1
|
Mulder PPG, Hooijmans CR, Vlig M, Middelkoop E, Joosten I, Koenen HJPM, Boekema BKHL. Kinetics of Inflammatory Mediators in the Immune Response to Burn Injury: Systematic Review and Meta-Analysis of Animal Studies. J Invest Dermatol 2024; 144:669-696.e10. [PMID: 37806443 DOI: 10.1016/j.jid.2023.09.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Burns are often accompanied by a dysfunctional immune response, which can lead to systemic inflammation, shock, and excessive scarring. The objective of this study was to provide insight into inflammatory pathways associated with burn-related complications. Because detailed information on the various inflammatory mediators is scattered over individual studies, we systematically reviewed animal experimental data for all reported inflammatory mediators. Meta-analyses of 352 studies revealed a strong increase in cytokines, chemokines, and growth factors, particularly 19 mediators in blood and 12 in burn tissue. Temporal kinetics showed long-lasting surges of proinflammatory cytokines in blood and burn tissue. Significant time-dependent effects were seen for IL-1β, IL-6, TGF-β1, and CCL2. The response of anti-inflammatory mediators was limited. Burn technique had a profound impact on systemic response levels. Large burn size and scalds further increased systemic, but not local inflammation. Animal characteristics greatly affected inflammation, for example, IL-1β, IL-6, and TNF-α levels were highest in young, male rats. Time-dependent effects and dissimilarities in response demonstrate the importance of appropriate study design. Collectively, this review presents a general overview of the burn-induced immune response exposing inflammatory pathways that could be targeted through immunotherapy for burn patients and provides guidance for experimental set-ups to advance burn research.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Carlijn R Hooijmans
- Meta-Research Team, Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Bhaskara M, Anjorin O, Yoniles A, Liu J, Wang M. Importance of Per2 in cardiac mitochondrial protection during stress. Sci Rep 2024; 14:1290. [PMID: 38221535 PMCID: PMC10788343 DOI: 10.1038/s41598-024-51799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024] Open
Abstract
During myocardial injury, inflammatory mediators and oxidative stress significantly increase to impair cardiac mitochondria. Emerging evidence has highlighted interplays between circadian protein-period 2 (Per2) and mitochondrial metabolism. However, besides circadian rhythm regulation, the direct role of Per2 in mitochondrial performance particularly following acute stress, remains unknown. In this study, we aim to determine the importance of Per2 protein's regulatory role in mitochondrial function following exposure to inflammatory cytokine TNFα and oxidative stressor H2O2 in human cardiomyocytes. Global warm ischemia (37 °C) significantly impaired complex I activity with concurrently reduced mitochondrial Per2 in adult mouse hearts. TNFα or H2O2 decreased Per2 protein levels and damaged mitochondrial respiratory function in adult mouse cardiomyocytes. Next, mitochondrial membrane potential ([Formula: see text] M) using JC-1 fluorescence probe and mitochondrial respiration capacity via Seahorse Cell Mito Stress Test were then detected in Per2 or control siRNA transfected AC16 Human Cardiomyocytes (HCM) that were subjected to 2 h-treatment of TNFα (100 ng/ml) or H2O2 (100 μM). After 4 h-treatment, cell death was also measured using Annexin V and propidium iodide apoptosis kit through flow cytometry. We found that knockdown of Per2 enhanced TNFα-induced cell death and TNFα- or H2O2-disrupted [Formula: see text]M, as well as TNFα- or H2O2-impaired mitochondrial respiration function. In conclusion, Per2 knockdown increases likelihood of cell death and mitochondrial dysfunction in human cardiomyocytes exposed to either TNFα or H2O2, supporting the protective role of Per2 in HCM during stress with a focus on mitochondrial function.
Collapse
Affiliation(s)
| | - Olufisayo Anjorin
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA
| | - Arris Yoniles
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jianyun Liu
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA
| | - Meijing Wang
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA.
