1
|
Singh P, Hsung RTC, Ajmera DH, Said NA, Leung YY, McGrath C, Gu M. Smartphone-generated 3D facial images: reliable for routine assessment of the oronasal region of patients with cleft or mere convenience? A validation study. BMC Oral Health 2024; 24:1517. [PMID: 39702086 DOI: 10.1186/s12903-024-05280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVES To evaluate the validity and reliability of smartphone-generated three-dimensional (3D) facial images for routine evaluation of the oronasal region of patients with cleft by comparing their accuracy to that of direct anthropometry (DA) and 3dMD. MATERIALS AND METHODS Eighteen soft-tissue facial landmarks were manually labelled on each of the 17 (9 males and 8 females; mean age 23.3 ± 5.4 years) cleft lip and palate (CLP) patients' faces. Two surface imaging systems, 3dMDface and Bellus3D FaceApp, were used to perform two imaging operations on each labelled face. Subsequently, 32 inter-landmark facial measurements were directly measured on the labelled faces and digitally measured on the 3D facial images. Statistical comparisons were made between smartphone-generated 3D facial images (SGI), DA, and 3dMD measurements. RESULTS The SGI measurements were slightly higher than those from DA and 3dMD, but the mean differences between inter-landmark measurements were not statistically significant across all three methods. In terms of clinical acceptability, 16% and 59% of measures showed differences of ≤ 3 mm or ≤ 5º, with good agreement between DA and SGI and 3dMD and SGI, respectively. A small systematic bias of ± 0.2 mm was observed generally among the three methods. Additionally, the mean absolute difference between the DA and SGI methods was the highest for linear measurements (1.31 ± 0.34 mm) and angular measurements (4.11 ± 0.76º). CONCLUSIONS SGI displayed fair trueness compared to DA and 3dMD. It exhibited high accuracy in the orolabial area and specific central and flat areas within the oronasal region. Notwithstanding this, it has limited clinical applicability for assessing the entire oronasal region of patients with CLP. From a clinical application perspective, SGI should accurately encompass the entire oronasal region for optimal clinical use. CLINICAL RELEVANCE SGI can be considered for macroscopic oronasal analysis or for patient education where accuracy within 3 mm and 5º may not be critical.
Collapse
Affiliation(s)
- Pradeep Singh
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Richard Tai-Chiu Hsung
- Department of Computer Science, Hong Kong Chu Hai College, Hong Kong SAR, China
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Deepal Haresh Ajmera
- Discipline of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Noha A Said
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yiu Yan Leung
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Colman McGrath
- Discipline of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Min Gu
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Muhtar MÖ, Özkeskin SZY, Cansız E. Comparative analysis of 3D tomography based soft tissue rendering and Proface facial scanning systems in orthognathic surgery. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102088. [PMID: 39307456 DOI: 10.1016/j.jormas.2024.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/01/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE This study aimed to investigate the linear and angular differences in the nasolabial soft tissue in patients who underwent bimaxillary orthognathic surgery using two different three-dimensional imaging methods. Furthermore, the advantages, disadvantages, and limitations of these methods were determined after comparing the data obtained from the imaging methods used in the study. MATERIALS AND METHODS Preoperative (T0) and 6-months postoperative (T1) cone-beam computed tomography (CBCT) and three-dimensional facial scanning (3DFS) data from 22 patients who underwent maxillary advancement surgery were examined. The DICOM (Digital Imaging and Communications in Medicine) data (CBCT group) and ".obj" format images (3DFS group) of the patients were analyzed using Dolphin software (Dolphin Imaging®, Version 12, Chatsworth, CA, USA). The linear and angular soft tissue measurements were calculated after determining the reference anatomical landmarks for both groups. RESULTS Measurements with CBCT and 3DFS imaging methods were compared at T0, T1, and all measurements (T0+T1). No statistically significant difference was observed between the CBCT and 3DFS groups for five measurements performed at T0 and T0+T1, but statistically significant differences were observed between the groups for the other seven measurements. There was no statistically significant difference between the CBCT and 3DFS groups for six measurements at T1, but there were statistically significant differences between the groups for the other six measurements. After reviewing the postoperative differences in the nasolabial soft tissue, a statistically significant increase in four linear and one angular measurement in the 3DFS group was observed, and there was a statistically significant increase in two linear and two angular measurements in the CBCT group. Upon comparison of postoperative differences in soft tissue alterations, no statistically significant difference between the 3DFS group and the CBCT group were observed in any of the soft tissue measurements. CONCLUSION Orthognathic surgery has significant effects on nose width and upper lip morphology. Although both 3DFS and CBCT methods can be used to evaluate such effects, the results of the present study revealed differences in sensitivity and limitations between the two methods. Thus, surgical outcomes should be evaluated in consideration of the abovementioned parameters.
