1
|
Rapszky GA, Do To UN, Kiss VE, Kói T, Walter A, Gergő D, Meznerics FA, Rakovics M, Váncsa S, Kemény LV, Csupor D, Hegyi P, Filbin MR, Varga C, Fenyves BG. Rapid molecular assays versus blood culture for bloodstream infections: a systematic review and meta-analysis. EClinicalMedicine 2025; 79:103028. [PMID: 39968206 PMCID: PMC11833021 DOI: 10.1016/j.eclinm.2024.103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 02/20/2025] Open
Abstract
Background Timely management of sepsis with early targeted antimicrobial therapy improves patient outcomes. Rapid molecular assays (RMAs) have emerged, enabling the detection of bloodstream infection (BSI) with a shorter turnaround time than blood cultures (BCs). The accuracy of several RMAs has not been comprehensively reviewed. We aimed to identify commercial RMAs reported in the literature and evaluate their diagnostic performance compared to BC. Methods A systematic review and meta-analysis was conducted, covering MEDLINE, Cochrane Library, Embase, and Web of Science from inception to September 23, 2024. Eligible studies included patients with suspected or documented BSI, tested with both an RMA (turnaround time of ≤12 h, targeting ≥20 pathogens) and BC. Non-original research articles and animal studies were excluded. The primary outcomes were pooled sensitivity and specificity of RMAs for pathogen detection compared to BC. Bivariate analysis was used to produce summary receiver operating characteristic plots and diagnostic metric measures stratified by different units of analysis (sample versus patient), RMA types, and patient populations. Risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and Quality Assessment of Diagnostic Accuracy Studies-Comparative (QUADAS-C) tools. The study was registered with PROSPERO, CRD42022377280. Findings A total of 63,916 articles were identified, of which 104 were included in the qualitative synthesis and 75 in the quantitative synthesis, covering 17,952 samples and 11,393 patients analyzed separately. Eleven RMAs were identified, with four included in the RMA-based subgroup analysis (LightCycler SeptiFast Test MGRADE®, IRIDICA BAC BSI assay, SepsiTest, MagicPlex Sepsis Test) and five additional ones in the pooled analysis (UMD-SelectNA, VYOO®, MicrobScan assay, MicrobScan-Kairos24/7, REBA Sepsis-ID test). Two RMAs were included in the qualitative synthesis only (InfectID-BSI, Pilot Gene Technology droplet digital polymerase chain reaction). Pooled specificity of RMAs was higher (0.858, 95% confidence interval (CI) 0.830-0.883) than sensitivity (0.659, 95% CI 0.594-0.719) by patient. Sensitivities varied by RMA type from 0.492 (95% CI 0.390-0.594, MagicPlex Sepsis Test) to 0.783 (95% CI 0.662-0.870, IRIDICA BAC BSI assay) by patient. Specificities varied more by patient population, ranging from 0.811 (95% CI 0.716-0.879) in the intensive care population to 0.892 (95% CI 0.838-0.930) in the emergency department population, by patient. Similar metrics were observed when the analysis was done by sample. Risk of bias was judged to be high in all included articles. Interpretation Despite their shorter turnaround time, low sensitivity means RMAs cannot replace BCs. However, our data indicate that RMAs may have value as an add-on test by increasing pathogen detection rates. Higher-sensitivity RMAs are needed which could possibly be achieved by expanding pathogen coverage and increasing blood sample volumes. High-quality implementation studies and standardized reporting are required to assess the clinical advantages of RMAs. Funding Centre for Translational Medicine, Semmelweis University.
Collapse
Affiliation(s)
- Gabriella Anna Rapszky
- Department of Emergency Medicine, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Uyen Nguyen Do To
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- András Pető Faculty, Semmelweis University, Budapest, Hungary
| | | | - Tamás Kói
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Budapest University of Technology and Economics, Department of Stochastics, Budapest, Hungary
| | - Anna Walter
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Dorottya Gergő
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary
| | - Fanni Adél Meznerics
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Márton Rakovics
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Eötvös Loránd University, Faculty of Social Sciences, Department of Statistics, Budapest, Hungary
| | - Szilárd Váncsa
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Lajos Vince Kemény
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU, Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary
| | - Dezső Csupor
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Clinical Pharmacy, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Michael R. Filbin
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Emergency Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Csaba Varga
- Department of Emergency Medicine, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Bánk G. Fenyves
- Department of Emergency Medicine, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Grosso S, Pagani L, Tosoni N, Crapis M, Turrini E, Mannu F, Carta F, Rosa RD, Turrini F, Avolio M. A new molecular method for rapid etiological diagnosis of sepsis with improved performance. Future Microbiol 2021; 16:741-751. [PMID: 34082567 DOI: 10.2217/fmb-2020-0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The value of blood cultures for confirming the clinical diagnosis of sepsis is suboptimal. There is growing interest in the potential of real-time PCR technology by detection of minute amounts of pathogen DNA in patient blood samples with results available within 4-6 h. Adopting a two-step approach, we evaluated the compliance of two versions of the MicrobScan assay on a total of 748 patients with suspected bloodstream infections. The results obtained with a second version of the MicrobScan assay are characterized by increased specificity (from 95.1 to 98.2%) and sensitivity (from 76.7 to 85.1), increased throughput and the possibility of simultaneously testing different kinds of samples collected from the potential sites of infection and utilizing different syndromic panels.
