.3390/pharmaceutics14102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Adipose-derived Stem cells (ASCs) are on the verge of being available for large clinical trials in wound healing. However, for developing advanced therapy medicinal products (ATMPs), potency assays mimicking the mode of action are required to control the product consistency of the cells. Thus, greater effort should go into the design of product assays. Therefore, we analyzed three ASC-based ATMPs from three different donors with respect to their surface markers, tri-lineage differentiation, proliferation, colony-forming unit capacity, and effect on fibroblast proliferation and migration, endothelial proliferation, migration, and angiogenesis. Furthermore, the transcriptome of all three cell products was analyzed through RNA-sequencing. Even though all products met the criteria by the International Society for Cell and Gene Therapy and the International Federation for Adipose Therapeutics and Science, we found one product to be consistently superior to others when exploring their potency in the wound healing specific assays. Our results indicate that certain regulatory genes associated with extracellular matrix and angiogenesis could be used as markers of a superior ASC donor from which to use ASCs to treat chronic wounds. Having a panel of assays capable of predicting the potency of the product would ensure the patient receives the most potent product for a specific indication, which is paramount for successful patient treatment and acceptance from the healthcare system.
Collapse
Affiliation(s)
| | | | | | | | | | - Simone R. Porsborg
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark
| |
Collapse
|
14
|
Sheikh-Oleslami S, Hassanpour I, Amiri N, Jalili R, Kilani RT, Ghahary A. An Evaluation of the Treatment of Full-Thickness Wounds Using Adipose Micro-Fragments within a Liquid Dermal Scaffold. EUROPEAN BURN JOURNAL 2022; 3:457-471. [PMID: 39599959 PMCID: PMC11571836 DOI: 10.3390/ebj3030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2024]
Abstract
In full-thickness wounds, inflammation, lack of matrix deposition, and paucity of progenitor cells delay healing. As commercially available solid (sheet) scaffolds are unable to conform to wounds of varying shapes and sizes, we previously generated a nutritious, injectable, liquid skin substitute that can conform to wound topography. In combination with adipose micro-fragments as a viable source of progenitor cells, a composite, in situ forming skin substitute was tested for the treatment of silicon ring splinted full-thickness wounds in rats. The in vitro survivability and migratory capacity of adipocytes derived from rat micro-fragmented fat cultured in our scaffold was examined with a Live/Dead assay, showing viability and migration after 7 and 14 days. In vivo, the efficacy of our scaffold alone (LDS) or with adipose micro-fragments (LDS+A) was compared to a standard dressing protocol (NT). LDS and LDS+A showed ameliorated wound healing, including complete epithelialization and less immune cell infiltration, compared to the NT control. Our findings demonstrate that a 3D liquid skin scaffold is a rich environment for adipocyte viability and migration, and that the addition of adipose micro-fragments to this scaffold can be used as a rich source of cells for treating full-thickness wounds.
Collapse
Affiliation(s)
- Sara Sheikh-Oleslami
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada
| | - Ida Hassanpour
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada
| | - Nafise Amiri
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada
| | - Reza Jalili
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada
- Division of Plastic Surgery, Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ruhangiz Taghi Kilani
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada
| | - Aziz Ghahary
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada
- Division of Plastic Surgery, Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
15
|
Knewtson KE, Ohl NR, Robinson JL. Estrogen Signaling Dictates Musculoskeletal Stem Cell Behavior: Sex Differences in Tissue Repair. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:789-812. [PMID: 34409868 PMCID: PMC9419932 DOI: 10.1089/ten.teb.2021.0094] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sexual dimorphisms in humans and other species exist in visually evident features such as body size and less apparent characteristics, including disease prevalence. Current research is adding to a growing understanding of sex differences in stem cell function and response to external stimuli, including sex hormones such as estrogens. These differences are proving significant and directly impact both the understanding of stem cell processes in tissue repair and the clinical implementation of stem cell therapies. Adult stem cells of the musculoskeletal system, including those used for development and repair of muscle, bone, cartilage, fibrocartilage, ligaments, and tendons, are no exception. Both in vitro and in vivo studies have found differences in stem cell number, proliferative and differentiation capabilities, and response to estrogen treatment between males and females of many species. Maintaining the stemness and reducing senescence of adult stem cells is an important topic with implications in regenerative therapy and aging. As such, this review discusses the effect of estrogens on musculoskeletal system stem cell response in multiple species and highlights the research gaps that still need to be addressed. The following evidence from investigations of sex-related phenotypes in adult progenitor and stem cells are pieces to the big puzzle of sex-related effects on aging and disease and critical information for both fundamental tissue repair and regeneration studies and safe and effective clinical use of stem cells. Impact Statement This review summarizes current knowledge of sex differences in and the effects of estrogen treatment on musculoskeletal stem cells in the context of tissue engineering. Specifically, it highlights the impact of sex on musculoskeletal stem cell function and ability to regenerate tissue. Furthermore, it discusses the varying effects of estrogen on stem cell properties, including proliferation and differentiation, important to tissue engineering. This review aims to highlight the potential impact of estrogens and the importance of performing sex comparative studies in the field of tissue engineering.
Collapse
Affiliation(s)
- Kelsey E. Knewtson
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Nathan R. Ohl
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Jennifer L. Robinson
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, USA
- Address correspondence to: Jennifer L. Robinson, PhD, Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 West 15th Street Room 4132, Lawrence, KS 66045, USA
| |
Collapse
|
16
|
Fernández-Santos ME, Garcia-Arranz M, Andreu EJ, García-Hernández AM, López-Parra M, Villarón E, Sepúlveda P, Fernández-Avilés F, García-Olmo D, Prosper F, Sánchez-Guijo F, Moraleda JM, Zapata AG. Optimization of Mesenchymal Stromal Cell (MSC) Manufacturing Processes for a Better Therapeutic Outcome. Front Immunol 2022; 13:918565. [PMID: 35812460 PMCID: PMC9261977 DOI: 10.3389/fimmu.2022.918565] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 12/20/2022] Open
Abstract
MSCs products as well as their derived extracellular vesicles, are currently being explored as advanced biologics in cell-based therapies with high expectations for their clinical use in the next few years. In recent years, various strategies designed for improving the therapeutic potential of mesenchymal stromal cells (MSCs), including pre-conditioning for enhanced cytokine production, improved cell homing and strengthening of immunomodulatory properties, have been developed but the manufacture and handling of these cells for their use as advanced therapy medicinal products (ATMPs) remains insufficiently studied, and available data are mainly related to non-industrial processes. In the present article, we will review this topic, analyzing current information on the specific regulations, the selection of living donors as well as MSCs from different sources (bone marrow, adipose tissue, umbilical cord, etc.), in-process quality controls for ensuring cell efficiency and safety during all stages of the manual and automatic (bioreactors) manufacturing process, including cryopreservation, the use of cell banks, handling medicines, transport systems of ATMPs, among other related aspects, according to European and US legislation. Our aim is to provide a guide for a better, homogeneous manufacturing of therapeutic cellular products with special reference to MSCs.
Collapse
Affiliation(s)
- Maria Eugenia Fernández-Santos
- Cardiology Department, HGU Gregorio Marañón. GMP-ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM). Complutense University, CIBER Cardiovascular (CIBERCV), ISCIII, Madrid, Spain
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
| | - Mariano Garcia-Arranz
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD). Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | - Enrique J. Andreu
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematology Department and Cell Therapy Area, Clínica Universidad de Navarra. CIBEROC and IDISNA, Pamplona, Spain
| | - Ana Maria García-Hernández
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Miriam López-Parra
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Eva Villarón
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Pilar Sepúlveda
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Francisco Fernández-Avilés
- Cardiology Department, HGU Gregorio Marañón. GMP-ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM). Complutense University, CIBER Cardiovascular (CIBERCV), ISCIII, Madrid, Spain
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
| | - Damian García-Olmo
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD). Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | - Felipe Prosper
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematology Department and Cell Therapy Area, Clínica Universidad de Navarra. CIBEROC and IDISNA, Pamplona, Spain
| | - Fermin Sánchez-Guijo
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Jose M. Moraleda
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Agustin G. Zapata
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Department of Cell Biology, Complutense University, Madrid, Spain
- *Correspondence: Maria Eugenia Fernández-Santos, ; Agustin G. Zapata,
| |
Collapse
|
17
|
Human Sex Matters: Y-Linked Lysine Demethylase 5D Drives Accelerated Male Craniofacial Osteogenic Differentiation. Cells 2022; 11:cells11050823. [PMID: 35269444 PMCID: PMC8909072 DOI: 10.3390/cells11050823] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Female sex is increasingly associated with a loss of bone mass during aging and an increased risk of developing nonunion fractures. Hormonal factors and cell-intrinsic mechanisms are suggested to drive these sexual dimorphisms, although underlying molecular mechanisms are still a matter of debate. Here, we observed a decreased capacity of calvarial bone recovery in female rats and a profound sexually dimorphic osteogenic differentiation in human adult neural crest-derived stem cells (NCSCs). Next to an elevated expression of pro-osteogenic regulators, global transcriptomics revealed Lysine Demethylase 5D (KDM5D) to be highly upregulated in differentiating male NCSCs. Loss of function by siRNA or pharmacological inhibition of KDM5D significantly reduced the osteogenic differentiation capacity of male NCSCs. In summary, we demonstrated craniofacial osteogenic differentiation to be sexually dimorphic with the expression of KDM5D as a prerequisite for accelerated male osteogenic differentiation, emphasizing the analysis of sex-specific differences as a crucial parameter for treating bone defects.
