1
|
Jin Y, Zhou T, Hou C, Zhang H, Xu B. Relationship between the geriatric nutritional risk index and sepsis in elderly critically ill patients: a retrospective cohort study. Eur J Med Res 2025; 30:130. [PMID: 39994820 PMCID: PMC11849206 DOI: 10.1186/s40001-025-02389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/16/2025] [Indexed: 02/26/2025] Open
Abstract
OBJECTIVE To investigate the relationship between the geriatric nutritional risk index (GNRI) and sepsis in elderly critically ill patients. METHODS We extracted data from the MIMIC-IV database for patients aged 65 and older who were first-time admissions to the Intensive Care Unit. The GNRI, derived from serum albumin, height, and weight, served as the exposure variable. The main outcome was the occurrence of sepsis. We utilized multivariable logistic regression to evaluate the association between GNRI and sepsis. Additionally, we employed restricted cubic splines to evaluate the potential nonlinear relationship between GNRI and the incidence of sepsis. RESULTS The study included 3,535 elderly patients, with 2,005 (56.7%) developing sepsis. Septic patients had significantly lower GNRI values (median: 99 vs. 101, P = 0.021) and a higher prevalence of malnutrition risk (GNRI ≤ 98) (47.5% vs. 43.5%, P = 0.018). The analysis employing restricted cubic splines identified a U-shaped association between GNRI and sepsis (P for non-linearity = 0.004), with an inflection point at 105.4. To the left of this inflection point, GNRI was significantly negatively associated with sepsis (OR = 0.987, 95% CI 0.978-0.996, P = 0.005), while the right side showed a positive correlation (OR = 1.011, 95% CI 1.000-1.022, P = 0.044). CONCLUSION The study reveals a U-shaped association between GNRI and sepsis in elderly critically ill patients. Both low and high GNRI values are associated with increased sepsis risk, with a turning point at 105.4. These findings highlight GNRI's utility as a screening tool for identifying sepsis risk in elderly ICU patients.
Collapse
Affiliation(s)
- Yujiao Jin
- Department of Clinical Laboratory, Xixi Hospital of Hangzhou, Hengbu Street 2#, Hangzhou, Zhejiang, China
| | - Tianyun Zhou
- Department of Critical Care Medicine, Zhejiang Hospital, Gudun Road 1229#, Hangzhou, Zhejiang, China
| | - Chenshu Hou
- Department of Critical Care Medicine, Zhejiang Hospital, Gudun Road 1229#, Hangzhou, Zhejiang, China
| | - Huihui Zhang
- Department of Critical Care Medicine, Zhejiang Hospital, Gudun Road 1229#, Hangzhou, Zhejiang, China
| | - Binbin Xu
- Department of Critical Care Medicine, Zhejiang Hospital, Gudun Road 1229#, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Wang J, Liao L, Chen Y, Chen L, Lai Z, Zhang L. A MODIFIED SURGICAL SEPSIS MODEL SATISFYING SEPSIS-3 AND HAVING HIGH CONSISTENCY OF MORTALITY. Shock 2023; 59:673-683. [PMID: 36821415 PMCID: PMC10082063 DOI: 10.1097/shk.0000000000002096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/04/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
ABSTRACT Background : Cecal ligation and perforation (CLP) is currently considered the criterion standard model of sepsis; however, there are some deficiencies, such as low clinical relevance, inconsistency in severity grading, and an unknown proportion of CLP animals meeting the requirements of sepsis-3. Methods : Adult rats were randomly divided into the following three groups: modified CLP (M-CLP) group, CLP group, and sham group. The vital organ function of rats was evaluated 24 hours postoperatively by blood pressure, behavioral testing, histopathology, and blood test. Cytokine levels were determined by enzyme-linked immunosorbent assay, and T-cell suppression was assessed by flow cytometry. The stability of the model was evaluated by comparing the survival rates of repeated experiments in all groups from day 1 to day 14. Results : More rats in the M-CLP group met Sepsis-3 criteria than those in the CLP group 24 hours postoperatively (53.1% vs. 21.9%, P = 0.01). Rats in the M-CLP group developed more serious hepatic, pulmonary, and renal dysfunction. Similar to human sepsis, rats in the M-CLP group demonstrated more serious immunosuppression and systemic inflammation compared with the CLP group. In addition, disease development and severity, which was indicated by the stable survival rates of model animals, were more stable in the M-CLP group. Conclusions : More rats could meet Sepsis-3 criteria with this novel surgical procedure, which may reduce the number of animals needed in preclinical sepsis experiments. This stable M-CLP model may contribute to the development of new therapies.
