1
|
Cavaillon JM, Chaudry IH. Facing stress and inflammation: From the cell to the planet. World J Exp Med 2024; 14:96422. [PMID: 39713080 PMCID: PMC11551703 DOI: 10.5493/wjem.v14.i4.96422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/31/2024] Open
Abstract
As identified in 1936 by Hans Selye, stress is shaping diseases through the induction of inflammation. But inflammation display some yin yang properties. On one hand inflammation is merging with the innate immune response aimed to fight infectious or sterile insults, on the other hand inflammation favors chronic physical or psychological disorders. Nature has equipped the cells, the organs, and the individuals with mediators and mechanisms that allow them to deal with stress, and even a good stress (eustress) has been associated with homeostasis. Likewise, societies and the planet are exposed to stressful settings, but wars and global warming suggest that the regulatory mechanisms are poorly efficient. In this review we list some inducers of the physiological stress, psychologic stress, societal stress, and planetary stress, and mention some of the great number of parameters which affect and modulate the response to stress and render it different from an individual to another, from the cellular level to the societal one. The cell, the organ, the individual, the society, and the planet share many stressors of which the consequences are extremely interconnected ending in the domino effect and the butterfly effect.
Collapse
Affiliation(s)
| | - Irshad H Chaudry
- Department of Surgery, University of Alabama Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
2
|
Zhang P, Wang Y, Yang W, Yin Y, Li C, Ma X, Shi L, Li R, Tao K. 4-Octyl itaconate regulates immune balance by activating Nrf2 and negatively regulating PD-L1 in a mouse model of sepsis. Int J Biol Sci 2022; 18:6189-6209. [PMID: 36439878 PMCID: PMC9682535 DOI: 10.7150/ijbs.74456] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction: Sepsis is a major global health challenge with high mortality rates and no effective treatment. Recent studies have suggested that sepsis may be associated with immune system dysfunction. Itaconate may exert anti-inflammatory effects via Nrf2 signaling. Although Nrf2 regulates oxidative/exogenous stress responses and inhibits inflammatory responses, the mechanism via which Nrf2 regulates immune checkpoints in sepsis remains unclear. Objectives: This study aimed to investigate the role of the Nrf2 signaling pathway in sepsis immunosuppression injury by exploring Nrf2 target genes in inflammatory macrophages in a mouse model of sepsis. Methods: We evaluated the effects of 4-octyl itaconate (OI) on pro-inflammatory and anti-inflammatory cytokines in a mouse model of sepsis and RAW264.7 cells. In addition, we investigated if OI could inhibit LPS-induced oxidative stress by activating Nrf2 signaling in vitro and in vivo. Results: OI reduced the release of pro-inflammatory cytokines and increased the release of anti-inflammatory cytokines, thereby inhibiting inflammation. OI increased glutathione synthase (GSS) expression by activating the Nrf2 signaling pathway to promote GSH synthesis, thus, inhibiting oxidative stress. OI inhibited the early release of inflammatory and oxidative stress-related factors to reduce tissue and organ injury in mice with sepsis, while Nrf2 interfered with PD-L1 induction and inhibited PD-L1 expression at an advanced stage to reduce the occurrence of sepsis immunosuppression. Conclusions: This study indicates that Nrf2 is a novel negative regulator of PD-L1 that functions at immune checkpoints and suggests an underlying mechanism for the anti-inflammatory process mediated by Nrf2.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wengchang Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Jayakumar P, Laganson A, Deng M. GATA6 + Peritoneal Resident Macrophage: The Immune Custodian in the Peritoneal Cavity. Front Pharmacol 2022; 13:866993. [PMID: 35401237 PMCID: PMC8984154 DOI: 10.3389/fphar.2022.866993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Peritoneal resident macrophages (PRMs) have been a prominent topic in the research field of immunology due to their critical roles in immune surveillance in the peritoneal cavity. PRMs initially develop from embryonic progenitor cells and are replenished by bone marrow origin monocytes during inflammation and aging. Furthermore, PRMs have been shown to crosstalk with other cells in the peritoneal cavity to control the immune response during infection, injury, and tumorigenesis. With the advance in genetic studies, GATA-binding factor 6 (GATA6) has been identified as a lineage determining transcription factor of PRMs controlling the phenotypic and functional features of PRMs. Here, we review recent advances in the developmental origin, the phenotypic identity, and functions of PRMs, emphasizing the role of GATA6 in the pathobiology of PRMs in host defense, tissue repairing, and peritoneal tumorigenesis.
Collapse
Affiliation(s)
- Preethi Jayakumar
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Andrea Laganson
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Meihong Deng
- Department of Surgery, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Koga T, Furukawa K, Migita K, Morimoto S, Shimizu T, Fukui S, Umeda M, Endo Y, Sumiyoshi R, Kawashiri SY, Iwamoto N, Ichinose K, Tamai M, Origuchi T, Maeda T, Yachie A, Kawakami A. Granulocyte-macrophage colony-stimulating factor and tumor necrosis factor-α in combination is a useful diagnostic biomarker to distinguish familial Mediterranean fever from sepsis. Arthritis Res Ther 2021; 23:260. [PMID: 34654467 PMCID: PMC8518289 DOI: 10.1186/s13075-021-02644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022] Open
Abstract
Objective To identify potential biomarkers to distinguish familial Mediterranean fever (FMF) from sepsis. Method We recruited 28 patients diagnosed with typical FMF (according to the Tel Hashomer criteria), 22 patients with sepsis, and 118 age-matched controls. Serum levels of 40 cytokines were analyzed using multi-suspension cytokine array. We performed a cluster analysis of each cytokine in the FMF and sepsis groups in order to identify specific molecular networks. Multivariate classification (random forest analysis) and logistic regression analysis were used to rank the cytokines by importance and determine specific biomarkers for distinguishing FMF from sepsis. Results Fifteen of the 40 cytokines were found to be suitable for further analysis. Levels of serum granulocyte-macrophage colony-stimulating factor (GM-CSF), fibroblast growth factor 2, vascular endothelial growth factor, macrophage inflammatory protein-1b, and interleukin-17 were significantly elevated, whereas tumor necrosis factor-α (TNF-α) was significantly lower in patients with FMF compared with those with sepsis. Cytokine clustering patterns differed between the two groups. Multivariate classification followed by logistic regression analysis revealed that measurement of both GM-CSF and TNF-α could distinguish FMF from sepsis with high accuracy (cut-off values for GM-CSF = 8.3 pg/mL; TNF-α = 16.3 pg/mL; sensitivity, 92.9%; specificity, 94.4%; accuracy, 93.4%). Conclusion Determination of GM-CSF and TNF-α levels in combination may represent a biomarker for the differential diagnosis of FMF from sepsis, based on measurement of multiple cytokines. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02644-2.