Collapse
|
18
|
Rashid U, Yousaf A, Yaqoob M, Saba E, Moaeen-Ud-Din M, Waseem S, Becker SK, Sponder G, Aschenbach JR, Sandhu MA. Characterization and differentiation potential of mesenchymal stem cells isolated from multiple canine adipose tissue sources. BMC Vet Res 2021; 17:388. [PMID: 34922529 PMCID: PMC8684202 DOI: 10.1186/s12917-021-03100-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are undifferentiated cells that can give rise to a mesoderm lineage. Adipose-derived MSCs are an easy and accessible source for MSCs isolation, although each source of MSC has its own advantages and disadvantages. Our study identifies a promising source for the isolation and differentiation of canines MSCs. For this purpose, adipose tissue from inguinal subcutaneous (SC), perirenal (PR), omental (OM), and infrapatellar fat pad (IPFP) was isolated and processed for MSCs isolation. In the third passage, MSCs proliferation/metabolism, surface markers expression, in vitro differentiation potential and quantitative reverse transcription PCR (CD73, CD90, CD105, PPARγ, FabP4, FAS, SP7, Osteopontin, and Osteocalcin) were evaluated. Results Our results showed that MSCs derived from IPFP have a higher proliferation rate, while OM-derived MSCs have higher cell metabolism. In addition, MSCs from all adipose tissue sources showed positive expression of CD73 (NT5E), CD90 (THY1), CD105 (ENDOGLIN), and very low expression of CD45. The isolated canine MSCs were successfully differentiated into adipogenic and osteogenic lineages. The oil-red-O quantification and adipogenic gene expression (FAS, FabP4, and PPARγ) were higher in OM-derived cells, followed by IPFP-MSCs. Similarly, in osteogenic differentiation, alkaline phosphatase activity and osteogenic gene (SP7 and Osteocalcin) expression were higher in OM-derived MSCs, while osteopontin expression was higher in PR-derived MSCs. Conclusion In summary, among all four adipose tissue sources, OM-derived MSCs have better differentiation potential toward adipo- and osteogenic lineages, followed by IPFP-MSCs. Interestingly, among all adipose tissue sources, MSCs derived from IPFP have the maximum proliferation potential. The characterization and differentiation potential of canine MSCs isolated from four different adipose tissue sources are useful to assess their potential for application in regenerative medicine.
Collapse
Affiliation(s)
- Usman Rashid
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Arfan Yousaf
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Muhammad Yaqoob
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Muhammad Moaeen-Ud-Din
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | | | - Sandra K Becker
- Institute of Veterinary-Physiology, Freie Universität Berlin, Berlin, Germany
| | - Gerhard Sponder
- Institute of Veterinary-Physiology, Freie Universität Berlin, Berlin, Germany
| | - Jörg R Aschenbach
- Institute of Veterinary-Physiology, Freie Universität Berlin, Berlin, Germany
| | - Mansur Abdullah Sandhu
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan.
| |
Collapse
|
19
|
Zenic L, Polancec D, Hudetz D, Jelec Z, Rod E, Vidovic D, Staresinic M, Sabalic S, Vrdoljak T, Petrovic T, Cukelj F, Molnar V, Cemerin M, Matisic V, Brlek P, Djukic Koroljevic Z, Boric I, Lauc G, Primorac D. Polychromatic Flow Cytometric Analysis of Stromal Vascular Fraction from Lipoaspirate and Microfragmented Counterparts Reveals Sex-Related Immunophenotype Differences. Genes (Basel) 2021; 12:genes12121999. [PMID: 34946948 PMCID: PMC8702056 DOI: 10.3390/genes12121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022] Open
Abstract
Mesenchymal stem/stromal cells or medicinal signaling cells (MSC)-based therapy holds promise as a beneficial strategy for treating knee OA (osteoarthritis), but there is no standardized protocols nor mechanistic understanding. In order to gain a better insight into the human MSC from adipose tissue applied for autologous OA treatment, we performed extensive comparative immunophenotyping of the stromal vascular fraction from lipoaspirate or microfragmented lipoaspirates by polychromatic flow cytometry and investigated the cellular components considered responsible for cartilage regeneration. We found an enrichment of the regenerative cellular niche of the clinically applied microfragmented stromal vascular fraction. Sex-related differences were observed in the MSC marker expression and the ratio of the progenitor cells from fresh lipoaspirate, which, in female patients, contained a higher expression of CD90 on the three progenitor cell types including pericytes, a higher expression of CD105 and CD146 on CD31highCD34high endothelial progenitors as well as of CD73 on supra-adventitialadipose stromal cells. Some of these MSC-expression differences were present after microfragmentation and indicated a differential phenotype pattern of the applied MSC mixture in female and male patients. Our results provide a better insight into the heterogeneity of the adipose MSC subpopulations serving as OA therapeutics, with an emphasis on interesting differences between women and men.
Collapse
Affiliation(s)
- Lucija Zenic
- Department for Translational Medicine, Srebrnjak Children’s Hospital, 10000 Zagreb, Croatia;
- Correspondence:
| | - Denis Polancec
- Department for Translational Medicine, Srebrnjak Children’s Hospital, 10000 Zagreb, Croatia;
| | - Damir Hudetz
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (D.H.); (Z.J.); (E.R.); (D.V.); (T.V.); (V.M.); (M.C.); (V.M.); (P.B.); (Z.D.K.); (I.B.); (D.P.)
- Clinical Hospital Sveti Duh, 10000 Zagreb, Croatia
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Zeljko Jelec
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (D.H.); (Z.J.); (E.R.); (D.V.); (T.V.); (V.M.); (M.C.); (V.M.); (P.B.); (Z.D.K.); (I.B.); (D.P.)
- Department of Nursing, University North, 48000 Varaždin, Croatia
| | - Eduard Rod
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (D.H.); (Z.J.); (E.R.); (D.V.); (T.V.); (V.M.); (M.C.); (V.M.); (P.B.); (Z.D.K.); (I.B.); (D.P.)
| | - Dinko Vidovic
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (D.H.); (Z.J.); (E.R.); (D.V.); (T.V.); (V.M.); (M.C.); (V.M.); (P.B.); (Z.D.K.); (I.B.); (D.P.)
- Clinic for Traumatology, University Hospital Sestre Milosrdnice, Draškovićeva 19, 10000 Zagreb, Croatia; (S.S.); (T.P.); (F.C.)
- School of Dental Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Traumatology, Medical University Merkur Hospital, 10000 Zagreb, Croatia;
- Medical School, University of Zagreb, 10000 Zagreb, Croatia
| | - Srecko Sabalic
- Clinic for Traumatology, University Hospital Sestre Milosrdnice, Draškovićeva 19, 10000 Zagreb, Croatia; (S.S.); (T.P.); (F.C.)
- Medical School, University of Split, 21000 Split, Croatia
| | - Trpimir Vrdoljak
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (D.H.); (Z.J.); (E.R.); (D.V.); (T.V.); (V.M.); (M.C.); (V.M.); (P.B.); (Z.D.K.); (I.B.); (D.P.)
- Clinical Hospital Sveti Duh, 10000 Zagreb, Croatia
| | - Tadija Petrovic
- Clinic for Traumatology, University Hospital Sestre Milosrdnice, Draškovićeva 19, 10000 Zagreb, Croatia; (S.S.); (T.P.); (F.C.)
| | - Fabijan Cukelj
- Clinic for Traumatology, University Hospital Sestre Milosrdnice, Draškovićeva 19, 10000 Zagreb, Croatia; (S.S.); (T.P.); (F.C.)
- Medical School, University of Split, 21000 Split, Croatia
| | - Vilim Molnar
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (D.H.); (Z.J.); (E.R.); (D.V.); (T.V.); (V.M.); (M.C.); (V.M.); (P.B.); (Z.D.K.); (I.B.); (D.P.)
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Martin Cemerin
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (D.H.); (Z.J.); (E.R.); (D.V.); (T.V.); (V.M.); (M.C.); (V.M.); (P.B.); (Z.D.K.); (I.B.); (D.P.)
- Medical School, University of Zagreb, 10000 Zagreb, Croatia
| | - Vid Matisic
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (D.H.); (Z.J.); (E.R.); (D.V.); (T.V.); (V.M.); (M.C.); (V.M.); (P.B.); (Z.D.K.); (I.B.); (D.P.)
| | - Petar Brlek
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (D.H.); (Z.J.); (E.R.); (D.V.); (T.V.); (V.M.); (M.C.); (V.M.); (P.B.); (Z.D.K.); (I.B.); (D.P.)
| | - Zrinka Djukic Koroljevic
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (D.H.); (Z.J.); (E.R.); (D.V.); (T.V.); (V.M.); (M.C.); (V.M.); (P.B.); (Z.D.K.); (I.B.); (D.P.)
| | - Igor Boric
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (D.H.); (Z.J.); (E.R.); (D.V.); (T.V.); (V.M.); (M.C.); (V.M.); (P.B.); (Z.D.K.); (I.B.); (D.P.)
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Department of Health Studies, University of Split, 21000 Split, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia;
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Dragan Primorac
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (D.H.); (Z.J.); (E.R.); (D.V.); (T.V.); (V.M.); (M.C.); (V.M.); (P.B.); (Z.D.K.); (I.B.); (D.P.)
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Split, 21000 Split, Croatia
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Eberly College of Science, The Pennsylvania State University, University Park, State College, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School REGIOMED, 96450 Coburg, Germany
| |
Collapse
|
20
|
Juntunen M, Heinonen S, Huhtala H, Rissanen A, Kaprio J, Kuismanen K, Pietiläinen KH, Miettinen S, Patrikoski M. Evaluation of the effect of donor weight on adipose stromal/stem cell characteristics by using weight-discordant monozygotic twin pairs. Stem Cell Res Ther 2021; 12:516. [PMID: 34565451 PMCID: PMC8474937 DOI: 10.1186/s13287-021-02587-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/11/2021] [Indexed: 02/06/2023] Open
Abstract
Background Adipose stromal/stem cells (ASCs) are promising candidates for future clinical applications. ASCs have regenerative capacity, low immunogenicity, and immunomodulatory ability. The success of future cell-based therapies depends on the appropriate selection of donors. Several factors, including age, sex, and body mass index (BMI), may influence ASC characteristics. Our aim was to investigate the effect of acquired weight on ASC characteristics under the same genetic background using ASCs derived from monozygotic (MZ) twin pairs.