Collapse
Affiliation(s)
- Merve Öztürk Muhtar
- Department of Oral and Maxillofacial Surgery, Istanbul University Faculty of Dentistry, Istanbul, Turkey.
| | | | - Erol Cansız
- Department of Oral and Maxillofacial Surgery, Istanbul University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
3
|
Major M, Mészáros B, Würsching T, Polyák M, Kammerhofer G, Németh Z, Szabó G, Nagy K. Evaluation of a Structured Light Scanner for 3D Facial Imaging: A Comparative Study with Direct Anthropometry. SENSORS (BASEL, SWITZERLAND) 2024; 24:5286. [PMID: 39204985 PMCID: PMC11358891 DOI: 10.3390/s24165286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
This study evaluates the accuracy and repeatability of craniofacial measurements with a 3D light scanner, specifically the EINSTAR scanner, in comparison to traditional caliper measurements for facial anthropometry. Eleven volunteers were assessed by two examiners, one experienced and one inexperienced, who performed direct caliper measurements and indirect measurements using the scanner. Results indicated minimal differences between caliper and scanner results, with overall high accuracy and reliability demonstrated by correlation coefficients. Despite the slightly longer scanning time, the benefits of 3D imaging, including detailed surface mapping and virtual modeling, justify its integration into clinical practice, particularly in maxillofacial surgery and craniofacial assessment. Craniofacial measurements obtained with the EINSTAR scanner showed excellent reliability and accuracy, which qualifies this method for clinical and scientific use.
Collapse
Affiliation(s)
- Martin Major
- Department of Oro-Maxillofacial Surgery and Stomatology, Semmelweis University, 1085 Budapest, Hungary (G.K.)
| | - Bence Mészáros
- Pediatric Center, Semmelweis University, 1085 Budapest, Hungary (K.N.)
| | - Tamás Würsching
- Department of Oro-Maxillofacial Surgery and Stomatology, Semmelweis University, 1085 Budapest, Hungary (G.K.)
- Pediatric Center, Semmelweis University, 1085 Budapest, Hungary (K.N.)
| | - Melinda Polyák
- Department of Restorative Dentistry and Endodontics, Semmelweis University, 1085 Budapest, Hungary;
| | - Gábor Kammerhofer
- Department of Oro-Maxillofacial Surgery and Stomatology, Semmelweis University, 1085 Budapest, Hungary (G.K.)
| | - Zsolt Németh
- Department of Oro-Maxillofacial Surgery and Stomatology, Semmelweis University, 1085 Budapest, Hungary (G.K.)
| | - György Szabó
- Department of Oro-Maxillofacial Surgery and Stomatology, Semmelweis University, 1085 Budapest, Hungary (G.K.)
| | - Krisztián Nagy
- Pediatric Center, Semmelweis University, 1085 Budapest, Hungary (K.N.)
| |
Collapse
|
4
|
Choudhary A, Vandevender J, Yang K, Kazmouz S, Edgar M, Lentskevich M, Juarez C, Mendoza J, Bartelt K, Nguyen A, Purnell CA. Comparison of methodologies for craniofacial soft-tissue cephalometrics: The value of virtual reality. J Plast Reconstr Aesthet Surg 2024; 91:35-45. [PMID: 38401276 DOI: 10.1016/j.bjps.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/07/2023] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Myriad options are available for plastic surgeons to perform soft-tissue analysis, which is vital to perioperative evaluation and research. Our objective is to compare the accuracy, precision, and efficiency of the available cephalometric modalities for conducting facial soft-tissue measurements. METHODS Twenty soft-tissue facial measurements were performed by 5 measurers with varying experiences on 5 adult subjects, using 6 methods-manual calipers, cone-beam CT, virtual reality (VR), 3D stereophotogrammetry, iPad-based 3D photogrammetry, and 2-dimensional photographs. Measurement sessions were timed and performed in triplicate, for a total of 9000 measurements. Intraclass correlation coefficient (ICC) was calculated for accuracy and one-way ANOVA was used for comparison. The coefficient of variation (CoV) was compared among groups to evaluate the precision of different methods by considering caliper measurements as the gold standard. RESULTS ICC among raters was 0.932, indicating excellent reliability. VR was significantly faster than other methods (137 s vs. 217 s for caliper, p < 0.001). CoV was the highest for 2D photographs and the lowest for VR (11.0 vs. 6.4, p < 0.001). The CoV of the caliper was similar to that of other methods, except for 2D photography, which was significantly higher. Measurements with the greatest absolute difference from caliper measurements, across modalities, were those around the eyes (left to right exocanthion), tragion to antitragion, and tragion to exocanthion. CONCLUSION 2D photography is not an accurate method for cephalometric measurements. VR had the lowest variation between measurements, and was the fastest and equivalent to caliper measurements in accuracy. For studies involving a large number of cephalometrics, VR measurements may be a good option to improve study throughput.
