1
|
Tian T, Yu Q, Yang D, Zhang X, Zhang C, Li J, Luo T, Zhang K, Lv X, Wang Y, Wang H, Li H. Endothelial α 1-adrenergic receptor activation improves cardiac function in septic mice via PKC-ERK/p38MAPK signaling pathway. Int Immunopharmacol 2024; 141:112937. [PMID: 39182270 DOI: 10.1016/j.intimp.2024.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Cardiomyopathy is particularly common in septic patients. Our previous studies have shown that activation of the alpha 1 adrenergic receptor (α1-AR) on cardiomyocytes inhibits sepsis-induced myocardial dysfunction. However, the role of cardiac endothelial α1-AR in septic cardiomyopathy has not been determined. Here, we identified α1-AR expression in mouse and human endothelial cells and showed that activation of α1-AR with phenylephrine (PE) improved cardiac function and survival by preventing cardiac endothelial injury in septic mice. Mechanistically, activating α1-AR with PE decreased the expression of ICAM-1, VCAM-1, iNOS, E-selectin, and p-p38MAPK, while promoting PKC and ERK1/2 phosphorylation in LPS-treated endothelial cells. These effects were abolished by a PKC inhibitor or α1-AR antagonist. PE also reduced p65 nuclear translocation, but this suppression is not blocked by PKC inhibition. Treatment with U0126 (a specific ERK1/2 inhibitor) reversed the effects of PE on p38MAPK phosphorylation. Our results demonstrate that cardiac endothelial α1-AR activation prevents sepsis-induced myocardial dysfunction in mice by inhibiting the endothelial injury via PKC-ERK/p38MAPK signaling pathway and a PKC-independent inhibition of p65 nuclear translocation. These findings offer a new perspective for septic patients with cardiac dysfunction by inhibiting cardiac endothelial cell injury through α1-AR activation.
Collapse
Affiliation(s)
- Tian Tian
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Qing Yu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Duomeng Yang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xue Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chanjuan Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jianling Li
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, Guangdong, China
| | - Tao Luo
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Keke Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiuxiu Lv
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Huadong Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Hongmei Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Krasniqi D, Uka A, Rexhbeqaj E, Beretta G, Petreska Stanoeva J, Qazimi B, Daci A. Vasorelaxant Effects of Ethanolic Extract from Cydonia oblonga Mill . Leaves on Isolated Rat Thoracic Aorta and Potential Mechanism of Action. Nat Prod Commun 2024; 19. [DOI: 10.1177/1934578x241282441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Objective: Cydonia oblonga Mill . leaves ethanolic extract (CydOL-EE) has shown different cardioprotective effects. However, no previous studies investigated its direct effect on the vascular smooth muscle tone. Therefore, the study aimed to test the potential vasodilator activity of CydOL-EE in ex-vivo rat thoracic aorta preparations with an additional investigation of its mechanistic effects. Methods: CydOL-EE phytochemical profile was first investigated by HPLC-DAD-ESI-MS/MS and then tested for the vasorelaxation/vasoreactivity effects in rat aortic rings. The NO synthase inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME) and cyclic guanosine monophosphate inhibitor 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) were used to explore of the involvement of NO-dependent pathways. Results: Chromatographic analysis of CydOL-EE revealed the presence of six flavonols and seven hydroxycinnamic acids. Moreover, CydOL-EE showed a decrease in vasoreactivity caused by dose-dependent phenylephrine (PE) (Control, Emax = 104.29 ± 3.67 vs CydOL-EE, Emax = 70.73 ± 3.67, P < .0001) and a direct relaxing activity to precontraction with PE (Emax = 79.63 ± 3.67%). These responses were abolished during e-NOS inhibition, demonstrating that the mechanism of action was predominately controlled by the participation of an endothelium-dependent system. Conclusion: The results of our study show that CydO-EE demonstrates vasorelaxation and reduction of vasoreactivity through a NO-dependent pathway. These findings provide scientific evidence for further understanding of CydOL-EE use in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Donjeta Krasniqi