Collapse
Affiliation(s)
- Shamanta Grosso
- Microbiology & Virology Department, Azienda per l'Assistenza Sanitaria n 5 Friuli Occidentale, Via Montereale 24, Pordenone, 33170, Italy
| | - Lucia Pagani
- Microbiology & Virology Department, Azienda per l'Assistenza Sanitaria n 5 Friuli Occidentale, Via Montereale 24, Pordenone, 33170, Italy
| | - Nilla Tosoni
- Microbiology & Virology Department, Azienda per l'Assistenza Sanitaria n 5 Friuli Occidentale, Via Montereale 24, Pordenone, 33170, Italy
| | - Massimo Crapis
- Infectious Diseases Unit, Azienda per l'Assistenza Sanitaria n 5 Friuli Occidentale, Via Montereale 24, Pordenone, 33170, Italy
| | - Enrico Turrini
- Research Unit, Nurex Srl, Strada 3, Sassari, 07100, Italy
| | - Franca Mannu
- Research Unit, Nurex Srl, Strada 3, Sassari, 07100, Italy
| | - Franco Carta
- Research Unit, Nurex Srl, Strada 3, Sassari, 07100, Italy
| | - Rita De Rosa
- Microbiology & Virology Department, Azienda per l'Assistenza Sanitaria n 5 Friuli Occidentale, Via Montereale 24, Pordenone, 33170, Italy
| | - Francesco Turrini
- Department of Oncology, University of Torino, Via Santena 5, Torino, 10126, Italy
| | - Manuela Avolio
- Microbiology & Virology Department, Azienda per l'Assistenza Sanitaria n 5 Friuli Occidentale, Via Montereale 24, Pordenone, 33170, Italy
| |
Collapse
|
3
|
Drees C, Vautz W, Liedtke S, Rosin C, Althoff K, Lippmann M, Zimmermann S, Legler TJ, Yildiz D, Perl T, Kunze-Szikszay N. GC-IMS headspace analyses allow early recognition of bacterial growth and rapid pathogen differentiation in standard blood cultures. Appl Microbiol Biotechnol 2019; 103:9091-9101. [DOI: 10.1007/s00253-019-10181-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 01/14/2023]
|
4
|
Abstract
Sepsis, which kills over 200,000 patients and costs over $20 billion in the United States alone, presents a constant but preventable challenge in the healthcare system. Among the more challenging problems that it presents is misdiagnosis due to conflation with other inflammatory processes, as its mechanisms are identical to those of other inflammatory states. Unfortunately, current biomarker tests can only assess the severity and mortality risk of each case, whereas no single test exists that can predict sepsis prior to the onset of symptoms for the purpose of pre-emptive care and monitoring. We propose that a single test utilizing three, rather than two, biomarkers that appear most quickly in the blood and are the most specific for sepsis rather than trauma, may improve diagnostic accuracy and lead to lessened patient morbidity and mortality. Such a test would vastly improve patient outcomes and quality of life, prevent complications for sepsis survivors, and prevent hospital readmissions, saving the American healthcare system money. This review summarizes the current use of sepsis biomarkers to prognosticate morbidity and mortality, and rejects the current single-biomarker and even combination biomarker tests as non-specific and inaccurate for current patient needs/pro-inflammatory cytokines, general markers of inflammation, and proteins specific to myeloid cells (and therefore to infection) are discussed. Ultimately, the review suggests a three-biomarker test of procalcitonin (PCT), interleukin-6 (IL-6), and soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) to diagnose sepsis before the onset of symptoms.