| |
Collapse
|
3
|
Wen JJ, Dejesus JE, Radhakrishnan GL, Radhakrishnan RS. PARP1 Inhibition and Effect on Burn Injury-Induced Inflammatory Response and Cardiac Function. J Am Coll Surg 2023; 236:783-802. [PMID: 36728307 DOI: 10.1097/xcs.0000000000000546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Burn injury induces multiple signaling pathways leading to a significant inflammatory storm that adversely affects multiple organs, including the heart. Poly (ADP-ribose) polymerase inhibitor 1 (PARP1) inhibition, with specific agents such as N-(5,6-Dihydro-6-oxo-2-phenanthridinyl)-2-acetamide (PJ34), is effective in reducing oxidative stress and cytokine expression in the heart. We hypothesized that PARP1 inhibition would reduce inflammatory signaling and protect against burn injury-induced cardiac dysfunction. STUDY DESIGN Male Sprague-Dawley rats (8 weeks old, 300 to 350 g) were randomly assigned to sham injury (Sham), 60% total body surface area burn (24 hours post burn), or 60% total body surface area burn with intraperitoneal administration of PJ34 (20 mg/kg, 24 hours post burn + PJ34) and sacrificed 24 hours after injury. Cardiac function was determined using Vevo 2100 echocardiography. Genetic expression of 84 specific toll-like receptor-mediated signal transduction and innate immunity genes were examined using microarray to evaluate cardiac tissue. Qiagen GeneGlobe Data Analysis Center was used to analyze expression, and genetic clustering was performed using TreeView V2.0.8 software. Real-time quantitative polymerase chain reaction was used to validate identified differentially expressed genes. RESULTS Burn injury significantly altered multiple genes in the toll-like receptor signaling, interleukin-17 signaling, tumor necrosis factor signaling, and nuclear factor-κB signaling pathways and led to significant cardiac dysfunction. PARP1 inhibition with PJ34 normalized these signaling pathways to sham levels as well as improved cardiac function to sham levels. CONCLUSIONS PARP1 inhibition normalizes multiple inflammatory pathways that are altered after burn injury and improves cardiac dysfunction. PARP1 pathway inhibition may provide a novel methodology to normalize multiple burn injury-induced inflammatory pathways in the heart.
Collapse
Affiliation(s)
- Jake J Wen
- From the Departments of Surgery (Wen, Dejesus, RS Radhakrishnan), University of Texas Medical Branch, Galveston, TX
| | - Jana E Dejesus
- From the Departments of Surgery (Wen, Dejesus, RS Radhakrishnan), University of Texas Medical Branch, Galveston, TX
| | - Geetha L Radhakrishnan
- Pediatrics (GL Radhakrishnan, RS Radhakrishnan), University of Texas Medical Branch, Galveston, TX
| | - Ravi S Radhakrishnan
- From the Departments of Surgery (Wen, Dejesus, RS Radhakrishnan), University of Texas Medical Branch, Galveston, TX
- Pediatrics (GL Radhakrishnan, RS Radhakrishnan), University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
4
|
Scott SR, Singh K, Yu Q, Sen CK, Wang M. Sex as Biological Variable in Cardiac Mitochondrial Bioenergetic Responses to Acute Stress. Int J Mol Sci 2022; 23:9312. [PMID: 36012574 PMCID: PMC9409303 DOI: 10.3390/ijms23169312] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiac dysfunction/damage following trauma, shock, sepsis, and ischemia impacts clinical outcomes. Acute inflammation and oxidative stress triggered by these injuries impair mitochondria, which are critical to maintaining cardiac function. Despite sex dimorphisms in consequences of these injuries, it is unclear whether mitochondrial bioenergetic responses to inflammation/oxidative stress are sex-dependent. We hypothesized that sex disparity in mitochondrial bioenergetics following TNFα or H2O2 exposure is responsible for reported sex differences in cardiac damage/dysfunction. Methods and Results: Cardiomyocytes isolated from age-matched adult male and female mice were subjected to 1 h TNFα or H2O2 challenge, followed by detection of mitochondrial respiration capacity using the Seahorse XF96 Cell Mito Stress Test. Mitochondrial membrane potential (ΔΨm) was analyzed using JC-1 in TNFα-challenged cardiomyocytes. We found that cardiomyocytes isolated from female mice displayed a better mitochondrial bioenergetic response to TNFα or H2O2 than those isolated from male mice did. TNFα decreased ΔΨm in cardiomyocytes isolated from males but not from females. 17β-estradiol (E2) treatment improved mitochondrial metabolic function in cardiomyocytes from male mice subjected to TNFα or H2O2 treatment. Conclusions: Cardiomyocyte mitochondria from female mice were more resistant to acute stress than those from males. The female sex hormone E2 treatment protected cardiac mitochondria against acute inflammatory and oxidative stress.