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Albina Uka
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Era Rexhbeqaj
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Giangiacomo Beretta
- Department of Environmental Science, Università degli Studi di Milano, Milan, Italy
| | - Jasmina Petreska Stanoeva
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Skopje, R.N. Macedonia
| | - Bujar Qazimi
- Faculty of Pharmacy, UBT-Higher Education Institution, Prishtina, Kosovo
| | - Armond Daci
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| |
Collapse
|
3
|
Xing Y, Tian T, Zhang X, Yang D, Zhang C, Wang M, Wang Y, Luo T, Wang Z, Wang H, Li H. ENDOGENOUS β 3 -ADRENERGIC RECEPTOR ACTIVATION ALLEVIATES SEPSIS-INDUCED CARDIOMYOCYTE APOPTOSIS VIA PI3K/AKT SIGNALING PATHWAY. Shock 2024; 61:915-923. [PMID: 38662592 DOI: 10.1097/shk.0000000000002354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT β 3 -adrenergic receptor (β 3 -AR) has been proposed as a new therapy for several myocardial diseases. However, the effect of β 3 -AR activation on sepsis-induced myocardial apoptosis is unclear. Here, we investigated the effect of β 3 -AR activation on the cardiomyocyte apoptosis and cardiac dysfunction in cecal ligation and puncture (CLP)-operated rats and lipopolysaccharide (LPS)-treated cardiomyocytes. We found that β 3 -AR existed both in adult rat ventricular myocytes (ARVMs) and H9c2 cells. The expression of β 3 -AR was upregulated in LPS-treated ARVMs and the heart of CLP rats. Pretreatment with β 3 -AR agonist, BRL37344, inhibited LPS-induced cardiomyocyte apoptosis and caspase-3, -8, and -9 activation in ARVMs. BRL37344 also reduced apoptosis and increased the protein levels of PI3K, p-Akt Ser473 and p-eNOS Ser1177 in LPS-treated H9c2 cells. Inhibition of PI3K using LY294002 abolished the inhibitory effect of BRL37344 on LPS-induced caspase-3, -8, and -9 activation in H9c2 cells. Furthermore, administration of β 3 -AR antagonist, SR59230A (5 mg/kg), significantly decreased the maximum rate of left ventricular pressure rise (+dP/dt) in CLP-induced septic rats. SR59230A not only increased myocardial apoptosis, reduced p-Akt Ser473 and Bcl-2 contents, but also increased mitochondrial Bax, cytoplasm cytochrome c, cleaved caspase-9, and cleaved caspase-3 levels of the myocardium in septic rats. These results suggest that endogenous β 3 -AR activation alleviates sepsis-induced cardiomyocyte apoptosis via PI3K/Akt signaling pathway and maintains intrinsic myocardial systolic function in sepsis.
Collapse
Affiliation(s)
- Yun Xing
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Tian Tian
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Xue Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Duomeng Yang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Chanjuan Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Miao Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Yiyang Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Tao Luo
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zhi Wang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Hongmei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Pei XB, Liu B. Research Progress on the Mechanism and Management of Septic Cardiomyopathy: A Comprehensive Review. Emerg Med Int 2023; 2023:8107336. [PMID: 38029224 PMCID: PMC10681771 DOI: 10.1155/2023/8107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is defined as a kind of life-threatening organ dysfunction due to a dysregulated host immune response to infection and is a leading cause of mortality in the intensive care unit. Sepsis-induced myocardial dysfunction, also called septic cardiomyopathy, is a common and serious complication in patients with sepsis, which may indicate a bad prognosis. Although efforts have been made to uncover the pathophysiology of septic cardiomyopathy, a number of uncertainties remain. This article sought to review available literature to summarize the existing knowledge on current diagnostic tools and biomarkers, pathogenesis, and treatments for septic cardiomyopathy.