Collapse
|
5
|
Faria MMP, Winston BW, Surette MG, Conly JM. Bacterial DNA patterns identified using paired-end Illumina sequencing of 16S rRNA genes from whole blood samples of septic patients in the emergency room and intensive care unit. BMC Microbiol 2018; 18:79. [PMID: 30045694 PMCID: PMC6060528 DOI: 10.1186/s12866-018-1211-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sepsis refers to clinical presentations ranging from mild body dysfunction to multiple organ failure. These clinical symptoms result from a systemic inflammatory response to pathogenic or potentially pathogenic microorganisms present systemically in the bloodstream. Current clinical diagnostics rely on culture enrichment techniques to identify bloodstream infections. However, a positive result is obtained in a minority of cases thereby limiting our knowledge of sepsis microbiology. Previously, a method of saponin treatment of human whole blood combined with a comprehensive bacterial DNA extraction protocol was developed. The results indicated that viable bacteria could be recovered down to 10 CFU/ml using this method. Paired-end Illumina sequencing of the 16S rRNA gene also indicated that the bacterial DNA extraction method enabled recovery of bacterial DNA from spiked blood. This manuscript outlines the application of this method to whole blood samples collected from patients with the clinical presentation of sepsis. RESULTS Blood samples from clinically septic patients were obtained with informed consent. Application of the paired-end Illumina 16S rRNA sequencing to saponin treated blood from intensive care unit (ICU) and emergency department (ED) patients indicated that bacterial DNA was present in whole blood. There were three clusters of bacterial DNA profiles which were distinguished based on the distribution of Streptococcus, Staphylococcus, and Gram-negative DNA. The profiles were examined alongside the patient's clinical data and indicated molecular profiling patterns from blood samples had good concordance with the primary source of infection. CONCLUSIONS Overall this study identified common bacterial DNA profiles in the blood of septic patients which were often associated with the patients' primary source of infection. These results indicated molecular bacterial DNA profiling could be further developed as a tool for clinical diagnostics for bloodstream infections.
Collapse
Affiliation(s)
- Monica Martins Pereira Faria
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Brent Warren Winston
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- Foothills Medical Centre, Alberta Health Services, Room AGW5, 1403 29th Street NW, Calgary, AB T2N 2T9 Canada
| | - Michael Gordon Surette
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1 Canada
- Department of Medicine and Biochemistry, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1 Canada
- Department of Biomedical Sciences, Faculty of Health Science, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - John Maynard Conly
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada
- O’Brien Institute for Public Health, University of Calgary, Calgary, AB T2N 4N1 Canada
- Foothills Medical Centre, Alberta Health Services, Room AGW5, 1403 29th Street NW, Calgary, AB T2N 2T9 Canada
| |
Collapse
|
6
|
Uroseptic Shock Can Be Reversed by Early Intervention Based on Leukocyte Count 2 h Post-operation: Animal Model and Multicenter Clinical Cohort Study. Inflammation 2018; 41:1835-1841. [DOI: 10.1007/s10753-018-0826-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Sinha M, Jupe J, Mack H, Coleman TP, Lawrence SM, Fraley SI. Emerging Technologies for Molecular Diagnosis of Sepsis. Clin Microbiol Rev 2018; 31:e00089-17. [PMID: 29490932 PMCID: PMC5967692 DOI: 10.1128/cmr.00089-17] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rapid and accurate profiling of infection-causing pathogens remains a significant challenge in modern health care. Despite advances in molecular diagnostic techniques, blood culture analysis remains the gold standard for diagnosing sepsis. However, this method is too slow and cumbersome to significantly influence the initial management of patients. The swift initiation of precise and targeted antibiotic therapies depends on the ability of a sepsis diagnostic test to capture clinically relevant organisms along with antimicrobial resistance within 1 to 3 h. The administration of appropriate, narrow-spectrum antibiotics demands that such a test be extremely sensitive with a high negative predictive value. In addition, it should utilize small sample volumes and detect polymicrobial infections and contaminants. All of this must be accomplished with a platform that is easily integrated into the clinical workflow. In this review, we outline the limitations of routine blood culture testing and discuss how emerging sepsis technologies are converging on the characteristics of the ideal sepsis diagnostic test. We include seven molecular technologies that have been validated on clinical blood specimens or mock samples using human blood. In addition, we discuss advances in machine learning technologies that use electronic medical record data to provide contextual evaluation support for clinical decision-making.