Collapse
Affiliation(s)
- Tomohiro Koga
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan. .,Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Kaori Furukawa
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shimpei Morimoto
- Nagasaki University Hospital, Clinical Research Center, Nagasaki, Japan
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Nagasaki University Hospital, Clinical Research Center, Nagasaki, Japan
| | - Shoichi Fukui
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masataka Umeda
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of General Medicine, Nagasaki University Hospital, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yushiro Endo
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Nagasaki University Hospital, Clinical Research Center, Nagasaki, Japan
| | - Remi Sumiyoshi
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Nagasaki University Hospital, Clinical Research Center, Nagasaki, Japan
| | - Shin-Ya Kawashiri
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naoki Iwamoto
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kunihiro Ichinose
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mami Tamai
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoki Origuchi
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takahiro Maeda
- Department of General Medicine, Nagasaki University Hospital, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiro Yachie
- Division of Medical Safety, Kanazawa University Hospital, Kanazawa, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
5
|
Neutrophil Elastase Inhibition Ameliorates Endotoxin-induced Myocardial Injury Accompanying Degradation of Cardiac Capillary Glycocalyx. Shock 2021; 54:386-393. [PMID: 31764619 DOI: 10.1097/shk.0000000000001482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Myocardial injury in sepsis may be caused by a burst of several inflammatory mediators, leading to vascular endothelial injuries. However, the contribution of neutrophil elastase (NE) to myocardial injury in sepsis is still unknown. We aimed to evaluate whether endotoxemia-induced myocardial injury is associated with NE. Lipopolysaccharide (LPS) was injected intraperitoneally at a dose of 20 mg/kg into granulocyte-colony-stimulating-factor knockout mice (G-CSF-KO), which have few neutrophils, and littermate control mice. The survival rate of G-CSF-KO mice 48 hours after LPS injection was significantly greater than that of control mice. The serum level of troponin I in G-CSF-KO mice was significantly lower than that in control mice. In addition, the concentration of inflammatory cytokine interleukin-6 (IL-6) was significantly decreased 6 and 12 hours after LPS administration compared with that in control mice. Ultrastructural analysis revealed that vascular endothelial structures and the endothelial glycocalyx in G-CSF-KO mice were clearly preserved. Next, mice were injected with 0.2 mg/kg sivelestat (an NE inhibitor) after LPS administration. The survival rate was significantly higher and the serum level of troponin I was lower in sivelestat-injected mice than in control mice, respectively. Furthermore, IL-6 levels were significantly decreased 6 and 12 hours after LPS administration compared with those in control mice. Vascular endothelial structures and the endothelial glycocalyx in sivelestat-treated mice were clearly preserved at the ultrastructural level. In conclusion, NE is significantly associated with myocardial injury in endotoxemia. Inhibition of NE may be a useful tool for the management of endotoxemia.
Collapse
|
6
|
Kinoshita M, Ito S, Ishikiriyama T, Sekiguchi K, Yamaguchi R, Tsuruhara R, Matsuda A, Koiwa K, Nakashima M, Nakashima H, Miyashita M, Seki S. The Efficacy of Posttreatment with Synthetic C-Reactive Protein in Murine Bacterial Peritonitis via Activation of FcγRI-Expressing Kupffer Cells. J Innate Immun 2021; 13:306-318. [PMID: 33946076 DOI: 10.1159/000515333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/12/2021] [Indexed: 11/19/2022] Open
Abstract
Pretreatment with synthetic C-reactive protein (CRP), a functional CRP peptide, has the potential to augment macrophage phagocytosis by bacterial challenge. However, the posttreatment is clinically ideal. We investigated the efficacy of posttreatment with synthetic CRP on murine cecal ligation and puncture (CLP), focusing on liver macrophages. Mice received CLP, and 1 h later, synthetic CRP or saline was intraperitoneally administered. Posttreatment with synthetic CRP increased the murine survival after CLP. It reduced viable bacterial counts in the liver 24 h after CLP with an increase in the number of Kupffer cells but not monocyte-derived liver macrophages. Posttreatment with synthetic CRP increased the phagolytic activity of Kupffer cells against Escherichia coli (E. coli) as well as capsulated Klebsiella pneumoniae at 3 h after CLP. Synthetic CRP therapy augmented TNF production by E. coli-phagocytosing Kupffer cells, resulting in an increase in tissue TNF levels in the liver at 24 h. Kupffer cells substantially expressed FcγRI, which is a ligand of CRP, and their FcγRI expression was further increased after CLP. In contrast, synthetic CRP therapy affected neither the phagocytic function of monocyte-derived liver macrophages (showing a weak FcγRI expression) nor their TNF production. Depletion of Kupffer cells in mice inhibited these beneficial effects of synthetic CRP in CLP mice. Conclusion: Posttreatment with synthetic CRP effectively improves murine bacterial peritonitis via the activation of phagocytosis of FcγRI-expressing Kupffer cells.
Collapse
Affiliation(s)
- Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Seigo Ito
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Takuya Ishikiriyama
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kumiko Sekiguchi
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, Japan
| | - Ryota Yamaguchi
- Medical Student, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Ryoichi Tsuruhara
- Medical Student, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Akihisa Matsuda
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, Japan
| | - Kazuki Koiwa
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masahiro Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masao Miyashita
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
7
|
Sampei S, Okada H, Tomita H, Takada C, Suzuki K, Kinoshita T, Kobayashi R, Fukuda H, Kawasaki Y, Nishio A, Yano H, Muraki I, Fukuda Y, Suzuki K, Miyazaki N, Watanabe T, Doi T, Yoshida T, Suzuki A, Yoshida S, Kushimoto S, Ogura S. Endothelial Glycocalyx Disorders May Be Associated With Extended Inflammation During Endotoxemia in a Diabetic Mouse Model. Front Cell Dev Biol 2021; 9:623582. [PMID: 33869173 PMCID: PMC8047120 DOI: 10.3389/fcell.2021.623582] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/03/2021] [Indexed: 01/07/2023] Open
Abstract
In diabetes mellitus (DM) patients, the morbidity of infectious disease is increased, and these infections can easily progress from local to systemic infection. Sepsis is a characteristic of organ failure related to microcirculation disorders resulting from endothelial cell injury, whose most frequent comorbidity in patients is DM. The aim of the present study was to evaluate the influence of infection on DM-induced microvascular damage on inflammation and pulmonary endothelial structure using an experimental endotoxemia model. Lipopolysaccharide (LPS; 15 mg/kg) was injected intraperitoneally into 10-week-old male C57BLKS/J Iar- + lepr db /lepr db (db/db) mice and into C57BLKS/J Iar-m + / + lepr db (db/ +) mice, which served as the littermate non-diabetic control. At 48 h after LPS administration, the survival rate of db/db mice (0%, 0/10) was markedly lower (P < 0.05) than that of the db/ + mice (75%, 18/24), whereas the survival rate was 100% in both groups 24 h after LPS administration. In control mice, CD11b-positive cells increased at 6 h after LPS administration; by comparison, the number of CD11b-positive cells increased gradually in db/db mice until 12 h after LPS injection. In the control group, the number of Iba-1-positive cells did not significantly increase before and at 6, 12, and 24 h after LPS injection. Conversely, Iba-1-positive cells continued to increase until 24 h after LPS administration, and this increase was significantly greater than that in the control mice. Expression of Ext1, Csgalnact1, and Vcan related to endothelial glycocalyx synthesis was significantly lower in db/db mice than in the control mice before LPS administration, indicating that endothelial glycocalyx synthesis is attenuated in db/db/mice. In addition, ultrastructural analysis revealed that endothelial glycocalyx was thinner in db/db mice before LPS injection. In conclusion, in db/db mice, the endothelial glycocalyx is already injured before LPS administration, and migration of inflammatory cells is both delayed and expanded. This extended inflammation may be involved in endothelial glycocalyx damage due to the attenuation of endothelial glycocalyx synthesis.