Methods ASCs were isolated from subcutaneous adipose tissue from five weight-discordant (WD, within-pair difference in BMI > 3 kg/m2) MZ twin pairs, with measured BMI and metabolic status. The ASC immunophenotype, proliferation and osteogenic and adipogenic differentiation capacity were studied. ASC immunogenicity, immunosuppression capacity and the expression of inflammation markers were investigated. ASC angiogenic potential was assessed in cocultures with endothelial cells. Results ASCs showed low immunogenicity, proliferation, and osteogenic differentiation capacity independent of weight among all donors. ASCs showed a mesenchymal stem cell-like immunophenotype; however, the expression of CD146 was significantly higher in leaner WD twins than in heavier cotwins. ASCs from heavier twins from WD pairs showed significantly greater adipogenic differentiation capacity and higher expression of TNF and lower angiogenic potential compared with their leaner cotwins. ASCs showed immunosuppressive capacity in direct cocultures; however, heavier WD twins showed stronger immunosuppressive capacity than leaner cotwins. Conclusions Our genetically matched data suggest that a higher weight of the donor may have some effect on ASC characteristics, especially on angiogenic and adipogenic potential, which should be considered when ASCs are used clinically. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02587-0.
Collapse
Affiliation(s)
- Miia Juntunen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014, Tampere, Finland. .,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland.
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Obesity Center, Abdominal Center, Endocrinology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Aila Rissanen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kirsi Kuismanen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014, Tampere, Finland.,Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Obesity Center, Abdominal Center, Endocrinology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014, Tampere, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Mimmi Patrikoski
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014, Tampere, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland.,Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Furnishing Wound Repair by the Subcutaneous Fascia. Int J Mol Sci 2021; 22:ijms22169006. [PMID: 34445709 PMCID: PMC8396603 DOI: 10.3390/ijms22169006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/28/2022] Open
Abstract
Mammals rapidly heal wounds through fibrous connective tissue build up and tissue contraction. Recent findings from mouse attribute wound healing to physical mobilization of a fibroelastic connective tissue layer that resides beneath the skin, termed subcutaneous fascia or superficial fascia, into sites of injury. Fascial mobilization assembles diverse cell types and matrix components needed for rapid wound repair. These observations suggest that the factors directly affecting fascial mobility are responsible for chronic skin wounds and excessive skin scarring. In this review, we discuss the link between the fascia's unique tissue anatomy, composition, biomechanical, and rheologic properties to its ability to mobilize its tissue assemblage. Fascia is thus at the forefront of tissue pathology and a better understanding of how it is mobilized may crystallize our view of wound healing alterations during aging, diabetes, and fibrous disease and create novel therapeutic strategies for wound repair.
Collapse
|
22
|
Kaltschmidt C, Greiner JFW, Kaltschmidt B. The Transcription Factor NF-κB in Stem Cells and Development. Cells 2021; 10:2042. [PMID: 34440811 PMCID: PMC8391683 DOI: 10.3390/cells10082042] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022] Open
Abstract
NF-κB (nuclear factor kappa B) belongs to a family of transcription factors known to regulate a broad range of processes such as immune cell function, proliferation and cancer, neuroprotection, and long-term memory. Upcoming fields of NF-κB research include its role in stem cells and developmental processes. In the present review, we discuss one role of NF-κB in development in Drosophila, Xenopus, mice, and humans in accordance with the concept of evo-devo (evolutionary developmental biology). REL domain-containing proteins of the NF-κB family are evolutionarily conserved among these species. In addition, we summarize cellular phenotypes such as defective B- and T-cell compartments related to genetic NF-κB defects detected among different species. While NF-κB proteins are present in nearly all differentiated cell types, mouse and human embryonic stem cells do not contain NF-κB proteins, potentially due to miRNA-dependent inhibition. However, the mesodermal and neuroectodermal differentiation of mouse and human embryonic stem cells is hampered upon the repression of NF-κB. We further discuss NF-κB as a crucial regulator of differentiation in adult stem cells such as neural crest-derived and mesenchymal stem cells. In particular, c-REL seems to be important for neuronal differentiation and the neuroprotection of human adult stem cells, while RELA plays a crucial role in osteogenic and mesodermal differentiation.
Collapse
Affiliation(s)
- Christian Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
| | - Johannes F. W. Greiner
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
23
|
Villa F, Bruno S, Costa A, Li M, Russo M, Cimino J, Altieri P, Ruggeri C, Gorgun C, De Biasio P, Paladini D, Coviello D, Quarto R, Ameri P, Ghigo A, Ravera S, Tasso R, Bollini S. The Human Fetal and Adult Stem Cell Secretome Can Exert Cardioprotective Paracrine Effects against Cardiotoxicity and Oxidative Stress from Cancer Treatment. Cancers (Basel) 2021; 13:cancers13153729. [PMID: 34359631 PMCID: PMC8345068 DOI: 10.3390/cancers13153729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Anthracyclines, such as doxorubicin (Dox), are an important class of chemotherapeutic drugs. However, their use is hampered by the risk of developing heart failure. The aim of this study was to assess and compare the cardioprotective effects exerted by a set of factors, collectively named secretomes, secreted by either adult or fetal human stem cells. Both secretome formulations were effective in counteracting Dox-induced apoptosis and mitochondrial impairment in cardiomyocytes and cardiac fibroblasts. In vivo experiments in a mouse model of Dox-induced cardiomyopathy (DIC) indicated that early administration of both secretomes during Dox treatment exerted beneficial long-term effects, preserving cardiac function and body mass. These findings suggest that the stem cell secretome could represent a feasible option for future paracrine cardioprotective therapy against Dox-related cardiotoxicity during cancer treatment. Abstract Cardiovascular side effects are major shortcomings of cancer treatments causing cardiotoxicity and late-onset cardiomyopathy. While doxorubicin (Dox) has been reported as an effective chemotherapy agent, unspecific impairment in cardiomyocyte mitochondria activity has been documented. We demonstrated that the human fetal amniotic fluid-stem cell (hAFS) secretome, namely the secreted paracrine factors within the hAFS-conditioned medium (hAFS-CM), exerts pro-survival effects on Dox-exposed cardiomyocytes. Here, we provide a detailed comparison of the cardioprotective potential of hAFS-CM over the secretome of mesenchymal stromal cells from adipose tissue (hMSC-CM). hAFS and hMSC were preconditioned under hypoxia to enrich their secretome. The cardioprotective effects of hAFS/hMSC-CM were evaluated on murine neonatal ventricular cardiomyocytes (mNVCM) and on their fibroblast counterpart (mNVFib), and their long-term paracrine effects were investigated in a mouse model of Dox-induced cardiomyopathy. Both secretomes significantly contributed to preserving mitochondrial metabolism within Dox-injured cardiac cells. hAFS-CM and hMSC-CM inhibited body weight loss, improved myocardial function, reduced lipid peroxidation and counteracted the impairment of mitochondrial complex I activity, oxygen consumption, and ATP synthesis induced by Dox. The hAFS and hMSC secretomes can be exploited for inhibiting cardiotoxic detrimental side effects of Dox during cancer therapy, thus ensuring cardioprotection via combinatorial paracrine therapy in association with standard oncological treatments.
Collapse
Affiliation(s)
- Federico Villa
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.V.); (C.G.); (R.Q.)
| | - Silvia Bruno
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.B.); (A.C.); (S.R.)
| | - Ambra Costa
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.B.); (A.C.); (S.R.)
| | - Mingchuan Li
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.L.); (M.R.); (J.C.); (A.G.)
| | - Michele Russo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.L.); (M.R.); (J.C.); (A.G.)
| | - James Cimino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.L.); (M.R.); (J.C.); (A.G.)
| | - Paola Altieri
- Laboratory of Cardiovascular Biology, Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy; (P.A.); (C.R.); (P.A.)
| | - Clarissa Ruggeri
- Laboratory of Cardiovascular Biology, Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy; (P.A.); (C.R.); (P.A.)
| | - Cansu Gorgun
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.V.); (C.G.); (R.Q.)
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.B.); (A.C.); (S.R.)
| | - Pierangela De Biasio
- Unit of Prenatal Diagnosis and Perinatal Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Dario Paladini
- Fetal Medicine and Surgery Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Domenico Coviello
- Human Genetics Laboratory, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Rodolfo Quarto
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.V.); (C.G.); (R.Q.)
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.B.); (A.C.); (S.R.)
| | - Pietro Ameri
- Laboratory of Cardiovascular Biology, Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy; (P.A.); (C.R.); (P.A.)
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.L.); (M.R.); (J.C.); (A.G.)
| | - Silvia Ravera
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.B.); (A.C.); (S.R.)
| | - Roberta Tasso
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.V.); (C.G.); (R.Q.)
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.B.); (A.C.); (S.R.)
- Correspondence: (R.T.); (S.B.); Tel.: +39-010-555-8394 (R.T.); +39-010-555-8257 (S.B.)
| | - Sveva Bollini
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.B.); (A.C.); (S.R.)
- Correspondence: (R.T.); (S.B.); Tel.: +39-010-555-8394 (R.T.); +39-010-555-8257 (S.B.)
| |
Collapse
|
24
|
Musculoskeletal tissue engineering: Regional gene therapy for bone repair. Biomaterials 2021; 275:120901. [PMID: 34091300 DOI: 10.1016/j.biomaterials.2021.120901] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/24/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Bone loss associated with fracture nonunion, revision total joint arthroplasty (TJA), and pseudoarthrosis of the spine presents a challenging clinical scenario for the orthopaedic surgeon. Current treatment options including autograft, allograft, bone graft substitutes, and bone transport techniques are associated with significant morbidity, high costs, and prolonged treatment regimens. Unfortunately, these treatment strategies have proven insufficient to safely and consistently heal bone defects in the stringent biological environments often encountered in clinical cases of bone loss. The application of tissue engineering (TE) to musculoskeletal pathology has uncovered exciting potential treatment strategies for challenging bone loss scenarios in orthopaedic surgery. Regional gene therapy involves the local implantation of nucleic acids or genetically modified cells to direct specific protein expression, and has shown promise as a potential TE technique for the regeneration of bone. Preclinical studies in animal models have demonstrated the ability of regional gene therapy to safely and effectively heal critical sized bone defects which otherwise do not heal. The purpose of the present review is to provide a comprehensive overview of the current status of gene therapy applications for TE in challenging bone loss scenarios, with an emphasis on gene delivery methods and models, scaffold biomaterials, preclinical results, and future directions.