Collapse
Affiliation(s)
- Mridu Sinha
- Bioengineering Department, University of California, San Diego, San Diego, California, USA
| | - Julietta Jupe
- Donald Danforth Plant Science Center, Saint Louis, Missouri, USA
| | - Hannah Mack
- Bioengineering Department, University of California, San Diego, San Diego, California, USA
| | - Todd P Coleman
- Bioengineering Department, University of California, San Diego, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, San Diego, California, USA
| | - Shelley M Lawrence
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of California, San Diego, San Diego, California, USA
- Rady Children's Hospital of San Diego, San Diego, California, USA
- Clinical Translational Research Institute, University of California, San Diego, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, San Diego, California, USA
| | - Stephanie I Fraley
- Bioengineering Department, University of California, San Diego, San Diego, California, USA
- Clinical Translational Research Institute, University of California, San Diego, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
8
|
Stevenson M, Pandor A, Martyn-St James M, Rafia R, Uttley L, Stevens J, Sanderson J, Wong R, Perkins GD, McMullan R, Dark P. Sepsis: the LightCycler SeptiFast Test MGRADE®, SepsiTest™ and IRIDICA BAC BSI assay for rapidly identifying bloodstream bacteria and fungi - a systematic review and economic evaluation. Health Technol Assess 2018; 20:1-246. [PMID: 27355222 DOI: 10.3310/hta20460] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sepsis can lead to multiple organ failure and death. Timely and appropriate treatment can reduce in-hospital mortality and morbidity. OBJECTIVES To determine the clinical effectiveness and cost-effectiveness of three tests [LightCycler SeptiFast Test MGRADE(®) (Roche Diagnostics, Risch-Rotkreuz, Switzerland); SepsiTest(TM) (Molzym Molecular Diagnostics, Bremen, Germany); and the IRIDICA BAC BSI assay (Abbott Diagnostics, Lake Forest, IL, USA)] for the rapid identification of bloodstream bacteria and fungi in patients with suspected sepsis compared with standard practice (blood culture with or without matrix-absorbed laser desorption/ionisation time-of-flight mass spectrometry). DATA SOURCES Thirteen electronic databases (including MEDLINE, EMBASE and The Cochrane Library) were searched from January 2006 to May 2015 and supplemented by hand-searching relevant articles. REVIEW METHODS A systematic review and meta-analysis of effectiveness studies were conducted. A review of published economic analyses was undertaken and a de novo health economic model was constructed. A decision tree was used to estimate the costs and quality-adjusted life-years (QALYs) associated with each test; all other parameters were estimated from published sources. The model was populated with evidence from the systematic review or individual studies, if this was considered more appropriate (base case 1). In a secondary analysis, estimates (based on experience and opinion) from seven clinicians regarding the benefits of earlier test results were sought (base case 2). A NHS and Personal Social Services perspective was taken, and costs and benefits were discounted at 3.5% per annum. Scenario analyses were used to assess uncertainty. RESULTS For the review of diagnostic test accuracy, 62 studies of varying methodological quality were included. A meta-analysis of 54 studies comparing SeptiFast with blood culture found that SeptiFast had an estimated summary specificity of 0.86 [95% credible interval (CrI) 0.84 to 0.89] and sensitivity of 0.65 (95% CrI 0.60 to 0.71). Four studies comparing SepsiTest with blood culture found that SepsiTest had an estimated summary specificity of 0.86 (95% CrI 0.78 to 0.92) and sensitivity of 0.48 (95% CrI 0.21 to 0.74), and four studies comparing IRIDICA with blood culture found that IRIDICA had an estimated summary specificity of 0.84 (95% CrI 0.71 to 0.92) and sensitivity of 0.81 (95% CrI 0.69 to 0.90). Owing to the deficiencies in study quality for all interventions, diagnostic accuracy data should be treated with caution. No randomised clinical trial evidence was identified that indicated that any of the tests significantly improved key patient outcomes, such as mortality or duration in an intensive care unit or hospital. Base case 1 estimated that none of the three tests provided a benefit to patients compared with standard practice and thus all tests were dominated. In contrast, in base case 2 it was estimated that all cost per QALY-gained values were below £20,000; the IRIDICA BAC BSI assay had the highest estimated incremental net benefit, but results from base case 2 should be treated with caution as these are not evidence based. LIMITATIONS Robust data to accurately assess the clinical effectiveness and cost-effectiveness of the interventions are currently unavailable. CONCLUSIONS The clinical effectiveness and cost-effectiveness of the interventions cannot be reliably determined with the current evidence base. Appropriate studies, which allow information from the tests to be implemented in clinical practice, are required. STUDY REGISTRATION This study is registered as PROSPERO CRD42015016724. FUNDING The National Institute for Health Research Health Technology Assessment programme.