Collapse
Affiliation(s)
- So Sampei
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chihiro Takada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kodai Suzuki
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takamasa Kinoshita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ryo Kobayashi
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Hirotsugu Fukuda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuki Kawasaki
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayane Nishio
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirohisa Yano
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Isamu Muraki
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yohei Fukuda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Keiko Suzuki
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Nagisa Miyazaki
- Department of Internal Medicine, Asahi University School of Dentistry, Mizuho, Japan
| | - Takatomo Watanabe
- Department of Clinical Laboratory, Gifu University Hospital, Gifu, Japan
| | - Tomoaki Doi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahiro Yoshida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akio Suzuki
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Shozo Yoshida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shigeki Kushimoto
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
8
|
Li Y, Zhai P, Zheng Y, Zhang J, Kellum JA, Peng Z. Csf2 Attenuated Sepsis-Induced Acute Kidney Injury by Promoting Alternative Macrophage Transition. Front Immunol 2020; 11:1415. [PMID: 32733471 PMCID: PMC7358306 DOI: 10.3389/fimmu.2020.01415] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a systemic inflammatory state that occurs in response to infection and significantly increases mortality in combination with acute kidney injury (AKI). Macrophages accumulate in the kidney after injury and undergo a transition from a proinflammatory (M1) phenotype to an alternatively activated (M2) phenotype that is required for normal repair. However, the specific signals that regulate the transition from the M1 to M2 phenotype in vivo are unknown. Here, we found an unexpected role of Colony stimulating factor 2 (Csf2) in controlling macrophage transition in vitro and in a mouse model of sepsis induced by cecal ligation and puncture (CLP). We first co-cultured human M1 macrophages with HK-2 cells and characterized cytokine/chemokine profiles via Luminex. Of the cytokines and chemokines that were overexpressed in medium from M1 macrophages cocultured with human kidney-2 (HK-2) cells compared with that from M1 macrophages cultured alone, Csf2 and IL6 showed the greatest increases. Csf2 was exclusively secreted by HK-2 cells but not by M1 macrophages. Furthermore, recombinant human Csf2 protein promoted transition of M1 macrophages to the M2 phenotype in a dose and time-dependent manner. The apoptosis and reactive oxygen species (ROS) release induced by M1 macrophages in HK-2 cells was attenuated after exposure to exogenous Csf2. In addition, the switch from the proinflammatory M1 phenotype to the M2 phenotype occurred via the p-Stat5 pathway, which was activated by Csf2. Importantly, we found that intraperitoneal injection of a Csf2-neutralizing antibody after CLP aggravated kidney injury and suppressed tubular proliferation, subsequently decreasing survival. However, administration of recombinant mouse Csf2 protein could rescue mice with sepsis. Together, our results indicate that Csf2 plays critical roles in regulating macrophage transition via activation of p-STAT5. These data form a foundation upon which new therapeutic strategies can be designed to improve the therapeutic efficacy of cytokine-based treatments for sepsis-induced AKI.
Collapse
Affiliation(s)
- Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pan Zhai
- Department of Neurology, Hubei Province Hospital of Tradition Chinese Medicine, Wuhan, China
| | - Yawen Zheng
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - John A Kellum
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Ipseiz N, Pickering RJ, Rosas M, Tyrrell VJ, Davies LC, Orr SJ, Czubala MA, Fathalla D, Robertson AA, Bryant CE, O'Donnell V, Taylor PR. Tissue-resident macrophages actively suppress IL-1beta release via a reactive prostanoid/IL-10 pathway. EMBO J 2020; 39:e103454. [PMID: 32484988 PMCID: PMC7360975 DOI: 10.15252/embj.2019103454] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/30/2022] Open
Abstract
The alarm cytokine interleukin‐1β (IL‐1β) is a potent activator of the inflammatory cascade following pathogen recognition. IL‐1β production typically requires two signals: first, priming by recognition of pathogen‐associated molecular patterns leads to the production of immature pro‐IL‐1β; subsequently, inflammasome activation by a secondary signal allows cleavage and maturation of IL‐1β from its pro‐form. However, despite the important role of IL‐1β in controlling local and systemic inflammation, its overall regulation is still not fully understood. Here we demonstrate that peritoneal tissue‐resident macrophages use an active inhibitory pathway, to suppress IL‐1β processing, which can otherwise occur in the absence of a second signal. Programming by the transcription factor Gata6 controls the expression of prostacyclin synthase, which is required for prostacyclin production after lipopolysaccharide stimulation and optimal induction of IL‐10. In the absence of secondary signal, IL‐10 potently inhibits IL‐1β processing, providing a previously unrecognized control of IL‐1β in tissue‐resident macrophages.
Collapse
Affiliation(s)
- Natacha Ipseiz
- Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, UK
| | - Robert J Pickering
- Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, UK
| | - Marcela Rosas
- Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, UK
| | - Victoria J Tyrrell
- Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, UK
| | - Luke C Davies
- Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, UK
| | - Selinda J Orr
- Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, UK.,Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Magdalena A Czubala
- Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, UK
| | - Dina Fathalla
- Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, UK.,UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, UK
| | - Avril Ab Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia
| | - Clare E Bryant
- Immunology Catalyst Programme, GSK, Cambridge, UK.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Valerie O'Donnell
- Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, UK
| | - Philip R Taylor
- Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff, UK.,UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, UK
| |
Collapse
|
10
|
Intravenous delivery of granulocyte-macrophage colony stimulating factor impairs survival in lipopolysaccharide-induced sepsis. PLoS One 2019; 14:e0218602. [PMID: 31220157 PMCID: PMC6586330 DOI: 10.1371/journal.pone.0218602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 06/05/2019] [Indexed: 01/11/2023] Open
Abstract
Background Cell-based therapies with bone marrow-derived progenitor cells (BMDPC) lead to an improved clinical outcome in animal sepsis models. In the present study we evaluated the ability of granulocyte macrophage-colony stimulating factor (GM-CSF) to mobilize BMDPC in a lipopolysaccharide (LPS)-induced sepsis model and thereby its potential as a novel treatment strategy. Methods Male Wistar rats received LPS (25μg/kg/h for 4 days) intravenously and were subsequently treated with GM-CSF 12.5μg/kg (0h,24h,48h,72h). As control groups, rats were infused with sodium chloride or GM-CSF only. Clinical and laboratory parameters, proinflammatory plasma cytokines as well as BMDPC counts were analyzed. Cytokine release by isolated peripheral blood mononuclear cells from rat spleen upon incubation with LPS, GM-CSF and a combination of both were investigated in vitro. Results In vivo, rats receiving both LPS and GM-CSF, showed a reduced weight loss and increased mobilization of BMDPC. At the same time, this regime resulted in an increased release of proinflammatory cytokines (IL-6, IL-8) and a significantly increased mortality. In vitro, the combination of LPS and GM-CSF showed a significantly increased IL-6 release upon incubation compared to incubation with LPS or GM-CSF alone. Conclusions GM-CSF did not have a beneficial effect on the clinical course in our LPS-induced sepsis model. It synergistically promoted inflammation with LPS and probably thereby impaired survival.