Collapse
Affiliation(s)
- Jiebo Wang
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lianming Liao
- Center of Laboratory Medicine, Union Hospital of Fujian Medical University, Fuzhou, China
| | - Ying Chen
- Department of Anesthesiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, China
| | - Liji Chen
- Center of Laboratory Medicine, Union Hospital of Fujian Medical University, Fuzhou, China
| | - Zhongmeng Lai
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liangcheng Zhang
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
3
|
Pathophysiology of Sepsis and Genesis of Septic Shock: The Critical Role of Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2022; 23:ijms23169274. [PMID: 36012544 PMCID: PMC9409099 DOI: 10.3390/ijms23169274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The treatment of sepsis and septic shock remains a major public health issue due to the associated morbidity and mortality. Despite an improvement in the understanding of the physiological and pathological mechanisms underlying its genesis and a growing number of studies exploring an even higher range of targeted therapies, no significant clinical progress has emerged in the past decade. In this context, mesenchymal stem cells (MSCs) appear more and more as an attractive approach for cell therapy both in experimental and clinical models. Pre-clinical data suggest a cornerstone role of these cells and their secretome in the control of the host immune response. Host-derived factors released from infected cells (i.e., alarmins, HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (e.g., LPS, peptidoglycans) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of cytokines/chemokines and growth factors that influence, respectively, immune cell recruitment and stem cell mobilization. However, the way in which MSCs exert their beneficial effects in terms of survival and control of inflammation in septic states remains unclear. This review presents the interactions identified between MSCs and mediators of immunity and tissue repair in sepsis. We also propose paradigms related to the plausible roles of MSCs in the process of sepsis and septic shock. Finally, we offer a presentation of experimental and clinical studies and open the way to innovative avenues of research involving MSCs from a prognostic, diagnostic, and therapeutic point of view in sepsis.
Collapse
|
4
|
Cortiula F, Hendriks LEL, van de Worp WRPH, Schols AMWJ, Vaes RDW, Langen RCJ, De Ruysscher D. Physical exercise at the crossroad between muscle wasting and the immune system: implications for lung cancer cachexia. J Cachexia Sarcopenia Muscle 2022; 13:55-67. [PMID: 35014216 PMCID: PMC8818640 DOI: 10.1002/jcsm.12900] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cachexia is a syndrome characterized by involuntary weight loss and wasting of skeletal muscle mass. It is associated with worse overall survival and quality of life. The cancer-induced systemic inflammation and the consequent host derived catabolic stimuli, trigger cachexia by inhibiting muscle protein synthesis and enhancing muscle catabolism. The muscle itself may further promote chronic inflammation, introducing a vicious catabolic circle. Nutritional support alone plays a limited role in the treatment of cancer cachexia and should be combined with other interventions. Physical exercise lowers systemic inflammation and promotes muscle anabolism. It also attenuates the age-related physical decline in elderly and it might counteract the muscle wasting induced by the cancer cachexia syndrome. This review describes how cancer-induced systemic inflammation promotes muscle wasting and whether physical exercise may represent a suitable treatment for cancer-induced cachexia, particularly in patients with non-small cell lung cancer. We summarized pre-clinical and clinical studies investigating whether physical exercise would improve muscle performance and whether this improvement would translate in a clinically meaningful benefit for patients with cancer, in terms of survival and quality of life. Moreover, this review describes the results of studies investigating the interplay between physical exercise and the immune system, including the role of the intestinal microbiota.