Collapse
|
25
|
Loghmani MT, Tobin C, Quigley C, Fennimore A. Soft Tissue Manipulation May Attenuate Inflammation, Modulate Pain, and Improve Gait in Conscious Rodents With Induced Low Back Pain. Mil Med 2021; 186:506-514. [PMID: 33499433 DOI: 10.1093/milmed/usaa259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Low back pain (LBP) is common in warfighters. Noninvasive interventions are necessary to expedite return-to-function. Soft tissue manipulation, for example, massage, is a method used to treat LBP. Instrument-assisted soft tissue manipulation (IASTM) uses a rigid device to mobilize the tissue. This study explored the effects of IASTM on pain, function, and biomarkers. METHODS Sprague-Dawley rats (n = 44) were randomized to groups (n = 6/grp): (A) cage control; (B) 3 days (3d) postinjury (inj), untreated; (C) 3d inj, < 30-minute post-IASTM treatment; (D) 3d inj, 2 hours (2h) post-IASTM; (E) 14 days (14d) inj, untreated; (F) 14d inj, < 30-minute post-IASTM; and (G) 14d inj, 2h post-IASTM. Researchers induced unilateral LBP in Sprague-Dawley rats using complete Freund's adjuvant injection. Conscious rodents received IASTM for 5 min/session once at 3 days or 3×/week × 2weeks (6× total) over 14 days. Biomarker plasma levels were determined in all groups, while behavioral outcomes were assessed in two groups, D and G, at three time points: before injury, pre-, and post-IASTM treatment. Circulating mesenchymal stem cell levels were assessed using flow cytometry and cytokine plasma levels assayed. RESULTS The back pressure pain threshold (PPT) lowered bilaterally at 3 days postinjury (P < .05), suggesting increased pain sensitivity. IASTM treatment lowered PPT more on the injured side (15.8%; P < 0.05). At 14 days, back PPT remained lower but similar side to side. At 3 days, paw PPT increased 34.6% in the contralateral rear limb following treatment (P < .01). Grip strength did not vary significantly. Gait coupling patterns improved significantly (P < .05). Circulating mesenchymal stem cell levels altered significantly postinjury but not with treatment. Neuropeptide Y plasma levels increased significantly at 3 days, 2h post-IASTM (53.2%) (P < .05). Interleukin-6 and tumor necrosis factor-alpha did not vary significantly. At 14 days, regulated on activation, normal T cell expressed and secreted decreased significantly <30-minute post-IASTM (96.1%, P < .002), while IL-10 trended upward at 2h (53.1%; P = .86). CONCLUSIONS LBP increased pain sensitivity and diminished function. IASTM treatment increased pain sensitization acutely in the back but significantly reduced pain sensitivity in the contralateral rear paw. Findings suggest IASTM may positively influence pain modulation and inflammation while improving gait patterns. Soft tissue manipulation may be beneficial as a conservative treatment option for LBP.
Collapse
Affiliation(s)
- M Terry Loghmani
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Carolyn Tobin
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Colleen Quigley
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Alanna Fennimore
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
26
|
Negri S, Wang Y, Sono T, Qin Q, Hsu GCY, Cherief M, Xu J, Lee S, Tower RJ, Yu V, Piplani A, Meyers CA, Broderick K, Lee M, James AW. Systemic DKK1 neutralization enhances human adipose-derived stem cell mediated bone repair. Stem Cells Transl Med 2020; 10:610-622. [PMID: 33377628 PMCID: PMC7980212 DOI: 10.1002/sctm.20-0293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/26/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022] Open
Abstract
Progenitor cells from adipose tissue are able to induce bone repair; however, inconsistent or unreliable efficacy has been reported across preclinical and clinical studies. Soluble inhibitory factors, such as the secreted Wnt signaling antagonists Dickkopf-1 (DKK1), are expressed to variable degrees in human adipose-derived stem cells (ASCs), and may represent a targetable "molecular brake" on ASC mediated bone repair. Here, anti-DKK1 neutralizing antibodies were observed to increase the osteogenic differentiation of human ASCs in vitro, accompanied by increased canonical Wnt signaling. Human ASCs were next engrafted into a femoral segmental bone defect in NOD-Scid mice, with animals subsequently treated with systemic anti-DKK1 or isotype control during the repair process. Human ASCs alone induced significant but modest bone repair. However, systemic anti-DKK1 induced an increase in human ASC engraftment and survival, an increase in vascular ingrowth, and ultimately improved bone repair outcomes. In summary, anti-DKK1 can be used as a method to augment cell-mediated bone regeneration, and could be particularly valuable in the contexts of impaired bone healing such as osteoporotic bone repair.
Collapse
Affiliation(s)
- Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA.,Orthopaedic and Trauma Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Seungyong Lee
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Robert J Tower
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Victoria Yu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Abhi Piplani
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Min Lee
- School of Dentistry, University of California Los Angeles, Los Angeles, California, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Effects of Harvest Sites on Cryopreserved Adipose-Derived Stem Cells and ASC-Enriched Fat Grafts. Aesthetic Plast Surg 2020; 44:2286-2296. [PMID: 32754834 DOI: 10.1007/s00266-020-01900-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Enrichment of adipose-derived stem cells (ASCs) with fat grafts has demonstrated benefit for graft retention and histologic appearance. There is no consensus on the optimal harvest site for adipose-derived stem cells. This study aimed to investigate the effects of harvest sites on the characteristics of cryopreserved adipose-derived stem cells and the graft retention of cell-assisted lipotransfer. METHODS Lipoaspirates were harvested from 18 healthy volunteers who underwent liposuctions for body contouring. Twenty milliliters of lipoaspirates was, respectively, obtained from four sites, including the upper limb, abdomen, waist, and thighs, by the Coleman technique. Adipose-derived stem cells were ex vivo cultured and cryopreserved for four weeks. The biological characteristics of ASCs from four harvest sites were analyzed: MSC surface markers, cell proliferation, migration ability, and multipotential differentiation. The fat grafts were co-implanted with ASCs from four harvest sites and injected subcutaneously in mice. The ASC-enriched fat grafts were analyzed three months after transplantation. RESULTS Cryopreserved ASCs from the abdomen and thighs maintained more significant cell proliferation, migration ability, and differentiation potential, compared with cells from the upper limb and waist. Moreover, we achieved better graft retention of cell-assisted fat grafts with cryopreserved ASC from the abdomen and thighs. CONCLUSIONS The harvest site of adipose tissue affects the cellular activity and differentiation potential of cryopreserved ASCs. Improved understanding of harvest sites for ASCs can optimize the outcomes of cell-assisted fat grafts. Fat grafts enriched with cryopreserved ASCs from the abdomen or thighs are the optimal choices. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
28
|
Bianconi E, Casadei R, Frabetti F, Ventura C, Facchin F, Canaider S. Sex-Specific Transcriptome Differences in Human Adipose Mesenchymal Stem Cells. Genes (Basel) 2020; 11:909. [PMID: 32784482 PMCID: PMC7464371 DOI: 10.3390/genes11080909] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
In humans, sexual dimorphism can manifest in many ways and it is widely studied in several knowledge fields. It is increasing the evidence that also cells differ according to sex, a correlation still little studied and poorly considered when cells are used in scientific research. Specifically, our interest is on the sex-related dimorphism on the human mesenchymal stem cells (hMSCs) transcriptome. A systematic meta-analysis of hMSC microarrays was performed by using the Transcriptome Mapper (TRAM) software. This bioinformatic tool was used to integrate and normalize datasets from multiple sources and allowed us to highlight chromosomal segments and genes differently expressed in hMSCs derived from adipose tissue (hADSCs) of male and female donors. Chromosomal segments and differentially expressed genes in male and female hADSCs resulted to be related to several processes as inflammation, adipogenic and neurogenic differentiation and cell communication. Obtained results lead us to hypothesize that the donor sex of hADSCs is a variable influencing a wide range of stem cell biologic processes. We believe that it should be considered in biologic research and stem cell therapy.
Collapse
Affiliation(s)
- Eva Bianconi
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy;
| | - Flavia Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Federica Facchin
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Silvia Canaider
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| |
Collapse
|
29
|
Hu C, Zaitseva TS, Alcazar C, Tabada P, Sawamura S, Yang G, Borrelli MR, Wan DC, Nguyen DH, Paukshto MV, Huang NF. Delivery of Human Stromal Vascular Fraction Cells on Nanofibrillar Scaffolds for Treatment of Peripheral Arterial Disease. Front Bioeng Biotechnol 2020; 8:689. [PMID: 32766213 PMCID: PMC7380169 DOI: 10.3389/fbioe.2020.00689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/02/2020] [Indexed: 01/14/2023] Open
Abstract
Cell therapy for treatment of peripheral arterial disease (PAD) is a promising approach but is limited by poor cell survival when cells are delivered using saline. The objective of this study was to examine the feasibility of aligned nanofibrillar scaffolds as a vehicle for the delivery of human stromal vascular fraction (SVF), and then to assess the efficacy of the cell-seeded scaffolds in a murine model of PAD. Flow cytometric analysis was performed to characterize the phenotype of SVF cells from freshly isolated lipoaspirate, as well as after attachment onto aligned nanofibrillar scaffolds. Flow cytometry results demonstrated that the SVF consisted of 33.1 ± 9.6% CD45+ cells, a small fraction of CD45–/CD31+ (4.5 ± 3.1%) and 45.4 ± 20.0% of CD45–/CD31–/CD34+ cells. Although the subpopulations of SVF did not change significantly after attachment to the aligned nanofibrillar scaffolds, protein secretion of vascular endothelial growth factor (VEGF) significantly increased by six-fold, compared to SVF cultured in suspension. Importantly, when SVF-seeded scaffolds were transplanted into immunodeficient mice with induced hindlimb ischemia, the cell-seeded scaffolds induced a significant higher mean perfusion ratio after 14 days, compared to cells delivered using saline. Together, these results show that aligned nanofibrillar scaffolds promoted cellular attachment, enhanced the secretion of VEGF from attached SVF cells, and their implantation with attached SVF cells stimulated blood perfusion recovery. These findings have important therapeutic implications for the treatment of PAD using SVF.