Collapse
|
11
|
Suzuki K, Okada H, Takemura G, Takada C, Kuroda A, Yano H, Zaikokuji R, Morishita K, Tomita H, Oda K, Matsuo S, Uchida A, Fukuta T, Sampei S, Miyazaki N, Kawaguchi T, Watanabe T, Yoshida T, Ushikoshi H, Yoshida S, Maekawa Y, Ogura S. Neutrophil Elastase Damages the Pulmonary Endothelial Glycocalyx in Lipopolysaccharide-Induced Experimental Endotoxemia. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1526-1535. [PMID: 31108101 DOI: 10.1016/j.ajpath.2019.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/28/2019] [Accepted: 05/01/2019] [Indexed: 11/25/2022]
Abstract
Neutrophil elastase (NE) is necessary for effective sterilization of phagocytosed bacterial and fungal pathogens; however, NE increases alveolocapillary permeability and induces proinflammatory cytokine production in sepsis-induced acute respiratory distress syndrome. Under septic conditions, the pulmonary endothelial glycocalyx covering on the healthy endothelium surface is injured, but the contribution of NE to this injury remains unknown. Our aim was to examine whether NE-induced pulmonary endothelial injury is associated with endotoxemia. Lipopolysaccharide (LPS; 20 mg/kg) was injected intraperitoneally into 9- to 12-week-old granulocyte colony-stimulating factor knockout (G-CSFKO) mice, which harbor few neutrophils, and littermate control mice; in a second assay, mice were injected with the NE-inhibitor sivelestat (0.2 mg/kg) at 3, 6, 9, and 12 hours after LPS administration. Subsequently, vascular endothelial injury was evaluated through ultrastructural analysis. At 48 hours after LPS injection, survival rate was more than threefold higher among G-CSFKO than control mice, and degradation of both thrombomodulin and syndecan-1 was markedly attenuated in G-CSFKO compared with control mice. Ultrastructural analysis revealed attenuated vascular endothelial injury and clear preservation of the endothelial glycocalyx in G-CSFKO mice. Moreover, after LPS exposure, survival rate was approximately ninefold higher among sivelestat-injected mice than control mice, and sivelestat treatment potently preserved vascular endothelial structures and the endothelial glycocalyx. In conclusion, NE is associated with pulmonary endothelial injury under LPS-induced endotoxemic conditions.
Collapse
Affiliation(s)
- Kodai Suzuki
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Genzou Takemura
- Department of Internal Medicine, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Chihiro Takada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayumi Kuroda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirohisa Yano
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ryogen Zaikokuji
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan; Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Kentaro Morishita
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazumasa Oda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Saori Matsuo
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akihiro Uchida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tetsuya Fukuta
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - So Sampei
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Nagisa Miyazaki
- Department of Internal Medicine, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Tomonori Kawaguchi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takatomo Watanabe
- Department of Clinical Laboratory, Gifu University Hospital, Gifu, Japan
| | - Takahiro Yoshida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroaki Ushikoshi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shozo Yoshida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoichi Maekawa
- Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Gifu, Japan; Domain of Integrated Life Systems, Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
12
|
Trapnell BC, Nakata K, Bonella F, Campo I, Griese M, Hamilton J, Wang T, Morgan C, Cottin V, McCarthy C. Pulmonary alveolar proteinosis. Nat Rev Dis Primers 2019; 5:16. [PMID: 30846703 DOI: 10.1038/s41572-019-0066-3] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pulmonary alveolar proteinosis (PAP) is a syndrome characterized by the accumulation of alveolar surfactant and dysfunction of alveolar macrophages. PAP results in progressive dyspnoea of insidious onset, hypoxaemic respiratory failure, secondary infections and pulmonary fibrosis. PAP can be classified into different types on the basis of the pathogenetic mechanism: primary PAP is characterized by the disruption of granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling and can be autoimmune (caused by elevated levels of GM-CSF autoantibodies) or hereditary (due to mutations in CSF2RA or CSF2RB, encoding GM-CSF receptor subunits); secondary PAP results from various underlying conditions; and congenital PAP is caused by mutations in genes involved in surfactant production. In most patients, pathogenesis is driven by reduced GM-CSF-dependent cholesterol clearance in alveolar macrophages, which impairs alveolar surfactant clearance. PAP has a prevalence of at least 7 cases per million individuals in large population studies and affects men, women and children of all ages, ethnicities and geographical locations irrespective of socioeconomic status, although it is more-prevalent in smokers. Autoimmune PAP accounts for >90% of all cases. Management aims at improving symptoms and quality of life; whole-lung lavage effectively removes excessive surfactant. Novel pathogenesis-based therapies are in development, targeting GM-CSF signalling, immune modulation and cholesterol homeostasis.
Collapse
Affiliation(s)
- Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Koh Nakata
- Bioscience Medical Research Center, Niigata University, Niigata, Japan
| | - Francesco Bonella
- Interstitial and Rare Lung Disease Unit, Pneumology Department, Ruhrlandklinik University Hospital, University of Essen, Essen, Germany
| | - Ilaria Campo
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Matthias Griese
- Pediatric Pneumology, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - John Hamilton
- University of Melbourne, Parkville, Victoria, Australia
| | - Tisha Wang
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Cliff Morgan
- Department of Critical Care and Anaesthesia, Royal Brompton Hospital, London, UK
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases, University of Lyon, Lyon, France
| | - Cormac McCarthy
- Department of Medicine, St. Vincent's University Hospital and University College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Chousterman BG, Arnaud M. Is There a Role for Hematopoietic Growth Factors During Sepsis? Front Immunol 2018; 9:1015. [PMID: 29977234 PMCID: PMC6021493 DOI: 10.3389/fimmu.2018.01015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
Sepsis is a complex syndrome characterized by simultaneous activation of pro- and anti-inflammatory processes. After an inflammatory phase, patients present signs of immunosuppression and possibly persistent inflammation. Hematopoietic growth factors (HGFs) are glycoproteins that cause immune cells to mature and/or proliferate. HGFs also have a profound effect on cell functions and behavior. HGFs play crucial role in sepsis pathophysiology and were tested in several clinical trials without success to date. This review summarizes the role played by HGFs during sepsis and their potential therapeutic role in the Management of sepsis-related immune disturbances.
Collapse
Affiliation(s)
- Benjamin G Chousterman
- Département d'Anesthésie-Réanimation-SMUR, Hôpitaux Universitaires Lariboisière - Saint-Louis, AP-HP, Paris, France.,INSERM U1160, Hôpital Saint-Louis, Paris, France
| | | |
Collapse
|
14
|
Galbas T, Raymond M, Sabourin A, Bourgeois-Daigneault MC, Guimont-Desrochers F, Yun TJ, Cailhier JF, Ishido S, Lesage S, Cheong C, Thibodeau J. MARCH1 E3 Ubiquitin Ligase Dampens the Innate Inflammatory Response by Modulating Monocyte Functions in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 198:852-861. [PMID: 27940660 DOI: 10.4049/jimmunol.1601168] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/09/2016] [Indexed: 12/15/2022]
Abstract
Ubiquitination was recently identified as a central process in the pathogenesis and development of numerous inflammatory diseases, such as obesity, atherosclerosis, and asthma. Treatment with proteasomal inhibitors led to severe side effects because ubiquitination is heavily involved in a plethora of cellular functions. Thus, new players regulating ubiquitination processes must be identified to improve therapies for inflammatory diseases. In addition to their role in adaptive immunity, endosomal MHC class II (MHCII) molecules were shown to modulate innate immune responses by fine tuning the TLR4 signaling pathway. However, the role of MHCII ubiquitination by membrane associated ring-CH-type finger 1 (MARCH1) E3 ubiquitin ligase in this process remains to be assessed. In this article, we demonstrate that MARCH1 is a key inhibitor of innate inflammation in response to bacterial endotoxins. The higher mortality of March1-/- mice challenged with a lethal dose of LPS was associated with significantly stronger systemic production of proinflammatory cytokines and splenic NK cell activation; however, we did not find evidence that MARCH1 modulates LPS or IL-10 signaling pathways. Instead, the mechanism by which MARCH1 protects against endotoxic shock rests on its capacity to promote the transition of monocytes from Ly6CHi to Ly6C+/- Moreover, in competitive bone marrow chimeras, March1-/- monocytes and polymorphonuclear neutrophils outcompeted wild-type cells with regard to bone marrow egress and homing to peripheral organs. We conclude that MARCH1 exerts MHCII-independent effects that regulate the innate arm of immunity. Thus, MARCH1 might represent a potential new target for emerging therapies based on ubiquitination reactions in inflammatory diseases.
