1
|
Dickerson AG, Joseph CA, Kashfi K. Current Approaches and Innovations in Managing Preeclampsia: Highlighting Maternal Health Disparities. J Clin Med 2025; 14:1190. [PMID: 40004721 PMCID: PMC11856135 DOI: 10.3390/jcm14041190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Preeclampsia (PE) is a major cause of maternal mortality and morbidity, affecting 3-6% of pregnancies worldwide and ranking among the top six causes of maternal deaths in the U.S. PE typically develops after 20 weeks of gestation and is characterized by new-onset hypertension and/or end-organ dysfunction, with or without proteinuria. Current management strategies for PE emphasize early diagnosis, blood pressure control, and timely delivery. For prevention, low-dose aspirin (81 mg/day) is recommended for high-risk women between 12 and 28 weeks of gestation. Magnesium sulfate is also advised to prevent seizures in preeclamptic women at risk of eclampsia. Emerging management approaches include antiangiogenic therapies, hypoxia-inducible factor suppression, statins, and supplementation with CoQ10, nitric oxide, and hydrogen sulfide donors. Black women are at particularly high risk for PE, potentially due to higher rates of hypertension and cholesterol, compounded by healthcare disparities and possible genetic factors, such as the APOL1 gene. This review explores current and emerging strategies for managing PE and addresses the underlying causes of health disparities, offering potential solutions to improve outcomes.
Collapse
Affiliation(s)
- Alexis G. Dickerson
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; (A.G.D.); (C.A.J.)
| | - Christiana A. Joseph
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; (A.G.D.); (C.A.J.)
- Department of Chemistry and Physics, State University of New York at Old Westbury, Old Westbury, NY 11568, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; (A.G.D.); (C.A.J.)
- Department of Chemistry and Physics, State University of New York at Old Westbury, Old Westbury, NY 11568, USA
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10091, USA
| |
Collapse
|
2
|
Zhang R, Shi W, Wu X, Yu Q, Xiao Y. Application of hydrogen sulfide donor conjugates in different diseases. Nitric Oxide 2025; 154:128-139. [PMID: 39662602 DOI: 10.1016/j.niox.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
As an endogenous gas signaling molecule, hydrogen sulfide (H2S) has been proved to have a variety of biological activities. Studies have shown that in some disease state H2S concentration in the body is lower than normal state. Based on these findings, exogenous H2S supplementation is expected to be an effective treatment for many diseases. In recent years, a lot of H2S-releasing substances, namely H2S donors, have emerged as H2S sources. Specifically, various H2S donors also could be connected to drugs or compounds to form H2S donor conjugates. Many studies have found that H2S donor conjugates can not only retain the activity of the parent drug, but also reduce the adverse effects of the parent drug, this makes H2S donor conjugates to be a new kind of drug candidates. In this article, H2S donor conjugates will be reviewed and classified according to different diseases, such as inflammation, cardiovascular and cerebrovascular diseases, diseases of central nervous system and cancer. This review aims to provide an idea for researchers for further study of H2S and H2S donor conjugates.
Collapse
Affiliation(s)
- Rui Zhang
- College of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Wumei Shi
- College of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoyan Wu
- College of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Qingfeng Yu
- College of Science, China Pharmaceutical University, Nanjing, 211198, China.
| | - Ying Xiao
- College of Science, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
3
|
Taggart M, Holkup S, Tchir A, Mojoudi M, Lyon A, Hassan M, Taveras C, Ozgur OS, Markmann JF, Yeh H, Uygun K, Longchamp A. UW supplementation with AP39 improves liver viability following static cold storage. Sci Rep 2025; 15:1559. [PMID: 39789174 PMCID: PMC11718015 DOI: 10.1038/s41598-025-85302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/01/2025] [Indexed: 01/30/2025] Open
Abstract
Static cold storage of donor livers at 4 °C incompletely arrests metabolism, ultimately leading to decreases in ATP levels, oxidative stress, cell death, and organ failure. Hydrogen Sulfide (H2S) is an endogenously produced gas, previously demonstrated to reduce oxidative stress, reduce ATP depletion, and protect from ischemia and reperfusion injury. H2S is difficult to administer due to its rapid release curve, resulting in cellular death at high concentrations. AP39, a mitochondrially targeted, slow-release H2S donor, has been shown to reduce ischemia-reperfusion injury in hearts and kidneys. Thus, we investigated whether the addition of AP39 during 3-day static cold storage can improve liver graft viability. At the end of storage, livers underwent six hours of acellular normothermic machine perfusion, a model of transplantation. During simulated transplantation, livers stored with AP39 showed reduced resistance, reduced cellular damage (ALT and AST), and reduced apoptosis. Additionally, bile production and glucose, as well as energy charge were improved by the addition of AP39. These results indicate that AP39 supplementation improves liver viability during static cold storage.
Collapse
Affiliation(s)
- McLean Taggart
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Saige Holkup
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Tchir
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
- Massachusetts Institute of Technology, Boston, MA, USA
| | - Mohammadreza Mojoudi
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Arnaud Lyon
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Madeeha Hassan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Christopher Taveras
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - Ozge Sila Ozgur
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's Boston, Boston, MA, USA
| | - James F Markmann
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Heidi Yeh
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Shriners Children's Boston, Boston, MA, USA.
| | - Alban Longchamp
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Shriners Children's Boston, Boston, MA, USA.
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Stachowicz A, Czepiel K, Wiśniewska A, Stachyra K, Ulatowska-Białas M, Kuśnierz-Cabala B, Surmiak M, Majka G, Kuś K, Wood ME, Torregrossa R, Whiteman M, Olszanecki R. Mitochondria-targeted hydrogen sulfide donor reduces fatty liver and obesity in mice fed a high fat diet by inhibiting de novo lipogenesis and inflammation via mTOR/SREBP-1 and NF-κB signaling pathways. Pharmacol Res 2024; 209:107428. [PMID: 39303773 DOI: 10.1016/j.phrs.2024.107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Metabolic diseases that include obesity and metabolic-associated fatty liver disease (MAFLD) are a rapidly growing worldwide public health problem. The pathogenesis of MAFLD includes abnormally increased lipogenesis, chronic inflammation, and mitochondrial dysfunction. Mounting evidence suggests that hydrogen sulfide (H2S) is an important player in the liver, regulating lipid metabolism and mitochondrial function. However, direct delivery of H2S to mitochondria has not been investigated as a therapeutic strategy in obesity-related metabolic disorders. Therefore, our aim was to comprehensively evaluate the influence of prolonged treatment with a mitochondria sulfide delivery molecule (AP39) on the development of fatty liver and obesity in a high fat diet (HFD) fed mice. Our results demonstrated that AP39 reduced hepatic steatosis in HFD-fed mice, which was corresponded with decreased triglyceride content. Furthermore, treatment with AP39 downregulated pathways related to biosynthesis of unsaturated fatty acids, lipoprotein assembly and PPAR signaling. It also led to a decrease in hepatic de novo lipogenesis by downregulating mTOR/SREBP-1/SCD1 pathway. Moreover, AP39 administration alleviated obesity in HFD-fed mice, which was reflected by reduced weight of mice and adipose tissue, decreased leptin levels in the plasma and upregulated expression of adipose triglyceride lipase in epididymal white adipose tissue (eWAT). Finally, AP39 reduced inflammation in the liver and eWAT measured as the expression of proinflammatory markers (Il1b, Il6, Tnf, Mcp1), which was due to downregulated mTOR/NF-κB pathway. Taken together, mitochondria-targeted sulfide delivery molecules could potentially provide a novel therapeutic approach to the treatment/prevention of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Aneta Stachowicz
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland.
| | - Klaudia Czepiel
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Wiśniewska
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Kamila Stachyra
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Ulatowska-Białas
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Beata Kuśnierz-Cabala
- Department of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- II Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Grzegorz Majka
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Kuś
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Mark E Wood
- School of Biosciences, University of Exeter, Exeter, UK
| | | | | | - Rafał Olszanecki
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Li H, Wang S, An S, Gao B, Wu D, Li Y. Hydrogen sulphide reduces renal ischemia-reperfusion injury by enhancing autophagy and reducing oxidative stress. Nephrology (Carlton) 2024; 29:645-654. [PMID: 39075751 DOI: 10.1111/nep.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
AIM Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury. Hydrogen sulphide (H2S) exerts a protective effect in renal IRI. The present study was carried out to investigate the effects of exogenous H2S on renal IRI by regulating autophagy in mice. METHODS Mice were randomly assigned to control, IRI and NaHS (an H2S donor, 28, 56 and 100 μmol/kg) groups. Renal IRI was induced by clamping the bilateral renal pedicles with non-traumatic arterial clamp for 45 min and then reperfused for 24 h. Mice were administered intraperitoneally with NaHS 20 min prior to renal ischemia. Sham group mice underwent the same procedures without clamping. Serum and kidney tissues were harvested 24 h after reperfusion for functional, histological, oxidative stress, and autophagic determination. RESULTS Compared with the control group, the concentrations of serum creatinine (Scr), blood urea nitrogen (BUN), and malondialdehyde (MDA), the protein levels of LC3II/I, Beclin-1 and P62, as well as the number of autophagosomes were significantly increased, but the activity of superoxide dismutase (SOD) was decreased after renal IRI. NaHS pre-treatment dramatically attenuated renal IRI-induced renal dysfunction, histological changes, MDA concentration and p62 expression in a dose-dependent manner. However, NaHS increased the SOD activity and the protein levels of LC3II/I and Beclin-1. CONCLUSION These results indicate that exogenous H2S protects the kidney from IRI through enhancement of autophagy and reduction of oxidative stress. Novel H2S donors could be developed in the treatment of renal IRI.
Collapse
Affiliation(s)
- Hui Li
- Joint National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng, Henan, China
| | - Shuaiwei Wang
- International Laboratory for Sepsis Research, Huaihe Hospital, Henan University, Kaifeng, Henan, China
| | - Shuangshuang An
- Joint National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng, Henan, China
| | - Biao Gao
- Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Dongdong Wu
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yanzhang Li
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
6
|
Paul BD, Pieper AA. Neuroprotective signaling by hydrogen sulfide and its dysregulation in Alzheimer's disease. Curr Opin Chem Biol 2024; 82:102511. [PMID: 39142018 PMCID: PMC11390309 DOI: 10.1016/j.cbpa.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
The ancient messenger molecule hydrogen sulfide (H2S) modulates myriad signaling cascades and has been conserved across evolutionary boundaries. Although traditionally known as an environmental toxin, H2S is also synthesized endogenously to exert modulatory and homeostatic effects in a broad array of physiologic functions. Notably, H2S levels are tightly physiologically regulated, as both its excess and paucity can be toxic. Accumulating evidence has revealed pivotal roles for H2S in neuroprotection and normal cognitive function, and H2S homeostasis is dysregulated in neurodegenerative conditions. Here, we review the normal neuroprotective roles of H2S that go awry in Alzheimer's disease, the most common form of neurodegenerative disease.
Collapse
Affiliation(s)
- Bindu D Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Lieber Institute for Brain Development, Baltimore, MD, USA.