Collapse
Affiliation(s)
- Akriti Choudhary
- Division of Plastic, Reconstructive and Cosmetic Surgery, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - John Vandevender
- Division of Plastic, Reconstructive and Cosmetic Surgery, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Kevin Yang
- Division of Plastic, Reconstructive and Cosmetic Surgery, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Sobhi Kazmouz
- Division of Plastic, Reconstructive and Cosmetic Surgery, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Michael Edgar
- Division of Plastic, Reconstructive and Cosmetic Surgery, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Marina Lentskevich
- Division of Plastic, Reconstructive and Cosmetic Surgery, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | | | - Julius Mendoza
- Division of Plastic, Reconstructive and Cosmetic Surgery, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Kyle Bartelt
- Division of Plastic, Reconstructive and Cosmetic Surgery, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Alvin Nguyen
- Division of Plastic, Reconstructive and Cosmetic Surgery, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Chad A Purnell
- Division of Plastic, Reconstructive and Cosmetic Surgery, University of Illinois at Chicago College of Medicine, Chicago, IL, USA; Shriner's Hospital for Children, Chicago, IL, USA.
| |
Collapse
|
5
|
Kurniawan MS, Tio PA, Abdel Alim T, Roshchupkin G, Dirven CM, Pleumeekers MM, Mathijssen IM, van Veelen MLC. 3D Analysis of the Cranial and Facial Shape in Craniosynostosis Patients: A Systematic Review. J Craniofac Surg 2024; 35:00001665-990000000-01410. [PMID: 38498012 PMCID: PMC11045556 DOI: 10.1097/scs.0000000000010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024] Open
Abstract
With increasing interest in 3D photogrammetry, diverse methods have been developed for craniofacial shape analysis in craniosynostosis patients. This review provides an overview of these methods and offers recommendations for future studies. A systematic literature search was used to identify publications on 3D photogrammetry analyses in craniosynostosis patients until August 2023. Inclusion criteria were original research reporting on 3D photogrammetry analyses in patients with craniosynostosis and written in English. Sixty-three publications that had reproducible methods for measuring cranial, forehead, or facial shape were included in the systematic review. Cranial shape changes were commonly assessed using heat maps and curvature analyses. Publications assessing the forehead utilized volumetric measurements, angles, ratios, and mirroring techniques. Mirroring techniques were frequently used to determine facial asymmetry. Although 3D photogrammetry shows promise, methods vary widely between standardized and less conventional measurements. A standardized protocol for the selection and documentation of landmarks, planes, and measurements across the cranium, forehead, and face is essential for consistent clinical and research applications.
Collapse
Affiliation(s)
| | | | - Tareq Abdel Alim
- Department of Neurosurgery
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center
| | - Gennady Roshchupkin
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center
- Department of Epidemiology, Erasmus MC, University Medical Center
| | | | | | | | - Marie-Lise C. van Veelen
- Department of Neurosurgery
- Child Brain Center, Erasmus MC Sophia Children’s Hospital, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Singh P, Bornstein MM, Hsung RTC, Ajmera DH, Leung YY, Gu M. Frontiers in Three-Dimensional Surface Imaging Systems for 3D Face Acquisition in Craniofacial Research and Practice: An Updated Literature Review. Diagnostics (Basel) 2024; 14:423. [PMID: 38396462 PMCID: PMC10888365 DOI: 10.3390/diagnostics14040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Digitalizing all aspects of dental care is a contemporary approach to ensuring the best possible clinical outcomes. Ongoing advancements in 3D face acquisition have been driven by continuous research on craniofacial structures and treatment effects. An array of 3D surface-imaging systems are currently available for generating photorealistic 3D facial images. However, choosing a purpose-specific system is challenging for clinicians due to variations in accuracy, reliability, resolution, and portability. Therefore, this review aims to provide clinicians and researchers with an overview of currently used or potential 3D surface imaging technologies and systems for 3D face acquisition in craniofacial research and daily practice. Through a comprehensive literature search, 71 articles meeting the inclusion criteria were included in the qualitative analysis, investigating the hardware, software, and operational aspects of these systems. The review offers updated information on 3D surface imaging technologies and systems to guide clinicians in selecting an optimal 3D face acquisition system. While some of these systems have already been implemented in clinical settings, others hold promise. Furthermore, driven by technological advances, novel devices will become cost-effective and portable, and will also enable accurate quantitative assessments, rapid treatment simulations, and improved outcomes.
Collapse
Affiliation(s)
- Pradeep Singh
- Discipline of Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; (P.S.); (D.H.A.)
| | - Michael M. Bornstein
- Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of Basel, Mattenstrasse 40, 4058 Basel, Switzerland;
| | - Richard Tai-Chiu Hsung
- Department of Computer Science, Hong Kong Chu Hai College, Hong Kong SAR, China;
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China;
| | - Deepal Haresh Ajmera
- Discipline of Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; (P.S.); (D.H.A.)
| | - Yiu Yan Leung
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China;
| | - Min Gu
- Discipline of Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; (P.S.); (D.H.A.)