Collapse
Affiliation(s)
- Tristan Galbas
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec H3T 1J4, Canada.,Laboratoire d'Immunologie Moléculaire, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Maxime Raymond
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec H3T 1J4, Canada.,Laboratoire d'Immunologie Moléculaire, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Antoine Sabourin
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec H3T 1J4, Canada.,Laboratoire d'Immunologie Moléculaire, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec H3T 1J4, Canada.,Laboratoire d'Immunologie Moléculaire, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Fanny Guimont-Desrochers
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec H3T 1J4, Canada.,Immunology-Oncology Section, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Tae Jin Yun
- Laboratoire de Physiologie Cellulaire et Immunologie, Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Jean-François Cailhier
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2X 0A9, Canada; and
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine 1-1, Mukogawa-cho, Nishinomiya 663-8501, Japan
| | - Sylvie Lesage
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec H3T 1J4, Canada.,Immunology-Oncology Section, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Cheolho Cheong
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec H3T 1J4, Canada.,Laboratoire de Physiologie Cellulaire et Immunologie, Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Jacques Thibodeau
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec H3T 1J4, Canada; .,Laboratoire d'Immunologie Moléculaire, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
15
|
Pivotal roles of GM-CSF in autoimmunity and inflammation. Mediators Inflamm 2015; 2015:568543. [PMID: 25838639 PMCID: PMC4370199 DOI: 10.1155/2015/568543] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/23/2015] [Indexed: 12/14/2022] Open
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor, which stimulates the proliferation of granulocytes and macrophages from bone marrow precursor cells. In autoimmune and inflammatory diseases, Th17 cells have been considered as strong inducers of tissue inflammation. However, recent evidence indicates that GM-CSF has prominent proinflammatory functions and that this growth factor (not IL-17) is critical for the pathogenicity of CD4+ T cells. Therefore, the mechanism of GM-CSF-producing CD4+ T cell differentiation and the role of GM-CSF in the development of autoimmune and inflammatory diseases are gaining increasing attention. This review summarizes the latest knowledge of GM-CSF and its relationship with autoimmune and inflammatory diseases. The potential therapies targeting GM-CSF as well as their possible side effects have also been addressed in this review.
Collapse
|
16
|
Hamilton JA. GM-CSF as a target in inflammatory/autoimmune disease: current evidence and future therapeutic potential. Expert Rev Clin Immunol 2015; 11:457-65. [PMID: 25748625 DOI: 10.1586/1744666x.2015.1024110] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) can be viewed as a pro-inflammatory cytokine rather than as a key regulator of steady state and systemic myelopoiesis. Key aspects of GM-CSF biology need to be clarified such as pro-survival vs activation/differentiation function, its cellular sources, its responsive cell populations, its downstream mediators/pathways, and when GM-CSF is relevant. Striking effects of GM-CSF depletion/deletion in some pre-clinical autoimmune/inflammation models have been reported. Systemic effects of administered GM-CSF are not necessarily informative about its local blockade in disease. Recent clinical RA trials, particularly Phase II trials with mavrilimumab (anti-GM-CSFRα Ab), show rapid and impressive efficacy with no significant adverse effects. Larger and longer trials targeting GM-CSF are needed and with careful monitoring of unwanted side effects. This review summarizes the most recent information on these topics.
Collapse
Affiliation(s)
- John A Hamilton
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
17
|
Effect of apoptotic cell recognition on macrophage polarization and mycobacterial persistence. Infect Immun 2014; 82:3968-78. [PMID: 25024361 DOI: 10.1128/iai.02194-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Intracellular Mycobacterium leprae infection modifies host macrophage programming, creating a protective niche for bacterial survival. The milieu regulating cellular apoptosis in the tissue plays an important role in defining susceptible and/or resistant phenotypes. A higher density of apoptotic cells has been demonstrated in paucibacillary leprosy lesions than in multibacillary ones. However, the effect of apoptotic cell removal on M. leprae-stimulated cells has yet to be fully elucidated. In this study, we investigated whether apoptotic cell removal (efferocytosis) induces different phenotypes in proinflammatory (Mϕ1) and anti-inflammatory (Mϕ2) macrophages in the presence of M. leprae. We stimulated Mϕ1 and Mϕ2 cells with M. leprae in the presence or absence of apoptotic cells and subsequently evaluated the M. leprae uptake, cell phenotype, and cytokine pattern in the supernatants. In the presence of M. leprae and apoptotic cells, Mϕ1 macrophages changed their phenotype to resemble the Mϕ2 phenotype, displaying increased CD163 and SRA-I expression as well as higher phagocytic capacity. Efferocytosis increased M. leprae survival in Mϕ1 cells, accompanied by reduced interleukin-15 (IL-15) and IL-6 levels and increased transforming growth factor beta (TGF-β) and IL-10 secretion. Mϕ1 cells primed with M. leprae in the presence of apoptotic cells induced the secretion of Th2 cytokines IL-4 and IL-13 in autologous T cells compared with cultures stimulated with M. leprae or apoptotic cells alone. Efferocytosis did not alter the Mϕ2 cell phenotype or cytokine secretion profile, except for TGF-β. Based on these data, we suggest that, in paucibacillary leprosy patients, efferocytosis contributes to mycobacterial persistence by increasing the Mϕ2 population and sustaining the infection.
Collapse
|
18
|
Abstract
A relative immunosuppression is observed in patients after sepsis, trauma, burns, or any severe insults. It is currently proposed that selected patients will benefit from treatment aimed at boosting their immune systems. However, the host immune response needs to be considered in context with pathogen-type, timing,and mainly tissue specificity. Indeed, the immune status of leukocytes is not universally decreased and their activated status in tissues contributes to organ failure. Accordingly, any new immune-stimulatory therapeutic intervention should take into consideration potentially deleterious effects in some situations.
