1
|
Brooks BA, Sinha P, Staffa SJ, Jacobs MB, Freishtat RJ, Patregnani JT. Children with single ventricle heart disease have a greater increase in sRAGE after cardiopulmonary bypass. Perfusion 2024; 39:1314-1322. [PMID: 37465929 PMCID: PMC11451074 DOI: 10.1177/02676591231189357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
INTRODUCTION Reducing cardiopulmonary bypass (CPB) induced inflammatory injury is a potentially important strategy for children undergoing multiple operations for single ventricle palliation. We sought to characterize the soluble receptor for advanced glycation end products (sRAGE), a protein involved in acute lung injury and inflammation, in pediatric patients with congenital heart disease and hypothesized that patients undergoing single ventricle palliation would have higher levels of sRAGE following bypass than those with biventricular physiologies. METHODS This was a prospective, observational study of children undergoing CPB. Plasma samples were obtained before and after bypass. sRAGE levels were measured and compared between those with biventricular and single ventricle heart disease using descriptive statistics and multivariate analysis for risk factors for lung injury. RESULTS sRAGE levels were measured in 40 patients: 19 with biventricular and 21 with single ventricle heart disease. Children undergoing single ventricle palliation had a higher factor and percent increase in sRAGE levels when compared to patients with biventricular circulations (4.6 vs. 2.4, p = 0.002) and (364% vs. 181%, p = 0.014). The factor increase in sRAGE inversely correlated with the patient's preoperative oxygen saturation (Pearson correlation (r) = -0.43, p = 0.005) and was positively associated with red blood cell transfusion (coefficient = 0.011; 95% CI: 0.004, 0.017; p = 0.001). CONCLUSIONS Children with single ventricle physiology have greater increase in sRAGE following CPB as compared to children undergoing biventricular repair. Larger studies delineating the role of sRAGE in children undergoing single ventricle palliation may be beneficial in understanding how to prevent complications in this high-risk population.
Collapse
Affiliation(s)
- Bonnie A Brooks
- Division of Pediatric Critical Care Medicine, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, CA, USA
- Division of Critical Care Medicine, Children’s National Hospital, Washington, DC, USA
| | - Pranava Sinha
- Department of Pediatric Cardiac Surgery, M Health Fairview University of Minnesota, Minneapolis MN, USA
- Division of Cardiovascular Surgery, Children’s National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Steven J Staffa
- Department of Anesthesiology, Critical Care and Pain Medicine, Harvard University, Boston Children’s Hospital, Boston, MA, USA
| | - Marni B Jacobs
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, CA, USA
- Division of Biostatistics and Study Methodology, Children’s National Hospital, Washington, DC, USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Departments of Pediatrics, Emergency Medicine, and Genomics & Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jason T Patregnani
- Division of Pediatric Critical Care Medicine, Maine Medical Center, Tufts University School of Medicine, Barbara Bush Children’s Hospital, Portland, ME, USA
- Division of Pediatric Cardiac Critical Care, Children’s National Hospital, George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
2
|
Guo W, Luo J, Zhao S, Li L, Xing W, Gao R. The critical role of RAGE in severe influenza infection: A target for control of inflammatory response in the disease. Clin Immunol 2024; 262:110178. [PMID: 38460892 DOI: 10.1016/j.clim.2024.110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 03/11/2024]
Abstract
Controlling the excessive inflammatory response is one of the key ways to reduce the severity and mortality of severe influenza virus infections. RAGE is involved in inflammatory responses and acute lung injuries. Here, we investigated the role of RAGE and its potential application as a target for severe influenza treatment through serological correlation analysis for influenza patients, and treatment with the RAGE inhibitor FPS-ZM1 on A549 cells or mice with influenza A (H1N1) infection. The results showed high levels of RAGE were correlated with immunopathological injury and severity of influenza, and FPS-ZM1 treatment increased the viability of A549 cells with influenza A infection and decreased morbidity and mortality of influenza A virus infection in mice. The RAGE/NF-κb inflammatory signaling pathway is a major targeting pathway for FPS-ZM1 treatment in severe influenza. These findings provide further insights into the immune injury of severe influenza and a potential targeting candidate for the disease treatment.
Collapse
Affiliation(s)
- Wenhui Guo
- NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Junhao Luo
- NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Song Zhao
- NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Li Li
- NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wenge Xing
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Rongbao Gao
- NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
3
|
Delrue C, Speeckaert R, Delanghe JR, Speeckaert MM. Breath of fresh air: Investigating the link between AGEs, sRAGE, and lung diseases. VITAMINS AND HORMONES 2024; 125:311-365. [PMID: 38997169 DOI: 10.1016/bs.vh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are compounds formed via non-enzymatic reactions between reducing sugars and amino acids or proteins. AGEs can accumulate in various tissues and organs and have been implicated in the development and progression of various diseases, including lung diseases. The receptor of advanced glycation end products (RAGE) is a receptor that can bind to advanced AGEs and induce several cellular processes such as inflammation and oxidative stress. Several studies have shown that both AGEs and RAGE play a role in the pathogenesis of lung diseases, such as chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, cystic fibrosis, and acute lung injury. Moreover, the soluble form of the receptor for advanced glycation end products (sRAGE) has demonstrated its ability to function as a decoy receptor, possessing beneficial characteristics such as anti-inflammatory, antioxidant, and anti-fibrotic properties. These qualities make it an encouraging focus for therapeutic intervention in managing pulmonary disorders. This review highlights the current understanding of the roles of AGEs and (s)RAGE in pulmonary diseases and their potential as biomarkers and therapeutic targets for preventing and treating these pathologies.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium.
| |
Collapse
|
4
|
Silva AR, de Souza e Souza KFC, Souza TBD, Younes-Ibrahim M, Burth P, de Castro Faria Neto HC, Gonçalves-de-Albuquerque CF. The Na/K-ATPase role as a signal transducer in lung inflammation. Front Immunol 2024; 14:1287512. [PMID: 38299144 PMCID: PMC10827986 DOI: 10.3389/fimmu.2023.1287512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is marked by damage to the capillary endothelium and alveolar epithelium following edema formation and cell infiltration. Currently, there are no effective treatments for severe ARDS. Pathologies such as sepsis, pneumonia, fat embolism, and severe trauma may cause ARDS with respiratory failure. The primary mechanism of edema clearance is the epithelial cells' Na/K-ATPase (NKA) activity. NKA is an enzyme that maintains the electrochemical gradient and cell homeostasis by transporting Na+ and K+ ions across the cell membrane. Direct injury on alveolar cells or changes in ion transport caused by infections decreases the NKA activity, loosening tight junctions in epithelial cells and causing edema formation. In addition, NKA acts as a receptor triggering signal transduction in response to the binding of cardiac glycosides. The ouabain (a cardiac glycoside) and oleic acid induce lung injury by targeting NKA. Besides enzymatic inhibition, the NKA triggers intracellular signal transduction, fostering proinflammatory cytokines production and contributing to lung injury. Herein, we reviewed and discussed the crucial role of NKA in edema clearance, lung injury, and intracellular signaling pathway activation leading to lung inflammation, thus putting the NKA as a protagonist in lung injury pathology.