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
7
|
Ng WJ, Wong FC, Abd Manan F, Chow YL, Ooi AL, Ong MK, Zhang X, Chai TT. Antioxidant Peptides and Protein Hydrolysates from Tilapia: Cellular and In Vivo Evidences for Human Health Benefits. Foods 2024; 13:2945. [PMID: 39335873 PMCID: PMC11431209 DOI: 10.3390/foods13182945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Antioxidant peptides derived from aquatic organisms have attracted tremendous research interest due to their potential applications in human health. Tilapia is one of the most widely farmed aquaculture species globally. The current understanding of tilapia-derived antioxidant peptides is gradually expanding. This review discusses the current knowledge of peptides and protein hydrolysates derived from tilapia muscle, skin, and scales, whose antioxidant capacity has been validated in various cellular and in vivo models. To date, at least 16 peptides and several hydrolysates have been identified from tilapia that protect human and non-human cell models against oxidative injury. Tilapia hydrolysates and peptide mixtures have also shown protective effects in animal models of oxidative stress-associated diseases and exercise-induced oxidative injury and fatigue. The key mechanisms of tilapia hydrolysates and peptide mixtures involve enhancing antioxidant enzyme activities and suppressing radical production. Notably, such hydrolysates also exerted additional in vivo functions, such as anti-inflammatory, anti-diabetic, wound healing, and antiaging properties. Taken together, tilapia-derived antioxidant peptides and hydrolysates represent a valuable source of functional ingredients for applications in functional food, dietary supplements, and therapeutic applications. Continued research into their health benefits is warranted in the future.
Collapse
Affiliation(s)
- Wen-Jie Ng
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
- Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Fai-Chu Wong
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
| | - Fazilah Abd Manan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Yit-Lai Chow
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Ai-Lin Ooi
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| | - Mei-Kying Ong
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| | - Xuewu Zhang
- College of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China;
- Era Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518115, China
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
| |
Collapse
|
8
|
Jin Y, Yuan H, Liu Y, Zhu Y, Wang Y, Liang X, Gao W, Ren Z, Ji X, Wu D. Role of hydrogen sulfide in health and disease. MedComm (Beijing) 2024; 5:e661. [PMID: 39156767 PMCID: PMC11329756 DOI: 10.1002/mco2.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.
Collapse
Affiliation(s)
- Yu‐Qing Jin
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Ya‐Fang Liu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Yi‐Wen Zhu
- School of Clinical MedicineHenan UniversityKaifengHenanChina
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xiao‐Yi Liang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Zhi‐Guang Ren
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- Faculty of Basic Medical SubjectsShu‐Qing Medical College of ZhengzhouZhengzhouHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- School of StomatologyHenan UniversityKaifengHenanChina
- Department of StomatologyHuaihe Hospital of Henan UniversityKaifengHenanChina
| |
Collapse
|
9
|
Wankhede NL, Rajendra Kopalli S, Dhokne MD, Badnag DJ, Chandurkar PA, Mangrulkar SV, Shende PV, Taksande BG, Upaganlawar AB, Umekar MJ, Koppula S, Kale MB. Decoding mitochondrial quality control mechanisms: Identifying treatment targets for enhanced cellular health. Mitochondrion 2024; 78:101926. [PMID: 38944367 DOI: 10.1016/j.mito.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Mitochondria are singular cell organelles essential for many cellular functions, which includes responding to stress, regulating calcium levels, maintaining protein homeostasis, and coordinating apoptosis response. The vitality of cells, therefore, hinges on the optimal functioning of these dynamic organelles. Mitochondrial Quality Control Mechanisms (MQCM) play a pivotal role in ensuring the integrity and functionality of mitochondria. Perturbations in these mechanisms have been closely associated with the pathogenesis of neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Compelling evidence suggests that targeting specific pathways within the MQCM could potentially offer a therapeutic avenue for rescuing mitochondrial integrity and mitigating the progression of neurodegenerative diseases. The intricate interplay of cellular stress, protein misfolding, and impaired quality control mechanisms provides a nuanced understanding of the underlying pathology. Consequently, unravelling the specific MQCM dysregulation in neurodegenerative disorders becomes paramount for developing targeted therapeutic strategies. This review delves into the impaired MQCM pathways implicated in neurodegenerative disorders and explores emerging therapeutic interventions. By shedding light on pharmaceutical and genetic manipulations aimed at restoring MQCM efficiency, the discussion aims to provide insights into novel strategies for ameliorating the progression of neurodegenerative diseases. Understanding and addressing mitochondrial quality control mechanisms not only underscore their significance in cellular health but also offer a promising frontier for advancing therapeutic approaches in the realm of neurodegenerative disorders.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | - Mrunali D Dhokne
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh (UP) - 226002, India.
| | - Dishant J Badnag
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Pranali A Chandurkar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Shubhada V Mangrulkar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad- 423101, Nashik, Maharashtra, India.
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| |
Collapse
|
10
|
Onalan E, Erbay B, Buran İK, Erol D, Tektemur A, Kuloglu T, Ozercan IH. Effects and Mechanism of AP39 on Ovarian Functions in Rats Exposed to Cisplatin and Chronic Immobilization Stress. J Menopausal Med 2024; 30:104-119. [PMID: 39315502 PMCID: PMC11439572 DOI: 10.6118/jmm.23015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/25/2024] Open
Abstract
OBJECTIVES Premature ovarian failure (POF) rat models are essential for elucidating the hormonal and ovarian molecular mechanisms of human POF diseases and developing new therapeutic agents. This study aimed to compare the applicability of chronic immobilization stress (CIS) as a POF model with that of cisplatin and to examine the impact of AP39, a mitochondrial protective agent, on ovarian function in rats treated with cisplatin and CIS. METHODS Sixty Sprague-Dawley female rats were divided equally into six groups (10 per group): Control, Cisplatin, AP39, Cisplatin + AP39, CIS, and CIS + AP39. Ovarian dysfunction was induced with cisplatin (3 mg/kg) or CIS. Forced swim test, hormone concentrations, estrous cyclicity, histopathology, follicle counts, and molecular alterations in the ovary and mitochondria were analyzed. RESULTS In the CIS and cisplatin groups, mitochondrial biogenesis, egg quality, hormonal profile, estrous cycle, and folliculogenesis significantly declined. Nonetheless, most of the parameters with undesirable results did not normalize after AP39 administration. CONCLUSIONS The cisplatin- and CIS-treated rats exhibited unshared deteriorated hormonal pathways and similarly disrupted gene expression patterns. Our current CIS model did not meet the human POF criteria, which include decreased estradiol levels, despite having advantages in terms of ease of modeling and reproducibility and demonstrating pathological changes similar to those observed in human POF. Therefore, rather than using this model as an POF model, using it as a representation of stress-induced ovarian dysfunction would be more appropriate.
Collapse
Affiliation(s)
- Ebru Onalan
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazığ, Türkiye
| | - Bilgi Erbay
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - İlay Kavuran Buran
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazığ, Türkiye.
| | - Deniz Erol
- Department of Medical Genetics, Faculty of Medicine, Firat University, Elazığ, Türkiye
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazığ, Türkiye
| | - Tuncay Kuloglu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazığ, Türkiye
| | | |
Collapse
|
11
|
Corvino A, Scognamiglio A, Fiorino F, Perissutti E, Santagada V, Caliendo G, Severino B. Pills of Multi-Target H 2S Donating Molecules for Complex Diseases. Int J Mol Sci 2024; 25:7014. [PMID: 39000122 PMCID: PMC11240940 DOI: 10.3390/ijms25137014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Among the various drug discovery methods, a very promising modern approach consists in designing multi-target-directed ligands (MTDLs) able to modulate multiple targets of interest, including the pathways where hydrogen sulfide (H2S) is involved. By incorporating an H2S donor moiety into a native drug, researchers have been able to simultaneously target multiple therapeutic pathways, resulting in improved treatment outcomes. This review gives the reader some pills of successful multi-target H2S-donating molecules as worthwhile tools to combat the multifactorial nature of complex disorders, such as inflammatory-based diseases and cancer, as well as cardiovascular, metabolic, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Angela Corvino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (A.S.); (F.F.); (E.P.); (V.S.); (G.C.); (B.S.)
| | | | | | | | | | | | | |
Collapse
|
12
|
McLean ST, Holkup S, Tchir A, Mojoudi M, Hassan M, Taveras C, Ozge SO, James FM, Yeh H, Uygun K, Longchamp A. UW Supplementation with AP39 Improves Liver Viability Following Static Cold Storage. RESEARCH SQUARE 2024:rs.3.rs-4487319. [PMID: 38947096 PMCID: PMC11213193 DOI: 10.21203/rs.3.rs-4487319/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Static cold storage of donor livers at 4°C incompletely arrests metabolism, ultimately leading to decreases in ATP levels, oxidative stress, cell death, and organ failure. Hydrogen Sulfide (H2S) is an endogenously produced gas, previously demonstrated to reduce oxidative stress, reduce ATP depletion, and protect from ischemia and reperfusion injury. H2S is difficult to administer due to its rapid release curve, resulting in cellular death at high concentrations. AP39, a mitochondrially targeted, slow-release H2S donor, has been shown to reduce ischemia-reperfusion injury in hearts and kidneys. Thus, we investigated whether the addition of AP39 during 3-day static cold storage can improve liver graft viability. At the end of storage, livers underwent six hours of acellular normothermic machine perfusion, a model of transplantation. During simulated transplantation, livers stored with AP39 showed reduced resistance, reduced cellular damage (ALT and AST), and reduced apoptosis. Additionally, bile production and glucose, as well as energy charge were improved by the addition of AP39. These results indicate that AP39 supplementation improves liver viability during static cold storage.
Collapse
Affiliation(s)
| | - Saige Holkup
- Massachusetts General Hospital, Harvard Medical School
| | | | | | | | | | - S Ozgur Ozge
- Massachusetts General Hospital, Harvard Medical School
| | | | - Heidi Yeh
- Massachusetts General Hospital, Harvard Medical School
| | - Korkut Uygun
- Massachusetts General Hospital, Harvard Medical School
| | | |
Collapse
|
13
|
Slade L, Deane CS, Szewczyk NJ, Etheridge T, Whiteman M. Hydrogen sulfide supplementation as a potential treatment for primary mitochondrial diseases. Pharmacol Res 2024; 203:107180. [PMID: 38599468 DOI: 10.1016/j.phrs.2024.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Primary mitochondrial diseases (PMD) are amongst the most common inborn errors of metabolism causing fatal outcomes within the first decade of life. With marked heterogeneity in both inheritance patterns and physiological manifestations, these conditions present distinct challenges for targeted drug therapy, where effective therapeutic countermeasures remain elusive within the clinic. Hydrogen sulfide (H2S)-based therapeutics may offer a new option for patient treatment, having been proposed as a conserved mitochondrial substrate and post-translational regulator across species, displaying therapeutic effects in age-related mitochondrial dysfunction and neurodegenerative models of mitochondrial disease. H2S can stimulate mitochondrial respiration at sites downstream of common PMD-defective subunits, augmenting energy production, mitochondrial function and reducing cell death. Here, we highlight the primary signalling mechanisms of H2S in mitochondria relevant for PMD and outline key cytoprotective proteins/pathways amenable to post-translational restoration via H2S-mediated persulfidation. The mechanisms proposed here, combined with the advent of potent mitochondria-targeted sulfide delivery molecules, could provide a framework for H2S as a countermeasure for PMD disease progression.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Colleen S Deane
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Nathaniel J Szewczyk
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom; Ohio Musculoskeletal and Neurologic Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, Greece
| | - Timothy Etheridge
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom.
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK.
| |
Collapse
|
14
|
Griffiths KK, Wang A, Jonas EA, Levy RJ. Sulfide quinone oxidoreductase contributes to voltage sensing of the mitochondrial permeability transition pore. FASEB J 2024; 38:e23494. [PMID: 38376922 PMCID: PMC11082757 DOI: 10.1096/fj.202301280r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/18/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
Pathological opening of the mitochondrial permeability transition pore (mPTP) is implicated in the pathogenesis of many disease processes such as myocardial ischemia, traumatic brain injury, Alzheimer's disease, and diabetes. While we have gained insight into mPTP biology over the last several decades, the lack of translation of this knowledge into successful clinical therapies underscores the need for continued investigation and use of different approaches to identify novel regulators of the mPTP with the hope of elucidating new therapeutic targets. Although the mPTP is known to be a voltage-gated channel, the identity of its voltage sensor remains unknown. Here we found decreased gating potential of the mPTP and increased expression and activity of sulfide quinone oxidoreductase (SQOR) in newborn Fragile X syndrome (FXS) mouse heart mitochondria, a model system of coenzyme Q excess and relatively decreased mPTP open probability. We further found that pharmacological inhibition and genetic silencing of SQOR increased mPTP open probability in vitro in adult murine cardiac mitochondria and in the isolated-perfused heart, likely by interfering with voltage sensing. Thus, SQOR is proposed to contribute to voltage sensing by the mPTP and may be a component of the voltage sensing apparatus that modulates the gating potential of the mPTP.