| |
Collapse
|
7
|
Moon H, Fung CY, Kim JH, Jang YJ. Changes in Nasal Tip Aesthetics Over Time Following Asian Tip Plasty. Laryngoscope 2024; 134:678-683. [PMID: 37318104 DOI: 10.1002/lary.30825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/28/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES This study aimed to evaluate the sequential postoperative changes in tip aesthetics, by evaluating the aesthetic performance of the septal extension graft with or without tip grafting. METHODS A total of 62 patients who underwent rhinoplasty with tip plasty were included. Using a three-dimensional scanner, we measured anthropometric aesthetic features of the nasal tip, including tip height, tip width, nasolabial angle, and columellar lobular angle. Preoperative and 1-month and 12-month postoperative anthropometric parameters were compared. The patients were grouped according to surgical techniques (i.e., septal extension only and septal extension plus tip grafting groups) and subtype of tip graft. RESULTS The 1-month postoperative values of all four aesthetic features were significantly increased compared with the preoperative values. The tip height, tip width, and nasolabial angle at 12 months were significantly decreased compared with 1 month post-operation values, whereas the tip height and width were still greater than the preoperative values. No difference was found between 1 and 12 month values of columellar lobular angle. There were no differences in the degree of decrease in tip height, tip width, nasolabial angle, and columellar lobular angle between the septal extension graft only and septal extension graft plus tip graft groups. There were no differences in the tip graft by subtypes, single- and multi-layer tip grafts. CONCLUSIONS Increased tip height, tip width, and widened nasolabial angle gained immediately after septal extension grafting surgery gradually decreased over the year regardless of addition of tip graft or tip grafting methods. LEVEL OF EVIDENCE 4 Laryngoscope, 134:678-683, 2024.
Collapse
Affiliation(s)
- Hyun Moon
- Department of Otolaryngology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
| | - Chak Yuen Fung
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jeong Heon Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yong Ju Jang
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Singh P, Hsung RTC, Ajmera DH, Leung YY, McGrath C, Gu M. Can smartphones be used for routine dental clinical application? A validation study for using smartphone-generated 3D facial images. J Dent 2023; 139:104775. [PMID: 37944629 DOI: 10.1016/j.jdent.2023.104775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVES To compare the accuracy of smartphone-generated three-dimensional (3D) facial images to that of direct anthropometry (DA) and 3dMD with the aim of assessing the validity and reliability of smartphone-generated 3D facial images for routine clinical applications. MATERIALS AND METHODS Twenty-five anthropometric soft-tissue facial landmarks were labelled manually on 22 orthognathic surgery patients (11 males and 11 females; mean age 26.2 ± 5.3 years). For each labelled face, two imaging operations were performed using two different surface imaging systems: 3dMDface and Bellus3D FaceApp. Next, 42 inter-landmark facial measurements amongst the identified facial landmarks were measured directly on each labelled face and also digitally on 3D facial images. The measurements obtained from smartphone-generated 3D facial images (SGI) were statistically compared with those from DA and 3dMD. RESULTS SGI had slightly higher measurement values than DA and 3dMD, but there was no statistically significant difference between the mean values of inter-landmark measures across the three methods. Clinically acceptable differences (≤3 mm or ≤5°) were observed for 67 % and 74 % of measurements with good agreement between DA and SGI, and 3dMD and SGI, respectively. An overall small systematic bias of ± 0.2 mm was observed between the three methods. Furthermore, the mean absolute difference between DA and SGI methods was highest for linear (1.41 ± 0.33 mm) as well as angular measurements (3.07 ± 0.73°). CONCLUSIONS SGI demonstrated fair trueness compared to DA and 3dMD. The central region and flat areas of the face in SGI are more accurate. Despite this, SGI have limited clinical application, and the panfacial accuracy of the SGI would be more desirable from a clinical application standpoint. CLINICAL SIGNIFICANCE The usage of SGI in clinical practice for region-specific macro-proportional facial assessment involving central and flat regions of the face or for patient education purposes, which does not require accuracy within 3 mm and 5° can be considered.