Collapse
Affiliation(s)
- Francesco Cortiula
- Department of Radiation Oncology (MAASTRO), Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Lizza E L Hendriks
- Department of Respiratory Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center +, Maastricht, The Netherlands
| | - Wouter R P H van de Worp
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rianne D W Vaes
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
5
|
Abstract
Significance: Sepsis is defined as a life-threatening organ dysfunction caused by dysregulated host response to infection. This leads to an uncontrolled inflammatory response at the onset of infection, followed by immunosuppression. The development of a specific treatment modality for sepsis is still challenging, reflecting our inadequate understanding of its pathophysiology. Understanding the mechanism and transition of the early hyperinflammation to late stage of immunosuppression in sepsis is critical for developing sepsis therapeutics. Recent Advances: Damage-associated molecular patterns (DAMPs) are intracellular molecules and released upon tissue injury and cell death in sepsis. DAMPs are recognized by pattern recognition receptors to initiate inflammatory cascades. DAMPs not only elicit an inflammatory response but also they subsequently induce immunosuppression, both are equally important for exacerbating sepsis. Recent advances on a new DAMP, extracellular cold-inducible RNA-binding protein for fueling inflammation and immunosuppression in sepsis, have added a new avenue into the dual functions of DAMPs in sepsis. Critical Issues: The molecular modification of DAMPs and their binding to pattern recognition receptors transit dynamically by the cellular environment in pathophysiologic conditions. Correlation between the dynamic changes of the impacts of DAMPs and the clinical outcomes in sepsis still lacks adequate understanding. Here, we focus on the impacts of DAMPs that cause inflammation as well as induce immunosuppression in sepsis. We further discuss the therapeutic potential by targeting DAMPs to attenuate inflammation and immunosuppression for mitigating sepsis. Future Directions: Uncovering pathways of the transition from inflammation to immunosuppression of DAMPs is a potential therapeutic avenue for mitigating sepsis.
Collapse
Affiliation(s)
- Mian Zhou
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Departments of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| |
Collapse
|
6
|
Oliveira RADC, Imparato DO, Fernandes VGS, Cavalcante JVF, Albanus RD, Dalmolin RJS. Reverse Engineering of the Pediatric Sepsis Regulatory Network and Identification of Master Regulators. Biomedicines 2021; 9:biomedicines9101297. [PMID: 34680414 PMCID: PMC8533457 DOI: 10.3390/biomedicines9101297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 01/04/2023] Open
Abstract
Sepsis remains a leading cause of death in ICUs all over the world, with pediatric sepsis accounting for a high percentage of mortality in pediatric ICUs. Its complexity makes it difficult to establish a consensus on genetic biomarkers and therapeutic targets. A promising strategy is to investigate the regulatory mechanisms involved in sepsis progression, but there are few studies regarding gene regulation in sepsis. This work aimed to reconstruct the sepsis regulatory network and identify transcription factors (TFs) driving transcriptional states, which we refer to here as master regulators. We used public gene expression datasets to infer the co-expression network associated with sepsis in a retrospective study. We identified a set of 15 TFs as potential master regulators of pediatric sepsis, which were divided into two main clusters. The first cluster corresponded to TFs with decreased activity in pediatric sepsis, and GATA3 and RORA, as well as other TFs previously implicated in the context of inflammatory response. The second cluster corresponded to TFs with increased activity in pediatric sepsis and was composed of TRIM25, RFX2, and MEF2A, genes not previously described as acting in a coordinated way in pediatric sepsis. Altogether, these results show how a subset of master regulators TF can drive pathological transcriptional states, with implications for sepsis biology and treatment.