Collapse
Affiliation(s)
- Keren K. Griffiths
- Department of Anesthesiology, Columbia University Medical Center, NY, USA 10032
| | - Aili Wang
- Department of Anesthesiology, Columbia University Medical Center, NY, USA 10032
| | - Elizabeth A. Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard J. Levy
- Department of Anesthesiology, Columbia University Medical Center, NY, USA 10032
| |
Collapse
|
15
|
Zhan HQ, Zhang X, Chen XL, Cheng L, Wang X. Application of nanotechnology in the treatment of glomerulonephritis: current status and future perspectives. J Nanobiotechnology 2024; 22:9. [PMID: 38169389 PMCID: PMC10763010 DOI: 10.1186/s12951-023-02257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Glomerulonephritis (GN) is the most common cause of end-stage renal failure worldwide; in most cases, it cannot be cured and can only delay the progression of the disease. At present, the main treatment methods include symptomatic therapy, immunosuppressive therapy, and renal replacement therapy. However, effective treatment of GN is hindered by issues such as steroid resistance, serious side effects, low bioavailability, and lack of precise targeting. With the widespread application of nanoparticles in medical treatment, novel methods have emerged for the treatment of kidney diseases. Targeted transportation of drugs, nucleic acids, and other substances to kidney tissues and even kidney cells through nanodrug delivery systems can reduce the systemic effects and adverse reactions of drugs and improve treatment effectiveness. The high specificity of nanoparticles enables them to bind to ion channels and block or enhance channel gating, thus improving inflammation. This review briefly introduces the characteristics of GN, describes the treatment status of GN, systematically summarizes the research achievements of nanoparticles in the treatment of primary GN, diabetic nephropathy and lupus nephritis, analyzes recent therapeutic developments, and outlines promising research directions, such as gas signaling molecule nanodrug delivery systems and ultrasmall nanoparticles. The current application of nanoparticles in GN is summarized to provide a reference for better treatment of GN in the future.
Collapse
Affiliation(s)
- He-Qin Zhan
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xiaoxun Zhang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
16
|
Agius T, Songeon J, Lyon A, Longchamp J, Ruttimann R, Allagnat F, Déglise S, Corpataux JM, Golshayan D, Buhler L, Meier R, Yeh H, Markmann JF, Uygun K, Toso C, Klauser A, Lazeyras F, Longchamp A. Sodium Hydrosulfide Treatment During Porcine Kidney Ex Vivo Perfusion and Transplantation. Transplant Direct 2023; 9:e1508. [PMID: 37915463 PMCID: PMC10617874 DOI: 10.1097/txd.0000000000001508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 11/03/2023] Open
Abstract
Background In rodents, hydrogen sulfide (H2S) reduces ischemia-reperfusion injury and improves renal graft function after transplantation. Here, we hypothesized that the benefits of H2S are conserved in pigs, a more clinically relevant model. Methods Adult porcine kidneys retrieved immediately or after 60 min of warm ischemia (WI) were exposed to 100 µM sodium hydrosulfide (NaHS) (1) during the hypothermic ex vivo perfusion only, (2) during WI only, and (3) during both WI and ex vivo perfusion. Kidney perfusion was evaluated with dynamic contrast-enhanced MRI. MRI spectroscopy was further employed to assess energy metabolites including ATP. Renal biopsies were collected at various time points for histopathological analysis. Results Perfusion for 4 h pig kidneys with Belzer MPS UW + NaHS resulted in similar renal perfusion and ATP levels than perfusion with UW alone. Similarly, no difference was observed when NaHS was administered in the renal artery before ischemia. After autotransplantation, no improvement in histologic lesions or cortical/medullary kidney perfusion was observed upon H2S administration. In addition, AMP and ATP levels were identical in both groups. Conclusions In conclusion, treatment of porcine kidney grafts using NaHS did not result in a significant reduction of ischemia-reperfusion injury or improvement of kidney metabolism. Future studies will need to define the benefits of H2S in human, possibly using other molecules as H2S donors.
Collapse
Affiliation(s)
- Thomas Agius
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Julien Songeon
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Arnaud Lyon
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Department of Medicine, Transplantation Centre, Lausanne University Hospital, Lausanne, Switzerland
| | - Justine Longchamp
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Raphael Ruttimann
- Visceral and Transplant Surgery, Department of Surgery, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Sébastien Déglise
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean-Marc Corpataux
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Déla Golshayan
- Department of Medicine, Transplantation Centre, Lausanne University Hospital, Lausanne, Switzerland
| | - Léo Buhler
- Section of Medicine, Faculty of Science and Medicine, University of Fribourg, Switzerland
| | - Raphael Meier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Heidi Yeh
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - James F. Markmann
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Korkut Uygun
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Christian Toso
- Visceral and Transplant Surgery, Department of Surgery, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - Antoine Klauser
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Francois Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Department of Surgery, Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
17
|
Combi Z, Potor L, Nagy P, Sikura KÉ, Ditrói T, Jurányi EP, Galambos K, Szerafin T, Gergely P, Whiteman M, Torregrossa R, Ding Y, Beke L, Hendrik Z, Méhes G, Balla G, Balla J. Hydrogen sulfide as an anti-calcification stratagem in human aortic valve: Altered biogenesis and mitochondrial metabolism of H 2S lead to H 2S deficiency in calcific aortic valve disease. Redox Biol 2023; 60:102629. [PMID: 36780769 PMCID: PMC9947110 DOI: 10.1016/j.redox.2023.102629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Hydrogen sulfide (H2S) was previously revealed to inhibit osteoblastic differentiation of valvular interstitial cells (VICs), a pathological feature in calcific aortic valve disease (CAVD). This study aimed to explore the metabolic control of H2S levels in human aortic valves. Lower levels of bioavailable H2S and higher levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were detected in aortic valves of CAVD patients compared to healthy individuals, accompanied by higher expression of cystathionine γ-lyase (CSE) and same expression of cystathionine β-synthase (CBS). Increased biogenesis of H2S by CSE was found in the aortic valves of CAVD patients which is supported by increased production of lanthionine. In accordance, healthy human aortic VICs mimic human pathology under calcifying conditions, as elevated CSE expression is associated with low levels of H2S. The expression of mitochondrial enzymes involved in H2S catabolism including sulfide quinone oxidoreductase (SQR), the key enzyme in mitochondrial H2S oxidation, persulfide dioxygenase (ETHE1), sulfite oxidase (SO) and thiosulfate sulfurtransferase (TST) were up-regulated in calcific aortic valve tissues, and a similar expression pattern was observed in response to high phosphate levels in VICs. AP39, a mitochondria-targeting H2S donor, rescued VICs from an osteoblastic phenotype switch and reduced the expression of IL-1β and TNF-α in VICs. Both pro-inflammatory cytokines aggravated calcification and osteoblastic differentiation of VICs derived from the calcific aortic valves. In contrast, IL-1β and TNF-α provided an early and transient inhibition of VICs calcification and osteoblastic differentiation in healthy cells and that effect was lost as H2S levels decreased. The benefit was mediated via CSE induction and H2S generation. We conclude that decreased levels of bioavailable H2S in human calcific aortic valves result from an increased H2S metabolism that facilitates the development of CAVD. CSE/H2S represent a pathway that reverses the action of calcifying stimuli.
Collapse
Affiliation(s)
- Zsolt Combi
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, University of Debrecen, 11003, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - László Potor
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, University of Debrecen, 11003, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Institute of Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary; Department of Anatomy and Histology, ELKH Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary
| | - Katalin Éva Sikura
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, University of Debrecen, 11003, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Eszter Petra Jurányi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Doctoral School of Molecular Medicine, Semmelweis University, Budapest, Hungary
| | - Klaudia Galambos
- Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary; Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Tamás Szerafin
- Department of Cardiac Surgery, Faculty of Medicine, University of Debrecen, Hungary
| | - Péter Gergely
- Institute of Forensic Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Matthew Whiteman
- University of Exeter Medical School, St. Luke's Campus, Magdalen Road, Exeter, EX1 2LU, UK
| | - Roberta Torregrossa
- University of Exeter Medical School, St. Luke's Campus, Magdalen Road, Exeter, EX1 2LU, UK
| | - Yuchao Ding
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Lívia Beke
- Institute of Pathology, Faculty of Medicine, University of Debrecen, Hungary
| | - Zoltán Hendrik
- Institute of Forensic Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Gábor Méhes
- Institute of Pathology, Faculty of Medicine, University of Debrecen, Hungary
| | - György Balla
- ELKH-UD Vascular Pathophysiology Research Group, University of Debrecen, 11003, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary; Department of Pediatrics, Faculty of Medicine, University of Debrecen, Hungary
| | - József Balla
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, University of Debrecen, 11003, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
18
|
Emre Aydıngöz S, Teimoori A, Orhan HG, Efe OE, Kibaroğlu S, Erdem ŞR. Effect of hydrogen sulfide on ischemia-reperfusion injury of kidney: A systematic review and meta-analysis of in vivo animal studies. Eur J Pharmacol 2023; 943:175564. [PMID: 36736943 DOI: 10.1016/j.ejphar.2023.175564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Hydrogen sulfide (H2S) has been shown to be effective against kidney ischemia-reperfusion injury (IRI) in animal studies. We aimed to evaluate the current evidence from in vivo animal studies for the protective effects of H2S against kidney IRI by systematically reviewing the literature and performing a meta-analysis. Based on the preregistered protocol (PROSPERO: CRD42021295469); PubMed, Medline, Embase, Web of Science, and Scopus were searched to identify in vivo animal studies evaluating the effect of H2S against kidney IRI. Standardized mean difference (SMD) with 95% confidence interval (CI) was calculated and pooled using random-effects meta-analysis. Twenty-two articles complied with eligibility criteria, from which the creatinine levels of 152 control animals and 182 animals treated with H2S from 27 individual experiments were pooled. H2S treatment significantly decreased serum creatinine (SMD = -1.82 [95% CI -1.12, -2.51], p < 0.0001), blood urea nitrogen (-2.50 [-1.46, -3.54], p < 0.0001), tissue malondialdehyde (-2.59 [-3.30, -1.88], p < 0.0001), tunel positive cells (-3.16 [-4.38, -1.94], p < 0.0001), and tubular damage score (-2.01 [-3.03, -0.99], p < 0.0001). There was a high heterogeneity across studies (I2 = 83.5% for serum creatinine level). In meta-regression analysis, the type of H2S donor and its application time accounted for 11.3% (p = 0.025) and 16.6% (p = 0.039) of heterogeneity, respectively. Accordingly, H2S protects the kidney against IRI only if it is given as GYY4137 before or during ischemia. Although H2S is a potential candidate against kidney IRI, further well-designed preclinical studies focusing on GYY4137 are warranted before clinical implication.