Collapse
Affiliation(s)
- Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Thamires Bandeira De Souza
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Mauricio Younes-Ibrahim
- Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Baer B, Putz ND, Riedmann K, Gonski S, Lin J, Ware LB, Toki S, Peebles RS, Cahill KN, Bastarache JA. Liraglutide pretreatment attenuates sepsis-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L368-L384. [PMID: 37489855 PMCID: PMC10639010 DOI: 10.1152/ajplung.00041.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/26/2023] Open
Abstract
There are no effective targeted therapies to treat acute respiratory distress syndrome (ARDS). Recently, the commonly used diabetes and obesity medications, glucagon-like peptide-1 (GLP-1) receptor agonists, have been found to have anti-inflammatory properties. We, therefore, hypothesized that liraglutide pretreatment would attenuate murine sepsis-induced acute lung injury (ALI). We used a two-hit model of ALI (sepsis+hyperoxia). Sepsis was induced by intraperitoneal injection of cecal slurry (CS; 2.4 mg/g) or 5% dextrose (control) followed by hyperoxia [HO; fraction of inspired oxygen ([Formula: see text]) = 0.95] or room air (control; [Formula: see text] = 0.21). Mice were pretreated twice daily with subcutaneous injections of liraglutide (0.1 mg/kg) or saline for 3 days before initiation of CS+HO. At 24-h post CS+HO, physiological dysfunction was measured by weight loss, severity of illness score, and survival. Animals were euthanized, and bronchoalveolar lavage (BAL) fluid, lung, and spleen tissues were collected. Bacterial burden was assessed in the lung and spleen. Lung inflammation was assessed by BAL inflammatory cell numbers, cytokine concentrations, lung tissue myeloperoxidase activity, and cytokine expression. Disruption of the alveolar-capillary barrier was measured by lung wet-to-dry weight ratios, BAL protein, and epithelial injury markers (receptor for advanced glycation end products and sulfated glycosaminoglycans). Histological evidence of lung injury was quantified using a five-point score with four parameters: inflammation, edema, septal thickening, and red blood cells (RBCs) in the alveolar space. Compared with saline treatment, liraglutide improved sepsis-induced physiological dysfunction and reduced lung inflammation, alveolar-capillary barrier disruption, and lung injury. GLP-1 receptor activation may hold promise as a novel treatment strategy for sepsis-induced ARDS. Additional studies are needed to better elucidate its mechanism of action.NEW & NOTEWORTHY In this study, pretreatment with liraglutide, a commonly used diabetes medication and glucagon-like peptide-1 (GLP-1) receptor agonist, attenuated sepsis-induced acute lung injury in a two-hit mouse model (sepsis + hyperoxia). Septic mice who received the drug were less sick, lived longer, and displayed reduced lung inflammation, edema, and injury. These therapeutic effects were not dependent on weight loss. GLP-1 receptor activation may hold promise as a new treatment strategy for sepsis-induced acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Brandon Baer
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nathan D Putz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kyle Riedmann
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Samantha Gonski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jason Lin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Shinji Toki
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- United States Department of Veterans Affairs, Nashville, Tennessee, United States
| | - Katherine N Cahill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
6
|
Malaviya R, Gardner CR, Rancourt RC, Smith LC, Abramova EV, Vayas KN, Gow AJ, Laskin JD, Laskin DL. Lung injury and oxidative stress induced by inhaled chlorine in mice is associated with proinflammatory activation of macrophages and altered bioenergetics. Toxicol Appl Pharmacol 2023; 461:116388. [PMID: 36690086 PMCID: PMC9960611 DOI: 10.1016/j.taap.2023.116388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Chlorine (Cl2) gas is a highly toxic and oxidizing irritant that causes life-threatening lung injuries. Herein, we investigated the impact of Cl2-induced injury and oxidative stress on lung macrophage phenotype and function. Spontaneously breathing male C57BL/6J mice were exposed to air or Cl2 (300 ppm, 25 min) in a whole-body exposure chamber. Bronchoalveolar lavage (BAL) fluid and cells, and lung tissue were collected 24 h later and analyzed for markers of injury, oxidative stress and macrophage activation. Exposure of mice to Cl2 resulted in increases in numbers of BAL cells and levels of IgM, total protein, and fibrinogen, indicating alveolar epithelial barrier dysfunction and inflammation. BAL levels of inflammatory proteins including surfactant protein (SP)-D, soluble receptor for glycation end product (sRAGE) and matrix metalloproteinase (MMP)-9 were also increased. Cl2 inhalation resulted in upregulation of phospho-histone H2A.X, a marker of double-strand DNA breaks in the bronchiolar epithelium and alveolar cells; oxidative stress proteins, heme oxygenase (HO)-1 and catalase were also upregulated. Flow cytometric analysis of BAL cells revealed increases in proinflammatory macrophages following Cl2 exposure, whereas numbers of resident and antiinflammatory macrophages were not altered. This was associated with increases in numbers of macrophages expressing cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS), markers of proinflammatory activation, with no effect on mannose receptor (MR) or Ym-1 expression, markers of antiinflammatory activation. Metabolic analysis of lung cells showed increases in glycolytic activity following Cl2 exposure in line with proinflammatory macrophage activation. Mechanistic understanding of Cl2-induced injury will be useful in the identification of efficacious countermeasures for mitigating morbidity and mortality of this highly toxic gas.
Collapse
Affiliation(s)
- Rama Malaviya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Carol R Gardner
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Raymond C Rancourt
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Ley Cody Smith
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Elena V Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Kinal N Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, USA.
| |
Collapse
|
7
|
Johnson LL, Tekabe Y, Zelonina T, Ma X, Zhang G, Goldklang M, D’Armiento J. Blocking RAGE expression after injury reduces inflammation in mouse model of acute lung injury. Respir Res 2023; 24:21. [PMID: 36670409 PMCID: PMC9852798 DOI: 10.1186/s12931-023-02324-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Receptor for Advanced Glycated Endproducts (RAGE) plays a major role in the inflammatory response to infectious and toxin induced acute lung injury. We tested the hypothesis that a RAGE blocking antibody when administered after the onset of injury can reduce lung inflammation compared to control antibody. METHODS Male and female C57BL/6 (WT) mice were used. Forty-six received lipopolysaccharide (LPS) and 26 PBS by nasal instillation on day one, repeated on day three. On day 2, 36 mice receiving LPS were divided into two groups of 18, one treated with 200 μg of non-immune isotype control IgG and the second group treated with 200 μg of anti-RAGE Ab, each dose divided between IV and IP. Ten of the 46 were not treated. On day 4, before euthanasia, mice were injected with fluorescein isothiocyanate (FITC) labelled albumen. BALF and serum samples were collected as well as lung tissue for immunohistochemistry (IHC). BALF was analyzed for cell (leukocyte) counts, for FITC BALF/serum ratios indicating pulmonary vascular leak, and for cytokines/chemokines using bead based multiplex assays. Quantitative IHC was performed for MPO and RAGE. RESULTS Ten LPS mice showed minimal inflammation by all measures indicating poor delivery of LPS and were excluded from analysis leaving n = 11 in the LPS + IgG group and n = 12 in the LPS + anti-RAGE group. BALF cell counts were low in the PBS administered mice (4.9 ± 2.1 × 105/ml) and high in the LPS injured untreated mice (109 ± 34) and in the LPS + IgG mice (91 ± 54) while in comparison, LPS + anti-RAGE ab mice counts were significantly lower (51.3 ± 18 vs. LPS + IgG, P = 0.03). The BALF/serum FITC ratios were lower for the LPS + anti-RAGE mice than for the LPS + IgG mice indicating less capillary leakiness. Quantitative IHC RAGE staining was lower in the LPS + anti-RAGE ab mice than in the LPS + IgG treated mice (P = 0.02). CONCLUSIONS These results describe a four-day LPS protocol to sustain lung injury and allow for treatment and suggests that treatment aimed at blocking RAGE when given after onset of injury can reduce lung inflammation.
Collapse
Affiliation(s)
- Lynne L. Johnson
- grid.21729.3f0000000419368729Departments of Medicine, Anesthesiology, and Pathology, Columbia University, 622 West 168th St, PH 10-203, New York, NY 10032 USA
| | - Yared Tekabe
- grid.21729.3f0000000419368729Departments of Medicine, Anesthesiology, and Pathology, Columbia University, 622 West 168th St, PH 10-203, New York, NY 10032 USA
| | - Tina Zelonina
- grid.21729.3f0000000419368729Departments of Medicine, Anesthesiology, and Pathology, Columbia University, 622 West 168th St, PH 10-203, New York, NY 10032 USA
| | - Xinran Ma
- grid.21729.3f0000000419368729Departments of Medicine, Anesthesiology, and Pathology, Columbia University, 622 West 168th St, PH 10-203, New York, NY 10032 USA
| | - Geping Zhang
- grid.21729.3f0000000419368729Departments of Medicine, Anesthesiology, and Pathology, Columbia University, 622 West 168th St, PH 10-203, New York, NY 10032 USA
| | - Monica Goldklang
- grid.21729.3f0000000419368729Departments of Medicine, Anesthesiology, and Pathology, Columbia University, 622 West 168th St, PH 10-203, New York, NY 10032 USA
| | - Jeanine D’Armiento
- grid.21729.3f0000000419368729Departments of Medicine, Anesthesiology, and Pathology, Columbia University, 622 West 168th St, PH 10-203, New York, NY 10032 USA
| |
Collapse
|
8
|
Xiong X, Dou J, Shi J, Ren Y, Wang C, Zhang Y, Cui Y. RAGE inhibition alleviates lipopolysaccharides-induced lung injury via directly suppressing autophagic apoptosis of type II alveolar epithelial cells. Respir Res 2023; 24:24. [PMID: 36691012 PMCID: PMC9872382 DOI: 10.1186/s12931-023-02332-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Advanced glycation end product receptor (RAGE) acts as a receptor of pro-inflammatory ligands and is highly expressed in alveolar epithelial cells (AECs). Autophagy in AECs has received much attention recently. However, the roles of autophagy and RAGE in the pathogenesis of acute lung injury remain unclear. Therefore, this study aimed to explore whether RAGE activation signals take part in the dysfunction of alveolar epithelial barrier through autophagic death. METHODS Acute lung injury animal models were established using C57BL/6 and Ager gene knockout (Ager -/- mice) mice in this study. A549 cells and primary type II alveolar epithelial (ATII) cells were treated with siRNA to reduce Ager gene expression. Autophagy was inhibited by 3-methyladenine (3-MA). Lung injury was assessed by histopathological examination. Cell viability was estimated by cell counting kit-8 (CCK-8) assay. The serum and bronchoalveolar lavage fluid (BALF) levels of interleukin (IL)-6, IL-8 and soluble RAGE (sRAGE) were evaluated by Enzyme-linked immunosorbent assay (ELISA). The involvement of RAGE signals, autophagy and apoptosis was assessed using western blots, immunohistochemistry, immunofluorescence, transmission electron microscopy and TUNEL test. RESULTS The expression of RAGE was promoted by lipopolysaccharide (LPS), which was associated with activation of autophagy both in mice lung tissues and A549 cells as well as primary ATII cells. sRAGE in BALF was positively correlated with IL-6 and IL-8 levels. Compared with the wild-type mice, inflammation and apoptosis in lung tissues were alleviated in Ager-/- mice. Persistently activated autophagy contributed to cell apoptosis, whereas the inhibition of autophagy by 3-MA protected lungs from damage. In addition, Ager knockdown inhibited LPS-induced autophagy activation and attenuated lung injury. In vitro, knockdown of RAGE significantly suppressed the activation of LPS-induced autophagy and apoptosis of A549 and primary ATII cells. Furthermore, RAGE activated the downstream STAT3 signaling pathway. CONCLUSION RAGE plays an essential role in the pathogenesis of ATII cells injury. Our results suggested that RAGE inhibition alleviated LPS-induced lung injury by directly suppressing autophagic apoptosis of alveolar epithelial cells.