Collapse
Affiliation(s)
- Susan R. Scott
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kanhaiya Singh
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Qing Yu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandan K. Sen
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Meijing Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Comish PB, Liu MM, Huebinger R, Carlson D, Kang R, Tang D. The cGAS-STING pathway connects mitochondrial damage to inflammation in burn-induced acute lung injury in rat. Burns 2021; 48:168-175. [PMID: 33879372 DOI: 10.1016/j.burns.2021.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Damage associated molecular patterns (DAMPs) are pathological mediators linking local tissue damage to systemic inflammation in various diseases. Some DAMPs, such as mitochondrial DNA (mtDNA), can be recognized by the cytoplasmic cGAS protein to trigger the activation of the stimulator of interferon genes (STING)-dependent innate immune pathway responsible for infection or sterile inflammation. The objective of our study was to evaluate the association between circulating mtDNA and cGAS-STING pathway activation in mediating inflammation following burn injury. METHODS 48 adult Sprague-Dawley male rats were divided into eight groups (Sham, 2, 4, 8, 12, 24, 48, 72 h after burn injury). The animals underwent 40% total body surface area scald injury to produce a full-thickness burn. Plasma samples were collected via cardiac puncture under deep anesthesia. Tissues were harvested and placed in formalin, followed by paraffin embedment. Total plasma DNA was isolated followed by measurement of mtDNA using quantitative polymerase chain reaction. Haemotoxylin-Eosin stain and Western blot was used for lung histology and protein assays, respectively. Statistical analyses were performed using ANOVA and student's t-test and represented as mean ± s.d. RESULTS Plasma mtDNA trended upward at early time-points following burn injury with peak levels at 8 h after burn when compared to the control group (345 ± 83.4 copies/μl vs. 239 ± 43.1 copies/μl, p = 0.07) and followed a bell-shaped distribution. Lung slices from burned rats showed acute injury marked by increased inflammatory infiltrate, with the maximum changes seen at 24 h, accompanied with significant upregulation of neutrophil elastase (p = 0.04). Compared with sham animals, cGAS and STING protein levels in lung tissue were up-regulated at 4 and 8 h after burn (p = 0.03 and p < 0.001, respectively). CONCLUSION Activation of the cGAS-STING pathway by increased plasma mtDNA is an important pathway driving neutrophil infiltration in burn-induced acute lung injury in rats. A further understanding of the STING-mediated immunopathology in lung and other susceptible organs may be important for the development of novel therapies for burn injury.
Collapse
Affiliation(s)
- Paul B Comish
- Department of Surgery, University of Texas Southwestern, Dallas, TX, USA.
| | - Ming-Mei Liu
- Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Ryan Huebinger
- Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Deborah Carlson
- Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern, Dallas, TX, USA.
| |
Collapse
|
6
|
Comish PB, Carlson D, Kang R, Tang D. Damage-Associated Molecular Patterns and the Systemic Immune Consequences of Severe Thermal Injury. THE JOURNAL OF IMMUNOLOGY 2021; 205:1189-1197. [PMID: 32839211 DOI: 10.4049/jimmunol.2000439] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022]
Abstract
Thermal injury is often associated with a proinflammatory state resulting in serious complications. After a burn, the innate immune system is activated with subsequent immune cell infiltration and cytokine production. Although the innate immune response is typically beneficial, an excessive activation leads to cytokine storms, multiple organ failure, and even death. This overwhelming immune response is regulated by damage-associated molecular patterns (DAMPs). DAMPs are endogenous molecules that are actively secreted by immune cells or passively released by dead or dying cells that can bind to pathogen recognition receptors in immune and nonimmune cells. Recent studies involving animal models along with human studies have drawn great attention to the possible pathological role of DAMPs as an immune consequence of thermal injury. In this review, we outline DAMPs and their function in thermal injury, shedding light on the mechanism of sterile inflammation during tissue injury and identifying new immune targets for treating thermal injury.