Collapse
Affiliation(s)
- Selda Emre Aydıngöz
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey.
| | - Arıyan Teimoori
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Halit Güner Orhan
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Oğuzhan Ekin Efe
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Seda Kibaroğlu
- Department of Pharmacology, Başkent University Institute of Health Sciences, Ankara, Turkey
| | - Ş Remzi Erdem
- Department of Medical Pharmacology, Başkent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
19
|
H2S Donors with Cytoprotective Effects in Models of MI/R Injury and Chemotherapy-Induced Cardiotoxicity. Antioxidants (Basel) 2023; 12:antiox12030650. [PMID: 36978898 PMCID: PMC10045576 DOI: 10.3390/antiox12030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous signaling molecule that greatly influences several important (patho)physiological processes related to cardiovascular health and disease, including vasodilation, angiogenesis, inflammation, and cellular redox homeostasis. Consequently, H2S supplementation is an emerging area of interest, especially for the treatment of cardiovascular-related diseases. To fully unlock the medicinal properties of hydrogen sulfide, however, the development and refinement of H2S releasing compounds (or donors) are required to augment its bioavailability and to better mimic its natural enzymatic production. Categorizing donors by the biological stimulus that triggers their H2S release, this review highlights the fundamental chemistry and releasing mechanisms of a range of H2S donors that have exhibited promising protective effects in models of myocardial ischemia-reperfusion (MI/R) injury and cancer chemotherapy-induced cardiotoxicity, specifically. Thus, in addition to serving as important investigative tools that further advance our knowledge and understanding of H2S chemical biology, the compounds highlighted in this review have the potential to serve as vital therapeutic agents for the treatment (or prevention) of various cardiomyopathies.
Collapse
|
20
|
Karaman Y, Kaya-Yasar Y, Eylem CC, Onder SC, Nemutlu E, Bozkurt TE, Sahin-Erdemli I. The effect of mitochondria-targeted slow hydrogen sulfide releasing donor AP39-treatment on airway inflammation. Eur J Pharmacol 2023; 946:175619. [PMID: 36828102 DOI: 10.1016/j.ejphar.2023.175619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Mitochondrial dysfunction has been shown to contribute to the pathophysiology of airway diseases. Therefore, mitochondria are targeted in the development of new therapeutic approaches. Hydrogen sulfide (H2S) has been shown to be involved in the pathophysiological processes of airway inflammation. We aimed to evaluate the effect of mitochondria-targeted slow H2S releasing donor AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol5yl)phenoxy)decyl)triphenylphosphoniumbromide)] on lipopolysaccharide (LPS)-induced airway inflammation in mice. LPS was applied to female Balb/c mice by intranasal (i.n.) route to induce airway inflammation and the subgroups of mice were treated with i.n. AP39 (250-1000 nmol/kg). 48 h after LPS administration airway reactivity was evaluated in vivo, then bronchoalveolar lavage (BAL) fluid and lungs were collected. LPS application led to bronchial hyperreactivity and neutrophil infiltration into the lung tissues along with increased TNF-α, IL-1β and IL-6 levels in BAL fluid. LPS also induced an increase in the rate of glycolysis, glycogenolysis and Krebs-cycle. AP39 treatment prevented the LPS-induced bronchial hyperreactivity and reversed the increase in TNF-α and IL-6 levels in BAL fluid. The increase in neutrophil numbers in BAL fluid was also prevented by AP39 treatment at the highest dose. Our results indicate that AP39 can prevent bronchial hyperreactivity and decrease airway inflammation. Targeting H2S to the mitochondria may be a new therapeutic approach in airway inflammation.
Collapse
Affiliation(s)
- Yasemin Karaman
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey.
| | - Yesim Kaya-Yasar
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacology, Trabzon, Turkey
| | - Cemil Can Eylem
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Sevgen Celik Onder
- Hacettepe University, Faculty of Medicine, Department of Pathology, Ankara, Turkey
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey; Hacettepe University, Faculty of Pharmacy, Bioanalytic and Omics Laboratory, Ankara, Turkey
| | - Turgut Emrah Bozkurt
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| | - Inci Sahin-Erdemli
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| |
Collapse
|
21
|
Pre-Treatment of Transplant Donors with Hydrogen Sulfide to Protect against Warm and Cold Ischemia-Reperfusion Injury in Kidney and Other Transplantable Solid Organs. Int J Mol Sci 2023; 24:ijms24043518. [PMID: 36834928 PMCID: PMC9963309 DOI: 10.3390/ijms24043518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Ischemia-reperfusion injury (IRI), a pathological condition resulting from prolonged cessation and subsequent restoration of blood flow to a tissue, is an inevitable consequence of solid organ transplantation. Current organ preservation strategies, such as static cold storage (SCS), are aimed at reducing IRI. However, prolonged SCS exacerbates IRI. Recent research has examined pre-treatment approaches to more effectively attenuate IRI. Hydrogen sulfide (H2S), the third established member of a family of gaseous signaling molecules, has been shown to target the pathophysiology of IRI and thus appears to be a viable candidate that can overcome the transplant surgeon's enemy. This review discusses pre-treatment of renal grafts and other transplantable organs with H2S to mitigate transplantation-induced IRI in animal models of transplantation. In addition, ethical principles of pre-treatment and potential applications of H2S pre-treatment in the prevention of other IRI-associated conditions are discussed.
Collapse
|
22
|
Feng J, Lu X, Li H, Wang S. The roles of hydrogen sulfide in renal physiology and disease states. Ren Fail 2022; 44:1289-1308. [PMID: 35930288 PMCID: PMC9359156 DOI: 10.1080/0886022x.2022.2107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hydrogen sulfide (H2S), an endogenous gaseous signaling transmitter, has gained recognition for its physiological effects. In this review, we aim to summarize and discuss existing studies about the roles of H2S in renal functions and renal disease as well as the underlying mechanisms. H2S is mainly produced by four pathways, and the kidneys are major H2S–producing organs. Previous studies have shown that H2S can impact multiple signaling pathways via sulfhydration. In renal physiology, H2S promotes kidney excretion, regulates renin release and increases ATP production as a sensor for oxygen. H2S is also involved in the development of kidney disease. H2S has been implicated in renal ischemia/reperfusion and cisplatin–and sepsis–induced kidney disease. In chronic kidney diseases, especially diabetic nephropathy, hypertensive nephropathy and obstructive kidney disease, H2S attenuates disease progression by regulating oxidative stress, inflammation and the renin–angiotensin–aldosterone system. Despite accumulating evidence from experimental studies suggesting the potential roles of H2S donors in the treatment of kidney disease, these results need further clinical translation. Therefore, expanding the understanding of H2S can not only promote our further understanding of renal physiology but also lay a foundation for transforming H2S into a target for specific kidney diseases.
Collapse
Affiliation(s)
- Jianan Feng
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiangxue Lu
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Han Li
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shixiang Wang
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Khan T, Waseem R, Zehra Z, Aiman A, Bhardwaj P, Ansari J, Hassan MI, Islam A. Mitochondrial Dysfunction: Pathophysiology and Mitochondria-Targeted Drug Delivery Approaches. Pharmaceutics 2022; 14:pharmaceutics14122657. [PMID: 36559149 PMCID: PMC9785072 DOI: 10.3390/pharmaceutics14122657] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondria are implicated in a wide range of functions apart from ATP generation, and, therefore, constitute one of the most important organelles of cell. Since healthy mitochondria are essential for proper cellular functioning and survival, mitochondrial dysfunction may lead to various pathologies. Mitochondria are considered a novel and promising therapeutic target for the diagnosis, treatment, and prevention of various human diseases including metabolic disorders, cancer, and neurodegenerative diseases. For mitochondria-targeted therapy, there is a need to develop an effective drug delivery approach, owing to the mitochondrial special bilayer structure through which therapeutic molecules undergo multiple difficulties in reaching the core. In recent years, various nanoformulations have been designed such as polymeric nanoparticles, liposomes, inorganic nanoparticles conjugate with mitochondriotropic moieties such as mitochondria-penetrating peptides (MPPs), triphenylphosphonium (TPP), dequalinium (DQA), and mitochondrial protein import machinery for overcoming barriers involved in targeting mitochondria. The current approaches used for mitochondria-targeted drug delivery have provided promising ways to overcome the challenges associated with targeted-drug delivery. Herein, we review the research from past years to the current scenario that has identified mitochondrial dysfunction as a major contributor to the pathophysiology of various diseases. Furthermore, we discuss the recent advancements in mitochondria-targeted drug delivery strategies for the pathologies associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Zainy Zehra
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ayesha Aiman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Priyanka Bhardwaj
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
- Correspondence:
| |
Collapse
|
24
|
Gáll T, Nagy P, Garai D, Potor L, Balla GJ, Balla G, Balla J. Overview on hydrogen sulfide-mediated suppression of vascular calcification and hemoglobin/heme-mediated vascular damage in atherosclerosis. Redox Biol 2022; 57:102504. [PMID: 36240620 PMCID: PMC9576974 DOI: 10.1016/j.redox.2022.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/04/2022] Open
Abstract
Vulnerable atherosclerotic plaques with hemorrhage considerably contribute to cardiovascular morbidity and mortality. Calcification is the main characteristic of advanced atherosclerotic lesions and calcified aortic valve disease (CAVD). Lyses of red blood cells and hemoglobin (Hb) release occur in human hemorrhagic complicated lesions. During the interaction of cell-free Hb with plaque constituents, Hb is oxidized to ferric and ferryl states accompanied by oxidative changes of the globin moieties and heme release. Accumulation of both ferryl-Hb and metHb has been observed in atherosclerotic plaques. The oxidation hotspots in the globin chain are the cysteine and tyrosine amino acids associated with the generation of Hb dimers, tetramers and polymers. Moreover, fragmentation of Hb occurs leading to the formation of globin-derived peptides. A series of these pro-atherogenic cellular responses can be suppressed by hydrogen sulfide (H2S). Since H2S has been explored to exhibit a wide range of physiologic functions to maintain vascular homeostasis, it is not surprising that H2S may play beneficial effects in the progression of atherosclerosis. In the present review, we summarize the findings about the effects of H2S on atherosclerosis and CAVD with a special emphasis on the oxidation of Hb/heme in atherosclerotic plaque development and vascular calcification.
Collapse
Affiliation(s)
- Tamás Gáll
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary; Institute of Oncochemistry, University of Debrecen, Hungary
| | - Dorottya Garai
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | - László Potor
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | | | - György Balla
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - József Balla
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
25
|
AP39, a Mitochondrial-Targeted H2S Donor, Improves Porcine Islet Survival in Culture. J Clin Med 2022; 11:jcm11185385. [PMID: 36143032 PMCID: PMC9504761 DOI: 10.3390/jcm11185385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
The rapid deterioration of transplanted islets in culture is a well-established phenomenon. We recently reported that pancreas preservation with AP39 reduces reactive oxygen species (ROS) production and improves islet graft function. In this study, we investigated whether the addition of AP39 to the culture medium could reduce isolated islet deterioration and improve islet function. Isolated islets from porcine pancreata were cultured with 400 nM AP39 or without AP39 at 37 °C. After culturing for 6–72 h, the islet equivalents of porcine islets in the AP39(+) group were significantly higher than those in the AP39(−) group. The islets in the AP39(+) group exhibited significantly decreased levels of ROS production compared to the islets in the AP39(−) group. The islets in the AP39(+) group exhibited significantly increased mitochondrial membrane potential compared to the islets in the AP39(−) group. A marginal number (1500 IEs) of cultured islets from each group was then transplanted into streptozotocin-induced diabetic mice. Culturing isolated islets with AP39 improved islet transplantation outcomes in streptozotocin-induced diabetic mice. The addition of AP39 in culture medium reduces islet deterioration and furthers the advancements in β-cell replacement therapy.