Collapse
Affiliation(s)
- Xi Xiong
- grid.16821.3c0000 0004 0368 8293Department of Critical Care Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Infection, Immunity and Intensive Care Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Jiaying Dou
- grid.16821.3c0000 0004 0368 8293Department of Critical Care Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Infection, Immunity and Intensive Care Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Jingyi Shi
- grid.16821.3c0000 0004 0368 8293Department of Critical Care Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Yuqian Ren
- grid.16821.3c0000 0004 0368 8293Department of Critical Care Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Chunxia Wang
- grid.16821.3c0000 0004 0368 8293Institute of Pediatric Infection, Immunity and Intensive Care Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.415625.10000 0004 0467 3069Clinical Research Unit, Shanghai Children’s Hospital, Shanghai, 200062 China
| | - Yucai Zhang
- grid.16821.3c0000 0004 0368 8293Department of Critical Care Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Infection, Immunity and Intensive Care Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062 China
| | - Yun Cui
- grid.16821.3c0000 0004 0368 8293Department of Critical Care Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Infection, Immunity and Intensive Care Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China ,grid.16821.3c0000 0004 0368 8293Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, 200062 China
| |
Collapse
|
9
|
Salehi M, Amiri S, Ilghari D, Hasham LFA, Piri H. The Remarkable Roles of the Receptor for Advanced Glycation End Products (RAGE) and Its Soluble Isoforms in COVID-19: The Importance of RAGE Pathway in the Lung Injuries. Indian J Clin Biochem 2022; 38:159-171. [PMID: 35999871 PMCID: PMC9387879 DOI: 10.1007/s12291-022-01081-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022]
Abstract
The respiratory symptoms of acute respiratory distress syndrome (ARDS) in the coronavirus disease 2019 (COVID-19) patients is associated with accumulation of pre-inflammatory molecules such as advanced glycation end-products (AGES), calprotectin, high mobility group box family-1 (HMGB1), cytokines, angiotensin converting enzyme 2 (ACE2), and other molecules in the alveolar space of lungs and plasma. The receptor for advanced glycation end products (RAGEs), which is mediated by the mitogen-activated protein kinase (MAPK), plays a critical role in the severity of chronic inflammatory diseases such as diabetes mellitus (DM) and ARDS. The RAGE gene is most expressed in the alveolar epithelial cells (AECs) of the pulmonary system. Several clinical trials are now being conducted to determine the possible association between the levels of soluble isoforms of RAGE (sRAGE and esRAGE) and the severity of the disease in patients with ARDS and acute lung injury (ALI). In the current article, we reviewed the most recent studies on the RAGE/ligands axis and sRAGE/esRAGE levels in acute respiratory illness, with a focus on COVID-19–associated ARDS (CARDS) patients. According to the research conducted so far, sRAGE/esRAGE measurements in patients with CARDS can be used as a powerful chemical indicator among other biomarkers for assessment of early pulmonary involvement. Furthermore, inhibiting RAGE/MAPK and Angiotensin II receptor type 1 (ATR1) in CARDS patients can be a powerful strategy for diminishing cytokine storm and severe respiratory symptoms.
Collapse
Affiliation(s)
- Mitra Salehi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shahin Amiri
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Dariush Ilghari
- Midland Memorial Hospital, 400 Rosalind Redfern Grover Pkwy, Midland, TX 79701 USA
| | | | - Hossein Piri
- Department of Biochemistry and Genetics, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Cellular and Molecular Research Center, Research Institute for Prevention of Non Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
10
|
Qin J, Wang H, Lyu Z, Liao Y, Zeng N, Wang K, Zhou Y, Zeng Z, Liao Z, Cao Y, He J, Wang T, Wen F. Elevated soluble death receptor 5 can predict poor prognosis in patients with acute respiratory distress syndrome. Expert Rev Respir Med 2022; 16:823-832. [PMID: 35822538 DOI: 10.1080/17476348.2022.2100351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND : The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 5 (DR5), participate in pulmonary cell apoptosis. This study aimed to investigate the clinical value of soluble DR5 and TRAIL for prognosis assessment in acute respiratory distress syndrome (ARDS). RESEARCH DESIGN AND METHODS : Serum and bronchoalveolar lavage fluid (BALF) samples were collected from ARDS patients and controls. Patients were followed-up until death or discharge. Soluble DR5, TRAIL, TNF-α, soluble receptor for advanced glycation end-products (sRAGE), and albumin levels were measured using the Magnetic Luminex or enzyme-linked immunosorbent assays. Data were analyzed according to their distribution and statistical purpose. RESULTS : Serum and BALF DR5 levels were elevated in patients with ARDS; TRAIL elevation and reduction was observed in BALF and serum, respectively. Serum DR5 was higher in non-survivors compared to survivors. Serum DR5 was positively correlated with serum TNF-α and critical illness scores and negatively correlated with serum TRAIL. Serum and BALF DR5 was positively correlated with the alveolar epithelial cell damage (sRAGE) and lung fluid leakage indicators. Serum DR5 exhibited potential for predicting mortality in patients with ARDS. CONCLUSIONS : Serum soluble DR5 elevation, a valuable prognosis predictor in ARDS, may be associated with alveolar epithelial cell apoptosis.
Collapse
Affiliation(s)
- Jiangyue Qin
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| | - Hao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| | - Zhuoyao Lyu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| | - Yue Liao
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| | - Ni Zeng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| | - Ke Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| | - Yongfang Zhou
- Department of Critical Care Medicine, West China Hospital of Sichuan University, China
| | - Zijian Zeng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| | - Zenglin Liao
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| | - Yufang Cao
- Department of Critical Care Medicine, Haikou Municipal People's Hospital and Central South University Xiangya School of Medicine Affiliated Haikou Hospital, China
| | - Junyun He
- Department of Respiratory Medicine, Hospital of Chengdu Office of People's Government of Tibetan autonomous Region, China
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| |
Collapse
|
11
|
Fudosteine attenuates acute lung injury in septic mice by inhibiting pyroptosis via the TXNIP/NLRP3/GSDMD pathway. Eur J Pharmacol 2022; 926:175047. [DOI: 10.1016/j.ejphar.2022.175047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 12/29/2022]
|
12
|
Dual Nature of RAGE in Host Reaction and Nurturing the Mother-Infant Bond. Int J Mol Sci 2022; 23:ijms23042086. [PMID: 35216202 PMCID: PMC8880422 DOI: 10.3390/ijms23042086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
Non-enzymatic glycation is an unavoidable reaction that occurs across biological taxa. The final products of this irreversible reaction are called advanced glycation end-products (AGEs). The endogenously formed AGEs are known to be bioactive and detrimental to human health. Additionally, exogenous food-derived AGEs are debated to contribute to the development of aging and various diseases. Receptor for AGEs (RAGE) is widely known to elicit biological reactions. The binding of RAGE to other ligands (e.g., high mobility group box 1, S100 proteins, lipopolysaccharides, and amyloid-β) can result in pathological processes via the activation of intracellular RAGE signaling pathways, including inflammation, diabetes, aging, cancer growth, and metastasis. RAGE is now recognized as a pattern-recognition receptor. All mammals have RAGE homologs; however, other vertebrates, such as birds, amphibians, fish, and reptiles, do not have RAGE at the genomic level. This evidence from an evolutionary perspective allows us to understand why mammals require RAGE. In this review, we provide an overview of the scientific knowledge about the role of RAGE in physiological and pathological processes. In particular, we focus on (1) RAGE biology, (2) the role of RAGE in physiological and pathophysiological processes, (3) RAGE isoforms, including full-length membrane-bound RAGE (mRAGE), and the soluble forms of RAGE (sRAGE), which comprise endogenous secretory RAGE (esRAGE) and an ectodomain-shed form of RAGE, and (4) oxytocin transporters in the brain and intestine, which are important for maternal bonding and social behaviors.