Collapse
Affiliation(s)
- Raffael Azevedo de Carvalho Oliveira
- Bioinformatics Multidisciplinary Environment–BioME, Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Natal 59078-400, Brazil; (R.A.d.C.O.); (D.O.I.); (V.G.S.F.); (J.V.F.C.)
| | - Danilo Oliveira Imparato
- Bioinformatics Multidisciplinary Environment–BioME, Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Natal 59078-400, Brazil; (R.A.d.C.O.); (D.O.I.); (V.G.S.F.); (J.V.F.C.)
| | - Vítor Gabriel Saldanha Fernandes
- Bioinformatics Multidisciplinary Environment–BioME, Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Natal 59078-400, Brazil; (R.A.d.C.O.); (D.O.I.); (V.G.S.F.); (J.V.F.C.)
| | - João Vitor Ferreira Cavalcante
- Bioinformatics Multidisciplinary Environment–BioME, Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Natal 59078-400, Brazil; (R.A.d.C.O.); (D.O.I.); (V.G.S.F.); (J.V.F.C.)
| | - Ricardo D’Oliveira Albanus
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Rodrigo Juliani Siqueira Dalmolin
- Bioinformatics Multidisciplinary Environment–BioME, Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Natal 59078-400, Brazil; (R.A.d.C.O.); (D.O.I.); (V.G.S.F.); (J.V.F.C.)
- Department of Biochemistry–DBQ–CB, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil
- Correspondence:
| |
Collapse
|
7
|
Garibotto G, Saio M, Aimasso F, Russo E, Picciotto D, Viazzi F, Verzola D, Laudon A, Esposito P, Brunori G. How to Overcome Anabolic Resistance in Dialysis-Treated Patients? Front Nutr 2021; 8:701386. [PMID: 34458305 PMCID: PMC8387577 DOI: 10.3389/fnut.2021.701386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
A current hypothesis is that dialysis-treated patients are "anabolic resistant" i. e., their muscle protein synthesis (MPS) response to anabolic stimuli is blunted, an effect which leads to muscle wasting and poor physical performance in aging and in several chronic diseases. The importance of maintaining muscle mass and MPS is often neglected in dialysis-treated patients; better than to describe mechanisms leading to energy-protein wasting, the aim of this narrative review is to suggest possible strategies to overcome anabolic resistance in this patient's category. Food intake, in particular dietary protein, and physical activity, are the two major anabolic stimuli. Unfortunately, dialysis patients are often aged and have a sedentary behavior, all conditions which per se may induce a state of "anabolic resistance." In addition, patients on dialysis are exposed to amino acid or protein deprivation during the dialysis sessions. Unfortunately, the optimal amount and formula of protein/amino acid composition in supplements to maximixe MPS is still unknown in dialysis patients. In young healthy subjects, 20 g whey protein maximally stimulate MPS. However, recent observations suggest that dialysis patients need greater amounts of proteins than healthy subjects to maximally stimulate MPS. Since unneccesary amounts of amino acids could stimulate ureagenesis, toxins and acid production, it is urgent to obtain information on the optimal dose of proteins or amino acids/ketoacids to maximize MPS in this patients' population. In the meantime, the issue of maintaining muscle mass and function in dialysis-treated CKD patients needs not to be overlooked by the kidney community.
Collapse
Affiliation(s)
| | - Michela Saio
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Francesca Aimasso
- Clinical Nutrition Unit, Istituto di Ricerca a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy
| | - Elisa Russo
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Picciotto
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Alessandro Laudon
- Division of Nephrology and Dialysis, Ospedale Santa Chiara, Trento, Italy
| | - Pasquale Esposito
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giuliano Brunori
- Division of Nephrology and Dialysis, Ospedale Santa Chiara, Trento, Italy
| |
Collapse
|
8
|
Abstract
Trauma, burn injury, sepsis, and ischemia lead to acute and chronic loss of skeletal muscle mass and function. Healthy muscle is essential for eating, posture, respiration, reproduction, and mobility, as well as for appropriate function of the senses including taste, vision, and hearing. Beyond providing support and contraction, skeletal muscle also exerts essential roles in temperature regulation, metabolism, and overall health. As the primary reservoir for amino acids, skeletal muscle regulates whole-body protein and glucose metabolism by providing substrate for protein synthesis and supporting hepatic gluconeogenesis during illness and starvation. Overall, greater muscle mass is linked to greater insulin sensitivity and glucose disposal, strength, power, and longevity. In contrast, low muscle mass correlates with dysmetabolism, dysmobility, and poor survival. Muscle mass is highly plastic, appropriate to its role as reservoir, and subject to striking genetic control. Defining mechanisms of muscle growth regulation holds significant promise to find interventions that promote health and diminish morbidity and mortality after trauma, sepsis, inflammation, and other systemic insults. In this invited review, we summarize techniques and methods to assess and manipulate muscle size and muscle mass in experimental systems, including cell culture and rodent models. These approaches have utility for studies of myopenia, sarcopenia, cachexia, and acute muscle growth or atrophy in the setting of health or injury.