Collapse
|
26
|
Miljkovic JL, Burger N, Gawel JM, Mulvey JF, Norman AAI, Nishimura T, Tsujihata Y, Logan A, Sauchanka O, Caldwell ST, Morris JL, Prime TA, Warrington S, Prudent J, Bates GR, Aksentijević D, Prag HA, James AM, Krieg T, Hartley RC, Murphy MP. Rapid and selective generation of H 2S within mitochondria protects against cardiac ischemia-reperfusion injury. Redox Biol 2022; 55:102429. [PMID: 35961099 PMCID: PMC9382561 DOI: 10.1016/j.redox.2022.102429] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 02/02/2023] Open
Abstract
Mitochondria-targeted H2S donors are thought to protect against acute ischemia-reperfusion (IR) injury by releasing H2S that decreases oxidative damage. However, the rate of H2S release by current donors is too slow to be effective upon administration following reperfusion. To overcome this limitation here we develop a mitochondria-targeted agent, MitoPerSulf that very rapidly releases H2S within mitochondria. MitoPerSulf is quickly taken up by mitochondria, where it reacts with endogenous thiols to generate a persulfide intermediate that releases H2S. MitoPerSulf is acutely protective against cardiac IR injury in mice, due to the acute generation of H2S that inhibits respiration at cytochrome c oxidase thereby preventing mitochondrial superoxide production by lowering the membrane potential. Mitochondria-targeted agents that rapidly generate H2S are a new class of therapy for the acute treatment of IR injury.
Collapse
Affiliation(s)
- Jan Lj Miljkovic
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Nils Burger
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Justyna M Gawel
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - John F Mulvey
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | | - Takanori Nishimura
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK; Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 251-8555, Japan
| | - Yoshiyuki Tsujihata
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 251-8555, Japan
| | - Angela Logan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Olga Sauchanka
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | | - Jordan L Morris
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Tracy A Prime
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | | | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Georgina R Bates
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Dunja Aksentijević
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
27
|
Magierowska K, Korbut E, Wójcik-Grzybek D, Bakalarz D, Sliwowski Z, Cieszkowski J, Szetela M, Torregrossa R, Whiteman M, Magierowski M. Mitochondria-targeted hydrogen sulfide donors versus acute oxidative gastric mucosal injury. J Control Release 2022; 348:321-334. [PMID: 35654168 DOI: 10.1016/j.jconrel.2022.05.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022]
Abstract
Hydrogen sulfide (H2S) as a gaseous molecule prevents gastrointestinal (GI)-tract against various injuries. This study aimed to evaluate for the first time the detailed molecular mechanism of mitochondria-targeting H2S-prodrugs, AP39 and RT01 in gastroprotection against ischemia/reperfusion (I/R)-induced lesions. Wistar rats exposed to I/R were pretreated i.g. with vehicle, AP39 (0.004-2 mg/kg), RT01 (0.1 mg/kg), or with AP219 (0.1 mg/kg) as structural control without ability to release H2S. AP39 was also administered with mTOR1 inhibitor, rapamycin (1 mg/kg i.g.). Gastric damage area was assessed micro-/macroscopically, gastric blood flow (GBF) by laser flowmetry, mRNA level of HIF-1α, GPx, SOD1, SOD2, annexin-A1, SOCS3, IL-1RA, IL-1β, IL-1R1, IL-1R2, TNFR2, iNOS by real-time PCR. Gastric mucosal and/or serum content of IL-1β, IL-4, IL-5, IL-10, G-CSF, M-CSF, VEGFA, GRO, RANTES, MIP-1α, MCP1, TNF-α, TIMP1, FABP3, GST-α, STAT3/5 and phosphorylation of mTOR, NF-κB, ERK, Akt was evaluated by microbeads-fluorescent assay. Mitochondrial complexes activities were measured biochemically. RNA damage was assessed as 8-OHG by ELISA. AP39 and RT01 reduced micro-/macroscopic gastric I/R-injury increasing GBF. AP39-gastroprotection was accompanied by maintained activity of mitochondrial complexes, prevented RNA oxidation and enhanced mRNA/protein expression of SOCS3, IL-1RA, annexin-A1, GST-α, HIF-1α. Rapamycin reversed AP-39-gastroprotection. AP39-gastroprotection was followed by decreased NF-κB, ERK, IL-1β and enhanced Akt and mTOR proteins phosphorylation. AP39-prevented gastric mucosal damage caused by I/R-injury, partly by mitochondrial complex activity maintenance. AP39-mediated attenuation of gastric mucosal oxidation, hypoxia and inflammation involved mTOR1 and Akt pathways activity and modulation of HIF-1α, GST-α, SOCS3, IL1RA and TIMP1 molecular interplay.
Collapse
Affiliation(s)
| | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | | | - Dominik Bakalarz
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland; Department of Forensic Toxicology, Institute of Forensic Research, Cracow, Poland
| | - Zbigniew Sliwowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Jakub Cieszkowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Małgorzata Szetela
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | | | | | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland.
| |
Collapse
|
28
|
Lohakul J, Jeayeng S, Chaiprasongsuk A, Torregrossa R, Wood ME, Saelim M, Thangboonjit W, Whiteman M, Panich U. Mitochondria-Targeted Hydrogen Sulfide Delivery Molecules Protect Against UVA-Induced Photoaging in Human Dermal Fibroblasts, and in Mouse Skin In Vivo. Antioxid Redox Signal 2022; 36:1268-1288. [PMID: 34235951 DOI: 10.1089/ars.2020.8255] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: Oxidative stress and mitochondrial dysfunction play a role in the process of skin photoaging via activation of matrix metalloproteases (MMPs) and the subsequent degradation of collagen. The activation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor controlling antioxidant and cytoprotective defense systems, might offer a pharmacological approach to prevent skin photoaging. We therefore investigated a pharmacological approach to prevent skin photoaging, and also investigated a protective effect of the novel mitochondria-targeted hydrogen sulfide (H2S) delivery molecules AP39 and AP123, and nontargeted control molecules, on ultraviolet A light (UVA)-induced photoaging in normal human dermal fibroblasts (NHDFs) in vitro and the skin of BALB/c mice in vivo. Results: In NHDFs, AP39 and AP123 (50-200 nM) but not nontargeted controls suppressed UVA (8 J/cm2)-mediated cytotoxicity and induction of MMP-1 activity, preserved cellular bioenergetics, and increased the expression of collagen and nuclear levels of Nrf2. In in vivo experiments, topical application of AP39 or AP123 (0.3-1 μM/cm2; but not nontargeted control molecules) to mouse skin before UVA (60 J/cm2) irradiation prevented skin thickening, MMP induction, collagen loss of oxidative stress markers 8-hydroxy-2'-deoxyguanosine (8-OHdG), increased Nrf2-dependent signaling, as well as increased manganese superoxide dismutase levels and levels of the mitochondrial biogenesis marker peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α). Innovation and Conclusion: Targeting H2S delivery to mitochondria may represent a novel approach for the prevention and treatment of skin photoaging, as well as being useful tools for determining the role of mitochondrial H2S in skin disorders and aging. Antioxid. Redox Signal. 36, 1268-1288.
Collapse
Affiliation(s)
- Jinapath Lohakul
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Saowanee Jeayeng
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anyamanee Chaiprasongsuk
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | | | - Mark E Wood
- University of Exeter Medical School, Exeter, United Kingdom
| | - Malinee Saelim
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Weerawon Thangboonjit
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
29
|
Ascenção K, Szabo C. Emerging roles of cystathionine β-synthase in various forms of cancer. Redox Biol 2022; 53:102331. [PMID: 35618601 PMCID: PMC9168780 DOI: 10.1016/j.redox.2022.102331] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The expression of the reverse transsulfuration enzyme cystathionine-β-synthase (CBS) is markedly increased in many forms of cancer, including colorectal, ovarian, lung, breast and kidney, while in other cancers (liver cancer and glioma) it becomes downregulated. According to the clinical database data in high-CBS-expressor cancers (e.g. colon or ovarian cancer), high CBS expression typically predicts lower survival, while in the low-CBS-expressor cancers (e.g. liver cancer), low CBS expression is associated with lower survival. In the high-CBS expressing tumor cells, CBS, and its product hydrogen sulfide (H2S) serves as a bioenergetic, proliferative, cytoprotective and stemness factor; it also supports angiogenesis and epithelial-to-mesenchymal transition in the cancer microenvironment. The current article reviews the various tumor-cell-supporting roles of the CBS/H2S axis in high-CBS expressor cancers and overviews the anticancer effects of CBS silencing and pharmacological CBS inhibition in various cancer models in vitro and in vivo; it also outlines potential approaches for biomarker identification, to support future targeted cancer therapies based on pharmacological CBS inhibition.
Collapse
|
30
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
31
|
da Costa Marques LA, Teixeira SA, de Jesus FN, Wood ME, Torregrossa R, Whiteman M, Costa SKP, Muscará MN. Vasorelaxant Activity of AP39, a Mitochondria-Targeted H 2S Donor, on Mouse Mesenteric Artery Rings In Vitro. Biomolecules 2022; 12:280. [PMID: 35204781 PMCID: PMC8961640 DOI: 10.3390/biom12020280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria-targeted hydrogen sulfide (H2S) donor compounds, such as compound AP39, supply H2S into the mitochondrial environment and have shown several beneficial in vitro and in vivo effects in cardiovascular conditions such as diabetes and hypertension. However, the study of their direct vascular effects has not been addressed to date. Thus, the objective of the present study was to analyze the effects and describe the mechanisms of action of AP39 on the in vitro vascular reactivity of mouse mesenteric artery. Protein and gene expressions of the H2S-producing enzymes (CBS, CSE, and 3MPST) were respectively analyzed by Western blot and qualitative RT-PCR, as well the in vitro production of H2S by mesenteric artery homogenates. Gene expression of CSE and 3MPST in the vessels has been evidenced by RT-PCR experiments, whereas the protein expression of all the three enzymes was demonstrated by Western blotting experiments. Nonselective inhibition of H2S-producing enzymes by AOAA abolished H2S production, whereas it was partially inhibited by PAG (a CSE selective inhibitor). Vasorelaxation promoted by AP39 and its H2S-releasing moiety (ADT-OH) were significantly reduced after endothelium removal, specifically dependent on NO-cGMP signaling and SKCa channel opening. Endogenous H2S seems to participate in the mechanism of action of AP39, and glibenclamide-induced KATP blockade did not affect the vasorelaxant response. Considering the results of the present study and the previously demonstrated antioxidant and bioenergetic effects of AP39, we conclude that mitochondria-targeted H2S donors may offer a new promising perspective in cardiovascular disease therapeutics.
Collapse
Affiliation(s)
- Leonardo A. da Costa Marques
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (L.A.d.C.M.); (S.A.T.); (F.N.d.J.); (S.K.P.C.)
| | - Simone A. Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (L.A.d.C.M.); (S.A.T.); (F.N.d.J.); (S.K.P.C.)
| | - Flávia N. de Jesus
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (L.A.d.C.M.); (S.A.T.); (F.N.d.J.); (S.K.P.C.)
| | - Mark E. Wood
- Medical School, University of Exeter, Exeter EX1 2LU, UK; (M.E.W.); (R.T.); (M.W.)
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Roberta Torregrossa
- Medical School, University of Exeter, Exeter EX1 2LU, UK; (M.E.W.); (R.T.); (M.W.)
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Matthew Whiteman
- Medical School, University of Exeter, Exeter EX1 2LU, UK; (M.E.W.); (R.T.); (M.W.)
| | - Soraia K. P. Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (L.A.d.C.M.); (S.A.T.); (F.N.d.J.); (S.K.P.C.)
| | - Marcelo N. Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (L.A.d.C.M.); (S.A.T.); (F.N.d.J.); (S.K.P.C.)