Collapse
|
13
|
Yang X, Ma L. Post‑treatment with propofol inhibits inflammatory response in LPS‑induced alveolar type II epithelial cells. Exp Ther Med 2022; 23:249. [PMID: 35261621 PMCID: PMC8855515 DOI: 10.3892/etm.2022.11174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/12/2022] [Indexed: 11/21/2022] Open
Abstract
Over-inflammation and severe lung injury are major causes of morbidity and mortality in patients with coronavirus disease 2019 (COVID-19). With the COVID-19 pandemic, an increasing number of patients with preexisting lung injury and inflammation are undergoing surgery or artificial ventilation under sedation in intensive care units, where 2,6-diisopropylphenol (propofol) is a commonly used drug for sedation. The aim of the present study was to investigate whether post-inflammation treatment with propofol protects epithelial type II cells against inflammation in an in vitro model of inflammation. The A549 cell line, characterised as epithelial type II cells, were exposed to lipopolysaccharide (LPS) for 2 h and subsequently treated with different concentrations of propofol (0, 10, 25 or 50 µM) for 3 h. Western blot and reverse transcription-quantitative PCR analyses were used to detect the protein and mRNA expression levels, respectively, of CD14 and Toll-like receptor 4 (TLR4). Immunofluorescence staining was used to detect the in situ CD14 and TLR4 expression in epithelial type II cells. Tumor necrosis factor (TNF)-α production was also examined using ELISA. LPS significantly increased the expression of CD14 and TLR4, as well as the secretion of TNF-α. Post-treatment with 25 and 50 µM propofol of the LPS-treated cells significantly decreased CD14 and TLR4 expression, as well as TNF-α secretion, compared with the cells treated with LPS only, indicating that post-treatment with propofol alleviated inflammation and this effect was dose-dependent. The present study suggested that treatment with propofol after LPS administration has a protective effect on epithelial type II cells.
Collapse
Affiliation(s)
- Xilun Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ling Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
14
|
Increased Death of Peripheral Blood Mononuclear Cells after TLR4 Inhibition in Sepsis Is Not via TNF/TNF Receptor-Mediated Apoptotic Pathway. Mediators Inflamm 2021; 2021:2255017. [PMID: 34733114 PMCID: PMC8560265 DOI: 10.1155/2021/2255017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background Apoptosis is one of the causes of immune depression in sepsis. Pyroptosis also occurs in sepsis. The toll-like receptor (TLR) 4 and receptor for advanced glycation end products (RAGE) have been shown to play important roles in apoptosis and pyroptosis. However, it is still unknown whether TLR4 inhibition decreases apoptosis in sepsis. Methods Stimulated peripheral blood mononuclear cells (PBMCs) with or without lipopolysaccharides (LPS) and high-mobility group box 1 (HMGB1) were cultured with or without TLR4 inhibition using monoclonal antibodies from 20 patients with sepsis. Caspase-3, caspase-8, and caspase-9 activities were measured. The expression of B cell lymphoma 2 (Bcl2) and Bcl2-associated X (Bax) was measured. The cell death of PBMCs was detected using a flow cytofluorimeter. Results After TLR4 inhibition, Bcl2 to Bax ratio elevated both in LPS and HMGB1-stimulated PBMCs. The activities of caspase-3, caspase-8, and caspase-9 did not change in LPS or HMGB1-stimulated PBMCs. The cell death of LPS and HMGB1-stimulated CD8 lymphocytes and monocytes increased after TLR4 inhibition. The cell death of CD4 lymphocytes was unchanged. Conclusion The apoptosis did not decrease, while TLR4 was inhibited. After TLR4 inhibition, there was an unknown mechanism to keep cell death in stimulated PBMCs in patients with sepsis.
Collapse
|
15
|
Inflammatory alveolar macrophage-derived microvesicles damage lung epithelial cells and induce lung injury. Immunol Lett 2021; 241:23-34. [PMID: 34740720 DOI: 10.1016/j.imlet.2021.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 08/29/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023]
Abstract
Emerging evidence has demonstrated that several microvesicles (MVs) are secreted in bronchoalveolar lavage fluid (BALF) during the pathogenesis of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). However, the impact of alveolar macrophage (AM)-derived MVs on epithelial cells and their in vivo effects on ALI/ARDS require further exploration. In this study, MVs were isolated from BALF of mice or mouse alveolar macrophage (MHS) cells by sequential centrifugation and then delivered to epithelial cells or mice. Enzyme-linked immunosorbent assay revealed that BALF-derived MVs (BALF-MVs) and MHS-derived MVs (AM-MVs) were rich in tumor necrosis factor-α (TNF-α) at the early stage of lung injury. In vitro, both inflammatory BALF-MVs and AM-MVs decreased the expression of α subunit of epithelial sodium channel (α-ENaC), γ-ENaC, and Na+,K+-ATPase α1 and β1 in lung epithelial cells. However, antibodies against TNF-α inhibited the effects of inflammatory AM-MVs in epithelial cells. In vivo, the inflammatory AM-MVs, delivered intratracheally to mice, impaired lung tissues and increased the injury score. They also resulted in decreased alveolar fluid clearance and increased lung wet weight/dry weight ratio. Furthermore, inflammatory AM-MVs downregulated the α-ENaC, γ-ENaC, and Na+,K+-ATPase α1 and β1 levels in lung tissues. According to our results, inflammatory AM-derived MVs may potentially contribute to lung injury and pulmonary edema, thereby indicating a potential novel therapeutic approach against ALI/ARDS based on AM-MVs.
Collapse
|
16
|
Al-Kuraishy HM, Al-Gareeb AI, Faidah H, Alexiou A, Batiha GES. Testosterone in COVID-19: An Adversary Bane or Comrade Boon. Front Cell Infect Microbiol 2021; 11:666987. [PMID: 34568081 PMCID: PMC8455954 DOI: 10.3389/fcimb.2021.666987] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
COVID-19 is a pandemic disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), which leads to pulmonary manifestations like acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In addition, COVID-19 may cause extra-pulmonary manifestation such as testicular injury. Both high and low levels of testosterone could affect the severity of COVID-19. Herein, there is substantial controversy regarding the potential role of testosterone in SARS-CoV-2 infection and COVID-19 severity. Therefore, the present study aimed to review and elucidate the assorted view of preponderance regarding the beneficial and harmful effects of testosterone in COVID-19. A related literature search in PubMed, Scopus, Web of Science, Google Scholar, and Science Direct was done. All published articles related to the role of testosterone and COVID-19 were included in this mini-review. The beneficial effects of testosterone in COVID-19 are through inhibition of pro-inflammatory cytokines, augmentation of anti-inflammatory cytokines, modulation of the immune response, attenuation of oxidative stress, and endothelial dysfunction. However, its harmful effects in COVID-19 are due to augmentation of transmembrane protease serine 2 (TMPRSS2), which is essential for cleaving and activating SARS-CoV-2 spike protein during acute SARS-CoV-2 infection. Most published studies illustrated that low testosterone levels are linked to COVID-19 severity. A low testosterone level in COVID-19 is mainly due to testicular injury, the primary source of testosterone.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Hani Faidah
- Faculty of Medicine, Umm Al Qura University, Mecca, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia.,AFNP Med Austria, Wien, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
17
|
Cheng J, Xie Z, Wang S, Wen S, Niu S, Shi C, Yu L, Xu X. Cough hypersensitivity in patients with metabolic syndrome: a clinical finding and its possible mechanisms. BMC Pulm Med 2021; 21:284. [PMID: 34488706 PMCID: PMC8422703 DOI: 10.1186/s12890-021-01652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022] Open
Abstract
Purpose To investigate the changes of cough sensitivity in patients with metabolic syndrome and its possible mechanisms. Method A total of 29 metabolic syndrome (MetS) patients with OSAHS (group-1), 22 MetS patients without OSAHS (group-2), and 25 healthy controls (group-3) were included. All participants underwent a routine physical examination and completed the gastroesophageal reflux disease questionnaire (GerdQ), and the inflammatory mediator profile were determined. The cough threshold for capsaicin, induced sputum cell count and cell classification, and inflammatory mediators in induced sputum supernatants were compared. The correlation between capsaicin cough sensitivity and various indicators in the MetS population was analyzed. Results The minimum concentration of inhaled capsaicin needed to induce ≥ 5 coughs (C5) was significantly different among three groups (H = 14.393, P = 0.001) and lower for group-1 and group-2 than it for group-3 (P = 0.002, P = 0.005). The percentage of neutrophils in induced sputum and the concentrations of calcitonin gene-related peptide (CGRP), substance P (SP), and interleukin 8 (IL-8) in the sputum supernatant of group-1 and group-2 were significantly higher than those of group-3. Besides, the pepsin concentrations were significantly different among the 3 groups (F = 129.362, P < 0.001), which significantly was highest in group-1 (P < 0.001) and lowest in group-3 (P < 0.001). Triglycerides, AHI, pepsin concentration and BMI were risk factors of increased capsaicin cough sensitivity. Conclusion Increased capsaicin cough sensitivity in MetS patients is closely related to sleep apnea and gastroesophageal reflux. For patients in MetS patients without OSAHS, gastroesophageal reflux is an important factor for increased capsaicin cough sensitivity. Airway inflammation, especially airway neurogenic inflammation, may also play a role in the pathogenesis of increased capsaicin cough sensitivity. Trial registration The protocol was registered in the Chinese Clinical Trials Register (http://www.chictr.org.cn/) (ChiCTR1800014768). Written informed consent was obtained from all participants before enrollment.