Collapse
Affiliation(s)
- Caroline Hu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | | | - Cynthia Alcazar
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Peter Tabada
- Fibralign Corporation, Inc., Union City, CA, United States
| | - Steve Sawamura
- Fibralign Corporation, Inc., Union City, CA, United States
| | - Guang Yang
- The Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, United States.,Department of Cardiothoracic Surgery, Stanford University, Palo Alto, CA, United States
| | - Mimi R Borrelli
- Division of Plastic and Reconstructive Surgery, Stanford University, Palo Alto, CA, United States
| | - Derrick C Wan
- Division of Plastic and Reconstructive Surgery, Stanford University, Palo Alto, CA, United States
| | - Dung H Nguyen
- Division of Plastic and Reconstructive Surgery, Stanford University, Palo Alto, CA, United States
| | | | - Ngan F Huang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States.,The Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, United States.,Department of Cardiothoracic Surgery, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
30
|
Wang Y, Negri S, Li Z, Xu J, Hsu CY, Peault B, Broderick K, James AW. Anti-DKK1 Enhances the Early Osteogenic Differentiation of Human Adipose-Derived Stem/Stromal Cells. Stem Cells Dev 2020; 29:1007-1015. [PMID: 32460636 DOI: 10.1089/scd.2020.0070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adipose-derived stem/stromal cells (ASCs) have been previously used for bone repair. However, significant cell heterogeneity exists within the ASC population, which has the potential to result in unreliable bone tissue formation and/or low efficacy. Although the use of cell sorting to lower cell heterogeneity is one method to improve bone formation, this is a technically sophisticated and costly process. In this study, we tried to find a simpler and more deployable solution-blocking antiosteogenic molecule Dickkopf-1 (DKK1) to improve osteogenic differentiation. Human adipose-derived stem cells were derived from = 5 samples of human lipoaspirate. In vitro, anti-DKK1 treatment, but not anti-sclerostin (SOST), promoted ASC osteogenic differentiation, assessed by alizarin red staining and real-time polymerase chain reaction (qPCR). Increased canonical Wnt signaling was confirmed after anti-DKK1 treatment. Expression levels of DKK1 peaked during early osteogenic differentiation (day 3). Concordantly, anti-DKK1 supplemented early (day 3 or before), but not later (day 7) during osteogenic differentiation positively regulated osteoblast formation. Finally, anti-DKK1 led to increased transcript abundance of the Wnt inhibitor SOST, potentially representing a compensatory cellular mechanism. In sum, DKK1 represents a targetable "molecular brake" on the osteogenic differentiation of human ASC. Moreover, release of this brake by neutralizing anti-DKK1 antibody treatment at least partially rescues the poor bone-forming efficacy of ASC.
Collapse
Affiliation(s)
- Yiyun Wang
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Stefano Negri
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Zhao Li
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiajia Xu
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Ching-Yun Hsu
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Pittsburgh, Pennsylvania, USA.,Center for Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aaron W James
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
31
|
Luck J, Weil BD, Lowdell M, Mosahebi A. Adipose-Derived Stem Cells for Regenerative Wound Healing Applications: Understanding the Clinical and Regulatory Environment. Aesthet Surg J 2020; 40:784-799. [PMID: 31406975 DOI: 10.1093/asj/sjz214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is growing interest in the regenerative potential of adipose-derived stem cells (ADSCs) for wound healing applications. ADSCs have been shown to promote revascularization, activate local stem cell niches, reduce oxidative stress, and modulate immune responses. Combined with the fact that they can be harvested in large numbers with minimal donor site morbidity, ADSC products represent promising regenerative cell therapies. This article provides a detailed description of the defining characteristics and therapeutic potential of ADSCs, with a focus on understanding how ADSCs promote tissue regeneration and repair. It summarizes the current regulatory environment governing the use of ADSC products across Europe and the United States and examines how various adipose-derived products conform to the current UK legislative framework. Advice is given to clinicians and researchers on how novel ADSC therapeutics may be developed in accordance with regulatory guidelines.
Collapse
Affiliation(s)
| | - Benjamin D Weil
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital, London, UK
| | | | | |
Collapse
|
32
|
Zhang Y, Lv P, Li Y, Zhang Y, Cheng C, Hao H, Yue H. Comparison of the biological characteristics of umbilical cord mesenchymal stem cells derived from the human heterosexual twins. Differentiation 2020; 114:1-12. [PMID: 32460139 DOI: 10.1016/j.diff.2020.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) are attracting more and more attention due to their tissue regenerative properties and immunomodulatory functions. MSCs may be the most acceptable, safe, and effective source for allogeneic cell therapy, and have been used in medical treatment. However, the similarities and differences between umbilical cord-derived MSCs (UC-MSCs) of heterosexual twins remain poorly understood. In this study, we compared the biological characteristics of UC-MSCs of heterosexual twins in vitro. We found that male fetal UC-MSCs and female fetal UC-MSCs share a similar phenotype and multi-lineage differentiation potential, and male fetal UC-MSCs show a significantly higher proliferation and adipogenic ability than female fetal UC-MSCs. UC-MSCs from heterosexual twins showed significant differences in the expression levels of NANOG, OCT4, TERT, and SOX2. In addition, male MSCs are more potent in the expression of inflammatory cytokines to lipopolysaccharide (LPS)-induced inflammation. In future clinical applications using MSCs for inflammation-related diseases, these biological characteristics differences with different genders will guide our clinical methods.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450007, China
| | - Pengju Lv
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450007, China
| | - Yalong Li
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Yonghui Zhang
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Chaofei Cheng
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Hongbo Hao
- Neuroscience Initiative, Advanced Science Research Center at the Graduate Center, City University of New York, New York, 10031, USA
| | - Han Yue
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
33
|
Zhou Y, Xia X, Yang E, Wang Y, Marra KG, Ethier CR, Schuman JS, Du Y. Adipose-derived stem cells integrate into trabecular meshwork with glaucoma treatment potential. FASEB J 2020; 34:7160-7177. [PMID: 32259357 PMCID: PMC7254553 DOI: 10.1096/fj.201902326r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/24/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
Abstract
The trabecular meshwork (TM) is an ocular tissue that maintains intraocular pressure (IOP) within a physiologic range. Glaucoma patients have reduced TM cellularity and, frequently, elevated IOP. To establish a stem cell-based approach to restoring TM function and normalizing IOP, human adipose-derived stem cells (ADSCs) were induced to differentiate to TM cells in vitro. These ADSC-TM cells displayed a TM cell-like genotypic profile, became phagocytic, and responded to dexamethasone stimulation, characteristic of TM cells. After transplantation into naive mouse eyes, ADSCs and ADSC-TM cells integrated into the TM tissue, expressed TM cell markers, and maintained normal IOP, outflow facility, and extracellular matrix. Cell migration and affinity results indicated that the chemokine pair CXCR4/SDF1 may play an important role in ADSC-TM cell homing. Our study demonstrates the possibility of applying autologous or allogeneic ADSCs and ADSC-TM cells as a potential treatment to restore TM structure and function in glaucoma.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
- Co-first author
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
- Co-first author
| | - Enzhi Yang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yiwen Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Kacey G. Marra
- Departments of Plastic Surgery and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - C. Ross Ethier
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332
| | - Joel S. Schuman
- Department of Ophthalmology, New York University School of Medicine, New York, NY 10016
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15213
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
34
|
The Role of Adipose-Derived Stem Cells, Dermal Regenerative Templates, and Platelet-Rich Plasma in Tissue Engineering-Based Treatments of Chronic Skin Wounds. Stem Cells Int 2020; 2020:7056261. [PMID: 32399048 PMCID: PMC7199611 DOI: 10.1155/2020/7056261] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
The continuous improvements in the field of both regenerative medicine and tissue engineering have allowed the design of new and more efficacious strategies for the treatment of chronic or hard-to-heal skin wounds, which represent heavy burden, from a medical and economic point of view. These novel approaches are based on the usage of three key methodologies: stem cells, growth factors, and biomimetic scaffolds. These days, the adipose tissue can be considered the main source of multipotent mesenchymal stem cells, especially adipose-derived stem cells (ASCs). ASCs are easily accessible from various fat depots and show an intrinsic plasticity in giving rise to cell types involved in wound healing and angiogenesis. ASCs can be found in fat grafts, historically used in the treatment of chronic wounds, and have been evaluated as such in both animal models and human trials, to exploit their capability of accelerating wound closure and inducing a correct remodeling of the newly formed fibrovascular tissue. Since survival and fitness of ASCs need to be improved, they are now employed in conjunction with advanced wound dressings, together with dermal regenerative templates and platelet-rich plasma (as a source of growth and healing factors). In this work, we provide an overview of the current knowledge on the topic, based on existing studies and on our own experience.