Collapse
Affiliation(s)
- Jean-Marc Cavaillon
- Unit Cytokines & Inflammation, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France
| | - Damon Eisen
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, 300 Grattan Street, Parkville 3050 Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victorian Infectious Diseases Service, Royal Melbourne Hospital, 300 Grattan Street, Parkville 3050 Victoria, Australia
| | - Djilalli Annane
- Intensive Care Unit, Hôpital Raymond Poincaré, 104, boulevard Raymond-Poincaré, 92380 Garches, France
| |
Collapse
|
19
|
Däbritz J. Granulocyte macrophage colony-stimulating factor and the intestinal innate immune cell homeostasis in Crohn's disease. Am J Physiol Gastrointest Liver Physiol 2014; 306:G455-65. [PMID: 24503766 DOI: 10.1152/ajpgi.00409.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Current literature consolidates the view of Crohn's disease (CD) as a form of immunodeficiency highlighting dysregulation of intestinal innate immunity in the pathogenesis of CD. Intestinal macrophages derived from blood monocytes play a key role in sustaining the innate immune homeostasis in the intestine, suggesting that the monocyte/macrophage compartment might be an attractive therapeutic target for the management of CD. Granulocyte macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor that also promotes myeloid cell activation, proliferation, and differentiation. GM-CSF has a protective effect in human CD and mouse models of colitis. However, the role of GM-CSF in immune and inflammatory reactions in the intestine is not well defined. Beneficial effects exerted by GM-CSF during intestinal inflammation could relate to modulation of the mucosal barrier function in the intestine, including epithelial cell proliferation, survival, restitution, and immunomodulatory actions. The aim of this review is to summarize potential mechanistic roles of GM-CSF in intestinal innate immune cell homeostasis and to highlight its central role in maintenance of the intestinal immune barrier in the context of immunodeficiency in CD.
Collapse
Affiliation(s)
- Jan Däbritz
- The Royal Children's Hospital Melbourne, Murdoch Children's Research Institute, Gastrointestinal Research in Inflammation & Pathology, Parkville, Victoria, Australia; University of Melbourne, Melbourne Medical School, Department of Paediatrics, Parkville, Victoria, Australia; University Children's Hospital Münster, Department of Pediatric Rheumatology and Immunology, Münster, Germany; and University of Münster, Interdisciplinary Center for Clinical Research, Münster, Germany
| |
Collapse
|
20
|
Bein K, Di Giuseppe M, Mischler SE, Ortiz LA, Leikauf GD. LPS-treated macrophage cytokines repress surfactant protein-B in lung epithelial cells. Am J Respir Cell Mol Biol 2013; 49:306-15. [PMID: 23590297 PMCID: PMC3824031 DOI: 10.1165/rcmb.2012-0283oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 03/07/2013] [Indexed: 02/04/2023] Open
Abstract
In the mouse lung, Escherichia coli LPS can decrease surfactant protein-B (SFTPB) mRNA and protein concentrations. LPS also regulates the expression, synthesis, and concentrations of a variety of gene and metabolic products that inhibit SFTPB gene expression. The purpose of the present study was to determine whether LPS acts directly or indirectly on pulmonary epithelial cells to trigger signaling pathways that inhibit SFTPB expression, and whether the transcription factor CCAAT/enhancer binding protein (C/EBP)-β (CEBPB) is a downstream inhibitory effector. To investigate the mechanism of SFTPB repression, the human pulmonary epithelial cell lines NCI-H441 (H441) and NCI-H820 (H820) and the mouse macrophage-like cell line RAW264.7 were treated with LPS. Whereas LPS did not decrease SFTPB transcripts in H441 or H820 cells, the conditioned medium of LPS-treated RAW264.7 cells decreased SFTPB transcripts in H441 and H820 cells, and inhibited SFTPB promoter activity in H441 cells. In the presence of neutralizing anti-tumor necrosis factor (TNF) antibodies, the conditioned medium of LPS-treated RAW264.7 cells did not inhibit SFTPB promoter activity. In H441 cells treated with recombinant TNF protein, SFTPB transcripts decreased, whereas CEBPB transcripts increased and the transient coexpression of CEBPB decreased SFTPB promoter activity. Further, CEBPB short, interfering RNA increased basal SFTPB transcripts and countered the decrease of SFTPB transcripts by TNF. Together, these findings suggest that macrophages participate in the repression of SFTPB expression by LPS, and that macrophage-released cytokines (including TNF) regulate the transcription factor CEBPB, which can function as a downstream transcriptional repressor of SFTPB gene expression in pulmonary epithelial cells.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA.
| | | | | | | | | |
Collapse
|
21
|
Robbins CS, Swirski FK. Newly discovered innate response activator B cells: crucial responders against microbial sepsis. Expert Rev Clin Immunol 2012; 8:405-7. [PMID: 22882214 DOI: 10.1586/eci.12.32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Anticancer agent 2-methoxyestradiol improves survival in septic mice by reducing the production of cytokines and nitric oxide. Shock 2012; 36:510-6. [PMID: 21841536 DOI: 10.1097/shk.0b013e318231866f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytokine production is critical in sepsis. 2-Methoxyestradiol (2ME2), an endogenous metabolite of estradiol, inhibits hypoxia-inducible factor 1α (HIF-1α) and is an antiangiogenic and antitumor agent. We investigated the effect of 2ME2 on cytokine production and survival in septic mice. Using i.p. LPS or cecal ligation and puncture (CLP), sepsis was induced in BALB/c mice that were simultaneously or later treated with 2ME2 or vehicle. Twelve hours after the LPS injection, serum and peritoneal fluid cytokine and nitric oxide (NO) levels were analyzed using enzyme-linked immunosorbent assay and the Griess reaction. Lung injuries were histologically analyzed, and liver and kidney injuries were biochemically analyzed. Survival was determined 7 days after LPS injection or CLP procedure. In vivo and in vitro effects of 2ME2 on LPS-induced macrophage inflammation were determined. The effect of 2ME2 on HIF-1α expression, nuclear factor κB (NF-κB), and inducible NO synthase (iNOS) in LPS-treated RAW264.7 cells, a murine macrophage cell line, was determined using Western blotting. 2-Methoxyestradiol treatment reduced LPS-induced lung, liver, and kidney injury. Both early and late 2ME2 treatment prolonged survival in LPS- and CLP-induced sepsis. 2-Methoxyestradiol significantly reduced IL-1β, IL-6, TNF-α, and NO levels in septic mice as well as in LPS-stimulated peritoneal macrophages. 2-Methoxyestradiol treatment also reduced the LPS-induced expression of HIF-1α, iNOS, and pNF-κB in RAW264.7 cells, as well as iNOS and pNF-κB expression in siHIF-1α-RAW264.7 cells. 2-Methoxyestradiol prolongs survival and reduces lung, liver, and kidney injury in septic mice by inhibiting iNOS/NO and cytokines through HIF-1α and NF-κB signaling.
Collapse
|
23
|
Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol 2011; 19:198-208. [PMID: 21296575 DOI: 10.1016/j.tim.2011.01.001] [Citation(s) in RCA: 516] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/27/2010] [Accepted: 01/07/2011] [Indexed: 12/12/2022]
Abstract
Sepsis is a serious medical condition characterized by dysregulated systemic inflammatory responses followed by immunosuppression. To study the pathophysiology of sepsis, diverse animal models have been developed. Polymicrobial sepsis induced by cecal ligation and puncture (CLP) is the most frequently used model because it closely resembles the progression and characteristics of human sepsis. Here we summarize the role of several immune components in the pathogenesis of sepsis induced by CLP. However, several therapies proposed on the basis of promising results obtained by CLP could not be translated to the clinic. This demonstrates that experimental sepsis models do not completely mimic human sepsis. We propose several strategies to narrow the gap between experimental sepsis models and clinical sepsis, including targeting factors that contribute to the immunosuppressive phase of sepsis, and reproducing the heterogeneity of human patients.