Collapse
Affiliation(s)
- Jiafen Cheng
- Department of Nephrology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, China.,Center for Nephrology and Clinical Metabolomics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, China
| | - Zhuangli Xie
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Shengyuan Wang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Siwan Wen
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Shanshan Niu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Cuiqin Shi
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.
| | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
18
|
Acute Lung Injury Biomarkers in the Prediction of COVID-19 Severity: Total Thiol, Ferritin and Lactate Dehydrogenase. Antioxidants (Basel) 2021; 10:antiox10081221. [PMID: 34439469 PMCID: PMC8388961 DOI: 10.3390/antiox10081221] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 (COVID-19) patients who develop acute respiratory distress syndrome (ARDS) can suffer acute lung injury, or even death. Early identification of severe disease is essential in order to control COVID-19 and improve prognosis. Oxidative stress (OS) appears to play an important role in COVID-19 pathogenesis; we therefore conceived a study of the potential discriminative ability of serum biomarkers in patients with ARDS and those with mild to moderate disease (non-ARDS). 60 subjects were enrolled in a single-centre, prospective cohort study of consecutively admitted patients: 29 ARDS/31 non-ARDS. Blood samples were drawn and marker levels analysed by spectrophotometry and immunoassay techniques. C-reactive protein (CRP), lactate dehydrogenase (LDH), and ferritin were significantly higher in ARDS versus non-ARDS cases at hospital admission. Leukocytes, LDH, ferritin, interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-α) were also significantly elevated in ARDS compared to non-ARDS patients during the hospital stay. Total thiol (TT) was found to be significantly lower in ARDS. Conversely, D-dimer, matrix metalloproteinase-9 (MMP-9) and advanced glycosylated end products (AGE) were elevated. Leukocytes, LDH, CRP, ferritin and IL-6 were found to be significantly higher in non-survivors. However, lymphocyte, tumour necrosis factor beta (TGF-β), and TT were lower. In summary, our results support the potential value of TT, ferritin and LDH as prognostic biomarkers for ARDS development in COVID-19 patients, distinguishing non-ARDS from ARDS (AUCs = 0.92; 0.91; 0.89) in a fast and cost-effective manner. These oxidative/inflammatory parameters appear to play an important role in COVID-19 monitoring and can be used in the clinical management of patients.
Collapse
|
19
|
Mitochondrial Damage-Associated Molecular Patterns Exacerbate Lung Fluid Imbalance Via the Formyl Peptide Receptor-1 Signaling Pathway in Acute Lung Injury. Crit Care Med 2021; 49:e53-e62. [PMID: 33165026 DOI: 10.1097/ccm.0000000000004732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To investigate the effect of mitochondrial damage-associated molecular patterns on the lung fluid homeostasis in experimental acute lung injury. DESIGN Experimental study. SETTING Research laboratory. SUBJECTS Patients with acute respiratory distress syndrome and control subjects, wild-type C57BL/6 and formyl peptide receptor-1 gene knockout mice, and primary rat alveolar epithelial type II cells. INTERVENTIONS Samples of bronchoalveolar lavage fluid and serum were obtained from patients and control subjects. Mice were intratracheally instilled with lipopolysaccharide and mitochondrial damage-associated molecular patterns. The primary rat alveolar epithelial type II cells were isolated and incubated with mitochondrial damage-associated molecular patterns. MEASUREMENTS AND MAIN RESULTS Patients were divided into direct (pulmonary) and indirect (extrapulmonary) injury groups based on etiology. The release of mitochondrial peptide nicotinamide adenine dinucleotide dehydrogenase 1 in both bronchoalveolar lavage fluid and serum was induced in patients and was associated with etiology. In the lipopolysaccharide-induced lung injury, administration of mitochondrial damage-associated molecular patterns exacerbated the lung fluid imbalance, which was mitigated in formyl peptide receptor-1 knockout mice. Proteomic analysis of mouse lung tissues revealed the involvement of ion channels and tight junction proteins in this process. Treatment with mitochondrial damage-associated molecular patterns decreased the expression of epithelial sodium channel α, zonula occludens-1, and occludin via the formyl peptide receptor-1/p38 pathway in the primary rat alveolar epithelial type II cells. CONCLUSIONS Mitochondrial damage-associated molecular patterns exacerbate lung fluid imbalance in the experimental acute lung injury model through formyl peptide receptor-1 signaling, the inhibition of which may prevent exacerbation of lung fluid imbalance induced by mitochondrial damage-associated molecular patterns. Thus, formyl peptide receptor-1 is a potential therapeutic target for acute respiratory distress syndrome.
Collapse
|
20
|
Pratte KA, Curtis JL, Kechris K, Couper D, Cho MH, Silverman EK, DeMeo DL, Sciurba FC, Zhang Y, Ortega VE, O’Neal WK, Gillenwater LA, Lynch DA, Hoffman EA, Newell JD, Comellas AP, Castaldi PJ, Miller BE, Pouwels SD, Hacken NHTT, Bischoff R, Klont F, Woodruff PG, Paine R, Barr RG, Hoidal J, Doerschuk CM, Charbonnier JP, Sung R, Locantore N, Yonchuk JG, Jacobson S, Tal-singer R, Merrill D, Bowler RP. Soluble receptor for advanced glycation end products (sRAGE) as a biomarker of COPD. Respir Res 2021; 22:127. [PMID: 33906653 PMCID: PMC8076883 DOI: 10.1186/s12931-021-01686-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/16/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Soluble receptor for advanced glycation end products (sRAGE) is a proposed emphysema and airflow obstruction biomarker; however, previous publications have shown inconsistent associations and only one study has investigate the association between sRAGE and emphysema. No cohorts have examined the association between sRAGE and progressive decline of lung function. There have also been no evaluation of assay compatibility, receiver operating characteristics, and little examination of the effect of genetic variability in non-white population. This manuscript addresses these deficiencies and introduces novel data from Pittsburgh COPD SCCOR and as well as novel work on airflow obstruction. A meta-analysis is used to quantify sRAGE associations with clinical phenotypes. METHODS sRAGE was measured in four independent longitudinal cohorts on different analytic assays: COPDGene (n = 1443); SPIROMICS (n = 1623); ECLIPSE (n = 2349); Pittsburgh COPD SCCOR (n = 399). We constructed adjusted linear mixed models to determine associations of sRAGE with baseline and follow up forced expiratory volume at one second (FEV1) and emphysema by quantitative high-resolution CT lung density at the 15th percentile (adjusted for total lung capacity). RESULTS Lower plasma or serum sRAGE values were associated with a COPD diagnosis (P < 0.001), reduced FEV1 (P < 0.001), and emphysema severity (P < 0.001). In an inverse-variance weighted meta-analysis, one SD lower log10-transformed sRAGE was associated with 105 ± 22 mL lower FEV1 and 4.14 ± 0.55 g/L lower adjusted lung density. After adjusting for covariates, lower sRAGE at baseline was associated with greater FEV1 decline and emphysema progression only in the ECLIPSE cohort. Non-Hispanic white subjects carrying the rs2070600 minor allele (A) and non-Hispanic African Americans carrying the rs2071288 minor allele (A) had lower sRAGE measurements compare to those with the major allele, but their emphysema-sRAGE regression slopes were similar. CONCLUSIONS Lower blood sRAGE is associated with more severe airflow obstruction and emphysema, but associations with progression are inconsistent in the cohorts analyzed. In these cohorts, genotype influenced sRAGE measurements and strengthened variance modelling. Thus, genotype should be included in sRAGE evaluations.