Collapse
|
9
|
Varkouhi AK, Monteiro APT, Tsoporis JN, Mei SHJ, Stewart DJ, Dos Santos CC. Genetically Modified Mesenchymal Stromal/Stem Cells: Application in Critical Illness. Stem Cell Rev Rep 2021; 16:812-827. [PMID: 32671645 PMCID: PMC7363458 DOI: 10.1007/s12015-020-10000-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Critical illnesses including sepsis, acute respiratory distress syndromes, ischemic cardiovascular disorders and acute organ injuries are associated with high mortality, morbidity as well as significant health care system expenses. While these diverse conditions require different specific therapeutic approaches, mesenchymal stem/stromal cell (MSCs) are multipotent cells capable of self-renewal, tri-lineage differentiation with a broad range regenerative and immunomodulatory activities, making them attractive for the treatment of critical illness. The therapeutic effects of MSCs have been extensively investigated in several pre-clinical models of critical illness as well as in phase I and II clinical cell therapy trials with mixed results. Whilst these studies have demonstrated the therapeutic potential for MSC therapy in critical illness, optimization for clinical use is an ongoing challenge. MSCs can be readily genetically modified by application of different techniques and tools leading to overexpress or inhibit genes related to their immunomodulatory or regenerative functions. Here we will review recent approaches designed to enhance the therapeutic potential of MSCs with an emphasis on the technology used to generate genetically modified cells, target genes, target diseases and the implication of genetically modified MSCs in cell therapy for critical illness.
Collapse
Affiliation(s)
- Amir K Varkouhi
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology (NJIT), Newark, NJ, 07102, USA
| | - Ana Paula Teixeira Monteiro
- Keenan and Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Sciences and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - James N Tsoporis
- Keenan and Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada
| | - Shirley H J Mei
- Ottawa Hospital Research Institute and the University of Ottawa, Ottawa, ON, Canada
| | - Duncan J Stewart
- Ottawa Hospital Research Institute and the University of Ottawa, Ottawa, ON, Canada
| | - Claudia C Dos Santos
- Keenan and Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada. .,Interdepartmental Division of Critical Care, St. Michael's Hospital/University of Toronto, 30 Bond Street, Room 4-008, Toronto, ON, M5B 1WB, Canada.
| |
Collapse
|
10
|
Protective effects of farnesyltransferase inhibitor on sepsis-induced morphological aberrations of mitochondria in muscle and increased circulating mitochondrial DNA levels in mice. Biochem Biophys Res Commun 2021; 556:93-98. [PMID: 33845310 PMCID: PMC8757346 DOI: 10.1016/j.bbrc.2021.03.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022]
Abstract
Sepsis remains a leading cause of mortality in critically ill patients and is characterized by multi-organ dysfunction. Mitochondrial damage has been proposed to be involved in the pathophysiology of sepsis. In addition to metabolic impairments resulting from mitochondrial dysfunction, mitochondrial DNA (mtDNA) causes systemic inflammation as a damage-associated molecular pattern when it is released to the circulation. Metabolic derangements in skeletal muscle are a major complication of sepsis and negatively affects clinical outcomes of septic patients. However, limited knowledge is available about sepsis-induced mitochondrial damage in skeletal muscle. Here, we show that sepsis induced profound abnormalities in cristae structure, rupture of the inner and outer membranes and enlargement of the mitochondria in mouse skeletal muscle in a time-dependent manner, which was associated with increased plasma mtDNA levels. Farnesyltransferase inhibitor, FTI-277, prevented sepsis-induced morphological aberrations of the mitochondria, and blocked the increased plasma mtDNA levels along with improved survival. These results indicate that protein farnesylation plays a role in sepsis-induced damage of the mitochondria in mouse skeletal muscle. Our findings suggest that mitochondrial disintegrity in skeletal muscle may contribute to elevated circulating mtDNA levels in sepsis.