Collapse
Affiliation(s)
- Matt Stevenson
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Abdullah Pandor
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | | | - Rachid Rafia
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Lesley Uttley
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - John Stevens
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Jean Sanderson
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Ruth Wong
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Gavin D Perkins
- Warwick Clinical Trials Unit, University of Warwick, Coventry, UK.,Heart of England NHS Foundation Trust, Coventry, UK
| | - Ronan McMullan
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK.,Belfast Health and Social Care Trust, The Royal Hospitals, Belfast, UK
| | - Paul Dark
- Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Salford Royal NHS Foundation Trust, Salford, UK
| |
Collapse
|
9
|
Cambau E, Durand-Zaleski I, Bretagne S, Brun-Buisson C, Cordonnier C, Duval X, Herwegh S, Pottecher J, Courcol R, Bastuji-Garin S. Performance and economic evaluation of the molecular detection of pathogens for patients with severe infections: the EVAMICA open-label, cluster-randomised, interventional crossover trial. Intensive Care Med 2017; 43:1613-1625. [PMID: 28374097 PMCID: PMC5633620 DOI: 10.1007/s00134-017-4766-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 03/08/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Microbiological diagnosis (MD) of infections remains insufficient. The resulting empirical antimicrobial therapy leads to multidrug resistance and inappropriate treatments. We therefore evaluated the cost-effectiveness of direct molecular detection of pathogens in blood for patients with severe sepsis (SES), febrile neutropenia (FN) and suspected infective endocarditis (SIE). METHODS Patients were enrolled in a multicentre, open-label, cluster-randomised crossover trial conducted during two consecutive periods, randomly assigned as control period (CP; standard diagnostic workup) or intervention period (IP; additional testing with LightCycler®SeptiFast). Multilevel models used to account for clustering were stratified by clinical setting (SES, FN, SIE). RESULTS A total of 1416 patients (907 SES, 440 FN, 69 SIE) were evaluated for the primary endpoint (rate of blood MD). For SES patients, the MD rate was higher during IP than during CP [42.6% (198/465) vs. 28.1% (125/442), odds ratio (OR) 1.89, 95% confidence interval (CI) 1.43-2.50; P < 0.001], with an absolute increase of 14.5% (95% CI 8.4-20.7). A trend towards an association was observed for SIE [35.4% (17/48) vs. 9.5% (2/21); OR 6.22 (0.98-39.6)], but not for FN [32.1% (70/218) vs. 30.2% (67/222), P = 0.66]. Overall, turn-around time was shorter during IP than during CP (22.9 vs. 49.5 h, P < 0.001) and hospital costs were similar (median, mean ± SD: IP €14,826, €18,118 ± 17,775; CP €17,828, €18,653 ± 15,966). Bootstrap analysis of the incremental cost-effectiveness ratio showed weak dominance of intervention in SES patients. CONCLUSION Addition of molecular detection to standard care improves MD and thus efficiency of healthcare resource usage in patients with SES. ClinicalTrials.gov registration number: NCT00709358.
Collapse
Affiliation(s)
- Emmanuelle Cambau
- APHP-Lariboisière, Bacteriology Laboratory, 75010, Paris, France.
- Univ Paris Diderot, Sorbonne Paris Cité, INSERM, UMR1137 IAME, 75018, Paris, France.
| | | | - Stéphane Bretagne
- APHP-Henri Mondor, Parasitology and Mycology Laboratory, 94010, Créteil, France
- APHP-Saint Louis, Parasitology and Mycology Laboratory, 75010, Paris, France
- Sorbonne Paris Cité, University Paris Diderot, Paris, France
- Molecular Mycology Unit, Institut Pasteur, National Reference Center of Invasive Mycoses and Antifungals, Paris, France
| | | | - Catherine Cordonnier
- APHP- Henri Mondor, Haematology Department and University Paris-Est Créteil, 94010, Créteil, France
| | - Xavier Duval
- APHP-Bichat, Centre d'investigation Clinique CIC 1425, INSERM UMR 1137 IAME, University Paris Diderot, 75018, Paris, France
| | | | - Julien Pottecher
- Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Service d'Anesthésie-Réanimation chirurgicale, Université de Strasbourg, FMTS, EA 3072, 67098, Strasbourg, France
| | - René Courcol
- CHU Lille, Microbiology Institute, 59000, Lille, France
| | - Sylvie Bastuji-Garin
- APHP-Henri Mondor, Public Health Department, 94010, Créteil, France
- University Paris Est (UPE), IMRB, CEpiA (Clinical Epidemiology and Ageing Unit, EA7376), 94010, Créteil, France
- APHP, Henri Mondor Hospital, Clinical Research Unit (URC Mondor), 94010, Créteil, France
| |
Collapse
|
10
|
Ginn AN, Hazelton B, Shoma S, Cullen M, Solano T, Iredell JR. Quantitative multiplexed-tandem PCR for direct detection of bacteraemia in critically ill patients. Pathology 2017; 49:304-308. [PMID: 28238416 DOI: 10.1016/j.pathol.2016.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
Culture remains the gold standard for diagnosis of blood stream infections (BSI), but its clinical utility is limited by slow turnaround times. Here we describe a method for rapid quantitative detection of bacterial DNA directly extracted from whole blood using a multiplexed tandem real-time PCR (MT-PCR) assay targeting Staphylococcus, Streptococcus, Pseudomonas, Enterococcus and Enterobacteriaceae 16S rDNA genes. Results were available less than 3.5 hours after blood collection with all five bacterial targets having limits of detection between 101 and 103 CFU/mL. A small-scale clinical evaluation of the assay using blood samples collected from 15 patients admitted to the Intensive Care Unit at our institution demonstrated 93.3% (14/15) concordance between MT-PCR and blood culture when detection of persistent bacterial DNAemia by MT- PCR was considered a true result. Further evaluation with clinical samples is needed; however, this method has potential as an effective rule-in diagnostic tool for bacteraemic sepsis and septic shock.