Collapse
Affiliation(s)
- Pradeep Singh
- Discipline of Orthodontics, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Richard Tai-Chiu Hsung
- Department of Computer Science, Hong Kong Chu Hai College, Hong Kong SAR, China; Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Deepal Haresh Ajmera
- Discipline of Orthodontics, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Yiu Yan Leung
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Colman McGrath
- Discipline of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Min Gu
- Discipline of Orthodontics, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Gadallah MA, Khamis MM, Abdelhamid AM, Ezzelarab S. Evaluation of the use of different intraoral scanners for auricular prosthetic reconstruction. J Prosthet Dent 2023:S0022-3913(23)00642-X. [PMID: 39492256 DOI: 10.1016/j.prosdent.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 11/05/2024]
Abstract
STATEMENT OF PROBLEM The use of intraoral optical scanners has been introduced for direct digital data acquisition in maxillofacial prosthetics, but their clinical accuracy has not been evaluated sufficiently. PURPOSE The purpose of this observational study was to evaluate the use of different intraoral scanners for extraoral maxillofacial digitization of an ear and to assess visually the clinical outcome of the generated 3-dimensional ear casts. MATERIAL AND METHODS A selected intact ear was scanned by using 3 different intraoral optical scanners: CEREC Primescan (Dentsply Sirona), Medit i700 (Medit Corp) and Panda P2 (Pengtum Technologies). Three-dimensional printed auricular casts were fabricated from the obtained scans, and a questionnaire administered to assess visually the clinical outcome of the generated casts. Comparisons between scanners were done by using the Kruskal-Wallis test followed by the post hoc test with Bonferroni correction when results were significant. The Wilcoxon Sign Rank test was used to compare the responses of both the prosthodontists and the lay personnel. All tests were 2-tailed (α=.05). RESULTS The 3-dimensional printed auricular casts fabricated from the data acquired by using Primescan and Medit i700 scanners showed a statistically significant difference in matching scores when compared with the Panda P2 scanner (P<.001). CONCLUSIONS Digital ear scanning with the Primescan and Medit i700 intraoral scanners should produce auricular prostheses that more closely match the normal ear when compared with those scanned by the Panda P2 scanner.
Collapse
Affiliation(s)
- Maged Ahmed Gadallah
- Assistant Lecturer of Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Mohamed Moataz Khamis
- Professor and Chairman, Department of Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | | | - Salah Ezzelarab
- Professor of Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Pan F, Liu J, Cen Y, Chen Y, Cai R, Zhao Z, Liao W, Wang J. Accuracy of RGB-D camera-based and stereophotogrammetric facial scanners: a comparative study. J Dent 2022; 127:104302. [PMID: 36152954 DOI: 10.1016/j.jdent.2022.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate and compare the accuracy and inter-operator reliability of a low-cost red-green-blue-depth (RGB-D) camera-based facial scanner (Bellus3D Arc7) with a stereophotogrammetry facial scanner (3dMD) and to explore the possibility of the former as a clinical substitute for the latter. METHODS A mannequin head was selected as the research object. In the RGB-D camera-based facial scanner group, the head was continuously scanned five times using an RGB-D camera-based facial scanner (Bellus3D Arc7), and the outcome data of each scan was then imported into CAD software (MeshLab) to reconstruct three-dimensional (3D) facial photographs. In the stereophotogrammetry facial scanner group, the mannequin head was scanned with a stereophotogrammetry facial scanner (3dMD). Selected parameters were directly measured on the reconstructed 3D virtual faces using a CAD software. The same parameters were then measured directly on the mannequin head using the direct anthropometry (DA) method as the gold standard for later comparison. The accuracy of the facial scanners was evaluated in terms of trueness and precision. Trueness was evaluated by comparing the measurement results of the two groups with each other and with that of DA using equivalence tests and average absolute deviations, while precision and inter-operator reliability were assessed using the intraclass correlation coefficient (ICC). A 3D facial mesh deviation between the two groups was also calculated for further reference using a 3D metrology software (GOM inspect pro). RESULTS In terms of trueness, the average absolute deviations between RGB-D camera-based and stereophotogrammetry facial scanners, between RGB-D camera-based facial scanner and DA, and between stereophotogrammetry facial scanner and DA were statistically equivalent at 0.50±0.27 mm, 0.61±0.42 mm, and 0.28±0.14 mm, respectively. Equivalence test results confirmed that their equivalence was within clinical requirements (<1 mm). The ICC for each parameter was approximately 0.999 in terms of precision and inter-operator reliability. A 3D facial mesh analysis suggested that the deviation between the two groups was 0.37±0.01 mm. CONCLUSIONS For facial scanners, an accuracy of <1 mm is commonly considered clinically acceptable. Both the RGB-D camera-based and stereophotogrammetry facial scanners in this study showed acceptable trueness, high precision, and inter-operator reliability. A low-cost RGB-D camera-based facial scanner could be an eligible clinical substitute for traditional stereophotogrammetry. CLINICAL SIGNIFICANCE The low-cost RGB-D camera-based facial scanner showed clinically acceptable trueness, high precision, and inter-operator reliability; thus, it could be an eligible clinical substitute for traditional stereophotogrammetry.
Collapse
Affiliation(s)
- Fangwei Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jialing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yueyan Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruilie Cai
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, South Carolina, United States
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Validation of Vectra 3D Imaging Systems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148820. [PMID: 35886670 PMCID: PMC9318949 DOI: 10.3390/ijerph19148820] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023]
Abstract
Aim: Three-dimensional facial imaging systems are a useful tool that is gradually replacing two-dimensional imaging and traditional anthropometry with calipers. In this varied and growing landscape of new devices, Canfield (Canfield Scientific, Parsippany, NJ, USA) has proposed a series of static and portable 3D imaging systems. The aim of this systematic review was to evaluate the current literature regarding the validation of Canfield’s Vectra imaging systems. Materials and Methods: A search strategy was developed on electronic databases including PubMed, Web of Science and Scopus by using specific keywords. After the study selection phase, a total of 10 articles were included in the present review. Results: A total of 10 articles were finally included in the present review. For six articles, we conducted a validation of the Vectra static devices, focusing especially on the Vectra M5, Vectra M3 and Vectra XT. For four articles, we validated the Vectra H1 portable system. Conclusions: All of the reviewed articles concluded that Canfield’s Vectra 3D imaging systems are capable of capturing accurate and reproducible stereophotogrammetric images. Minor errors were reported, particularly in the acquisition of the perioral region, but all the evaluated devices are considered to be valid and accurate tools for clinicians.