Collapse
|
11
|
Kobayashi M, Kasamatsu S, Shinozaki S, Yasuhara S, Kaneki M. Myostatin deficiency not only prevents muscle wasting but also improves survival in septic mice. Am J Physiol Endocrinol Metab 2021; 320:E150-E159. [PMID: 33284091 PMCID: PMC8194407 DOI: 10.1152/ajpendo.00161.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023]
Abstract
Sepsis remains a leading cause of mortality in critically ill patients. Muscle wasting is a major complication of sepsis and negatively affects clinical outcomes. Despite intense investigation for many years, the molecular mechanisms underlying sepsis-related muscle wasting are not fully understood. In addition, a potential role of muscle wasting in disease development of sepsis has not been studied. Myostatin is a myokine that downregulates skeletal muscle mass. We studied the effects of myostatin deficiency on muscle wasting and other clinically relevant outcomes, including mortality and bacterial clearance, in mice. Myostatin deficiency prevented muscle atrophy along with inhibition of increases in muscle-specific RING finger protein 1 (MuRF-1) and atrogin-1 expression and phosphorylation of signal transducer and activator of transcription protein 3 (STAT3; major players of muscle wasting) in septic mice. Moreover, myostatin deficiency improved survival and bacterial clearance of septic mice. Sepsis-induced liver dysfunction, acute kidney injury, and neutrophil infiltration into the liver and kidney were consistently mitigated by myostatin deficiency, as indicated by plasma concentrations of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and neutrophil gelatinase-associated lipocalin (NGAL) and myeloperoxidase activity in the organs. Myostatin deficiency also inhibited sepsis-induced increases in plasma high-mobility group protein B1 (HMGB1) and macrophage inhibitory cytokine (MIC)-1/growth differentiation factor (GDF)-15 concentrations. These results indicate that myostatin plays an important role not only in muscle wasting but also in other clinically relevant outcomes in septic mice. Furthermore, our data raise the possibility that muscle wasting may not be simply a complication, but myostatin-mediated muscle cachexia and related changes in muscle may actually drive the development of sepsis as well.NEW & NOTEWORTHY Muscle wasting is a major complication of sepsis, but its role in the disease development is not known. Myostatin deficiency improved bacterial clearance and survival and mitigated damage in the liver and kidney in septic mice, which paralleled prevention of muscle wasting. These results raise the possibility that muscle wasting may not simply be a complication of sepsis, but myostatin-mediated cachexic changes may have a role in impaired bacterial clearance and mortality in septic mice.