Collapse
|
35
|
Vyas KS, Bole M, Vasconez HC, Banuelos JM, Martinez-Jorge J, Tran N, Lemaine V, Mardini S, Bakri K. Profile of Adipose-Derived Stem Cells in Obese and Lean Environments. Aesthetic Plast Surg 2019; 43:1635-1645. [PMID: 31267153 DOI: 10.1007/s00266-019-01397-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 05/04/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND With the demand for stem cells in regenerative medicine, new methods of isolating stem cells are highly sought. Adipose tissue is a readily available and non-controversial source of multipotent stem cells that carries a low risk for potential donors. However, elevated donor body mass index has been associated with an altered cellular microenvironment and thus has implications for stem cell efficacy in recipients. This review explored the literature on adipose-derived stem cells (ASCs) and the effect of donor obesity on cellular function. METHODS A review of published articles on obesity and ASCs was conducted with the PubMed database and the following search terms: obesity, overweight, adipose-derived stem cells and ASCs. Two investigators screened and reviewed the relevant abstracts. RESULTS There is agreement on reduced ASC function in response to obesity in terms of angiogenic differentiation, proliferation, migration, viability, and an altered and inflammatory transcriptome. Osteogenic differentiation and cell yield do not show reasonable agreement. Weight loss partially rescues some of the aforementioned features. CONCLUSIONS Generally, obesity reduces ASC qualities and may have an effect on the therapeutic value of ASCs. Because weight loss and some biomolecules have been shown to rescue these qualities, further research should be conducted on methods to return obese-derived ASCs to baseline. LEVEL V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors- www.springer.com/00266.
Collapse
Affiliation(s)
- Krishna S Vyas
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| | - Madhav Bole
- Division of Orthopaedic Surgery, London Health Sciences Centre, University Hospital, 339 Windermere Rd., London, ON, N6A 5A5, Canada
| | - Henry C Vasconez
- Division of Plastic Surgery, University of Kentucky, Lexington, KY, USA
| | - Joseph M Banuelos
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Jorys Martinez-Jorge
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Nho Tran
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Valerie Lemaine
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Samir Mardini
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Karim Bakri
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
36
|
Greiner JFW, Merten M, Kaltschmidt C, Kaltschmidt B. Sexual dimorphisms in adult human neural, mesoderm-derived, and neural crest-derived stem cells. FEBS Lett 2019; 593:3338-3352. [PMID: 31529465 DOI: 10.1002/1873-3468.13606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022]
Abstract
Sexual dimorphisms contribute, at least in part, to the severity and occurrence of a broad range of neurodegenerative, cardiovascular, and bone disorders. In addition to hormonal factors, increasing evidence suggests that stem cell-intrinsic mechanisms account for sex-specific differences in human physiology and pathology. Here, we discuss sex-related intrinsic mechanisms in adult stem cell populations, namely mesoderm-derived stem cells, neural stem cells (NSCs), and neural crest-derived stem cells (NCSCs), and their implications for stem cell differentiation and regeneration. We particularly focus on sex-specific differences in stem cell-mediated bone regeneration, in neuronal development, and in NSC-mediated neuroprotection. Moreover, we review our own recently published observations regarding the sex-dependent role of NF-κB-p65 in neuroprotection of human NCSC-derived neurons and sex differences in NCSC-related disorders, so-called neurocristopathies. These observations are in accordance with the increasing evidence pointing toward sex-specific differences in neurocristopathies and degenerative diseases like Parkinson's disease or osteoporosis. All findings discussed here indicate that sex-specific variability in stem cell biology may become a crucial parameter for the design of future treatment strategies.
Collapse
Affiliation(s)
| | - Madlen Merten
- Molecular Neurobiology, Bielefeld University, Germany
| | | | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, Germany.,Molecular Neurobiology, Bielefeld University, Germany
| |
Collapse
|
37
|
Nathan K, Lu LY, Lin T, Pajarinen J, Jämsen E, Huang JF, Romero-Lopez M, Maruyama M, Kohno Y, Yao Z, Goodman SB. Precise immunomodulation of the M1 to M2 macrophage transition enhances mesenchymal stem cell osteogenesis and differs by sex. Bone Joint Res 2019; 8:481-488. [PMID: 31728188 PMCID: PMC6825050 DOI: 10.1302/2046-3758.810.bjr-2018-0231.r2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Up to 10% of fractures result in undesirable outcomes, for which female sex is a risk factor. Cellular sex differences have been implicated in these different healing processes. Better understanding of the mechanisms underlying bone healing and sex differences in this process is key to improved clinical outcomes. This study utilized a macrophage-mesenchymal stem cell (MSC) coculture system to determine: 1) the precise timing of proinflammatory (M1) to anti-inflammatory (M2) macrophage transition for optimal bone formation; and 2) how such immunomodulation was affected by male versus female cocultures. METHODS A primary murine macrophage-MSC coculture system was used to demonstrate the optimal transition time from M1 to M2 (polarized from M1 with interleukin (IL)-4) macrophages to maximize matrix mineralization in male and female MSCs. Outcome variables included Alizarin Red staining, alkaline phosphatase (ALP) activity, and osteocalcin protein secretion. RESULTS We found that 96 hours of M1 phenotype in male cocultures allowed for maximum matrix mineralization versus 72 hours in female cocultures. ALP activity and osteocalcin secretion were also enhanced with the addition of IL-4 later in male versus female groups. The sex of the cells had a statistically significant effect on the optimal IL-4 addition time to maximize osteogenesis. CONCLUSION These results suggest that: 1) a 72- to 96-hour proinflammatory environment is critical for optimal matrix mineralization; and 2) there are immunological differences in this coculture environment due to sex. Optimizing immunomodulation during fracture healing may enhance and expedite the bone regeneration response. These findings provide insight into precise immunomodulation for enhanced bone healing that is sex-specific.Cite this article: K. Nathan, L. Y. Lu, T. Lin, J. Pajarinen, E. Jämsen, J-F. Huang, M. Romero-Lopez, M. Maruyama, Y. Kohno, Z. Yao, S. B. Goodman. Precise immunomodulation of the M1 to M2 macrophage transition enhances mesenchymal stem cell osteogenesis and differs by sex. Bone Joint Res 2019;8:481-488. DOI: 10.1302/2046-3758.810.BJR-2018-0231.R2.
Collapse
Affiliation(s)
- Karthik Nathan
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Laura Y Lu
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Tzuhua Lin
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Eemeli Jämsen
- Department of Medicine, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| | - Jhih-Fong Huang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Monica Romero-Lopez
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Yusuke Kohno
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA; Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
38
|
Hassanshahi M, Khabbazi S, Peymanfar Y, Hassanshahi A, Hosseini-Khah Z, Su YW, Xian CJ. Critical limb ischemia: Current and novel therapeutic strategies. J Cell Physiol 2019; 234:14445-14459. [PMID: 30637723 DOI: 10.1002/jcp.28141] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
Critical limb ischemia (CLI) is the advanced stage of peripheral artery disease spectrum and is defined by limb pain or impending limb loss because of compromised blood flow to the affected extremity. Current conventional therapies for CLI include amputation, bypass surgery, endovascular therapy, and pharmacological approaches. Although these conventional therapeutic strategies still remain as the mainstay of treatments for CLI, novel and promising therapeutic approaches such as proangiogenic gene/protein therapies and stem cell-based therapies have emerged to overcome, at least partially, the limitations and disadvantages of current conventional therapeutic approaches. Such novel CLI treatment options may become even more effective when other complementary approaches such as utilizing proper bioscaffolds are used to increase the survival and engraftment of delivered genes and stem cells. Therefore, herein, we address the benefits and disadvantages of current therapeutic strategies for CLI treatment and summarize the novel and promising therapeutic approaches for CLI treatment. Our analyses also suggest that these novel CLI therapeutic strategies show considerable advantages to be used when current conventional methods have failed for CLI treatment.
Collapse
Affiliation(s)
- Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Samira Khabbazi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Alireza Hassanshahi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Zahra Hosseini-Khah
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yu-Wen Su
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
39
|
Li X, Ma T, Sun J, Shen M, Xue X, Chen Y, Zhang Z. Harnessing the secretome of adipose-derived stem cells in the treatment of ischemic heart diseases. Stem Cell Res Ther 2019; 10:196. [PMID: 31248452 PMCID: PMC6598280 DOI: 10.1186/s13287-019-1289-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are promising therapeutic cells for ischemic heart diseases, due to the ease and efficiency of acquisition, the potential of myocardial lineage differentiation, and the paracrine effects. Recently, many researchers have claimed that the ASC-based myocardial repair is mainly attributed to its paracrine effects, including the anti-apoptosis, pro-angiogenesis, anti-inflammation effects, and the inhibition of fibrosis, rather than the direct differentiation into cardiovascular lineage cells. However, the usage of ASCs comes with the problems of low cardiac retention and survival after transplantation, like other stem cells, which compromises the effectiveness of the therapy. To overcome these drawbacks, researchers have proposed various strategies for improving survival rate and ensuring sustained paracrine secretion. They also investigated the safety and efficacy of phase I and II clinical trials of ASC-based therapy for cardiovascular diseases. In this review, we will discuss the characterization and paracrine effects of ASCs on myocardial repair, followed by the strategies for stimulating the paracrine secretion of ASCs, and finally their clinical usage.
Collapse
Affiliation(s)
- Xiaoting Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Teng Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Jiacheng Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Mingjing Shen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Xiang Xue
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China.
| | - Zhiwei Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China.
| |
Collapse
|
40
|
Characterization of Different Sources of Human MSCs Expanded in Serum-Free Conditions with Quantification of Chondrogenic Induction in 3D. Stem Cells Int 2019; 2019:2186728. [PMID: 31320905 PMCID: PMC6610765 DOI: 10.1155/2019/2186728] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/11/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent alternative candidates to chondrocytes for cartilage engineering. However, it remains difficult to identify the ideal source of MSCs for cartilage repair since conditions supporting chondrogenic induction are diverse among published works. In this study, we characterized and evaluated the chondrogenic potential of MSCs from bone marrow (BM), Wharton's jelly (WJ), dental pulp (DP), and adipose tissue (AT) isolated and cultivated under serum-free conditions. BM-, WJ-, DP-, and AT-MSCs did not differ in terms of viability, clonogenicity, and proliferation. By an extensive polychromatic flow cytometry analysis, we found notable differences in markers of the osteochondrogenic lineage between the 4 MSC sources. We then evaluated their chondrogenic potential in a micromass culture model, and only BM-MSCs showed chondrogenic conversion. This chondrogenic differentiation was specifically ascertained by the production of procollagen IIB, the only type II collagen isoform synthesized by well-differentiated chondrocytes. As a pilot study toward cartilage engineering, we encapsulated BM-MSCs in hydrogel and developed an original method to evaluate their chondrogenic conversion by flow cytometry analysis, after release of the cells from the hydrogel. This allowed the simultaneous quantification of procollagen IIB and α10, a subunit of a type II collagen receptor crucial for proper cartilage development. This work represents the first comparison of detailed immunophenotypic analysis and chondrogenic differentiation potential of human BM-, WJ-, DP-, and AT-MSCs performed under the same serum-free conditions, from their isolation to their induction. Our study, achieved in conditions compliant with clinical applications, highlights that BM-MSCs are good candidates for cartilage engineering.