Collapse
Affiliation(s)
- Andrew N Ginn
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia
| | - Briony Hazelton
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia
| | - Shereen Shoma
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Martin Cullen
- Intensive Care Unit, Westmead Hospital, Westmead, NSW, Australia
| | - Thomas Solano
- Intensive Care Unit, Westmead Hospital, Westmead, NSW, Australia
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia.
| |
Collapse
|
11
|
Tziolos N, Giamarellos-Bourboulis EJ. Contemporary approaches to the rapid molecular diagnosis of sepsis. Expert Rev Mol Diagn 2016; 16:1201-1207. [PMID: 27728986 DOI: 10.1080/14737159.2016.1246958] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Although the administration of appropriate antimicrobials within the very first hour remains the mainstay of sepsis management, the correct selection of antimicrobials is hampered by the delay of conventional microbiology providing results after at least 48 hours. Methods of rapid detection of pathogens are an approach to overcome these difficulties. Areas covered: This review analyzes the advantages and the disadvantages of these approaches with major emphasis on technologies based on multiplex PCR for the rapid detection of pathogens using whole blood. The most broadly studied platform is SeptFast. Sensitivity ranges between 42% and 73% and specificity between 50% and 97%. The main disadvantages are high cost, the risk of contamination and the lack of information for the presence of resistance genes. A brief review of the use of PCR techniques for the diagnosis of endocarditis and of the recognition of the bacterial proteome for the rapid identification of grown colonies (MALDI-TOF) is also provided. Expert commentary: More randomized clinical trials are necessary to validate the use of molecular techniques for decision-making for patients' outcomes, taking into consideration the cost-benefit for the patient.
Collapse
Affiliation(s)
- Nikolaos Tziolos
- a 4th Department of Internal Medicine , National and Kapodistrian University of Athens, Medical School , Athens , Greece
| | | |
Collapse
|
12
|
Scerbo MH, Kaplan HB, Dua A, Litwin DB, Ambrose CG, Moore LJ, Murray COLCK, Wade CE, Holcomb JB. Beyond Blood Culture and Gram Stain Analysis: A Review of Molecular Techniques for the Early Detection of Bacteremia in Surgical Patients. Surg Infect (Larchmt) 2016; 17:294-302. [PMID: 26918696 PMCID: PMC5118953 DOI: 10.1089/sur.2015.099] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sepsis from bacteremia occurs in 250,000 cases annually in the United States, has a mortality rate as high as 60%, and is associated with a poorer prognosis than localized infection. Because of these high figures, empiric antibiotic administration for patients with systemic inflammatory response syndrome (SIRS) and suspected infection is the second most common indication for antibiotic administration in intensive care units (ICU)s. However, overuse of empiric antibiotics contributes to the development of opportunistic infections, antibiotic resistance, and the increase in multi-drug-resistant bacterial strains. The current method of diagnosing and ruling out bacteremia is via blood culture (BC) and Gram stain (GS) analysis. METHODS Conventional and molecular methods for diagnosing bacteremia were reviewed and compared. The clinical implications, use, and current clinical trials of polymerase chain reaction (PCR)-based methods to detect bacterial pathogens in the blood stream were detailed. RESULTS BC/GS has several disadvantages. These include: some bacteria do not grow in culture media; others do not GS appropriately; and cultures can require up to 5 d to guide or discontinue antibiotic treatment. PCR-based methods can be potentially applied to detect rapidly, accurately, and directly microbes in human blood samples. CONCLUSIONS Compared with the conventional BC/GS, particular advantages to molecular methods (specifically, PCR-based methods) include faster results, leading to possible improved antibiotic stewardship when bacteremia is not present.