Collapse
Affiliation(s)
- Masayuki Kobayashi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, Massachusetts
| | - Shingo Kasamatsu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, Massachusetts
| | - Shohei Shinozaki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, Massachusetts
| | - Shingo Yasuhara
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, Massachusetts
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
12
|
Stortz JA, Hollen MK, Nacionales DC, Horiguchi H, Ungaro R, Dirain ML, Wang Z, Wu Q, Wu KK, Kumar A, Foster TC, Stewart BD, Ross JA, Segal M, Bihorac A, Brakenridge S, Moore FA, Wohlgemuth SE, Leeuwenburgh C, Mohr AM, Moldawer LL, Efron PA. Old Mice Demonstrate Organ Dysfunction as well as Prolonged Inflammation, Immunosuppression, and Weight Loss in a Modified Surgical Sepsis Model. Crit Care Med 2020; 47:e919-e929. [PMID: 31389840 DOI: 10.1097/ccm.0000000000003926] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Our goal was to "reverse translate" the human response to surgical sepsis into the mouse by modifying a widely adopted murine intra-abdominal sepsis model to engender a phenotype that conforms to current sepsis definitions and follows the most recent expert recommendations for animal preclinical sepsis research. Furthermore, we aimed to create a model that allows the study of aging on the long-term host response to sepsis. DESIGN Experimental study. SETTING Research laboratory. SUBJECTS Young (3-5 mo) and old (18-22 mo) C57BL/6j mice. INTERVENTIONS Mice received no intervention or were subjected to polymicrobial sepsis with cecal ligation and puncture followed by fluid resuscitation, analgesia, and antibiotics. Subsets of mice received daily chronic stress after cecal ligation and puncture for 14 days. Additionally, modifications were made to ensure that "Minimum Quality Threshold in Pre-Clinical Sepsis Studies" recommendations were followed. MEASUREMENTS AND MAIN RESULTS Old mice exhibited increased mortality following both cecal ligation and puncture and cecal ligation and puncture + daily chronic stress when compared with young mice. Old mice developed marked hepatic and/or renal dysfunction, supported by elevations in plasma aspartate aminotransferase, blood urea nitrogen, and creatinine, 8 and 24 hours following cecal ligation and puncture. Similar to human sepsis, old mice demonstrated low-grade systemic inflammation 14 days after cecal ligation and puncture + daily chronic stress and evidence of immunosuppression, as determined by increased serum concentrations of multiple pro- and anti-inflammatory cytokines and chemokines when compared with young septic mice. In addition, old mice demonstrated expansion of myeloid-derived suppressor cell populations and sustained weight loss following cecal ligation and puncture + daily chronic stress, again similar to the human condition. CONCLUSIONS The results indicate that this murine cecal ligation and puncture + daily chronic stress model of surgical sepsis in old mice adhered to current Minimum Quality Threshold in Pre-Clinical Sepsis Studies guidelines and met Sepsis-3 criteria. In addition, it effectively created a state of persistent inflammation, immunosuppression, and weight loss, thought to be a key aspect of chronic sepsis pathobiology and increasingly more prevalent after human sepsis.
Collapse
Affiliation(s)
- Julie A Stortz
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - McKenzie K Hollen
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Dina C Nacionales
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Hiroyuki Horiguchi
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Ricardo Ungaro
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Marvin L Dirain
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Zhongkai Wang
- Department of Biostatistics, University of Florida College of Medicine, Gainesville, FL
| | - Quran Wu
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Kevin K Wu
- Department of Aging and Geriatric Research, University of Florida College of Medicine, Gainesville, FL
| | - Ashok Kumar
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
| | - Thomas C Foster
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
| | - Brian D Stewart
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Julia A Ross
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Marc Segal
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Azra Bihorac
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Scott Brakenridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Frederick A Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Stephanie E Wohlgemuth
- Department of Aging and Geriatric Research, University of Florida College of Medicine, Gainesville, FL
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, University of Florida College of Medicine, Gainesville, FL
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
13
|
Progressive loss of muscle mass could be an adverse prognostic factor of 28-day mortality in septic shock patients. Sci Rep 2019; 9:16471. [PMID: 31712647 PMCID: PMC6848164 DOI: 10.1038/s41598-019-52819-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
A decrease in skeletal muscle mass has been shown to increase hospital mortality. Nevertheless, little is known about the association between progressive muscle loss over time and clinical outcomes. We aimed to evaluate whether progressive loss of muscle mass in septic shock patients was associated with mortality. We reviewed prospectively enrolled registry of septic shock which had 817 consecutive patients. Of these, 175 patients who had computed tomography (CT) at a time of admission as well as 3-6 months prior to admission were included. Between these two CTs, the change in total abdominal muscle area index (TAMAI) was evaluated for progressive muscle loss. The change in TAMAI was higher in the non-survivors (-7.6 cm2/m2, 19.0% decrease) than the survivors (-4.0 cm2/m2, 10.5% decrease) with statistical significance (p = 0.002). Multiple logistic regression showed that the patients who had more than a 6.4 cm2/m2 (16.7%) reduction of TAMAI had a 4.42-fold higher risk for mortality at 28 days (OR, 4.42; 95% CI, 1.41-13.81, p = 0.011). Our study suggested that progressive loss of muscle mass might be a useful prognostic factor for septic shock patients. This implication will need to be further explored in future prospective studies.