Collapse
|
12
|
Comparing reliability between 3D imaging and 2D photography for external nasal anthropometry. Sci Rep 2022; 12:4531. [PMID: 35296785 PMCID: PMC8927454 DOI: 10.1038/s41598-022-08714-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022] Open
Abstract
This study investigates and compares the reliability and reproducibility of two facial anthropometric methods about external nasal angles, 3D imaging and conventional 2D photography. 2D photograph images and 3D images about external nose of 30 volunteers were taken using digital camera and Morpheus 3D scanner. To evaluate intra-rater reliability, each images were taken over two different days for each subject by the same researcher. To evaluate inter-rater reliability, another researcher took each images for each subject on the first day. The reliability of each method for measuring 4 external nasal angle is obtained using intraclass correlation coefficient (ICC) and compared. Inter-rater and intra-rater reliability of both 3D imaging and 2D photography had excellent agreement in all 4 nasal angles. In the nasofacial angular parameter, Inter-rater ICC, 2D photography was significantly higher than 3D imaging. Result of intra-rater ICC also showed both 3D imaging and 2D photography had good reliability in all 4 nasal angles. Similar to those of inter-rater ICC, nasofacial angular parameter showed statistically significant differences between 3D imaging and 2D photography. In terms of reliability, both 2D and 3D showed appropriate anthropometric results and considering its own advantage, each methods can be used complementarily.
Collapse
|
13
|
Almpani K, Liberton DK, Jani P, Keyvanfar C, Mishra R, Curry N, Orzechowski P, Frischmeyer-Guerrerio PA, Lee JS. Loeys-Dietz and Shprintzen-Goldberg syndromes: analysis of TGF-β-opathies with craniofacial manifestations using an innovative multimodality method. J Med Genet 2021; 59:938-946. [PMID: 34916229 PMCID: PMC9554024 DOI: 10.1136/jmedgenet-2021-107695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/02/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Elevated transforming growth factor-beta (TGF-β) signalling has been implicated in the pathogenesis of Loeys-Dietz syndrome (LDS) and Shprintzen-Goldberg syndrome (SGS). In this study, we provide a qualitative and quantitative analysis of the craniofacial and functional features among the LDS subtypes and SGS. METHODS We explore the variability within and across a cohort of 44 patients through deep clinical phenotyping, three-dimensional (3D) facial photo surface analysis, cephalometric and geometric morphometric analyses of cone-beam CT scans. RESULTS The most common craniofacial features detected in this cohort include mandibular retrognathism (84%), flat midface projection (84%), abnormal eye shape (73%), low-set ears (73%), abnormal nose (66%) and lip shape (64%), hypertelorism (41%) and a relatively high prevalence of nystagmus/strabismus (43%), temporomandibular joint disorders (38%) and obstructive sleep apnoea (23%). 3D cephalometric analysis demonstrated an increased cranial base angle with shortened anterior cranial base and underdevelopment of the maxilla and mandible, with evidence of a reduced pharyngeal airway in 55% of those analysed. Geometric morphometric analysis confirmed that the greatest craniofacial shape variation was among patients with LDS type 2, with distinct clustering of patients with SGS. CONCLUSIONS This comprehensive phenotypic approach identifies developmental abnormalities that segregate to mutation variants along the TGF-β signalling pathway, with a particularly severe phenotype associated with TGFBR2 and SKI mutations. Multimodality assessment of craniofacial anomalies objectively reveals the impact of mutations of the TGF-β pathway with perturbations associated with the cranium and cranial base with severe downstream effects on the orbit, maxilla and mandible with the resultant clinical phenotypes.