Collapse
Affiliation(s)
- Michelle H. Scerbo
- The Center for Translational Injury Research (CeTIR), Department of Surgery, University of Texas Health Science Center, Houston, Texas
| | - Heidi B. Kaplan
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas
| | - Anahita Dua
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Douglas B. Litwin
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas
| | - Catherine G. Ambrose
- Department of Orthopedic Surgery, University of Texas Health Science Center, Houston, Texas
| | - Laura J. Moore
- The Center for Translational Injury Research (CeTIR), Department of Surgery, University of Texas Health Science Center, Houston, Texas
| | - COL Clinton K. Murray
- Department of Medicine, Infectious Disease Service, Brooke Army Medical Center, Fort Sam Houston, Texas
| | - Charles E. Wade
- The Center for Translational Injury Research (CeTIR), Department of Surgery, University of Texas Health Science Center, Houston, Texas
| | - John B. Holcomb
- The Center for Translational Injury Research (CeTIR), Department of Surgery, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
13
|
Ratzinger F, Tsirkinidou I, Haslacher H, Perkmann T, Schmetterer KG, Mitteregger D, Makristathis A, Burgmann H. Evaluation of the Septifast MGrade Test on Standard Care Wards--A Cohort Study. PLoS One 2016; 11:e0151108. [PMID: 26986826 PMCID: PMC4795709 DOI: 10.1371/journal.pone.0151108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/22/2016] [Indexed: 12/22/2022] Open
Abstract
Background The immediate need for appropriate antimicrobial therapy in septic patients requires the detection of the causative pathogen in a timely and reliable manner. In this study, the real-time PCR Septifast MGrade test was evaluated in adult patients meeting the systemic inflammatory response syndrome (SIRS) criteria that were treated at standard care wards. Methods Patients with clinical suspected infection, drawn blood cultures (BC), the Septifast MGrade test (SF) and sepsis biomarkers were prospectively screened for fulfillment of SIRS criteria and evaluated using the criteria of the European Centre of Disease Control (ECDC) for infection point prevalence studies. Results In total, 220 patients with SIRS were prospectively enrolled, including 56 patients with detection of bacteria in the blood (incidence: 25.5%). BC analysis resulted in 75.0% sensitivity (95% confidence interval, CI: 61.6%– 85.6%) with 97.6% specificity (CI: 93.9%– 99.3%) for detecting bacteria in the blood. In comparison to BC, SF presented with 80.4% sensitivity (CI: 67.6%– 89.8%) and with 97.6% specificity (CI: 93.9%– 99.3%). BC and SF analysis yielded comparable ROC-AUCs (0.86, 0.89), which did not differ significantly (p = 0.558). A trend of a shorter time-to-positivity of BC analysis was not seen in bacteremic patients with a positive SF test than those with a negative test result. Sepsis biomarkers, including PCT, IL-6 or CRP, did not help to explain discordant test results for BC and SF. Conclusion Since negative results do not exclude bacteremia, the Septifast MGrade test is not suited to replacing BC, but it is a valuable tool with which to complement BC for faster detection of pathogens.
Collapse
Affiliation(s)
- Franz Ratzinger
- Department of Laboratory Medicine, Division of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Irene Tsirkinidou
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Division of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine, Division of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Klaus G. Schmetterer
- Department of Laboratory Medicine, Division of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Dieter Mitteregger
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Heinz Burgmann
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
14
|
Faria MMP, Conly JM, Surette MG. The development and application of a molecular community profiling strategy to identify polymicrobial bacterial DNA in the whole blood of septic patients. BMC Microbiol 2015; 15:215. [PMID: 26474751 PMCID: PMC4609058 DOI: 10.1186/s12866-015-0557-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/08/2015] [Indexed: 02/08/2023] Open
Abstract
Background The application of molecular based diagnostics in sepsis has had limited success to date. Molecular community profiling methods have indicated that polymicrobial infections are more common than suggested by standard clinical culture. A molecular profiling approach was developed to investigate the propensity for polymicrobial infections in patients predicted to have bacterial sepsis. Results Disruption of blood cells with saponin and hypotonic shock enabled the recovery of microbial cells with no significant changes in microbial growth when compared to CFU/ml values immediately prior to the addition of saponin. DNA extraction included a cell-wall digestion step with both lysozyme and mutanolysin, which increased the recovery of terminal restriction fragments by 2.4 fold from diverse organisms. Efficiencies of recovery and limits of detection using Illumina sequencing of the 16S rRNA V3 region were determined for both viable cells and DNA using mock bacterial communities inoculated into whole blood. Bacteria from pre-defined communities could be recovered following lysis and removal of host cells with > 97 % recovery of total DNA present. Applying the molecular profiling methodology to three septic patients in the intensive care unit revealed microbial DNA from blood had consistent alignment with cultured organisms from the primary infection site providing evidence for a bloodstream infection in the absence of a clinical lab positive blood culture result in two of the three cases. In addition, the molecular profiling indicated greater diversity was present in the primary infection sample when compared to clinical diagnostic culture. Conclusions A method for analyzing bacterial DNA from whole blood was developed in order to characterize the bacterial DNA profile of sepsis infections. Preliminary results indicated that sepsis infections were polymicrobial in nature with the bacterial DNA recovered suggesting a more complex etiology when compared to blood culture data.