Collapse
|
24
|
Wheeler DS, Jeffries HE, Zimmerman JJ, Wong HR, Carcillo JA. Sepsis in the pediatric cardiac intensive care unit. World J Pediatr Congenit Heart Surg 2011; 2:393-9. [PMID: 22337571 PMCID: PMC3277844 DOI: 10.1177/2150135111403781] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The survival rate for children with congenital heart disease (CHD) has increased significantly coincident with improved techniques in cardiothoracic surgery, cardiopulmonary bypass and myocardial protection, and perioperative care. Cardiopulmonary bypass, likely in combination with ischemia-reperfusion injury, hypothermia, and surgical trauma, elicits a complex, systemic inflammatory response that is characterized by activation of the complement cascade, release of endotoxin, activation of leukocytes and the vascular endothelium, and release of proinflammatory cytokines. This complex inflammatory state causes a transient immunosuppressed state, which may increase the risk of hospital-acquired infection in these children. Postoperative sepsis occurs in nearly 3% of children undergoing cardiac surgery and has been associated with longer length of stay and mortality risks in the pediatric cardiac intensive care unit. Herein, we review the epidemiology, pathobiology, and management of sepsis in the pediatric cardiac intensive care unit.
Collapse
Affiliation(s)
- Derek S. Wheeler
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine; The Kindervelt Laboratory for Critical Care Medicine Research, Cincinnati Children’s Research Foundation; Cincinnati, OH
| | - Howard E. Jeffries
- Division of Pediatric Critical Care Medicine, Seattle Children’s Hospital, Pittsburgh, PA
| | - Jerry J. Zimmerman
- Division of Pediatric Critical Care Medicine, Seattle Children’s Hospital, Pittsburgh, PA
| | - Hector R. Wong
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine; The Kindervelt Laboratory for Critical Care Medicine Research, Cincinnati Children’s Research Foundation; Cincinnati, OH
| | - Joseph A. Carcillo
- Department of Critical Care Medicine, University of Pittsburgh Medical Center; Children’s Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
25
|
Let the treatment fit the disease*. Crit Care Med 2011; 39:1549-50. [DOI: 10.1097/ccm.0b013e318211fb87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Abstract
Patients with critical illness are heterogeneous, with differing physiologic requirements over time. Goal-directed therapy in the emergency room demonstrates that protocolized care could result in improved outcomes. Subsequent studies have confirmed benefit with such a "bundle-based approach" in the emergency room and in preoperative and postoperative scenarios. However, this cannot be necessarily extrapolated to the medium-term and long-term care pathway of the critically ill patient. It is likely that the development of mitochondrial dysfunction could result in goal-directed types of approaches being detrimental. Equally, arterial pressure aims are likely to be considerably different as the patient's physiology moves toward "hibernation." The agents we utilize as sedative and pressor agents have considerable effects on immune function and the inflammatory profile, and should be considered as part of the total clinical picture. The role of gut failure in driving inflammation is considerable, and the drive to feed enterally, regardless of aspirate volume, may be detrimental in those with degrees of ileus, which is often a difficult diagnosis in the critically ill. The pathogenesis of liver dysfunction may be, at least in part, related to venous engorgement that will contribute toward portal hypertension and gut edema. This, in association with loss of the hepatosplanchnic buffer response, it is likely to contribute to venous pooling in the abdominal cavity, impaired venous return, and decreased central blood volumes. Therapies such as those used in "small-for-size syndrome" may have a role in the chronic stages of septic vascular failure.
Collapse
|
27
|
Thorgersen EB, Ludviksen JK, Lambris JD, Sfyroera G, Nielsen EW, Mollnes TE. Anti-inflammatory effects of C1-Inhibitor in porcine and human whole blood are independent of its protease inhibition activity. Innate Immun 2010; 16:254-64. [PMID: 19710096 PMCID: PMC2891294 DOI: 10.1177/1753425909340420] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
C1-Inhibitor (C1-INH) is an important biological inhibitor, regulating several protein cascade systems. Recent research has shown that the molecule exhibits properties not dependent on its protease inhibition activity. Serum and whole blood from pigs and humans were pre-incubated with C1-INH, iC1-INH or the complement inhibitors SPICE or compstatin. Whole, live Escherichia coli were then added for further incubation. Complement activation, a range of cytokines, chemokines and growth factors, as well as the leukocyte activation markers wCD11R3 (pig) and CD11b (human) were measured. Both C1-INH and iC1-INH dose-dependently and significantly (P<0.05) reduced a range of E. coli-induced pro-inflammatory cytokines and chemokines in porcine and human whole blood, as well as growth factors in human whole blood. Differences between the two forms of C1-INH and between the two species were modest. Most of these anti-inflammatory effects could not be explained by complement inhibition, as specific complement inhibitors had minor effect on several of the mediators. C1-Inhibitor had no inhibitory effect on E. coli-induced complement activation, while iC1-INH enhanced complement activation. The presented data indicate that C1-INH has broad anti-inflammatory effects in E. coli-induced inflammation in pig and human whole blood. These effects are largely independent of the protease inhibition activity.
Collapse
Affiliation(s)
- Ebbe Billmann Thorgersen
- Institute of Immunology, Rikshospitalet University Hospital, and University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
28
|
Does polymicrobial sepsis exert cardiac dysfunction directly through toll-like receptor 2? Crit Care Med 2010; 38:1384-5. [PMID: 20404635 DOI: 10.1097/ccm.0b013e3181da4662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Carey B, Trapnell BC. The molecular basis of pulmonary alveolar proteinosis. Clin Immunol 2010; 135:223-35. [PMID: 20338813 DOI: 10.1016/j.clim.2010.02.017] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 01/12/2023]
Abstract
Pulmonary alveolar proteinosis (PAP) comprises a heterogenous group of diseases characterized by abnormal surfactant accumulation resulting in respiratory insufficiency, and defects in alveolar macrophage- and neutrophil-mediated host defense. Basic, clinical and translational research over the past two decades have raised PAP from obscurity, identifying the molecular pathogenesis in over 90% of cases as a spectrum of diseases involving the disruption of GM-CSF signaling. Autoimmune PAP represents the vast majority of cases and is caused by neutralizing GM-CSF autoantibodies. Genetic mutations that disrupt GM-CSF receptor signaling comprise a rare form of hereditary PAP. In both autoimmune and hereditary PAP, loss of GM-CSF signaling blocks the terminal differentiation of alveolar macrophages in the lungs impairing the ability of alveolar macrophages to catabolize surfactant and to perform many host defense functions. Secondary PAP occurs in a variety of clinical diseases that presumedly cause the syndrome by reducing the numbers or functions of alveolar macrophages, thereby impairing alveolar macrophage-mediated pulmonary surfactant clearance. A similar phenotype occurs in mice deficient in the production of GM-CSF or GM-CSF receptors. PAP and related research has uncovered a critical and emerging role for GM-CSF in the regulation of pulmonary surfactant homeostasis, lung host defense, and systemic immunity.