Collapse
Affiliation(s)
- Xue-Bin Pei
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Bo Liu
- Department of Emergency Medicine, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
5
|
Yang R, Qi L, Liang W. Neohesperidin dihydrochalbazone protects against septic acute kidney injury in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154623. [PMID: 36608504 DOI: 10.1016/j.phymed.2022.154623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/25/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Neohesperidin dihydrochalbazone (NHDC) shows a range of pharmacological actions, however, in septic acute kidney injury (AKI), the effect of NHDC is little known. PURPOSE To assess the role of NHDC against AKI and the possible mechanisms. METHODS In vivo, we used different concentration of NHDC (50, 100, and 200 mg/kg) treated septic AKI model of mice. Moreover, in vitro, in HK-2 cells, a lipopolysaccharide (LPS) induced cell model was treated with 10, 20, and 30 μM NHDC. Next, kidney tissue pathologic change, marker of renal injury, apoptosis, and inflammatory factors were assessed using hematoxylin and eosin staining, enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick end labeling, and western blot. HK-2 cell apoptosis and viability were assessed via flow cytometry and cell counting kit-8. In HK-2 cells and tissues, NLRP3, caspase 1, ASC, and P38/ERK 1/2/JNK pathway related protein levels were tested using western blot. RESULTS NHDC (100 and 200 mg/kg) significantly attenuated kidney injury in caecal ligation and puncture (CLP)-treated mice. In CLP-treated mice, the level of BUN, Scr, KIM-1, and NAGL was reduced by 100 and 200 mg/kg NHDC. Furthermore, 100 and 200 mg/kg NHDC inhibited inflammation by reducing the production of IL-6, TNF-α, and IL-1β, and inhibited oxidative stress by regulating the change of MDA, SOD, GSH, and CAT. NHDC (100 and 200 mg/kg) inhibited renal cell apoptosis by increasing Bcl2 protein expression and inhibiting Bax and cleaved caspase-3 protein expression. Additionally, NHDC (100 and 200 mg/kg) inhibited the protein levels of phosphorylated (p)-P38, p-JNK, p-ERK 1/2, NLRP3, caspase 1, ASC. In vitro, in LPS-stimulated HK-2 cells, NHDC (20 and 30 μM) increased cell viability, reduced cell apoptosis, restrained inflammation by reducing the content of IL-6, TNF-α, and IL-1β, and inhibited the protein expression of caspase 1, NLRP3, ASC, p-P38, p-JNK, and p-ERK1/2. Importantly, the promotive effect of NHDC on HK-2 cell viability was reversed by DHR (an activator of P38 MAPK signaling pathway), and DHR reversed the inhibitive effects of NHDC on HK-2 cell apoptosis and inflammation. CONCLUSION For the first time, NHDC was found to inhibit oxidative stress, inflammation, and apoptosis in AKI model, which was related to the inhibition of P38 MAPK pathways. Our findings provided the theoretical basis for NHDC on the prevention of AKI.
Collapse
Affiliation(s)
- Ruihong Yang
- Department of Critical Care Medicine, Jinan Central Hospital, 105 Jiefang Road, Jinan, Shandong 250013, PR China
| | - Lei Qi
- Department of Critical Care Medicine, Jinan Central Hospital, 105 Jiefang Road, Jinan, Shandong 250013, PR China
| | - Wei Liang
- Department of Critical Care Medicine, Jinan Central Hospital, 105 Jiefang Road, Jinan, Shandong 250013, PR China.
| |
Collapse
|
6
|
Cong Z, Yang C, Zeng Z, Wu C, Zhao F, Shen Z, Xiao H, Zhu X. α 1-adrenoceptor stimulation ameliorates lipopolysaccharide-induced lung injury by inhibiting alveolar macrophage inflammatory responses through NF-κB and ERK1/2 pathway in ARDS. Front Immunol 2023; 13:1090773. [PMID: 36685596 PMCID: PMC9853445 DOI: 10.3389/fimmu.2022.1090773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Catecholamines such as norepinephrine or epinephrine have been reported to participate in the development of acute respiratory distress syndrome (ARDS) by activating adrenergic receptors (ARs). But the role of α1-AR in this process has yet to be elucidated. Methods In this study, ARDS mouse model was induced by intratracheal instillation of lipopolysaccharide. After treatment with α1-AR agonist phenylephrine or antagonist prazosin, lung pathological injury, alveolar barrier disruption and inflammation, and haemodynamic changes were evaluated. Cytokine levels and cell viability of alveolar macrophages were measured in vitro. Nuclear factor κB (NF-κB), mitogen-activated protein kinase, and Akt signalling pathways were analysed by western blot. Results It showed that α1-AR activation alleviated lung injuries, including reduced histopathological damage, cytokine expression, and inflammatory cell infiltration, and improved alveolar capillary barrier integrity of ARDS mice without influencing cardiovascular haemodynamics. In vitro experiments suggested that α1-AR stimulation inhibited secretion of TNF-α, IL-6, CXCL2/MIP-2, and promoted IL-10 secretion, but did not affect cell viability. Moreover, α1-AR stimulation inhibited NF-κB and enhanced ERK1/2 activation without significantly influencing p38, JNK, or Akt activation. Discussion Our studies reveal that α1-AR stimulation could ameliorate lipopolysaccharide-induced lung injury by inhibiting NF-κB and promoting ERK1/2 to suppress excessive inflammatory responses of alveolar macrophages.