Collapse
Affiliation(s)
- M M P Faria
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4 N1, Canada. .,Department of Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, T2N 4 N1, Canada. .,Farncombe Family Digestive Health Research Institute, Departments of Medicine and Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, 1280 Main Street, HSC 3 N 8 F, Hamilton, ON, L8S 4 K1, Canada.
| | - J M Conly
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4 N1, Canada. .,Department of Medicine, University of Calgary, Calgary, AB, T2N 4 N1, Canada. .,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, T2N 4 N1, Canada. .,Department of Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, T2N 4 N1, Canada.
| | - M G Surette
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4 N1, Canada. .,Department of Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, T2N 4 N1, Canada. .,Farncombe Family Digestive Health Research Institute, Departments of Medicine and Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, 1280 Main Street, HSC 3 N 8 F, Hamilton, ON, L8S 4 K1, Canada. .,Department of Medicine, McMaster University, Hamilton, ON, L8S 4 K1, Canada. .,Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4 K1, Canada.
| |
Collapse
|
15
|
Multipathogen real-time PCR system adds benefit for my patients: no. Intensive Care Med 2015; 41:531-3. [PMID: 25619482 DOI: 10.1007/s00134-014-3607-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 12/08/2014] [Indexed: 01/10/2023]
|
16
|
Dark P, Blackwood B, Gates S, McAuley D, Perkins GD, McMullan R, Wilson C, Graham D, Timms K, Warhurst G. Accuracy of LightCycler(®) SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review and meta-analysis. Intensive Care Med 2014; 41:21-33. [PMID: 25416643 DOI: 10.1007/s00134-014-3553-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/07/2014] [Indexed: 01/10/2023]
Abstract
PURPOSE There is an urgent need to develop diagnostic tests to improve the detection of pathogens causing life-threatening infection (sepsis). SeptiFast is a CE-marked multi-pathogen real-time PCR system capable of detecting DNA sequences of bacteria and fungi present in blood samples within a few hours. We report here a systematic review and meta-analysis of diagnostic accuracy studies of SeptiFast in the setting of suspected sepsis. METHODS A comprehensive search strategy was developed to identify studies that compared SeptiFast with blood culture in suspected sepsis. Methodological quality was assessed using QUADAS. Heterogeneity of studies was investigated using a coupled forest plot of sensitivity and specificity and a scatter plot in receiver operator characteristic space. Bivariate model method was used to estimate summary sensitivity and specificity. RESULTS From 41 phase III diagnostic accuracy studies, summary sensitivity and specificity for SeptiFast compared with blood culture were 0.68 (95 % CI 0.63-0.73) and 0.86 (95 % CI 0.84-0.89) respectively. Study quality was judged to be variable with important deficiencies overall in design and reporting that could impact on derived diagnostic accuracy metrics. CONCLUSIONS SeptiFast appears to have higher specificity than sensitivity, but deficiencies in study quality are likely to render this body of work unreliable. Based on the evidence presented here, it remains difficult to make firm recommendations about the likely clinical utility of SeptiFast in the setting of suspected sepsis.
Collapse
Affiliation(s)
- Paul Dark
- Infection, Injury and Inflammation Research Group, Biomedical Facility, Clinical Sciences, Manchester Academic Health Sciences Centre, Salford Royal NHS Foundation Trust, Salford, Greater Manchester, M6 8HD, UK,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
What's New in Shock, August 2014? Shock 2014; 42:83-5. [PMID: 25025821 DOI: 10.1097/shk.0000000000000206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|