Collapse
Affiliation(s)
| | - Jeffrey L. Curtis
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI USA
- Medical Service, Ann Arbor Healthcare System, Ann Arbor, MI USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO USA
| | - David Couper
- Department of Biostatistics, Collaborative Studies Coordinating Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Dawn L. DeMeo
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Frank C. Sciurba
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Victor E. Ortega
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Wanda K. O’Neal
- Marsico Lung Institute (CF Research Center), University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Lucas A. Gillenwater
- Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 USA
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - David A. Lynch
- Department of Radiology, National Jewish Health, Denver, CO USA
| | - Eric A. Hoffman
- Department of Radiology and Biomedical Engineering, University of Iowa, Iowa City, IA USA
| | - John D. Newell
- Department of Radiology and Biomedical Engineering, University of Iowa, Iowa City, IA USA
| | - Alejandro P. Comellas
- Department of Internal Medicine, College of Medicine, University of Iowa Carver, Iowa City, IA USA
| | - Peter J. Castaldi
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | | | - Simon D. Pouwels
- Department of Pathology and Medical Biology, University of Groningen, Groningen, Netherlands
| | - Nick H. T. ten Hacken
- Department of Pathology and Medical Biology, University of Groningen, Groningen, Netherlands
| | - Rainer Bischoff
- Department of
Analytical Biochemistry, University of Groningen, Groningen, Netherlands
| | - Frank Klont
- Department of
Analytical Biochemistry, University of Groningen, Groningen, Netherlands
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of California-San Francisco, San Francisco, CA USA
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA USA
| | - Robert Paine
- Division of Pulmonary and Critical Care, University of Utah, Salt Lake City, UT USA
| | - R. Graham Barr
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University, New York, NY USA
| | - John Hoidal
- Division of Pulmonary and Critical Care, University of Utah, Salt Lake City, UT USA
| | - Claire M. Doerschuk
- Marsico Lung Institute (CF Research Center), University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | | | - Ruby Sung
- Research and Development, GlaxoSmithKline, Collegeville, PA USA
| | | | - John G. Yonchuk
- Research and Development, GlaxoSmithKline, Collegeville, PA USA
| | - Sean Jacobson
- Department of Genetics, National Jewish Health, Denver, CO USA
| | | | | | - Russell P. Bowler
- Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206 USA
| |
Collapse
|
21
|
Lin WC, Fessler MB. Regulatory mechanisms of neutrophil migration from the circulation to the airspace. Cell Mol Life Sci 2021; 78:4095-4124. [PMID: 33544156 PMCID: PMC7863617 DOI: 10.1007/s00018-021-03768-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
The neutrophil, a short-lived effector leukocyte of the innate immune system best known for its proteases and other degradative cargo, has unique, reciprocal physiological interactions with the lung. During health, large numbers of ‘marginated’ neutrophils reside within the pulmonary vasculature, where they patrol the endothelial surface for pathogens and complete their life cycle. Upon respiratory infection, rapid and sustained recruitment of neutrophils through the endothelial barrier, across the extravascular pulmonary interstitium, and again through the respiratory epithelium into the airspace lumen, is required for pathogen killing. Overexuberant neutrophil trafficking to the lung, however, causes bystander tissue injury and underlies several acute and chronic lung diseases. Due in part to the unique architecture of the lung’s capillary network, the neutrophil follows a microanatomic passage into the distal airspace unlike that observed in other end-organs that it infiltrates. Several of the regulatory mechanisms underlying the stepwise recruitment of circulating neutrophils to the infected lung have been defined over the past few decades; however, fundamental questions remain. In this article, we provide an updated review and perspective on emerging roles for the neutrophil in lung biology, on the molecular mechanisms that control the trafficking of neutrophils to the lung, and on past and ongoing efforts to design therapeutics to intervene upon pulmonary neutrophilia in lung disease.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
22
|
Wang X, Liu F, Xu M, Wu L. Penehyclidine hydrochloride alleviates lipopolysaccharide‑induced acute respiratory distress syndrome in cells via regulating autophagy‑related pathway. Mol Med Rep 2020; 23:100. [PMID: 33300058 PMCID: PMC7723159 DOI: 10.3892/mmr.2020.11739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Acute progressive hypoxic respiratory failure caused by various predisposing factors is known as acute respiratory distress syndrome (ARDS). Although penehyclidine hydrochloride (PHC), an anticholinergic drug, is widely applied in clinical practice, the specific mechanisms underlying PHC in the treatment of ARDS are not completely understood. In the present study, BEAS-2B cells were treated with 10 ng/ml lipopolysaccharide (LPS) to establish an ARDS cell model and a rat model of acute lung injury (ALI). The influences of PHC and/or autophagy inhibitor (3-methyladenine (3-MA)) on the morphology, autophagy, proliferation and apoptosis of cells and tissues were evaluated using hematoxylin and eosin staining, Cell Counting Kit-8 assays, Hoechst staining, TUNEL staining, flow cytometry, immunofluorescence assays, ELISAs and scanning electron microscopy. The expression levels of apoptosis- and autophagy-related proteins were measured via western blotting. The results indicated that PHC enhanced proliferation and autophagy, and decreased apoptosis and the inflammatory response in LPS-induced BEAS-2B cells and ALI model rats. In addition, 3-MA reversed the effects of PHC on proliferation, inflammation, apoptosis and autophagy in LPS-induced BEAS-2B cells. Therefore, the present study suggested that PHC demonstrated a protective effect in LPS-induced ARDS by regulating an autophagy-related pathway.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Department of Pediatrics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Fen Liu
- Department of Pediatrics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Min Xu
- Department of Pediatrics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Liangxia Wu
- Department of Pediatrics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
23
|
Zhu L, Zhang Y, Zhang Z, Ding X, Gong C, Qian Y. Activation of PI3K/Akt/HIF-1α Signaling is Involved in Lung Protection of Dexmedetomidine in Patients Undergoing Video-Assisted Thoracoscopic Surgery: A Pilot Study. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5155-5166. [PMID: 33262576 PMCID: PMC7699453 DOI: 10.2147/dddt.s276005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Background Lung resection and one lung ventilation (OLV) during video-assisted thoracoscopic surgery (VATS) may lead to acute lung injury. Dexmedetomidine (DEX), a highly selective α2 adrenergic receptor agonist, improves arterial oxygenation in adult patients undergoing thoracic surgery. The aim of this pilot study was to explore possible mechanism related to lung protection of DEX in patients undergoing VATS. Patients and Methods Seventy-four patients scheduled for VATS were enrolled in this study. Three timepoints (before anesthesia induction (T0), 40 min after OLV (T1), and 10 min after two-lung ventilation (T2)) of arterial blood gas were obtained. Meanwhile, lung histopathologic examination, immunohistochemistry analysis (occludin and ZO-1), levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in lung tissue and plasma, and activation of phosphoinositide-3-kinase (PI3K)/AKT/hypoxia-inducible factor (HIF)-1α signaling were detected. Postoperative outcomes including duration of withdrawing the pleural drainage tube, length of hospital stay, hospitalization expenses, and postoperative pulmonary complications (PPCs) were also recorded. Results Sixty-seven patients were randomly divided into DEX group (group D, n=33) and control group (group N, n=34). DEX improved oxygenation at T1 and T2 (group D vs group N; T1: 191.8 ± 49.8 mmHg vs 159.6 ± 48.1 mmHg, P = 0.009; T2: 406.0 mmHg [392.2–423.7] vs 374.5 mmHg [340.2–378.2], P = 0.001). DEX alleviated the alveolar capillary epithelial structure damage, increased protein expression of ZO-1 and occludin, inhibited elevation of the expression of TNF-α and IL-6 in lung tissue and plasma, and increased protein expression of p-PI3K, p-AKT and HIF-1α. Dex administered had better postoperative outcomes with less risk of PPCs and hospitalization expenses as well as shorter duration of withdrawing the pleural drainage tube and length of hospital stay. Conclusion Activation of PI3K/Akt/HIF-1α signaling might be involved in lung protection of DEX in patients undergoing VATS.