Collapse
|
14
|
Larian N, Ensor M, Thatcher SE, English V, Morris AJ, Stromberg A, Cassis LA. Pseudomonas aeruginosa-derived pyocyanin reduces adipocyte differentiation, body weight, and fat mass as mechanisms contributing to septic cachexia. Food Chem Toxicol 2019; 130:219-230. [PMID: 31078726 DOI: 10.1016/j.fct.2019.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa, a leading cause of sepsis, produces pyocyanin, a blue-pigmented virulence factor. Sepsis is associated with cachexia, but mechanisms are unknown and conventional nutrition approaches are not effective treatments. Pyocyanin has affinity for the aryl hydrocarbon receptor (AhR), which is expressed on adipocytes and regulates adipocyte differentiation. The purpose of this study was to define in vitro and in vivo effects of pyocyanin on adipocyte differentiation and body weight regulation as relates to septic cachexia. In 3T3-L1 preadipocytes, pyocyanin activated AhR and its downstream marker CYP1a1, and reduced differentiation. Administration of pyocyanin to male C57BL/6J mice acutely reduced body temperature with altered locomotion, but caused sustained weight loss. Chronic pyocyanin administration to male and female C57BL/6J mice resulted in sustained reductions in body weight and fat mass, with adipose-specific AhR activation. Pyocyanin-treated male mice had decreased energy expenditure and physical activity, and increased adipose explant lipolysis. In females, pyocyanin caused robust reductions in body weight, adipose-specific AhR activation, and increased expression of inflammatory cytokines in differentiated adipocytes. These results demonstrate that pyocyanin reduces adipocyte differentiation and decreases body weight and fat mass in male and female mice, suggesting that pyocyanin may play a role in septic cachexia.
Collapse
Affiliation(s)
- Nika Larian
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Mark Ensor
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Sean E Thatcher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Victoria English
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Andrew J Morris
- Department of Internal Medicine,University of Kentucky, Lexington, KY, USA
| | - Arnold Stromberg
- Department of Statistics, University of Kentucky, Lexington, KY, USA
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
15
|
What's New in Shock, December 2017? Shock 2017; 48:597-599. [PMID: 29135885 DOI: 10.1097/shk.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Burn-induced muscle metabolic derangements and mitochondrial dysfunction are associated with activation of HIF-1α and mTORC1: Role of protein farnesylation. Sci Rep 2017; 7:6618. [PMID: 28747716 PMCID: PMC5529411 DOI: 10.1038/s41598-017-07011-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/21/2017] [Indexed: 12/28/2022] Open
Abstract
Metabolic derangements are a clinically significant complication of major trauma (e.g., burn injury) and include various aspects of metabolism, such as insulin resistance, muscle wasting, mitochondrial dysfunction and hyperlactatemia. Nonetheless, the molecular pathogenesis and the relation between these diverse metabolic alterations are poorly understood. We have previously shown that burn increases farnesyltransferase (FTase) expression and protein farnesylation and that FTase inhibitor (FTI) prevents burn-induced hyperlactatemia, insulin resistance, and increased proteolysis in mouse skeletal muscle. In this study, we found that burn injury activated mTORC1 and hypoxia-inducible factor (HIF)-1α, which paralleled dysfunction, morphological alterations (i.e., enlargement, partial loss of cristae structure) and impairment of respiratory supercomplex assembly of the mitochondria, and ER stress. FTI reversed or ameliorated all of these alterations in burned mice. These findings indicate that these burn-induced changes, which encompass various aspects of metabolism, may be linked to one another and require protein farnesylation. Our results provide evidence of involvement of the mTORC1-HIF-1α pathway in burn-induced metabolic derangements. Our study identifies protein farnesylation as a potential hub of the signaling network affecting multiple aspects of metabolic alterations after burn injury and as a novel potential molecular target to improve the clinical outcome of severely burned patients.
Collapse
|