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
32
|
Peleli M, Zampas P, Papapetropoulos A. Hydrogen Sulfide and the Kidney: Physiological Roles, Contribution to Pathophysiology, and Therapeutic Potential. Antioxid Redox Signal 2022; 36:220-243. [PMID: 34978847 DOI: 10.1089/ars.2021.0014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Hydrogen sulfide (H2S), the third member of the gasotransmitter family, has a broad spectrum of biological activities, including antioxidant and cytoprotective actions, as well as vasodilatory, anti-inflammatory and antifibrotic effects. New, significant aspects of H2S biology in the kidney continue to emerge, underscoring the importance of this signaling molecule in kidney homeostasis, function, and disease. Recent Advances: H2S signals via three main mechanisms, by maintaining redox balance through its antioxidant actions, by post-translational modifications of cellular proteins (S-sulfhydration), and by binding to protein metal centers. Important renal functions such as glomerular filtration, renin release, or sodium reabsorption have been shown to be regulated by H2S, using either exogenous donors or by the endogenous-producing systems. Critical Issues: Lower H2S levels are observed in many renal pathologies, including renal ischemia-reperfusion injury and obstructive, diabetic, or hypertensive nephropathy. Unraveling the molecular targets through which H2S exerts its beneficial effects would be of great importance not only for understanding basic renal physiology, but also for identifying new pharmacological interventions for renal disease. Future Directions: Additional studies are needed to better understand the role of H2S in the kidney. Mapping the expression pattern of H2S-producing and -degrading enzymes in renal cells and generation of cell-specific knockout mice based on this information will be invaluable in the effort to unravel additional roles for H2S in kidney (patho)physiology. With this knowledge, novel targeted more effective therapeutic strategies for renal disease can be designed. Antioxid. Redox Signal. 36, 220-243.
Collapse
Affiliation(s)
- Maria Peleli
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevas Zampas
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
33
|
Kaziród K, Myszka M, Dulak J, Łoboda A. Hydrogen sulfide as a therapeutic option for the treatment of Duchenne muscular dystrophy and other muscle-related diseases. Cell Mol Life Sci 2022; 79:608. [PMID: 36441348 PMCID: PMC9705465 DOI: 10.1007/s00018-022-04636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Hydrogen sulfide (H2S) has been known for years as a poisoning gas and until recently evoked mostly negative associations. However, the discovery of its gasotransmitter functions suggested its contribution to various physiological and pathological processes. Although H2S has been found to exert cytoprotective effects through modulation of antioxidant, anti-inflammatory, anti-apoptotic, and pro-angiogenic responses in a variety of conditions, its role in the pathophysiology of skeletal muscles has not been broadly elucidated so far. The classical example of muscle-related disorders is Duchenne muscular dystrophy (DMD), the most common and severe type of muscular dystrophy. Mutations in the DMD gene that encodes dystrophin, a cytoskeletal protein that protects muscle fibers from contraction-induced damage, lead to prominent dysfunctions in the structure and functions of the skeletal muscle. However, the main cause of death is associated with cardiorespiratory failure, and DMD remains an incurable disease. Taking into account a wide range of physiological functions of H2S and recent literature data on its possible protective role in DMD, we focused on the description of the 'old' and 'new' functions of H2S, especially in muscle pathophysiology. Although the number of studies showing its essential regulatory action in dystrophic muscles is still limited, we propose that H2S-based therapy has the potential to attenuate the progression of DMD and other muscle-related disorders.
Collapse
Affiliation(s)
- Katarzyna Kaziród
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Małgorzata Myszka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
34
|
Magli E, Perissutti E, Santagada V, Caliendo G, Corvino A, Esposito G, Esposito G, Fiorino F, Migliaccio M, Scognamiglio A, Severino B, Sparaco R, Frecentese F. H 2S Donors and Their Use in Medicinal Chemistry. Biomolecules 2021; 11:1899. [PMID: 34944543 PMCID: PMC8699746 DOI: 10.3390/biom11121899] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a ubiquitous gaseous signaling molecule that has an important role in many physiological and pathological processes in mammalian tissues, with the same importance as two others endogenous gasotransmitters such as NO (nitric oxide) and CO (carbon monoxide). Endogenous H2S is involved in a broad gamut of processes in mammalian tissues including inflammation, vascular tone, hypertension, gastric mucosal integrity, neuromodulation, and defense mechanisms against viral infections as well as SARS-CoV-2 infection. These results suggest that the modulation of H2S levels has a potential therapeutic value. Consequently, synthetic H2S-releasing agents represent not only important research tools, but also potent therapeutic agents. This review has been designed in order to summarize the currently available H2S donors; furthermore, herein we discuss their preparation, the H2S-releasing mechanisms, and their -biological applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (E.M.); (E.P.); (V.S.); (G.C.); (A.C.); (G.E.); (G.E.); (F.F.); (M.M.); (A.S.); (B.S.); (R.S.)
| |
Collapse
|
35
|
Longchamp A, MacArthur MR, Trocha K, Ganahl J, Mann CG, Kip P, King WW, Sharma G, Tao M, Mitchell SJ, Ditrói T, Yang J, Nagy P, Ozaki CK, Hine C, Mitchell JR. Plasma Hydrogen Sulfide Is Positively Associated With Post-operative Survival in Patients Undergoing Surgical Revascularization. Front Cardiovasc Med 2021; 8:750926. [PMID: 34760947 PMCID: PMC8574965 DOI: 10.3389/fcvm.2021.750926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/13/2021] [Indexed: 12/05/2022] Open
Abstract
Objective: Hydrogen sulfide (H2S) is a gaseous signaling molecule and redox factor important for cardiovascular function. Deficiencies in its production or bioavailability are implicated in atherosclerotic disease. However, it is unknown if circulating H2S levels differ between vasculopaths and healthy individuals, and if so, whether H2S measurements can be used to predict surgical outcomes. Here, we examined: (1) Plasma H2S levels in patients undergoing vascular surgery and compared these to healthy controls, and (2) the association between H2S levels and mortality in a cohort of patients undergoing surgical revascularization. Methods: One hundred and fifteen patients undergoing carotid endarterectomy, open lower extremity revascularization or lower leg amputation were enrolled at a single institution. Peripheral blood was also collected from a matched control cohort of 20 patients without peripheral or coronary artery disease. Plasma H2S production capacity and sulfide concentration were measured using the lead acetate and monobromobimane methods, respectively. Results: Plasma H2S production capacity and plasma sulfide concentrations were reduced in patients with PAD (p < 0.001, p = 0.013, respectively). Patients that underwent surgical revascularization were divided into high vs. low H2S production capacity groups by median split. Patients in the low H2S production group had increased probability of mortality (p = 0.003). This association was robust to correction for potentially confounding variables using Cox proportional hazard models. Conclusion: Circulating H2S levels were lower in patients with atherosclerotic disease. Patients undergoing surgical revascularization with lower H2S production capacity, but not sulfide concentrations, had increased probability of mortality within 36 months post-surgery. This work provides insight on the role H2S plays as a diagnostic and potential therapeutic for cardiovascular disease.
Collapse
Affiliation(s)
- Alban Longchamp
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Michael R MacArthur
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Kaspar Trocha
- Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Janine Ganahl
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Charlotte G Mann
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Peter Kip
- Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - William W King
- Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Gaurav Sharma
- Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ming Tao
- Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Sarah J Mitchell
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | - Jie Yang
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary.,Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - C Keith Ozaki
- Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - James R Mitchell
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| |
Collapse
|
36
|
Allen CL, Wolanska K, Malhi NK, Benest AV, Wood ME, Amoaku W, Torregrossa R, Whiteman M, Bates DO, Whatmore JL. Hydrogen Sulfide Is a Novel Protector of the Retinal Glycocalyx and Endothelial Permeability Barrier. Front Cell Dev Biol 2021; 9:724905. [PMID: 34557493 PMCID: PMC8452977 DOI: 10.3389/fcell.2021.724905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/29/2021] [Indexed: 12/27/2022] Open
Abstract
Significantly reduced levels of the anti-inflammatory gaseous transmitter hydrogen sulfide (H2S) are observed in diabetic patients and correlate with microvascular dysfunction. H2S may protect the microvasculature by preventing loss of the endothelial glycocalyx. We tested the hypothesis that H2S could prevent or treat retinal microvascular endothelial dysfunction in diabetes. Bovine retinal endothelial cells (BRECs) were exposed to normal (NG, 5.5 mmol/L) or high glucose (HG, 25 mmol/L) ± the slow-release H2S donor NaGYY4137 in vitro. Glycocalyx coverage (stained with WGA-FITC) and calcein-labeled monocyte adherence were measured. In vivo, fundus fluorescein angiography (FFA) was performed in normal and streptozotocin-induced (STZ) diabetic rats. Animals received intraocular injection of NaGYY4137 (1 μM) or the mitochondrial-targeted H2S donor AP39 (100 nM) simultaneously with STZ (prevention) or on day 6 after STZ (treatment), and the ratio of interstitial to vascular fluorescence was used to estimate apparent permeability. NaGYY4137 prevented HG-induced loss of BREC glycocalyx, increased monocyte binding to BRECs (p ≤ 0.001), and increased overall glycocalyx coverage (p ≤ 0.001). In rats, the STZ-induced increase in apparent retinal vascular permeability (p ≤ 0.01) was significantly prevented by pre-treatment with NaGYY4137 and AP39 (p < 0.05) and stabilized by their post-STZ administration. NaGYY4137 also reduced the number of acellular capillaries (collagen IV + /IB4-) in the diabetic retina in both groups (p ≤ 0.05). We conclude that NaGYY4137 and AP39 protected the retinal glycocalyx and endothelial permeability barrier from diabetes-associated loss of integrity and reduced the progression of diabetic retinopathy (DR). Hydrogen sulfide donors that target the glycocalyx may therefore be a therapeutic candidate for DR.
Collapse
Affiliation(s)
- Claire L Allen
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Katarzyna Wolanska
- The Institute of Biomedical and Clinical Science, University of Exeter Medical School, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Naseeb K Malhi
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Andrew V Benest
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Mark E Wood
- Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, United Kingdom
| | - Winfried Amoaku
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Roberta Torregrossa
- The Institute of Biomedical and Clinical Science, University of Exeter Medical School, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Matthew Whiteman
- The Institute of Biomedical and Clinical Science, University of Exeter Medical School, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Jacqueline L Whatmore
- The Institute of Biomedical and Clinical Science, University of Exeter Medical School, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
37
|
Pacitti D, Scotton CJ, Kumar V, Khan H, Wark PAB, Torregrossa R, Hansbro PM, Whiteman M. Gasping for Sulfide: A Critical Appraisal of Hydrogen Sulfide in Lung Disease and Accelerated Aging. Antioxid Redox Signal 2021; 35:551-579. [PMID: 33736455 DOI: 10.1089/ars.2021.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in a plethora of physiological and pathological processes. It is primarily synthesized by cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase as a metabolite of the transsulfuration pathway. H2S has been shown to exert beneficial roles in lung disease acting as an anti-inflammatory and antiviral and to ameliorate cell metabolism and protect from oxidative stress. H2S interacts with transcription factors, ion channels, and a multitude of proteins via post-translational modifications through S-persulfidation ("sulfhydration"). Perturbation of endogenous H2S synthesis and/or levels have been implicated in the development of accelerated lung aging and diseases, including asthma, chronic obstructive pulmonary disease, and fibrosis. Furthermore, evidence indicates that persulfidation is decreased with aging. Here, we review the use of H2S as a biomarker of lung pathologies and discuss the potential of using H2S-generating molecules and synthesis inhibitors to treat respiratory diseases. Furthermore, we provide a critical appraisal of methods of detection used to quantify H2S concentration in biological samples and discuss the challenges of characterizing physiological and pathological levels. Considerations and caveats of using H2S delivery molecules, the choice of generating molecules, and concentrations are also reviewed. Antioxid. Redox Signal. 35, 551-579.