Collapse
Affiliation(s)
- Zhukai Cong
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China,Department of Anaesthesiology, Peking University Third Hospital, Beijing, China
| | - Cui Yang
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Zhaojin Zeng
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Changyi Wu
- Department of Anaesthesiology, Peking University Third Hospital, Beijing, China
| | - Feng Zhao
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Ziyuan Shen
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China,National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China,Key Laboratory of Cardiovascular Receptors Research, Beijing, China,*Correspondence: Xi Zhu, ; Han Xiao,
| | - Xi Zhu
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China,*Correspondence: Xi Zhu, ; Han Xiao,
| |
Collapse
|
7
|
Xu L, He D, Wu Y, Shen L, Wang Y, Xu Y. Tanshinone IIA inhibits cardiomyocyte apoptosis and rescues cardiac function during doxorubicin-induced cardiotoxicity by activating the DAXX/MEK/ERK1/2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154471. [PMID: 36182795 DOI: 10.1016/j.phymed.2022.154471] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Heart failure (HF) is a common cardiovascular syndrome. Tanshinone IIA (Tan IIA) is a pharmacologically active monomer that exerts a significant cardioprotective effect in the clinic; however, the specific mechanisms are not fully understood. PURPOSE We mainly investigated the protective effects of Tan IIA on doxorubicin (DOX)-induced HF. METHODS In an in vitro study, H9C2 and HL-1 cells were cultured and treated with DOX and Tan IIA for 24 h, we investigated the mechanism underlying Tan IIA-mediated protection. In an in vivo study, a model of DOX-induced HF was established in C57BL/6 mice that were divided into the six groups randomly: a control group, a DOX group, DOX groups treated with Tan IIA (DOX+Tan IIA) at dosages of 2.5, 5 and 10 mg/kg/day and DOX groups treated with N-acetylcysteine (NAC) at dosages of 200 mg/kg/day. RESULT The results demonstrated that Tan IIA significantly increased cell viability and protected against DOX-induced apoptosis. RNA-sequencing showed that the genes expression associated with the apoptotic signaling pathway was altered by Tan IIA. Among the differentially expressed genes, death-domain associated protein (DAXX), which plays an critical role in apoptotic signaling, exhibited increased expression under Tan IIA treatment. In addition, RNA interference was used to silence the expression of DAXX, which abolished Tan IIA-mediated protection against DOX-induced apoptosis; this effect was associated with extracellular signal-regulated protein kinase 1/2 (ERK1/2) and mitogen-activated protein kinase (MEK) expression. In the in vivo study, the echocardiography results revealed that heart function was rescued by Tan IIA, and the histomorphology results showed that Tan IIA prevented myocardial structural alteration and myofibril disruption. Furthermore, Tan IIA induced the expressions of DAXX, p-ERK1/2 and p-MEK. Tan IIA also inhibited apoptosis by suppressing the expression of cleaved caspase-8, p-P38 and cleaved caspase-3. CONCLUSION Our results provide novel interpretations into the important role of DAXX in DOX-induced cardiotoxicity and show that Tan IIA may be a novel agent strategy for HF treatment via activating the DAXX/MEK/ERK1/2 pathway.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, #261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China; Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Daqiang He
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yirong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, #261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China
| | - Lishui Shen
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, #261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China
| | - Yongmei Wang
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, #261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, #261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
8
|
Cheng Z, Lv D, Luo M, Wang R, Guo Y, Yang X, Huang L, Li X, Li C, Shang FF, Huang B, Shen J, Luo S, Yan J. Tubeimoside I protects against sepsis-induced cardiac dysfunction via SIRT3. Eur J Pharmacol 2021; 905:174186. [PMID: 34033817 DOI: 10.1016/j.ejphar.2021.174186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022]
Abstract