Collapse
Affiliation(s)
- Brenna Carey
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Division of Critical Care, Pulmonary and Sleep Medicine, University of Cincinnati, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
30
|
Lee JH, Wang C, Kim CH. FoxP3+ regulatory T cells restrain splenic extramedullary myelopoiesis via suppression of hemopoietic cytokine-producing T cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:6377-86. [PMID: 19890066 DOI: 10.4049/jimmunol.0901268] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Extramedullary myelopoiesis occurs in peripheral organs such as spleen and produces many types of myeloid cells with diverse functions in response to inflammation and infection. It is increased during immune responses and chronic inflammation and is a significant factor in regulating inflammatory diseases and immunity. Increased myeloid cells are found in FoxP3-deficient mice but the mechanism has been unclear. We investigated the mechanism by which FoxP3(+) regulatory T cells regulate the extramedullary myelopoiesis. We found that Ab or genetic depletion of FoxP3(+) regulatory T cells greatly increased the number of the myeloid progenitors in spleen during immune responses. Consistently, the splenic myelopoiesis was effectively suppressed by increased numbers of natural or induced FoxP3(+) regulatory T cells. We demonstrated that myelopoiesis is positively regulated by splenic CD4(+) T cells that produce myelopoietic cytokines (GM-CSF and IL-3), and these effector CD4(+) T cells are induced from naive CD4(+) T cells in response to antigenic stimulation. FoxP3(+) regulatory T cells were able to effectively suppress the differentiation of naive T cells into myelopoietic cytokine-producing T cells. This suppression was found to be dependent on cell contact but independent of TGFbeta. Unlike splenic myelopoiesis, marrow myelopoiesis is not significantly affected by FoxP3(+) regulatory T cells. We conclude that FoxP3(+) T cells can negatively regulate splenic extramedullary myelopoiesis by suppressing the naive T cell differentiation into myelopoietic cytokine-producing CD4(+) T cells. Our results provide new insights into regulation of extramedullary myelopoiesis.
Collapse
Affiliation(s)
- Jee H Lee
- Department of Comparative Pathobiology, Purdue Cancer Center, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
31
|
CpG-free plasmid DNA prevents deterioration of pulmonary function in mice. Eur J Pharm Biopharm 2009; 74:427-34. [PMID: 19961934 DOI: 10.1016/j.ejpb.2009.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/26/2009] [Accepted: 11/27/2009] [Indexed: 11/23/2022]
Abstract
Nonviral gene vectors have been shown to be therapeutically effective in various animal models of inherited and acquired lung diseases. Although an acute unmethylated CG dinucleotide (CpG)-mediated inflammatory response has been previously observed for first-generation plasmids, its effect on pulmonary function has not been investigated to date. Here, we present data on lung functional parameters together with histopathology, cellular and inflammatory events in response to pulmonary administration of DNA-containing particles. We show that aerosol delivery of polyethylenimine gene vectors containing a first-generation CpG-rich plasmid induced an inflammatory response which was associated with a decrease in lung compliance. In contrast to these observations, aerosol application of CpG-free plasmid DNA prevented immune response and impairment of pulmonary function. These results demonstrate that aerosol delivery of CpG-free plasmid DNA is critical to avoid alteration of pulmonary function. Therefore, we suggest to use CpG-free pDNA for gene delivery to the lungs in future.
Collapse
|
32
|
Trapnell BC, Carey BC, Uchida K, Suzuki T. Pulmonary alveolar proteinosis, a primary immunodeficiency of impaired GM-CSF stimulation of macrophages. Curr Opin Immunol 2009; 21:514-21. [PMID: 19796925 PMCID: PMC2779868 DOI: 10.1016/j.coi.2009.09.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/24/2009] [Accepted: 09/10/2009] [Indexed: 12/01/2022]
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare syndrome characterized by accumulation of pulmonary surfactant, respiratory insufficiency, and increased infections. It occurs in various clinical settings that disrupt surfactant catabolism in alveolar macrophages, including a relatively more common autoimmune disease caused by GM-CSF autoantibodies and a rare congenital disease caused by CSF2RA mutations. Recent results demonstrate that GM-CSF is crucial for alveolar macrophage terminal differentiation and immune functions, pulmonary surfactant homeostasis, and lung host defense. GM-CSF is also required to determine the basal functional capacity of circulating neutrophils, including adhesion, phagocytosis, and microbial killing. PAP research has illuminated the crucial role of GM-CSF in innate immunity and led to novel therapy for PAP and the potential use of anti-GM-CSF therapy in other common disorders.
Collapse
Affiliation(s)
- Bruce C Trapnell
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | | | | | | |
Collapse
|
33
|
Wheeler DS, Zingarelli B, Wheeler WJ, Wong HR. Novel pharmacologic approaches to the management of sepsis: targeting the host inflammatory response. RECENT PATENTS ON INFLAMMATION & ALLERGY DRUG DISCOVERY 2009; 3:96-112. [PMID: 19519586 PMCID: PMC2754156 DOI: 10.2174/187221309788489779] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sepsis is currently the 10(th) leading cause of death overall and accounts for significant healthcare expenditures in the developed world. There are now more deaths attributable to sepsis than coronary artery disease, stroke, or cancer, and it is widely believed that the incidence of sepsis and sepsis-related mortality will continue to rise. Based on these sobering statistics, there is great interest in identifying novel treatments for managing critically ill children and adults with sepsis. Unfortunately, to date, there have been very few successful therapeutic agents employed in the clinical setting. Despite these disappointing results, new therapeutic agents continue to be identified, and there is reason for optimism and hope for the future. Herein, we will briefly review several novel therapeutic adjuncts for the management of critically ill patients with sepsis. We will largely focus on those therapies that directly target the host inflammatory response, specifically those that result in activation of the transcription factor, nuclear factor (NF)-kappaB. We will also reference some of the patents recently filed that pertain to the host innate immune response and sepsis.
Collapse
Affiliation(s)
- Derek S Wheeler
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA.
| | | | | | | |
Collapse
|
34
|
Berczi I, Quintanar-Stephano A, Kovacs K. Neuroimmune regulation in immunocompetence, acute illness, and healing. Ann N Y Acad Sci 2009; 1153:220-39. [PMID: 19236345 DOI: 10.1111/j.1749-6632.2008.03975.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adaptive immunocompetence is maintained by growth hormone (GH), prolactin (PRL), and vasopressin (VP). Innate or natural immunocompetence depends on cytokines, hormones (especially of the hypothalamus-pituitary-adrenal axis), and catecholamines. The acute phase response (APR, or acute febrile illness) is an emergency defense reaction whereby the adaptive, T cell-dependent, immune reactions are suppressed and the innate immune function is dramatically amplified. Infection and various forms of injury induce APR. Cytokines [interleukin (IL)-1beta, tumor necrosis factor-alpha, and IL-6] stimulate corticotropin-releasing hormone (CRH) and VP secretion and cause a "sympathetic outflow." Colony-stimulating factors activate leukocytes. CRH is a powerful activator of the pituitary adrenocortical axis and elevates glucocorticoid (GC) levels. Cytokines, GCs, and catecholamines play fundamental roles in the amplification of natural immune defense mechanisms. VP supports the APR at this stage. However, VP remains active and is elevated for a longer period than is CRH. VP, but not CRH, is elevated during chronic inflammatory diseases. VP controls adaptive immune function and stimulates adrenocorticotropic hormone (ACTH) and PRL secretion. PRL maintains the function of the thymus and of the T cell-dependent adaptive immune system. The ACTH-adrenal axis stimulates natural immunity and of suppressor/regulatory T cells, which suppress the adaptive immune system. VP also has a direct effect on lymphoid cells, the significance of which remains to be elucidated. It is suggested that VP regulates the process of recovery from acute illness.
Collapse
Affiliation(s)
- Istvan Berczi
- Department of Immunology, Faculty of Medicine, the University of Manitoba, Winnipeg, Canada.
| | | | | |
Collapse
|
35
|
WHAT'S NEW IN SHOCK, OCTOBER 2008? Shock 2008; 30:341-3. [DOI: 10.1097/shk.0b013e31818522f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|