Collapse
Affiliation(s)
- Dario Pacitti
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Chris J Scotton
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Vinod Kumar
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Haroon Khan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Roberta Torregrossa
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, Australia
| | - Matthew Whiteman
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
38
|
Dugbartey GJ, Juriasingani S, Zhang MY, Sener A. H 2S donor molecules against cold ischemia-reperfusion injury in preclinical models of solid organ transplantation. Pharmacol Res 2021; 172:105842. [PMID: 34450311 DOI: 10.1016/j.phrs.2021.105842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022]
Abstract
Cold ischemia-reperfusion injury (IRI) is an inevitable and unresolved problem that poses a great challenge in solid organ transplantation (SOT). It represents a major factor that increases acute tubular necrosis, decreases graft survival, and delays graft function. This complicates graft quality, post-transplant patient care and organ transplantation outcomes, and therefore undermines the success of SOT. Herein, we review recent advances in research regarding novel pharmacological strategies involving the use of different donor molecules of hydrogen sulfide (H2S), the third established member of the gasotransmitter family, against cold IRI in different experimental models of SOT (kidney, heart, lung, liver, pancreas and intestine). Additionally, we discuss the molecular mechanisms underlying the effects of these H2S donor molecules in SOT, and suggestions for clinical translation. Our reviewed findings showed that storage of donor organs in H2S-supplemented preservation solution or administration of H2S to organ donor prior to organ procurement and to recipient at the start and during reperfusion is a novel, simple and cost-effective pharmacological approach to minimize cold IRI, limit post-transplant complications and improve transplantation outcomes. In conclusion, experimental evidence demonstrate that H2S donors can significantly mitigate cold IRI during SOT through inhibition of a complex cascade of interconnected cellular and molecular events involving microcirculatory disturbance and microvascular dysfunction, mitochondrial injury, inflammatory responses, cell damage and cell death, and other damaging molecular pathways while promoting protective pathways. Translating these promising findings from bench to bedside will lay the foundation for the use of H2S donor molecules in clinical SOT in the future.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Smriti Juriasingani
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada
| | - Max Y Zhang
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada
| | - Alp Sener
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
39
|
Zhang H, Zhao H, Guo N. Protective effect of hydrogen sulfide on the kidney (Review). Mol Med Rep 2021; 24:696. [PMID: 34368864 PMCID: PMC8365410 DOI: 10.3892/mmr.2021.12335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 06/22/2021] [Indexed: 12/29/2022] Open
Abstract
Hydrogen sulfide (H2S) is a physiologically important gas transmitter that serves various biological functions in the body, in a manner similar to that of carbon monoxide and nitric oxide. Cystathionine-β-synthase, cystathionine-γ-lyase and cysteine transaminase/3-mercaptopyruvate sulphotransferase are important enzymes involved H2S production in vivo, and the mitochondria are the primary sites of metabolism. It has been reported that H2S serves an important physiological role in the kidney. Under disease conditions, such as ischemia-reperfusion injury, drug nephrotoxicity and diabetic nephropathy, H2S serves an important role in both the occurrence and development of the disease. The present review aimed to summarize the production, metabolism and physiological functions of H2S, and the progress in research with regards to its role in renal injury and renal fibrosis in recent years.
Collapse
Affiliation(s)
- Hu Zhang
- Department of Urology, General Hospital of Fuxin Mining Industry Group of Liaoning Health Industry Group, Fuxin, Liaoning 123000, P.R. China
| | - Haitian Zhao
- Department of Urology, The First Clinical Medical School of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Nannan Guo
- Department of Nephrology, General Hospital of Fuxin Mining Industry Group of Liaoning Health Industry Group, Fuxin, Liaoning 123000, P.R. China
| |
Collapse
|
40
|
Nishime K, Miyagi-Shiohira C, Kuwae K, Tamaki Y, Yonaha T, Sakai-Yonaha M, Saitoh I, Watanabe M, Noguchi H. Preservation of pancreas in the University of Wisconsin solution supplemented with AP39 reduces reactive oxygen species production and improves islet graft function. Am J Transplant 2021; 21:2698-2708. [PMID: 33210816 DOI: 10.1111/ajt.16401] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/19/2020] [Accepted: 11/15/2020] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury (IRI) results in increased rates of delayed graft function and early graft loss. It has recently been reported that hydrogen sulfide (H2 S) protects organ grafts against prolonged IRI. Here, we investigated whether the preservation of pancreas in University of Wisconsin (UW) solution supplemented with AP39, which is a mitochondrial-targeted H2 S donor, protected pancreatic islets against IRI and improved islet function. Porcine pancreata were preserved in the UW solution with AP39 (UW + AP39) or the vehicle (UW) for 18 h, followed by islet isolation. The islet yields before and after purification were significantly higher in the UW + AP39 group than in the UW group. The islets isolated from the pancreas preserved in UW + AP39 exhibited significantly decreased levels of reactive oxygen species (ROS) production and a significantly increased mitochondrial membrane potential as compared to the islets isolated from the pancreas preserved in the vehicle. We found that the pancreas preserved in UW + AP39 improved the outcome of islet transplantation in streptozotocin-induced diabetic mice. These results suggest that the preservation of pancreas in UW + AP39 protects the islet grafts against IRI and could thus serve as a novel clinical strategy for improving islet transplantation outcomes.
Collapse
Affiliation(s)
- Kai Nishime
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kazuho Kuwae
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshihito Tamaki
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tasuku Yonaha
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Mayuko Sakai-Yonaha
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
41
|
Yu Y, Ye SM, Liu DY, Yang LQ. AP39 ameliorates high fat diet-induced liver injury in young rats via alleviation of oxidative stress and mitochondrial impairment. Exp Anim 2021; 70:553-562. [PMID: 34305077 PMCID: PMC8614011 DOI: 10.1538/expanim.21-0056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complication of childhood obesity and an oxidative stress-related multisystem disease. A mitochondria-targeting hydrogen sulfide
(H2S) donor AP39 has antioxidant property, while the mechanism underlying the function of AP39 on pediatric NAFLD remains undefined. Here, 3-week-old SD rats were received a
high-fat diet (HFD) feeding and injected with AP39 (0.05 or 0.1 mg/kg/day) via the tail vein for up to 7 weeks. AP39 reduced weight gain of HFD rats and improved HFD-caused liver injury, as
evidenced by reduced liver index, improved liver pathological damage, decreased NAFLD activity score, as well as low alanine transaminase (ALT) and aspartate transaminase (AST) activities.
AP39 also reduced serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C) concentrations but increased high-density lipoprotein-cholesterol (HDL-C).
Moreover, AP39 prevented reactive oxygen species (ROS) generation, reduced MDA content and increased glutathione (GSH) level and superoxide dismutase (SOD) activity. Furthermore, AP39
increased H2S level, protected mitochondrial DNA (mtDNA), reduced mitochondrial swelling, and restored mitochondrial membrane potential (MMP) alteration. Notably, AP39 diminished
HIF-1α mRNA and protein level, possibly indicating the alleviation in mitochondrial damage. In short, AP39 protects against HFD-induced liver injury in young rats probably through
attenuating lipid accumulation, oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yue Yu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University
| | - Shu-Ming Ye
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Anhui Medical University
| | - De-Yun Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University
| | - Li-Qi Yang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University
| |
Collapse
|
42
|
Abstract
OBJECTIVE Activation of the constitutive nuclear and mitochondrial enzyme poly (ADP-ribose) polymerase (PARP) has been implicated in the pathogenesis of cell dysfunction, inflammation, and organ failure in various forms of critical illness. The objective of our study was to evaluate the efficacy and safety of the clinically approved PARP inhibitor olaparib in an experimental model of pancreatitis in vivo and in a pancreatic cell line subjected to oxidative stress in vitro. The preclinical studies were complemented with analysis of clinical samples to detect PARP activation in pancreatitis. METHODS Mice were subjected to cerulein-induced pancreatitis; circulating mediators and circulating organ injury markers; pancreatic myeloperoxidase and malondialdehyde levels were measured and histology of the pancreas was assessed. In human pancreatic duct epithelial cells (HPDE) subjected to oxidative stress, PARP activation was measured by PAR Western blotting and cell viability and DNA integrity were quantified. In clinical samples, PARP activation was assessed by PAR (the enzymatic product of PARP) immunohistochemistry. RESULTS In male mice subjected to pancreatitis, olaparib (3 mg/kg i.p.) improved pancreatic function: it reduced pancreatic myeloperoxidase and malondialdehyde levels, attenuated the plasma amylase levels, and improved the histological picture of the pancreas. It also attenuated the plasma levels of pro-inflammatory mediators (TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-12, IP-10, KC) but not MCP-1, RANTES, or the anti-inflammatory cytokine IL-10. Finally, it prevented the slight, but significant increase in plasma blood urea nitrogen level, suggesting improved renal function. The protective effect of olaparib was also confirmed in female mice. In HPDE cells subjected to oxidative stress olaparib (1 μM) inhibited PARP activity, protected against the loss of cell viability, and prevented the loss of cellular NAD levels. Olaparib, at 1μM to 30 μM did not have any adverse effects on DNA integrity. In human pancreatic samples from patients who died of pancreatitis, increased accumulation of PAR was demonstrated. CONCLUSION Olaparib improves organ function and tempers the hyperinflammatory response in pancreatitis. It also protects against pancreatic cell injury in vitro without adversely affecting DNA integrity. Repurposing and eventual clinical introduction of this clinically approved PARP inhibitor may be warranted for the experimental therapy of pancreatitis.
Collapse
|
43
|
Chang CY, Pan PH, Li JR, Ou YC, Liao SL, Chen WY, Kuan YH, Chen CJ. Glycerol Improves Intracerebral Hemorrhagic Brain Injury and Associated Kidney Dysfunction in Rats. Antioxidants (Basel) 2021; 10:antiox10040623. [PMID: 33921791 PMCID: PMC8073011 DOI: 10.3390/antiox10040623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
In stroke patients, the development of acute kidney injury (AKI) is closely linked with worse outcomes and increased mortality. In this study, the interplay between post-stroke and AKI and treatment options was investigated in a rodent model of hemorrhagic stroke. Intrastriatal collagenase injection for 24 h caused neurological deficits, hematoma formation, brain edema, apoptosis, blood–brain barrier disruption, oxidative stress, and neuroinflammation in Sprague Dawley rats. Elevation of serum blood urea nitrogen, serum creatinine, urine cytokine-induced neutrophil chemoattractant-1, and urine Malondialdehyde, as well as moderate histological abnormality in the kidney near the glomerulus, indicated evidence of kidney dysfunction. The accumulation of podocalyxin DNA in urine further suggested a detachment of podocytes and structural deterioration of the glomerulus. Circulating levels of stress hormones, such as epinephrine, norepinephrine, corticosterone, and angiotensin II were elevated in rats with intracerebral hemorrhage. Osmotic agent glycerol held promising effects in alleviating post-stroke brain injury and kidney dysfunction. Although the detailed protective mechanisms of glycerol have yet to be determined, the intrastriatal collagenase injection hemorrhagic stroke model in rats allowed us to demonstrate the functional and structural integrity of glomerulus are targets that are vulnerable to post-stroke injury and stress hormones could be surrogates of remote communications.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-Y.C.)
| | - Ping-Ho Pan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-Y.C.)
- Department of Pediatrics, Tungs’ Taichung Metro Harbor Hospital, Taichung City 435, Taiwan
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Nursing, HungKuang University, Taichung City 433, Taiwan
| | - Yen-Chuan Ou
- Department of Urology, Tungs’ Taichung Metro Harbor Hospital, Taichung City 435, Taiwan;
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-Y.C.)