Sepsis-induced cardiac dysfunction (SICD) is one of the key complications in sepsis and it is associated with adverse outcomes and increased mortality. There is no effective drug to treat SICD. Previously, we reported that tubeimoside I (TBM) improved survival of septic mice. The aim of this study is to figure out whether TBM ameliorates SICD. Also, SIRT3 was reported to protects against SICD. Our second aim is to confirm whether SIRT3 plays essential roles in TBM's protective effects against SICD. Our results demonstrated that TBM could alleviate SICD and SICD's key pathological factor, inflammation, oxidative stress, and apoptosis were all reduced by TBM. Notably, SICD induced a significant decrease in cardiac SIRT3 expression, while TBM treatment could reverse SIRT3 expression. To clarify whether TBM provides protection via SIRT3, we injected a specific SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP) into mice before TBM treatment. Then the cardioprotective effects of TBM were largely abolished by 3-TYP. This suggests that SIRT3 plays an essential role in TBM's cardioprotective effects. In vitro, TBM also protected H9c2 cells against LPS-induced injury, and siSIRT3 diminished these protective effects. Taken together, our results demonstrate that TBM protects against SICD via SIRT3. TBM might be a potential drug candidate for SICD treatment.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Ruiyu Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Yongzheng Guo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Xiyang Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Longxiang Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Xingbing Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Chang Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Fei-Fei Shang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Bi Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jian Shen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Jianghong Yan
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
9
|
Li T, Chen Y, Li Y, Yao Z, Liu W. FAM134B-mediated endoplasmic reticulum autophagy protects against sepsis myocardial injury in mice. Aging (Albany NY) 2021; 13:13535-13547. [PMID: 33819192 PMCID: PMC8202901 DOI: 10.18632/aging.202786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
Reticulophagy regulator 1 (RETEG1, also known as FAM134B) plays a crucial role in endoplasmic reticulum autophagy. We aimed to explore the effect of FAM134B-mediated endoplasmic reticulum autophagy in sepsis myocardial injury in mice. Sepsis myocardial injury mice were established via cecal ligation and puncture procedures. The expression of FAM134B and LC3-II/I was determined using immunohistochemistry. Myocardial tissue morphological changes and apoptosis were examined using hematoxylin and eosin (H&E) staining and TUNEL analysis. The effects of FAM134B knockdown or overexpression on mice with sepsis myocardial injury were also studied. The levels of TNF-α, IL-6, IL-8, and IL-10 were evaluated using enzyme-linked immunosorbent assay (ELISA). Autophagy- and apoptosis-related protein expression was detected using western blotting. The effect of FAM134B on Lipopolysaccharide (LPS) -induced cardiomyocytes was also studied. The expression of FAM134B and LC3-II/I increased in sepsis mice and lipopolysaccharide (LPS)-treated cardiomyocytes. 3-Methyladenine (3-MA) significantly inhibited FAM134B and LC3-II/I expression and promoted myocardial injury, inflammation response, and cardiomyocyte apoptosis. The overexpression of FAM134B could minimize myocardial injury, inflammation, and apoptosis, whereas FAM134B knockdown showed opposite effects. FAM134B-mediated endoplasmic reticulum autophagy had a protective effect on sepsis myocardial injury in mice by reducing inflammation and tissue apoptosis, which may provide new insights for sepsis myocardial injury therapies.
Collapse
Affiliation(s)
- Tong Li
- Intensive Care Unit, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Yongsheng Chen
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Yue Li
- Intensive Care Unit, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Zhipeng Yao
- Intensive Care Unit, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Wenhua Liu
- Intensive Care Unit, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| |
Collapse
|
10
|
Stolk RF, Reinema F, van der Pasch E, Schouwstra J, Bressers S, van Herwaarden AE, Gerretsen J, Schambergen R, Ruth M, van der Hoeven HG, van Leeuwen HJ, Pickkers P, Kox M. Phenylephrine impairs host defence mechanisms to infection: a combined laboratory study in mice and translational human study. Br J Anaesth 2021; 126:652-664. [PMID: 33483132 DOI: 10.1016/j.bja.2020.11.