Collapse
Affiliation(s)
- Konstantinia Almpani
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Denise K Liberton
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Priyam Jani
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Cyrus Keyvanfar
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Rashmi Mishra
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Natasha Curry
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Pamela Orzechowski
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | | | - Janice S Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Whitman MC, Barry BJ, Robson CD, Facio FM, Van Ryzin C, Chan WM, Lehky TJ, Thurm A, Zalewski C, King KA, Brewer C, Almpani K, Lee JS, Delaney A, FitzGibbon EJ, Lee PR, Toro C, Paul SM, Abdul-Rahman OA, Webb BD, Jabs EW, Moller HU, Larsen DA, Antony JH, Troedson C, Ma A, Ragnhild G, Wirgenes KV, Tham E, Kvarnung M, Maarup TJ, MacKinnon S, Hunter DG, Collins FS, Manoli I, Engle EC. TUBB3 Arg262His causes a recognizable syndrome including CFEOM3, facial palsy, joint contractures, and early-onset peripheral neuropathy. Hum Genet 2021; 140:1709-1731. [PMID: 34652576 PMCID: PMC8656246 DOI: 10.1007/s00439-021-02379-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Microtubules are formed from heterodimers of alpha- and beta-tubulin, each of which has multiple isoforms encoded by separate genes. Pathogenic missense variants in multiple different tubulin isoforms cause brain malformations. Missense mutations in TUBB3, which encodes the neuron-specific beta-tubulin isotype, can cause congenital fibrosis of the extraocular muscles type 3 (CFEOM3) and/or malformations of cortical development, with distinct genotype-phenotype correlations. Here, we report fourteen individuals from thirteen unrelated families, each of whom harbors the identical NM_006086.4 (TUBB3):c.785G>A (p.Arg262His) variant resulting in a phenotype we refer to as the TUBB3 R262H syndrome. The affected individuals present at birth with ptosis, ophthalmoplegia, exotropia, facial weakness, facial dysmorphisms, and, in most cases, distal congenital joint contractures, and subsequently develop intellectual disabilities, gait disorders with proximal joint contractures, Kallmann syndrome (hypogonadotropic hypogonadism and anosmia), and a progressive peripheral neuropathy during the first decade of life. Subsets may also have vocal cord paralysis, auditory dysfunction, cyclic vomiting, and/or tachycardia at rest. All fourteen subjects share a recognizable set of brain malformations, including hypoplasia of the corpus callosum and anterior commissure, basal ganglia malformations, absent olfactory bulbs and sulci, and subtle cerebellar malformations. While similar, individuals with the TUBB3 R262H syndrome can be distinguished from individuals with the TUBB3 E410K syndrome by the presence of congenital and acquired joint contractures, an earlier onset peripheral neuropathy, impaired gait, and basal ganglia malformations.
Collapse
Affiliation(s)
- Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Brenda J Barry
- Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Caroline D Robson
- Department of Radiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Flavia M Facio
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Carol Van Ryzin
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Wai-Man Chan
- Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tanya J Lehky
- EMG Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892-1404, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Christopher Zalewski
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Kelly A King
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Carmen Brewer
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Konstantinia Almpani
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892, USA
| | - Janice S Lee
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892, USA
| | - Angela Delaney
- Pediatric Endocrinology and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
- St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Edmond J FitzGibbon
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Paul R Lee
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
- Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Camilo Toro
- Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Scott M Paul
- Rehabilitation Medicine Department, NIH Clinical Center, Bethesda, MD, 20892, USA
- Departments of Biomedical Engineering and Physical Medicine and Rehabilitation, JHU School of Medicine, Baltimore, MD, 21205, USA
| | - Omar A Abdul-Rahman
- Division of Medical Genetics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Munroe-Meyer Institute, Omaha, NE, 68106, USA
- Nebraska Medical Center, Omaha, NE, 68198-5450, USA
| | - Bryn D Webb
- Division of Genetics and Metabolism, Department of Pediatrics, University of Wisconsin - Madison, Madison, WI, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | | | | | - Alan Ma
- Children's Hospital Westmead, Westmead, NSW, Australia
- Specialty of Genomic Medicine, University of Sydney, Sydney, Australia
| | - Glad Ragnhild
- Department of Medical Genetics, University Hospital North Norway, Tromsø, Norway
| | - Katrine V Wirgenes
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Emma Tham
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kvarnung
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Sarah MacKinnon
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - David G Hunter
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Francis S Collins
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
- Office of the Director, NIH, Bethesda, MD, 20892, USA
| | - Irini Manoli
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Kirby Center, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Three-Dimensional Anthropometry for Evaluating Reliability of Worm's Eye View Photographs of Unilateral Cleft Lip Nasal Deformity. J Craniofac Surg 2021; 32:e591-e594. [PMID: 34054090 DOI: 10.1097/scs.0000000000007806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Worm's eye view photograph has been widely used for anthropometric analysis. However, it is difficult to secure objectivity because it cannot be captured at a constant head-up degree. This study aimed to analyze whether anthropometric nasal measurements in worm's eye view differ from the actual values. METHODS A total of 40 patients with unilateral cleft lip nasal deformities were included. The 30° and 60° head-tilted two-dimensional (2D) photographs were captured from the three-dimensional (3D) images. The real measurements were obtained from 3D images and 2D measurements were obtained from the captured images. The cleft/non-cleft side ratios of the nostril height, width, and alar base width were compared between 3D and 2D images. RESULTS There was a significant difference in the nostril height between the 3D and 30° values (3D = 0.82, 30° = 0.92, P < 0.001) but no meaningful difference was noted between the 3D and 60° values (3D = 0.82, 60° = 0.84, P = 0.31). There was no significant difference in the nostril width among the 30°, 60°, and 3D values. A significant difference was found in the alar base width between the 3D values and both the 30° (3D = 0.998, 30° = 1.04, P = 0.026) and 60° (3D = 0.998, 30° = 1.03, P = 0.029) values. CONCLUSIONS This study demonstrates that 2D photographs do not accurately reflect actual values. The nostril height and alar width ratio can be changed depending on the head-up position. The 3D systems are more accurate and less affected by the subject's head position. Therefore, the 3D imaging system is advocated for the anthropometric analysis of unilateral cleft lip nasal deformity.