Collapse
Affiliation(s)
- Paul B Comish
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Deborah Carlson
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
7
|
Wang M, Scott SR, Koniaris LG, Zimmers TA. Pathological Responses of Cardiac Mitochondria to Burn Trauma. Int J Mol Sci 2020; 21:ijms21186655. [PMID: 32932869 PMCID: PMC7554938 DOI: 10.3390/ijms21186655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Despite advances in treatment and care, burn trauma remains the fourth most common type of traumatic injury. Burn-induced cardiac failure is a key factor for patient mortality, especially during the initial post-burn period (the first 24 to 48 h). Mitochondria, among the most important subcellular organelles in cardiomyocytes, are a central player in determining the severity of myocardial damage. Defects in mitochondrial function and structure are involved in pathogenesis of numerous myocardial injuries and cardiovascular diseases. In this article, we comprehensively review the current findings on cardiac mitochondrial pathological changes and summarize burn-impaired mitochondrial respiration capacity and energy supply, induced mitochondrial oxidative stress, and increased cell death. The molecular mechanisms underlying these alterations are discussed, along with the possible influence of other biological variables. We hope this review will provide useful information to explore potential therapeutic approaches that target mitochondria for cardiac protection following burn injury.
Collapse
Affiliation(s)
- Meijing Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.S.); (L.G.K.); (T.A.Z.)
- Correspondence:
| | - Susan R. Scott
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.S.); (L.G.K.); (T.A.Z.)
| | - Leonidas G. Koniaris
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.S.); (L.G.K.); (T.A.Z.)
- Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indianopolis, IN 46202, USA
- Center for Cachexia Research Innovation and Therapy, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Teresa A. Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.R.S.); (L.G.K.); (T.A.Z.)
- Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indianopolis, IN 46202, USA
- Center for Cachexia Research Innovation and Therapy, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Remodeling gut microbiota by Clostridium butyricum (C.butyricum) attenuates intestinal injury in burned mice. Burns 2020; 46:1373-1380. [PMID: 32014349 DOI: 10.1016/j.burns.2020.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/04/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The dysbiosis of gastrointestinal microbiome is an important reason for burn-induced intestinal injury. Clostridium butyricum (C.butyricum) and its production butyrate are beneficial for the homeostasis of intestinal microflora and suppression of inflammatory response. PURPOSE The roles of C.butyricum and butyrate in burn-induced intestinal injury were explored. The effects of oral administration of C.butyricum on intestinal injury were observed in burned mice. MATERIALS AND METHODS The skin surface of mice was exposed to 95 °C water to induce a burn injury. Then the intestinal microbiome structure, abundance of C.butyricum and level of butyrate were respectively observed. The correction between intestinal permeability indicated by FITC dextran level and abundance of C.butyricum or level of butyrate was analyzed. C.butyricum was cultured and orally administrated to burned mice. The levels of butyrate, FITC dextran and pro-inflammatory cytokines, including interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) were respectively measured. RESULTS Burn injury altered the intestinal microbiome structure of mice, and especially decreased the abundance of C.butyricum and level of butyrate. Both the abundance of C.butyricum and the level of butyrate were negatively correlated with the intestinal permeability. Oral administration of C.butyricum increased the level of butyrate, decreased levels of TNF-α and IL-6, and suppressed intestinal damage in burn-injured mice. CONCLUSION Oral administration of C.butyricum significantly alleviated the intestinal damage induced by burn injury. The therapeutic effects of C.butyricum and butyrate on burn injury should be further explored, which deserves further investigation.
Collapse
|
9
|
Lackner I, Weber B, Baur M, Haffner-Luntzer M, Eiseler T, Fois G, Gebhard F, Relja B, Marzi I, Pfeifer R, Halvachizadeh S, Lipiski M, Cesarovic N, Pape HC, Kalbitz M. Midkine Is Elevated After Multiple Trauma and Acts Directly on Human Cardiomyocytes by Altering Their Functionality and Metabolism. Front Immunol 2019; 10:1920. [PMID: 31552013 PMCID: PMC6736577 DOI: 10.3389/fimmu.2019.01920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose: Post-traumatic cardiac dysfunction often occurs in multiply injured patients (ISS ≥ 16). Next to direct cardiac injury, post-traumatic cardiac dysfunction is mostly induced by the release of inflammatory biomarkers. One of these is the heparin-binding factor Midkine, which is elevated in humans after fracture, burn injury and traumatic spinal cord injury. Midkine is associated with cardiac pathologies but the exact role of Midkine in the development of those diseases is ambiguous. The systemic profile of Midkine after multiple trauma, its effects on cardiomyocytes and the association with post-traumatic cardiac dysfunction, remain unknown. Experimental Approach: Midkine levels were investigated in blood plasma of multiply injured humans and pigs. Furthermore, human cardiomyocytes (iPS) were cultured in presence/absence of Midkine and analyzed regarding viability, apoptosis, calcium handling, metabolic alterations, and oxidative stress. Finally, the Midkine filtration capacity of the therapeutic blood absorption column CytoSorb ®300 was tested with recombinant Midkine or plasma from multiply injured patients. Key Results: Midkine levels were significantly increased in blood plasma of multiply injured humans and pigs. Midkine acts on human cardiomyocytes, altering their mitochondrial respiration and calcium handling in vitro. CytoSorb®300 filtration reduced Midkine concentration ex vivo and in vitro depending on the dosage. Conclusion and Implications: Midkine is elevated in human and porcine plasma after multiple trauma, affecting the functionality and metabolism of human cardiomyocytes in vitro. Further examinations are required to determine whether the application of CytoSorb®300 filtration in patients after multiple trauma is a promising therapeutic approach to prevent post-traumatic cardiac disfunction.