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Immunosuppression after surgery is associated with postoperative complications, mediated in part by catecholamines that exert anti-inflammatory effects via the β-adrenergic receptor. Phenylephrine, generally regarded as a selective α-adrenergic agonist, is frequently used to treat perioperative hypotension. However, phenylephrine may impair host defence through β-adrenergic affinity. METHODS Human leukocytes were stimulated with lipopolysaccharide (LPS) in the presence or absence of phenylephrine and α- and β-adrenergic antagonists. C57BL/6J male mice received continuous infusion of phenylephrine (30-50 μg kg-1 min-1 i.v.) or saline via micro-osmotic pumps, before LPS administration (5 mg kg-1 i.v.) or caecal ligation and puncture (CLP). Twenty healthy males were randomised to a 5 h infusion of phenylephrine (0.5 μg kg-1 min-1) or saline before receiving LPS (2 ng kg-1 i.v.). RESULTS In vitro, phenylephrine enhanced LPS-induced production of the anti-inflammatory cytokine interleukin (IL)-10 (maximum augmentation of 93%) while attenuating the release of pro-inflammatory mediators. These effects were reversed by pre-incubation with β-antagonists, but not α-antagonists. Plasma IL-10 levels were higher in LPS-challenged mice infused with phenylephrine, whereas pro-inflammatory mediators were reduced. Phenylephrine infusion increased bacterial counts after CLP in peritoneal fluid (+42%, P=0.0069), spleen (+59%, P=0.04), and liver (+35%, P=0.09). In healthy volunteers, phenylephrine enhanced the LPS-induced IL-10 response (+76%, P=0.0008) while attenuating plasma concentrations of pro-inflammatory mediators including IL-8 (-15%, P=0.03). CONCLUSIONS Phenylephrine exerts potent anti-inflammatory effects, possibly involving the β-adrenoreceptor. Phenylephrine promotes bacterial outgrowth after surgical peritonitis. Phenylephrine may therefore compromise host defence in surgical patients and increase susceptibility towards infection. CLINICAL TRIAL REGISTRATION NCT02675868 (Clinicaltrials.gov).
Collapse
Affiliation(s)
- Roeland F Stolk
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Intensive Care Medicine, Hospital Rijnstate, Arnhem, The Netherlands
| | - Flavia Reinema
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva van der Pasch
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost Schouwstra
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Steffi Bressers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Jelle Gerretsen
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roel Schambergen
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mike Ruth
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans G van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henk J van Leeuwen
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Intensive Care Medicine, Hospital Rijnstate, Arnhem, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Anti-Interleukin-16 Neutralizing Antibody Treatment Alleviates Sepsis-Induced Cardiac Injury and Dysfunction via the Nuclear Factor Erythroid-2 Related Factor 2 Pathway in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6616422. [PMID: 33628366 PMCID: PMC7896865 DOI: 10.1155/2021/6616422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022]
Abstract
Several interleukin (IL) members have been reported to participate in sepsis. In this study, the effects of IL-16 on sepsis-induced cardiac injury and dysfunction were examined, and the related mechanisms were detected. IL-16 expression in septic mice was first measured, and the results showed that both cardiac and serum IL-16 expression levels were increased in mice with sepsis induced by LPS or cecal ligation and puncture (CLP) compared with control mice. Then, IL-16 was neutralized, and the effects on lipopolysaccharide- (LPS-) induced cardiac injury were detected. The results showed that an anti-IL-16 neutralizing antibody (nAb) significantly reduced mortality and increased serum lactate dehydrogenase (LDH), creatine kinase myocardial bound (CK-MB), and cardiac troponin T (cTnT) levels while improving cardiac function in mice with LPS-induced sepsis. Neutralization of IL-16 also increased the activation of antioxidant pathways and the expression of antioxidant factors in septic mice while decreasing the activation of prooxidant pathways and the expression of prooxidants. Treatment with the anti-IL-16 nAb increased mitochondrial apoptosis-inducing factor (AIF) expression, decreased nuclear AIF and cleaved poly-ADP-ribose polymerase (PARP) expression, and decreased TUNEL-positive cell percentages in LPS-treated mice. Additionally, treatment with CPUY192018, the nuclear factor erythroid-2 related factor 2 (Nrf2) pathway, significantly increased mortality and reversed the above effects in mice treated with LPS and the anti-IL-16 nAb. Our results showed that the anti-IL-16 nAb regulates oxidative stress through the Nrf2 pathway and participates in the regulation of cardiac injury in septic mice. Neutralization of IL-16 may be a beneficial strategy for the prevention of cardiac injury and dysfunction in sepsis patients.