Collapse
|
41
|
Scibetta AC, Morris ER, Liebowitz AB, Gao X, Lu A, Philippon MJ, Huard J. Characterization of the chondrogenic and osteogenic potential of male and female human muscle-derived stem cells: Implication for stem cell therapy. J Orthop Res 2019; 37:1339-1349. [PMID: 30667562 DOI: 10.1002/jor.24231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/02/2019] [Indexed: 02/04/2023]
Abstract
People of all backgrounds are susceptible to bone and cartilage damage, and these injuries can be debilitating. Current treatments for bone and cartilage injuries are less than optimal, and we are interested in developing new approaches to treat these diseases, specifically using human muscle-derived stem cells (hMDSCs). Our lab previously demonstrated that sex differences exist between male and female murine MDSCs; thus, this paper sought to investigate whether sex differences also exist in hMDSCs. In the present study, we characterized the chondrogenic and osteogenic sex differences of hMDSCs in vitro and in vivo. We performed in vitro osteogenic and chondrogenic differentiation using hMDSC pellet cultures. As demonstrated by microCT, histology, and immunohistochemistry, male hMDSCs were more chondrogenic and osteogenic than their female counterparts in vitro. No differences were observed based on the sex of hMDSCs in osteogenic and chondrogenic gene expression and cell surface markers. For our in vivo study, we transduced hMDSCs with lenti-BMP2/GFP and transplanted these cells into critical-sized calvarial defects in mice. MicroCT results revealed that male hMDSCs regenerated more bone at 2 weeks and demonstrated higher bone density at 4 and 6 weeks than female hMDSCs. Histology demonstrated that both male and female hMDSCs regenerated functional bone. Clinical relevance: These studies reinforce that stem cells isolated from male and female patients differ in function, and we should disclose the sex of cells used in future studies. Considering sex differences of hMDSCs may help to improve cell-based therapies for autologous cell treatment of bone and cartilage damage. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1339-1349, 2019.
Collapse
Affiliation(s)
| | | | | | - Xueqin Gao
- Steadman Philippon Research Institute, Vail, Colorado.,Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Aiping Lu
- Steadman Philippon Research Institute, Vail, Colorado.,Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Johnny Huard
- Steadman Philippon Research Institute, Vail, Colorado.,Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
42
|
Lee HW, Hsiao YC, Chen YC, Young TH, Yang TL. Salispheres from Different Major Salivary Glands for Glandular Regeneration. J Dent Res 2019; 98:786-794. [PMID: 31136718 DOI: 10.1177/0022034519847122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dysfunctional salivary glands (SGs) are a clinical challenge due to the lack of effective treatments. Cell therapy with stem/progenitor cells may improve this situation by providing promising therapeutic solutions. Therefore, exploring abundant cellular sources is important. Three major pairs of SGs are located in different anatomic regions: the parotid glands, the submandibular glands, and the sublingual glands. Although SG stem/progenitor cells can be isolated and cultivated from all major SGs as salispheres, the differences among SG origins remain unclear. In this study, salispheres were successfully isolated from all major SGs. The salispheres demonstrated unique cellular features that originated from their native tissues. The characteristic expression profiles and cellular features of SG stem cells were demonstrated in all salispheres. When they were transplanted into irradiated animals, the salispheres were all capable of improving the saliva secretion that was disrupted by irradiation. Typical histologic structures could be observed in most parts of the treated glands, and the fibrotic environments of irradiated submandibular glands were remodeled by all salispheres regardless of origins. This study characterized the cellular features and in vivo effects of salispheres that were derived from different anatomic origins. The results suggest the possibility of functional redundancy among distinct pairs of major SGs, which is useful for the design of cell therapy to treat dysfunctional glandular organs.
Collapse
Affiliation(s)
- H W Lee
- 1 Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Y C Hsiao
- 2 Department of Ophthalmology, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan.,3 Department of Ophthalmology, College of Medicine, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Y C Chen
- 4 Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - T H Young
- 1 Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - T L Yang
- 4 Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,5 Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,6 Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
43
|
Perspectives for Clinical Translation of Adipose Stromal/Stem Cells. Stem Cells Int 2019; 2019:5858247. [PMID: 31191677 PMCID: PMC6525805 DOI: 10.1155/2019/5858247] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Adipose stromal/stem cells (ASCs) are an ideal cell type for regenerative medicine applications, as they can easily be harvested from adipose tissue in large quantities. ASCs have excellent proliferation, differentiation, and immunoregulatory capacities that have been demonstrated in numerous studies. Great interest and investment have been placed in efforts to exploit the allogeneic use and immunomodulatory and anti-inflammatory effects of ASCs. However, bridging the gap between in vitro and in vivo studies and moving into clinical practice remain a challenge. For the clinical translation of ASCs, several issues must be considered, including how to characterise such a heterogenic cell population and how to ensure their safety and efficacy. This review explores the different phases of in vitro and preclinical ASC characterisation and describes the development of appropriate potency assays. In addition, good manufacturing practice requirements are discussed, and cell-based medicinal products holding marketing authorisation in the European Union are reviewed. Moreover, the current status of clinical trials applying ASCs and the patent landscape in the field of ASC research are presented. Overall, this review highlights the applicability of ASCs for clinical cell therapies and discusses their potential.
Collapse
|
44
|
Lee H, Min SK, Park JB. Effects of demographic factors on adipogenic and chondrogenic differentiation in bone marrow-derived stem cells. Exp Ther Med 2019; 17:3548-3554. [PMID: 30988736 PMCID: PMC6447802 DOI: 10.3892/etm.2019.7369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
Stem cells have the characteristics of long-term self-renewal and plasticity and the ability to differentiate into specialized cells. Stem cells are widely recognized as potential tools for use in the development of novel therapeutic strategies. The aim of the current study was to investigate the effect of demographic factors on adipogenic and chondrogenic differentiation in bone marrow-derived stem cell (BMSC) spheroids. Age- and gender-associated alterations in the adipogenic and chondrogenic differentiation potential of BMSCs were examined. Human BMSCs were isolated from male and female participants in their 20s, 30s and 50s. Cell morphology and relative values of adipogenesis and chondrogenesis were examined by measuring the relative intensity of oil red O and Alcian blue staining, respectively. Cell morphology alterations in BMSCs isolated from male and female participants in their 20s, 30s and 50s and grown in adipogenic media were very similar. In addition, there were no significant differences in the relative values of adipogenesis in BMSCs for the 20s, 30s and 50s age groups on day 8 and 16. Similarly, no significant differences were observed in the relative values of adipogenesis in BMSCs for the male and female groups on day 8 and 16. Cell morphology changes in BMSCs isolated from male and female participants in their 20s, 30s and 50s and grown in chondrogenic media were very similar. In addition, there were no significant differences in the relative values of chondrogenesis in BMSCs for the 20s, 30s and 50s age groups on day 8, however there was a significant difference observed in the relative values of chondrogenesis in BMSCs on day 16 for the 30s and 50s age groups, compared with the 20s age group. Furthermore, no significant differences were observed in the relative values of adipogenesis in BMSCs for the male and female groups on day 8 and 16. The current study demonstrated that there were no significant differences in the adipogenic and chondrogenic differentiation potential of BMSCs isolated from healthy male donors vs. healthy female donors. Similarly, no significant differences were observed in the adipogenic differentiation potential of BMSCs isolated from different age groups on day 8. However, there was a significant increase in the chondrogenic differentiation potential of BMSCs isolated from participants in their 30s and 50s, compared with BMSCs isolated from participants in their 20s on day 16.
Collapse
Affiliation(s)
- Hyunjin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sae Kyung Min
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
45
|
Li W, Zhang Y, Chen C, Tian W, Wang H. Increased Angiogenic and Adipogenic Differentiation Potentials in Adipose-Derived Stromal Cells from Thigh Subcutaneous Adipose Depots Compared with Cells from the Abdomen. Aesthet Surg J 2019; 39:NP140-NP149. [PMID: 30358810 DOI: 10.1093/asj/sjy252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Adipose-derived stromal cells (ADSCs) may play a pivotal role by differentiating into multilineage cells or by secreting growth factors or cytokines in cell-assisted lipotransfer, which participates in adipose tissue regeneration. The angiogenic potential of various ADSCs from different anatomical regions remains uncertain. OBJECTIVES The authors sought to offer appropriate choices of sources of adipose-derived stromal cells for cell-assisted lipotransfer and tissue engineering. METHODS ADSCs were harvested from subcutaneous adipose depots in the abdomen and thighs. The expression of adipocyte-specific markers was evaluated, and Oil Red O staining was performed to assess the capacity for adipogenic differentiation. Angiogenic differentiation potential was evaluated by detecting the expression of vascular endothelial growth factor, vascular endothelial growth factor 2, and CD31. A tube formation assay was also performed to analyze the angiogenic differentiation capacity. RESULTS ADSCs from the thigh showed more significant angiogenic and adipogenic potential. More lipogenesis was identified in ADSCs from the thigh, and this was accompanied by the enhancement of adipocyte markers. Angiogenesis was more vigorous in the thigh-derived stromal cells, and ADSCs from the thigh depot showed more junctions and longer tubule formation on Matrigel in vitro. CONCLUSIONS Thigh-derived ADSCs exhibited greater capacity for adipogenic and angiogenic differentiation and would be a better option for cell-assisted lipotransfer and tissue engineering.