Collapse
Affiliation(s)
- Ina Lackner
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Birte Weber
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Meike Baur
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | | | - Tim Eiseler
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - Giorgio Fois
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt, Germany
| | - Roman Pfeifer
- Department of Trauma, University Hospital of Zurich, Zurich, Switzerland
| | | | - Miriam Lipiski
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | - Nikola Cesarovic
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | | | - Miriam Kalbitz
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | | |
Collapse
|
10
|
Damage-associated molecular patterns (DAMPs) released after burn are associated with inflammation and monocyte activation. Burns 2016; 43:297-303. [PMID: 28341255 DOI: 10.1016/j.burns.2016.10.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 11/24/2022]
Abstract
Burns are associated with activation of the innate immunity that can contribute to complications. Damage-associated molecular patterns (DAMPs) released after tissue injury play a critical role in the activation of the innate immunity, which appears to be mediated via toll-like receptors (TLRs). Previous findings have shown that TLRs and TLR-mediated responses are up-regulated after burn. Nonetheless, it is unclear what impact burn has on circulating levels of DAMPs. To study this, male C57BL/6 mice were subjected to a major burn or sham procedure. Three hours to 7days thereafter, plasma was collected and assayed for the representative DAMPs (i.e., HMGB1, cytochrome C, DNA and S100A) and extracellular cleavage products (fibronectin and hyaluronan). HMGB1, cytochrome C, fibronectin and hyaluronan levels were elevated in a time-dependent manner after burn as compared to sham levels. A significant elevation in TNF-α, IL-6 and IL-10 cytokine plasma levels was also found after burn. All cytokine levels were increased as early as 3h and remained elevated up to 24h. Circulating CD11b+ monocytes were increased at 24h after burn and showed increased expression of TLR-2. In conclusion, these findings support the concept that burn-induced elevations in circulating DAMPs are in part responsible for monocyte activation and the development of inflammatory complications under such conditions and warrants further investigation.
Collapse
|
11
|
Cardiovascular Dysfunction Following Burn Injury: What We Have Learned from Rat and Mouse Models. Int J Mol Sci 2016; 17:ijms17010053. [PMID: 26729111 PMCID: PMC4730298 DOI: 10.3390/ijms17010053] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/14/2015] [Accepted: 12/23/2015] [Indexed: 12/11/2022] Open
Abstract
Severe burn profoundly affects organs both proximal and distal to the actual burn site. Cardiovascular dysfunction is a well-documented phenomenon that increases morbidity and mortality following a massive thermal trauma. Beginning immediately post-burn, during the ebb phase, cardiac function is severely depressed. By 48 h post-injury, cardiac function rebounds and the post-burn myocardium becomes tachycardic and hyperinflammatory. While current clinical trials are investigating a variety of drugs targeted at reducing aspects of the post-burn hypermetabolic response such as heart rate and cardiac work, there is still a paucity of knowledge regarding the underlying mechanisms that induce cardiac dysfunction in the severely burned. There are many animal models of burn injury, from rodents, to sheep or swine, but the majority of burn related cardiovascular investigations have occurred in rat and mouse models. This literature review consolidates the data supporting the prevalent role that β-adrenergic receptors play in mediating post-burn cardiac dysfunction and the idea that pharmacological modulation of this receptor family is a viable therapeutic target for resolving burn-induced cardiac deficits.