Collapse
|
12
|
Tang ZR, Deng SL, Lian ZX, Yu K. Terazosin reduces steroidogenic factor 1 and upregulates heat shock protein 90 expression in LH-induced bovine ovarian theca cells. Free Radic Biol Med 2021; 163:190-195. [PMID: 33352221 DOI: 10.1016/j.freeradbiomed.2020.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/19/2023]
Abstract
Hyperthecosis syndrome is a common endocrine system metabolic disorder in women of childbearing age. The main symptoms are elevated androgen levels, abnormal ovulation, and excessive oxidative stress. Currently, there is no effective treatment for hyperthecosis syndrome. α(1)-adrenergic receptor (ADRA1) is involved in the metabolic pathway of ovarian steroid hormone. This study studied the mechanism of the ADRA1 inhibitor terazosin in the LH-induced bovine theca cells in vitro. We found that terazosin regulates the expression of steroidogenic factor 1 (SF1) and downstream genes through the ERK1/2 pathway, reducing androgen content. Terazosin promotes the expression of HSP90 and reduces the activity of iNOS. In addition, Terazosin up-regulates the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream gene γ-GCS, which improves the ability of theca cells to resist oxidative stress. This study provides a reference for the treatment of human hyperthecosis syndrome.
Collapse
Affiliation(s)
- Zi-Run Tang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Wang Y, Yu W, Shi C, Hu P. Crocetin Attenuates Sepsis-Induced Cardiac Dysfunction via Regulation of Inflammatory Response and Mitochondrial Function. Front Physiol 2020; 11:514. [PMID: 32581829 PMCID: PMC7295980 DOI: 10.3389/fphys.2020.00514] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/27/2020] [Indexed: 01/07/2023] Open
Abstract
Sepsis-induced systemic inflammation can induce cardiac dysfunction, which can result in heart failure and death. Recently, natural drugs/compounds have received increased attention as therapeutic agents to prevent sepsis-induced cardiac dysfunction. Crocetin (CRO) is a natural compound that has been shown to reduce inflammation and cytotoxicity in cardiac ischemia/reperfusion injury. However, the effects of CRO on sepsis-induced cardiac dysfunction have not been evaluated. In this study, we used lipopolysaccharide (LPS)-induced H9c2 cells as an in vitro model to mimic cardiac sepsis. Crocetin significantly alleviated LPS-induced cytotoxicity, cellular apoptosis, and oxidative stress through increased Bcl-2 activity and PI3K-Akt signaling and suppression of caspase 3 and caspase 9 activities. Furthermore, CRO dramatically decreased the mRNA levels of TNF-α, IL-1, IL-6, and IL-8 via suppression of p65/Keap1 signaling and activation of Nrf2/HO-1/NQO1 signaling. In addition, CRO protected mitochondrial respiration, free fatty acid β-oxidation, and mitochondrial morphology in LPS-induced H9c2 cells. This study showed that CRO attenuated LPS-induced cardiac dysfunction via regulation of the inflammatory response and mitochondrial function and potentially had an effect on sepsis-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Yanpeng Wang
- Department of Emergency, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital/Hangzhou Red Cross Hospital, Hangzhou, China
| | - Weiwei Yu
- Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Hangzhou, China
| | - Chenhui Shi
- The Second Clinical Medicine College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Pengfei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
14
|
Abstract
Purpose of Review To briefly review epidemiology and pathophysiology of SICM and provide a more extensive review of the data on diagnostic and management strategies. Recent Findings SICM is likely underdiagnosed and that has mortality implications. Current evidence supports speckle tracking echocardiography to identify decreased contractility irrespective of left ventricular ejection fraction for the diagnosis of SICM. There continues to be a dearth of large clinical trials evaluating the treatment of SICM and current consensus focuses on supportive measures such as vasopressors and inotropes. Summary Sepsis is a significant cause of mortality, and sepsis-induced cardiomyopathy has both prognostic and management implications for these patients. Individualized work-up and management of these patients is crucial to improving outcomes.
Collapse
Affiliation(s)
- Michael L'Heureux
- Division of Pulmonary Disease & Critical Care Medicine, Virginia Commonwealth University, P.O. Box 980050, Richmond, VA, 23298-0050, USA.
| | - Michael Sternberg
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Lisa Brath
- Division of Pulmonary Disease & Critical Care Medicine, Virginia Commonwealth University, P.O. Box 980050, Richmond, VA, 23298-0050, USA
| | - Jeremy Turlington
- Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Markos G Kashiouris
- Division of Pulmonary Disease & Critical Care Medicine, Virginia Commonwealth University, P.O. Box 980050, Richmond, VA, 23298-0050, USA
| |
Collapse
|
15
|
What's New in Shock, July 2019? Shock 2019; 52:1-4. [PMID: 31188264 DOI: 10.1097/shk.0000000000001350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|