Collapse
Affiliation(s)
- Linjia Zhu
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yang Zhang
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Zhenfeng Zhang
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xiahao Ding
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Chanjuan Gong
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yanning Qian
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| |
Collapse
|
24
|
Prantner D, Nallar S, Vogel SN. The role of RAGE in host pathology and crosstalk between RAGE and TLR4 in innate immune signal transduction pathways. FASEB J 2020; 34:15659-15674. [PMID: 33131091 DOI: 10.1096/fj.202002136r] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
Although the innate immune receptor protein, Receptor for Advanced Glycation End products (RAGE), has been extensively studied, there has been renewed interest in RAGE for its potential role in sepsis, along with a host of other inflammatory diseases of chronic, noninfectious origin. In contrast to other innate immune receptors, for example, Toll-like receptors (TLRs), that recognize ligands derived from pathogenic organisms that are collectively known as "pathogen-associated molecular patterns" (PAMPs) or host-derived "damage-associated molecular patterns" (DAMPs), RAGE has been shown to recognize a broad collection of DAMPs exclusively. Historically, these DAMPs have been shown to be pro-inflammatory in nature. Early studies indicated that the adaptor molecule, MyD88, might be important for this change. More recent studies have explored further the mechanisms underlying this inflammatory change. Overall, the newer results have shown that there is extensive crosstalk between RAGE and TLRs. The three canonical RAGE ligands, Advanced Glycation End products (AGEs), HMGB1, and S100 proteins, have all been shown to activate both TLRs and RAGE to varying degrees in order to induce inflammation in in vitro models. As with any field that delves deeply into innate signaling, obstacles of reagent purity may be a cause of some of the discrepancies in the literature, and we have found that commercial antibodies that have been widely used exhibit a high degree of nonspecificity. Nonetheless, the weight of published evidence has led us to speculate that RAGE may be physically interacting with TLRs on the cell surface to elicit inflammation via MyD88-dependent signaling.
Collapse
Affiliation(s)
- Daniel Prantner
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Shreeram Nallar
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
25
|
Decker EP, Vasauskas AA. Lung Epithelial Protein Expression and the Use of Volatile Anesthetics in Acute Respiratory Distress Syndrome. Cureus 2020; 12:e10196. [PMID: 33033674 PMCID: PMC7532868 DOI: 10.7759/cureus.10196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a potentially fatal lung injury that can present with divergent underlying cause across cases. Current treatment options are limited by an incomplete understanding of the disease sequelae, undefined unifying pathology, and lack of reliable diagnostic tools. ARDS is defined as respiratory failure not caused by fluid overload or cardiac failure within one week of a known clinical insult with bilateral opacities on chest imaging, and diagnosis is based on these parameters. Increased understanding of the inflammatory cascade associated with ARDS progression shows promise for identifying potential diagnostic biomarkers and additional treatment options. Here, we review recent studies that point to the unifying inflammatory element(s) of the disease process and the use of agents that decrease inflammation as potentially powerful treatments for ARDS patients.
Collapse
Affiliation(s)
- Eric P Decker
- Anesthesiology, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Audrey A Vasauskas
- Molecular Medicine, Alabama College of Osteopathic Medicine, Dothan, USA
| |
Collapse
|
26
|
Mann JK, Ndung'u T. The potential of lactoferrin, ovotransferrin and lysozyme as antiviral and immune-modulating agents in COVID-19. Future Virol 2020. [PMCID: PMC7543043 DOI: 10.2217/fvl-2020-0170] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS coronavirus 2 (SARS-CoV-2), is spreading rapidly with no established effective treatments. While most cases are mild, others experience uncontrolled inflammatory responses with oxidative stress, dysregulation of iron and coagulation as features. Lactoferrin, ovotransferrin and lysozyme are abundant, safe antimicrobials that have wide antiviral as well as immunomodulatory properties. In particular, lactoferrin restores iron homeostasis and inhibits replication of SARS-CoV, which is closely related to SARS-CoV-2. Ovotransferrin has antiviral peptides and activities that are shared with lactoferrin. Both lactoferrin and lysozyme are ‘immune sensing’ as they may stimulate immune responses or resolve inflammation. Mechanisms by which these antimicrobials may treat or prevent COVID-19, as well as sources and forms of these, are reviewed.
Collapse
Affiliation(s)
- Jaclyn Kelly Mann
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban 4001, South Africa
- Africa Health Research Institute, Durban, 4001, South Africa
- Ragon Institute of MGH, MIT & Harvard University, Cambridge, MA 02139, USA
- Max Planck Institute for Infection Biology, Chariteplatz, D-10117 Berlin, Germany
- Division of Infection & Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
27
|
Yang Q, Gao P, Mu M, Tao X, He J, Wu F, Guo S, Qian Z, Song C. [Phagocytosis of alveolar macrophages is suppressed in a mouse model of lipopolysaccharide-induced acute lung injury]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:376-381. [PMID: 32376590 DOI: 10.12122/j.issn.1673-4254.2020.03.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the changes in phagocytic function of alveolar macrophages (AMs) in mice with lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explore the possible mechanism. METHODS Kunming mice were randomly divided into normal control group and ALI (induced by LPS instillation in the airway) model group. AMs were obtained from bronchoalveolar lavage fluid in both groups, and phagocytosis of the AMs was observed using flow cytometry and fluorescence microscopy. Western blotting and ELISA were used to detect the expression and secretion of IL-33 in the lung tissue of the mice. We also detected the secretion of IL-33 by an alveolar epithelial cell line MLE-12 in response to stimulation with different concentrations of LPS. The AMs from the normal control mice were treated with different concentrations of LPS and IL-33, and the changes in the phagocytic activity of the cells were observed. RESULTS Compared with those in normal control group, the percentage of AMs phagocytosing fluorescent microspheres was significantly decreased, and the expression of IL-33 in lung tissue and IL-33 level in the bronchoalveolar lavage fluid were significantly increased in ALI mice (P < 0.01). LPS (100-1000 ng/mL) obviously promoted the secretion of IL-33 in cultured MLE-12 cells (P < 0.01). Both LPS (10-500 ng/mL) and IL-33 (100 ng/mL) significantly inhibited the phagocytic activity of the AMs from normal control mice (P < 0.01). CONCLUSIONS The phagocytic activity of AMs is weakened in ALI mice possibly due to direct LPS stimulation and the inhibitory effect of the alarmin IL-33 produced by LPS-stimulated alveolar epithelial cells.
Collapse
Affiliation(s)
- Qian Yang
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College; Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu 233030, China
| | - Peiyu Gao
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College; Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu 233030, China
| | - Mimi Mu
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College; Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu 233030, China
| | - Xiangnan Tao
- Department of Clinical Laboratory, Second Affiliated Hospital of Bengbu Medical College, Bengbu 233040, China
| | - Jing He
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College; Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu 233030, China
| | - Fengjiao Wu
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College; Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu 233030, China
| | - Shujun Guo
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College; Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu 233030, China
| | - Zhongqing Qian
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College; Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu 233030, China
| | - Chuanwang Song
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College; Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu 233030, China
| |
Collapse
|
28
|
Qian B, Huang H, Cheng M, Qin T, Chen T, Zhao J. Mechanism of HMGB1-RAGE in Kawasaki disease with coronary artery injury. Eur J Med Res 2020; 25:8. [PMID: 32183905 PMCID: PMC7079349 DOI: 10.1186/s40001-020-00406-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/18/2020] [Indexed: 01/11/2023] Open
Abstract
Background Kawasaki disease (KD) is a common, yet unknown etiology disease in Asian countries, which causes acquired heart disease in childhood. It is characterized by an inflammatory acute febrile vasculitis of medium-sized arteries, particularly the coronary arteries. High-mobility group box-1 protein (HMGB1) is a non-histone chromosomal-binding protein present in the nucleus of eukaryotic cells, which contains 215 amino acid residues. Although the cellular signal transduction mechanisms of HMGB1 are currently unclear, the important role of the receptor for advanced glycation end-products (RAGE), the main receptor for HMGB1 has been reported in detail. The purpose of our study was to verify the mechanism and clinical significance of HMGB1-RAGE in coronary artery injury of Kawasaki disease. Methods 52 blood samples of patients in KD were collected, and the coronary artery Z score was calculated according to the echocardiographic results. The Z score ≥ 2.0 was classified as coronary artery lesions (CAL); otherwise, it was no-coronary artery lesions (NCAL). In addition, the fever group and control group were set. Among them, the fever group were children with fever due to respiratory tract infection at the same time period as KD (heat peak ≥ 38.5 ℃). The normal group were children at a routine physical examination in the outpatient clinic of Nantong University and the physical examination center of the child care insurance, and there were no infectious diseases and heart diseases. The serum levels of HMGB1, RAGE, and NF-κB in each group were detected by ELISA. The animal model of KD was established using the New Zealand young rabbits. We used RT-qPCR/H&E staining/immunohistochemistry/ELISA and western blot to detect the level of HMGB1/RAGE and NF-κB. Results In this study, we found that the HMGB1/RAGE/NF-κB axis was elevated in the serum of children with KD. In addition, an animal model of KD was subsequently prepared to examine the pathological changes of the coronary arteries. We found that the serum levels of HMGB1/RAGE/NF-κB in rabbits with KD were significantly higher than those of the control group. Moreover, the lumen diameter of the coronary artery was slightly enlarged, and the wall of the tube became thinner and deformed. In addition, the HMGB1/RAGE/NF-κB levels in the coronary artery were higher in the rabbits with KD in the acute phase. Conclusions On the whole, the findings of this study demonstrate that the expression of HMGB1/RAGE/NF-κB is altered at different stages of KD, suggesting that the HMGB1/RAGE/NF-κB signaling pathway plays an important role in vascular injury in KD. The results of this study may have important implications for the early warning of coronary artery lesions in KD.