Collapse
Affiliation(s)
- Wei Li
- Department of Oral and Maxillofacial Surgery, Changzhou Stomatologic Hospital, Changzhou, China
| | - Yan Zhang
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chang Chen
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology
| | - Hang Wang
- Department of Oral and Maxillofacial Surgery, Sichuan University, Chengdu, China
- Department of Cosmetic Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Wang YH, Huang XH, Yang YM, He Y, Dong XH, Yang HX, Zhang L, Wang Y, Zhou J, Wang C, Jiang XX. Mysm1 epigenetically regulates the immunomodulatory function of adipose-derived stem cells in part by targeting miR-150. J Cell Mol Med 2019; 23:3737-3746. [PMID: 30895711 PMCID: PMC6484305 DOI: 10.1111/jcmm.14281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/31/2019] [Accepted: 02/25/2019] [Indexed: 12/26/2022] Open
Abstract
Adipose‐derived stem cells (ASCs) are highly attractive for cell‐based therapies in tissue repair and regeneration because they have multilineage differentiation capacity and are immunosuppressive. However, the detailed epigenetic mechanisms of their immunoregulatory capacity are not fully defined. In this study, we found that Mysm1 was induced in ASCs treated with inflammatory cytokines. Adipose‐derived stem cells with Mysm1 knockdown exhibited attenuated immunosuppressive capacity, evidenced by less inhibition of T cell proliferation, more pro‐inflammatory factor secretion and less nitric oxide (NO) production in vitro. Mysm1‐deficient ASCs exacerbated inflammatory bowel diseases but inhibited tumour growth in vivo. Mysm1‐deficient ASCs also showed depressed miR‐150 expression. When transduced with Mysm1 overexpression lentivirus, ASCs exhibited enhanced miR‐150 expression. Furthermore, Mysm1‐deficient cells transduced with lentivirus containing miR‐150 mimics produced less pro‐inflammatory factors and more NO. Our study reveals a new role of Mysm1 in regulating the immunomodulatory activities of ASCs by targeting miR‐150. These novel insights into the mechanisms through which ASCs regulate immune reactions may lead to better clinical utility of these cells.
Collapse
Affiliation(s)
- Yu-Han Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Xiao-Hui Huang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, P.R. China.,Anhui Medical University, Hefei, Anhui, China
| | - Yan-Mei Yang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, P.R. China.,Department of Stomatology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Youdi He
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiao-Hui Dong
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Hui-Xin Yang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, P.R. China.,Department of Stomatology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Lei Zhang
- College of Agroforestry Engineering and Planning, Tongren University, Tongren, Guizhou, China
| | - Yan Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Jin Zhou
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Changyong Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Xiao-Xia Jiang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, P.R. China.,Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
47
|
Abstract
Adipose-derived stem cells (ADSC) have come to be viewed as a ubiquitous solution for aesthetic and reconstructive problems involving loss of tissue volume and age or radiation-induced loss of tissue pliability and vascularity. As the theoretical potential of "stem cell therapy" has captured the public imagination, so the commercial potential of novel therapies is being exploited beyond scientifically sound, hypothesis-driven paradigms and in the absence of evidence establishing clinical efficacy and safety. Moreover, with variations in methods of isolation, manipulation, and reintroduction described, it is unclear how the practitioner with an interest in ADSC can harness the clinical potential in reproducible and scientifically measurable ways. This Continuing Medical Education (CME) article presents a summary of our understanding of what ADSC are, their utility within the field of aesthetic surgery, and the current and future directions for adipose stem cell research.
Collapse
Affiliation(s)
- Graeme Ewan Glass
- Attending Plastic and Craniofacial Surgeon, Department of Surgery, Sidra Medicine, Doha, Qatar; and Weill Cornell Medical College, Ar-Rayyan, Qatar
| | - Patrizia Ferretti
- Professor of Regenerative Biology, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
48
|
Rivera-Izquierdo M, Cabeza L, Láinez-Ramos-Bossini A, Quesada R, Perazzoli G, Alvarez P, Prados J, Melguizo C. An updated review of adipose derived-mesenchymal stem cells and their applications in musculoskeletal disorders. Expert Opin Biol Ther 2019; 19:233-248. [PMID: 30653367 DOI: 10.1080/14712598.2019.1563069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Adipose-derived mesenchymal stem cells (ASCs) represent a new therapeutic strategy in biomedicine with many potential applications, especially in musculoskeletal disorders. Preclinical and clinical studies based on the administration of ASCs support their efficacy in bone regeneration, joint repair, tendon injury and skeletal muscle alterations. Many of these novel treatments may improve patients' quality of life and prognosis. However, several concerns about the use of stem cells remain unsolved, particularly regarding their safety and side effects. The present work aims to review the nature, clinical trials and patents involving the use of ASCs in musculoskeletal disorders. AREAS COVERED In this article, we describe ASCs' isolation, culture and differentiation in vivo and in vitro, advances on ASCs' applications in bone, cartilage, muscle and tendon repair, and patents involving the use of ASCs. EXPERT OPINION The use of ASCs in musculoskeletal disorders presents significant therapeutic advantages, including limited autoimmune response, potential cell expansion ex vivo, high plasticity to differentiate into several mesodermal cell lineages, and additional effects of therapeutic interest such as secretion of neurotrophic factors and anti-inflammatory properties. For these reasons, ASCs are promising therapeutic agents for clinical applications in musculoskeletal disorders.
Collapse
Affiliation(s)
- Mario Rivera-Izquierdo
- a Department of Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain
| | - Laura Cabeza
- a Department of Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain
- b Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM) , University of Granada , Granada , Spain
- c Biosanitary Institute of Granada (IBS GRANADA) , SAS -Universidad de Granada , Granada , Spain
| | - Antonio Láinez-Ramos-Bossini
- c Biosanitary Institute of Granada (IBS GRANADA) , SAS -Universidad de Granada , Granada , Spain
- d Department of Radiology , Hospital Universitario Virgen de las Nieves , Granada , Spain
| | - Raul Quesada
- a Department of Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain
- b Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM) , University of Granada , Granada , Spain
- c Biosanitary Institute of Granada (IBS GRANADA) , SAS -Universidad de Granada , Granada , Spain
| | - Gloria Perazzoli
- b Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM) , University of Granada , Granada , Spain
| | - Pablo Alvarez
- b Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM) , University of Granada , Granada , Spain
| | - Jose Prados
- a Department of Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain
- b Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM) , University of Granada , Granada , Spain
- c Biosanitary Institute of Granada (IBS GRANADA) , SAS -Universidad de Granada , Granada , Spain
| | - Consolación Melguizo
- a Department of Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain
- b Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM) , University of Granada , Granada , Spain
- c Biosanitary Institute of Granada (IBS GRANADA) , SAS -Universidad de Granada , Granada , Spain
| |
Collapse
|
49
|
Parsons AM, Ciombor DM, Liu PY, Darling EM. Regenerative Potential and Inflammation-Induced Secretion Profile of Human Adipose-Derived Stromal Vascular Cells Are Influenced by Donor Variability and Prior Breast Cancer Diagnosis. Stem Cell Rev Rep 2018; 14:546-557. [PMID: 29663271 DOI: 10.1007/s12015-018-9813-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adipose tissue contains a heterogeneous population of stromal vascular fraction (SVF) cells that work synergistically with resident cell types to enhance tissue healing. Ease of access and processing paired with therapeutic promise make SVF cells an attractive option for autologous applications in regenerative medicine. However, inherent variability in SVF cell therapeutic potential from one patient to another hinders prognosis determination for any one person. This study investigated the regenerative properties and inflammation responses of thirteen, medically diverse human donors. Using non-expanded primary lipoaspirate samples, SVF cells were assessed for robustness of several parameters integral to tissue regeneration, including yield, viability, self-renewal capacity, proliferation, differentiation potential, and immunomodulatory cytokine secretion. Each parameter was selected either for its role in regenerative potential, defined here as the ability to heal tissues through stem cell repopulation and subsequent multipotent differentiation, or for its potential role in wound healing through trophic immunomodulatory activity. These data were then analyzed for consistent and predictable patterns between and across measurements, while also investigating the influence of the donors' relevant medical histories, particularly if the donor was in remission following breast cancer treatment. Analyses identified positive correlations among the expression of three cytokines: interleukin (IL)-6, IL-8, and monocyte chemoattractant protein (MCP)-1. The expression of these cytokines also positively related to self-renewal capacity. These results are potentially relevant for establishing expectations in both preclinical experiments and targeted clinical treatment strategies that use stem cells from patients with diverse medical histories.
Collapse
Affiliation(s)
- Adrienne M Parsons
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, 175 Meeting Street, Box G-B397, Providence, RI, 02912, USA
| | - Deborah M Ciombor
- Department of Plastic and Reconstructive Surgery, Brown University, Providence, RI, USA
- Center for Biomedical Engineering, Brown University, Providence, RI, USA
| | - Paul Y Liu
- Department of Plastic and Reconstructive Surgery, Brown University, Providence, RI, USA
| | - Eric M Darling
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, 175 Meeting Street, Box G-B397, Providence, RI, 02912, USA.
- Center for Biomedical Engineering, Brown University, Providence, RI, USA.
- School of Engineering, Brown University, Providence, RI, USA.
- Department of Orthopaedics, Brown University, Providence, RI, USA.
| |
Collapse
|
50
|
Hassanshahi A, Hassanshahi M, Khabbazi S, Hosseini‐Khah Z, Peymanfar Y, Ghalamkari S, Su Y, Xian CJ. Adipose‐derived stem cells for wound healing. J Cell Physiol 2018; 234:7903-7914. [DOI: 10.1002/jcp.27922] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Alireza Hassanshahi
- Department of Genetics Faculty of Basic Sciences, Islamic Azad University Shahrekord Iran
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Samira Khabbazi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Zahra Hosseini‐Khah
- Department of Immunology School of Medicine, Mazandaran University of Medical Sciences Sari Iran
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | | | - Yu‐Wen Su
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Cory J. Xian
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| |
Collapse
|