Collapse
|
16
|
Hendel K, Ortner VK, Fuchs CSK, Eckhouse V, Haedersdal M. Dermatologic Scar Assessment With Stereoscopic Imaging and Digital Three-Dimensional Models: A Validation Study. Lasers Surg Med 2021; 53:1043-1049. [PMID: 33389766 DOI: 10.1002/lsm.23373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/17/2020] [Accepted: 12/16/2020] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVE We evaluated a new handheld stereoscopic imaging system capable of visualizing scars with digital three-dimensional (3D) models and providing automated morphometric estimates. The objective was to validate the repeatability and accuracy of intra- and inter-investigator scan results. STUDY DESIGN/MATERIALS AND METHODS Engineered metal plates with depressed and elevated model scars (n = 72) were scanned six times by one investigator. In vivo hypertrophic and atrophic scars (n = 15) were scanned once by three investigators. The repeatability of morphometric estimates was assessed using coefficients of variation (CVs) to compare the variation among multiple scan results for both models and in vivo scars, with 0% reflecting a perfect match. Scar estimates from digital 3D reconstructions were compared with the known dimensions of physical model scars and with ruler measurements of in vivo scars. RESULTS A total of 48 model scars and 12 in vivo scars were eligible for automated analyses with the imaging system's proprietary software. Intra-investigator scan results for the model scars were repeatable, with low variance for all parameters: volume, area, length, and depth/height (CV: 1.8-3.1%). By comparison, inter-investigator scans of real in vivo scars resulted in slightly higher median CVs (4.4-7.3%; P < 0.05). 3D model scar estimates correlated well with the known physical dimensions of model scars for all parameters (P < 0.001) and accurately reflected the measurements of in vivo scars (P < 0.001). The six in vivo scars situated on the chest and abdomen showed the highest inter-investigator variation, due to respiratory movement artifacts. CONCLUSION Stereoscopic imaging of scars generates accurate and repeatable measurement estimates that show little intra- and inter-investigator-based assessment variation. The best results are achieved by minimizing subject movement. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Kristoffer Hendel
- Department of Dermatology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Nielsine Nielsens Vej 17, Copenhagen NV, 2400, Denmark
| | - Vinzent K Ortner
- Department of Dermatology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Nielsine Nielsens Vej 17, Copenhagen NV, 2400, Denmark
| | - Christine S K Fuchs
- Department of Dermatology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Nielsine Nielsens Vej 17, Copenhagen NV, 2400, Denmark
| | - Vardit Eckhouse
- Cherry Imaging, Tavor Building 2, Yokneam, I.Z, 20692, Israel
| | - Merete Haedersdal
- Department of Dermatology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Nielsine Nielsens Vej 17, Copenhagen NV, 2400, Denmark
| |
Collapse
|
17
|
White JD, Ortega-Castrillon A, Virgo C, Indencleef K, Hoskens H, Shriver MD, Claes P. Sources of variation in the 3dMDface and Vectra H1 3D facial imaging systems. Sci Rep 2020; 10:4443. [PMID: 32157192 PMCID: PMC7064576 DOI: 10.1038/s41598-020-61333-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 12/21/2022] Open
Abstract
As technology advances and collaborations grow, our ability to finely quantify and explore morphological variation in 3D structures can enable important discoveries and insights into clinical, evolutionary, and genetic questions. However, it is critical to explore and understand the relative contribution of potential sources of error to the structures under study. In this study, we isolated the level of error in 3D facial images attributable to four sources, using the 3dMDface and Vectra H1 camera systems. When the two camera systems are used separately to image human participants, this analysis finds an upper bound of error potentially introduced by the use of the 3dMDface or Vectra H1 camera systems, in conjunction with the MeshMonk registration toolbox, at 0.44 mm and 0.40 mm, respectively. For studies using both camera systems, this upper bound increases to 0.85 mm, on average, and there are systematic differences in the representation of the eyelids, nostrils, and mouth by the two camera systems. Our results highlight the need for careful assessment of potential sources of error in 3D images, both in terms of magnitude and position, especially when dealing with very small measurements or performing many tests.
Collapse
Affiliation(s)
- Julie D White
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States.
| | - Alejandra Ortega-Castrillon
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
| | - Ciara Virgo
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Karlijne Indencleef
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
| | - Hanne Hoskens
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Department of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Mark D Shriver
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium.
- Department of Human Genetics, University Hospitals Leuven, Leuven, Belgium.
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.
- Department of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|