Collapse
Affiliation(s)
- Biying Qian
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China.,Department of Emergency Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, 200062, People's Republic of China
| | - Hua Huang
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China
| | - Mingye Cheng
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China
| | - Tingting Qin
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China
| | - Tao Chen
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jianmei Zhao
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
29
|
Li D, Cong Z, Yang C, Zhu X. Inhibition of LPS-induced Nox2 activation by VAS2870 protects alveolar epithelial cells through eliminating ROS and restoring tight junctions. Biochem Biophys Res Commun 2020; 524:575-581. [PMID: 32019675 DOI: 10.1016/j.bbrc.2020.01.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022]
Abstract
Inhibiting the production of reactive oxygen species (ROS) in alveolar epithelial cells (AECs) under oxidative distress becomes a new therapeutic strategy for acute respiratory distress syndrome (ARDS). Herein in the present study, we investigated effects of Nox2, the catalytic subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase type 2, on LPS-induced epithelium injury in ARDS mice and in human alveolar epithelial A549 cells. Severe lung injury, disruption of alveolar-capillary barrier with the loss of zonula occluden (ZO)-1 and up-regulated expression of Nox2 in AECs were exhibited in ARDS mice. In vitro, LPS induced decreased cell viability coupled with activated Nox2, high level of ROS, and destroyed ZO-1 distribution. Moreover, VAS2870 proved to inhibit Nox2 expression, reduce ROS generation, restore epithelium barrier integrity, and preserve cell viability in LPS-induced A549 cells. These data demonstrate that Nox2/ROS/ZO-1 axis is of great importance in AECs damage induced by LPS, and the utilization of VAS2870 to inhibit this pathway might lighten LPS-induced ARDS.
Collapse
Affiliation(s)
- Dan Li
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, 100191, China
| | - Zhukai Cong
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, 100191, China
| | - Cui Yang
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, 100191, China
| | - Xi Zhu
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
30
|
Ultra-Protective Ventilation Reduces Biotrauma in Patients on Venovenous Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome*. Crit Care Med 2019; 47:1505-1512. [DOI: 10.1097/ccm.0000000000003894] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
What's New in Shock, October 2018? Shock 2019; 50:373-376. [PMID: 30216297 DOI: 10.1097/shk.0000000000001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Bartling B, Zunkel K, Al-Robaiy S, Dehghani F, Simm A. Gene doubling increases glyoxalase 1 expression in RAGE knockout mice. Biochim Biophys Acta Gen Subj 2019; 1864:129438. [PMID: 31526867 DOI: 10.1016/j.bbagen.2019.129438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND The receptor for advanced glycation end-products (RAGE) is a multifunctional protein. Its function as pattern recognition receptor able to interact with various extracellular ligands is well described. Genetically modified mouse models, especially the RAGE knockout (RAGE-KO) mouse, identified the amplification of the immune response as an important function of RAGE. Pro-inflammatory ligands of RAGE are also methylglyoxal-derived advanced glycation end-products, which depend in their quantity, at least in part, on the activity of the methylglyoxal-detoxifying enzyme glyoxalase-1 (Glo1). Therefore, we studied the potential interaction of RAGE and Glo1 by use of RAGE-KO mice. METHODS Various tissues (lung, liver, kidney, heart, spleen, and brain) and blood cells from RAGE-KO and wildtype mice were analyzed for Glo1 expression and activity by biochemical assays and the Glo1 gene status by PCR techniques. RESULTS We identified an about two-fold up-regulation of Glo1 expression and activity in all tissues of RAGE-KO mice. This was result of a copy number variation of the Glo1 gene on mouse chromosome 17. In liver tissue and blood cells, the Glo1 expression and activity was additionally influenced by sex with higher values for male than female animals. As the genomic region containing Glo1 also contains the full-length sequence of another gene, namely Dnahc8, both genes were duplicated in RAGE-KO mice. CONCLUSION A genetic variance in RAGE-KO mice falsely suggests an interaction of RAGE and Glo1 function. GENERAL SIGNIFICANCE RAGE-independent up-regulation of Glo1 in RAGE-KO mice might be as another explanation for, at least some, effects attributed to RAGE before.
Collapse
Affiliation(s)
- Babett Bartling
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Katja Zunkel
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Samiya Al-Robaiy
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Faramarz Dehghani
- Institute of Anatomy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andreas Simm
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
33
|
Microarray profiling of lung long non-coding RNAs and mRNAs in lipopolysaccharide-induced acute lung injury mouse model. Biosci Rep 2019; 39:BSR20181634. [PMID: 30979832 PMCID: PMC6488857 DOI: 10.1042/bsr20181634] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in various biological processes as well as many respiratory diseases, while the role of lncRNAs in acute lung injury (ALI) remains unclear. The present study aimed to profile the expression of lung lncRNAs and mRNAs in lipopolysaccharide (LPS)-induced ALI mouse model. C57BL/6 mice were exposed to LPS or phosphate-buffered saline for 24 h, and lncRNAs and mRNAs were profiled by Arraystar mouse LncRNA Array V3.0. Bioinformatics analysis gene ontology including (GO) and pathway analysis and cell study in vitro was used to investigate potential mechanisms. Based on the microarray results, 2632 lncRNAs and 2352 mRNAs were differentially expressed between ALI and control mice. The microarray results were confirmed by the quantitative real-time PCR (qRT-PCR) results of ten randomized selected lncRNAs. GO analysis showed that the altered mRNAs were mainly related to the processes of immune system, immune response and defense response. Pathway analysis suggests that tumor necrosis factor (TNF) signaling pathway, NOD-like receptor pathway, and cytokine-cytokine receptor interaction may be involved in ALI. LncRNA-mRNA co-expression network analysis indicated that one individual lncRNA may interact with several mRNAs, and one individual mRNA may also interact with several lncRNAs. Small interfering RNA (siRNA) for ENSMUST00000170214.1, - ENSMUST00000016031.13 significantly inhibited LPS-induced TNF-α and interleukin (IL)-1β production in murine RAW264.7 macrophages. Our results found significant changes of lncRNAs and mRNAs in the lungs of LPS-induced ALI mouse model, and intervention targeting lncRNAs may attenuate LPS-induced inflammation, which may help to elucidate the role of lncRNAs in the pathogenesis and treatment of ALI.
Collapse
|
34
|
Zhang X, Wang T, Yuan ZC, Dai LQ, Zeng N, Wang H, Liu L, Wen FQ. Mitochondrial peptides cause proinflammatory responses in the alveolar epithelium via FPR-1, MAPKs, and AKT: a potential mechanism involved in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2018; 315:L775-L786. [PMID: 30188748 DOI: 10.1152/ajplung.00466.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Acute lung injury (ALI) is characterized by alveolar epithelial damage and uncontrolled pulmonary inflammation. Mitochondrial damage-associated molecular patterns (DAMPs), including mitochondrial peptides [ N-formyl peptides (NFPs)], are released during cell injury and death and induce inflammation by unclear mechanisms. In this study, we have investigated the role of mitochondrial DAMPs (MTDs), especially NFPs, in alveolar epithelial injury and lung inflammation. In murine models of ALI, high levels of mitochondrial NADH dehydrogenase 1 in bronchoalveolar lavage fluid (BALF) were associated with lung injury scores and increased formyl peptide receptor (FPR)-1 expression in the alveolar epithelium. Cyclosporin H (CsH), a specific inhibitor of FPR1, inhibited lung inflammation in the ALI models. Both MTDs and NFPs upon intratracheal challenge caused accumulation of neutrophils into the alveolar space with elevated BALF levels of mouse chemokine KC, interleukin-1β, and nitric oxide and increased pulmonary FPR-1 levels. CsH significantly attenuated MTDs or NFP-induced inflammatory lung injury and activation of MAPK and AKT pathways. FPR1 expression was present in rat primary alveolar epithelial type II cells (AECIIs) and was increased by MTDs. CsH inhibited MTDs or NFP-induced CINC-1/IL-8 release and phosphorylation of p38, JNK, and AKT in rat AECII and human cell line A549. Inhibitors of MAPKs and AKT also suppressed MTD-induced IL-8 release and NF-κB activation. Collectively, our data indicate an important role of the alveolar epithelium in initiating immune responses to MTDs released during ALI. The potential mechanism may involve increase of IL-8 production in MTD-activated AECII through FPR-1 and its downstream MAPKs, AKT, and NF-κB pathways.
Collapse
Affiliation(s)
- Xue Zhang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China.,Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province , Luoyang , China
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| | - Zhi-Cheng Yuan
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| | - Lu-Qi Dai
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| | - Ni Zeng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| | - Hao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| | - Lian Liu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| | - Fu-Qiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| |
Collapse
|