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City 402, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
- Correspondence: ; Tel.: +886-4-23592525 (ext. 4022)
| |
Collapse
|
44
|
Subnormothermic Perfusion with H 2S Donor AP39 Improves DCD Porcine Renal Graft Outcomes in an Ex Vivo Model of Kidney Preservation and Reperfusion. Biomolecules 2021; 11:biom11030446. [PMID: 33802753 PMCID: PMC8002411 DOI: 10.3390/biom11030446] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Cold preservation is the standard of care for renal grafts. However, research on alternatives like perfusion at higher temperatures and supplementing preservation solutions with hydrogen sulfide (H2S) has gained momentum. In this study, we investigated whether adding H2S donor AP39 to porcine blood during subnormothermic perfusion at 21 °C improves renal graft outcomes. Porcine kidneys were nephrectomized after 30 min of clamping the renal pedicles and treated to 4 h of static cold storage (SCS) on ice or ex vivo subnormothermic perfusion at 21 °C with autologous blood alone (SNT) or with AP39 (SNTAP). All kidneys were reperfused ex vivo with autologous blood at 37 °C for 4 h. Urine output, histopathology and RNAseq were used to evaluate the renal graft function, injury and gene expression profiles, respectively. The SNTAP group exhibited significantly higher urine output than other groups during preservation and reperfusion, along with significantly lower apoptotic injury compared to the SCS group. The SNTAP group also exhibited differential pro-survival gene expression patterns compared to the SCS (downregulation of pro-apoptotic genes) and SNT (downregulation of hypoxia response genes) groups. Subnormothermic perfusion at 21 °C with H2S-supplemented blood improves renal graft outcomes. Further research is needed to facilitate the clinical translation of this approach.
Collapse
|
45
|
Trends in H 2S-Donors Chemistry and Their Effects in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10030429. [PMID: 33799669 PMCID: PMC8002049 DOI: 10.3390/antiox10030429] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gasotransmitter recently emerged as an important regulatory mediator of numerous human cell functions in health and in disease. In fact, much evidence has suggested that hydrogen sulfide plays a significant role in many physio-pathological processes, such as inflammation, oxidation, neurophysiology, ion channels regulation, cardiovascular protection, endocrine regulation, and tumor progression. Considering the plethora of physiological effects of this gasotransmitter, the protective role of H2S donors in different disease models has been extensively studied. Based on the growing interest in H2S-releasing compounds and their importance as tools for biological and pharmacological studies, this review is an exploration of currently available H2S donors, classifying them by the H2S-releasing-triggered mechanism and highlighting those potentially useful as promising drugs in the treatment of cardiovascular diseases.
Collapse
|
46
|
Scammahorn JJ, Nguyen ITN, Bos EM, Van Goor H, Joles JA. Fighting Oxidative Stress with Sulfur: Hydrogen Sulfide in the Renal and Cardiovascular Systems. Antioxidants (Basel) 2021; 10:373. [PMID: 33801446 PMCID: PMC7998720 DOI: 10.3390/antiox10030373] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use.
Collapse
Affiliation(s)
- Joshua J. Scammahorn
- Department of Nephrology & Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (J.J.S.); (I.T.N.N.); (J.A.J.)
| | - Isabel T. N. Nguyen
- Department of Nephrology & Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (J.J.S.); (I.T.N.N.); (J.A.J.)
| | - Eelke M. Bos
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands;
| | - Harry Van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Jaap A. Joles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (J.J.S.); (I.T.N.N.); (J.A.J.)
| |
Collapse
|
47
|
Saif J, Ahmad S, Rezai H, Litvinova K, Sparatore A, Alzahrani FA, Wang K, Ahmed A. Hydrogen sulfide releasing molecule MZe786 inhibits soluble Flt-1 and prevents preeclampsia in a refined RUPP mouse model. Redox Biol 2020; 38:101814. [PMID: 33321463 PMCID: PMC7744945 DOI: 10.1016/j.redox.2020.101814] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
An imbalance in angiogenic growth factors and poor utero-placental perfusion are strongly associated with preeclampsia. The reduced utero-placental perfusion (RUPP) model that mimics insufficient placental perfusion is used to study preeclampsia. The aim of this study was to develop a refined RUPP model in C57Bl/6 J mice to test the efficacy of MZe786 as a potential inhibitor of soluble Flt-1 for preeclampsia therapy. Murine RUPP (mRUPP) was induced through bilateral ligation of the ovarian arteries at E11.5 that resulted in typical preeclampsia symptoms including increase in mean arterial pressure (MAP), kidney injury and elevated soluble Flt-1 (sFlt-1) levels in the maternal plasma and amniotic fluid. The murine RUPP kidneys showed tubular and glomerular damage along with increased oxidative stress characterised by increased nitrotyrosine staining. The mRUPP displayed abnormal placental vascular histology, reduced expression of placental cystathionine γ-lyase (CSE), the hydrogen sulfide (H2S) producing enzyme, and resulted in adverse fetal outcomes (FGR). Importantly, oral administration of hydrogen sulfide (H2S)-releasing compound MZe786 from E11.5 to E17.5 successfully prevented the development of preeclampsia. Specifically, MZe786 treatment reduced maternal MAP and kidney nitrotyrosine staining and improved fetal outcome. The circulation levels of sFlt-1 were dramatically decreased in MZe786 treated animals implying that H2S released from MZe786 offered protection by inhibiting sFlt-1 levels. MZe786 prevent preeclampsia and warrant a rapid move to randomised control clinical trial. Refined mouse reduced uterine perfusion pressure (mRUPP) model exhibits preeclampsia symptoms. Mouse RUPP induces maternal hypertension, kidney injury, elevates circulating sFlt-1 levels and promotes nitrosative stress. Mouse RUPP reduces expression of the protective enzyme, placental cystathionine γ-lyase and causes poor fetal outcome. H2S releasing aspirin, MZe786, acts as an inhibitor of sFlt-1 to successfully prevent preeclampsia and improve fetal outcome. MZe786 is a novel drug with therapeutic potential to prevent preeclampsia.
Collapse
Affiliation(s)
- Jaimy Saif
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK; Aston Medical Research Institute, Aston Medical School, Birmingham, UK
| | - Shakil Ahmad
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK; Aston Medical Research Institute, Aston Medical School, Birmingham, UK
| | - Homira Rezai
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK
| | - Karina Litvinova
- Aston Medical Research Institute, Aston Medical School, Birmingham, UK
| | - Anna Sparatore
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK; Department of Pharmaceutical Science, University of Milan, Milan, Italy
| | - Faisal A Alzahrani
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK; King Fahad Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Keqing Wang
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK; Aston Medical Research Institute, Aston Medical School, Birmingham, UK
| | - Asif Ahmed
- Mirzyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham, B7 4BB, UK; King Fahad Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia; President's Office, University of Southampton, University Road, Southampton, UK.
| |
Collapse
|
48
|
Costa SKPF, Muscara MN, Allain T, Dallazen J, Gonzaga L, Buret AG, Vaughan DJ, Fowler CJ, de Nucci G, Wallace JL. Enhanced Analgesic Effects and Gastrointestinal Safety of a Novel, Hydrogen Sulfide-Releasing Anti-Inflammatory Drug (ATB-352): A Role for Endogenous Cannabinoids. Antioxid Redox Signal 2020; 33:1003-1009. [PMID: 32064887 PMCID: PMC7578177 DOI: 10.1089/ars.2019.7884] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aims: The covalent linking of nonsteroidal anti-inflammatory drugs to a hydrogen sulfide (H2S)-releasing moiety has been shown to dramatically reduce gastrointestinal (GI) damage and bleeding, as well as increase anti-inflammatory and analgesic potency. We have tested the hypothesis that an H2S-releasing derivative of ketoprofen (ATB-352) would exhibit enhanced efficacy without significant GI damage in a mouse model of allodynia/hyperalgesia. Results: ATB-352 was significantly more potent and effective as an analgesic than ketoprofen and did not elicit GI damage. Pretreatment with an antagonist of the CB1 cannabinoid receptor (AM251) significantly reduced the analgesic effects of ATB-352. The CB1 antagonist exacerbated GI damage when coadministered with ketoprofen, but GI damage was not induced by the combination of ATB-352 and the CB1 antagonist. In vitro, ATB-352 was substantially more potent than ketoprofen as an inhibitor of fatty acid amide hydrolase, consistent with a contribution of endogenous cannabinoids to the analgesic effects of this drug. Blood anandamide levels were significantly depressed by ketoprofen, but remained unchanged after treatment with ATB-352. Innovation: Ketoprofen is a potent analgesic, but its clinical use, even in the short term, is significantly limited by its propensity to cause significant ulceration and bleeding in the GI tract. Covalently linking an H2S-releasing moiety to ketoprofen profoundly reduces the GI toxicity of the drug, while boosting analgesic effectiveness. Conclusion: This study demonstrates a marked enhancement of the potency and effectiveness of ATB-352, an H2S-releasing derivative of ketoprofen, in part, through the involvement of the endogenous cannabinoid system. This may have significant advantages for the control and management of pain, such as in a postoperative setting.
Collapse
Affiliation(s)
- Soraia K P F Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Marcelo N Muscara
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Thibault Allain
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | - Jorge Dallazen
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Larissa Gonzaga
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | - Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Gilberto de Nucci
- Department of Pharmacology, University of Campinas, Campinas, Brazil
| | - John L Wallace
- Antibe Therapeutics, Inc., Toronto, Canada.,Department of Pharmacology, University of Campinas, Campinas, Brazil.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| |
Collapse
|
49
|
Zhang H, Bai Z, Zhu L, Liang Y, Fan X, Li J, Wen H, Shi T, Zhao Q, Wang Z. Hydrogen sulfide donors: Therapeutic potential in anti-atherosclerosis. Eur J Med Chem 2020; 205:112665. [DOI: 10.1016/j.ejmech.2020.112665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022]
|
50
|
Pieretti JC, Junho CVC, Carneiro-Ramos MS, Seabra AB. H 2S- and NO-releasing gasotransmitter platform: A crosstalk signaling pathway in the treatment of acute kidney injury. Pharmacol Res 2020; 161:105121. [PMID: 32798649 PMCID: PMC7426260 DOI: 10.1016/j.phrs.2020.105121] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a syndrome affecting most patients hospitalized due to kidney disease; it accounts for 15 % of patients hospitalized in intensive care units worldwide. AKI is mainly caused by ischemia and reperfusion (IR) injury, which temporarily obstructs the blood flow, increases inflammation processes and induces oxidative stress. AKI treatments available nowadays present notable disadvantages, mostly for patients with other comorbidities. Thus, it is important to investigate different approaches to help minimizing side effects such as the ones observed in patients subjected to the aforementioned treatments. Therefore, the aim of the current review is to highlight the potential of two endogenous gasotransmitters - hydrogen sulfide (H2S) and nitric oxide (NO) - and their crosstalk in AKI treatment. Both H2S and NO are endogenous signalling molecules involved in several physiological and pathophysiological processes, such as the ones taking place in the renal system. Overall, these molecules act by decreasing inflammation, controlling reactive oxygen species (ROS) concentrations, activating/inactivating pro-inflammatory cytokines, as well as promoting vasodilation and decreasing apoptosis, hypertrophy and autophagy. Since these gasotransmitters are found in gaseous state at environmental conditions, they can be directly applied by inhalation, or in combination with H2S and NO donors, which are compounds capable of releasing these molecules at biological conditions, thus enabling higher stability and slow release of NO and H2S. Moreover, the combination between these donor compounds and nanomaterials has the potential to enable targeted treatments, reduce side effects and increase the potential of H2S and NO. Finally, it is essential highlighting challenges to, and perspectives in, pharmacological applications of H2S and NO to treat AKI, mainly in combination with nanoparticulated delivery platforms.
Collapse
Affiliation(s)
- Joana Claudio Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | | | | | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|