Collapse
|
12
|
Stoecklein VM, Osuka A, Lederer JA. Trauma equals danger--damage control by the immune system. J Leukoc Biol 2012; 92:539-51. [PMID: 22654121 DOI: 10.1189/jlb.0212072] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Traumatic injuries induce a complex host response that disrupts immune system homeostasis and predisposes patients to opportunistic infections and inflammatory complications. The response to injuries varies considerably by type and severity, as well as by individual variables, such as age, sex, and genetics. These variables make studying the impact of trauma on the immune system challenging. Nevertheless, advances have been made in understanding how injuries influence immune system function as well as the immune cells and pathways involved in regulating the response to injuries. This review provides an overview of current knowledge about how traumatic injuries affect immune system phenotype and function. We discuss the current ideas that traumatic injuries induce a unique type of a response that may be triggered by a combination of endogenous danger signals, including alarmins, DAMPs, self-antigens, and cytokines. Additionally, we review and propose strategies for redirecting injury responses to help restore immune system homeostasis.
Collapse
Affiliation(s)
- Veit M Stoecklein
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
13
|
Oppeltz RF, Rani M, Zhang Q, Schwacha MG. Burn-induced alterations in toll-like receptor-mediated responses by bronchoalveolar lavage cells. Cytokine 2011; 55:396-401. [PMID: 21696980 PMCID: PMC3148323 DOI: 10.1016/j.cyto.2011.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/26/2011] [Accepted: 05/02/2011] [Indexed: 01/09/2023]
Abstract
UNLABELLED Burn is associated with profound inflammation and activation of the innate immune system in multiple organ beds, including the lung. Similarly, toll-like receptors (TLR) are associated with innate immune activation. Nonetheless, it is unclear what impact burn has on TLR-induced inflammatory responses in the lung. METHODS Male C57BL/6 mice were subjected to burn (3rd degree, 25% TBSA) or sham procedure and 1, 3 or 7 days thereafter, bronchoalveolar lavage (BAL) fluid was collected and cells were isolated and cultured in vitro with specific TLR agonists as follows: Zymosan (TLR-2), LPS (TLR-4) and CpG-ODN (TLR-9). Supernatants were collected 48 h later and assayed for inflammatory cytokine levels (IL-1β, IL-6, IL-10, IL-17, TNF-α, KC, MCP-1, MIP-1α, MIP-1β and RANTES) by Bioplex. RESULTS BAL fluid from sham and burn mice did not contain detectable cytokine levels. BAL cells, irrespective of injury, were responsive to TLR-2 and TLR-4 activation. Seven days after burn, TLR-2 and TLR-4 mediated responses by BAL cells were enhanced as evidenced by increased production of IL-6, IL-17, TNF-α, MCP-1, MIP-1β and RANTES. CONCLUSIONS Burn-induced changes in TLR-2 and TLR-4 reactivity may contribute to the development of post-burn complications, such as acute lung injury (ALI) and adult respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Richard F Oppeltz
- Department of Surgery, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | | | | | | |
Collapse
|
14
|
Naseemuddin M, Iqbal A, Nasti TH, Ghandhi JL, Kapadia AD, Yusuf N. Cell mediated immune responses through TLR4 prevents DMBA-induced mammary carcinogenesis in mice. Int J Cancer 2011; 130:765-74. [PMID: 21455984 DOI: 10.1002/ijc.26100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 03/18/2011] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) activate signals that are critically involved in the initiation of adaptive immune responses and many tumorigenic chemicals have been associated with activation of those pathways. To determine the role of TLR-4 (TLR4) in mammary carcinogenesis, we subjected TLR4 deficient and wild type (WT) mice to oral gavage with carcinogenic polyaromatic hydrocarbon 7,12-dimethylbenz(a)anthracene (DMBA). TLR4 deficient mice developed more tumors relative to the WT mice. T cells of TLR4 deficient mice produced elevated levels of IL-17 and lower levels of IFN-γ relative to WT mice. IL-12 secreted by CD11c(+) cells was higher in WT mice, whereas greater amounts of IL-23 were produced by CD11c(+) cells from TLR4 deficient mice. Moreover, there was higher incidence of regulatory T cells in TLR4 deficient mice than WT mice. Similarly, various markers of angiogenesis [matrix metalloproteinases (MMP)-2 and MMP-9, CD31 and vascular endothelial growth factor] were highly expressed in tumors from TLR4 deficient mice than WT mice. The results of this study indicate that TLR4 plays an important role in the prevention of DMBA induced mouse mammary tumorigenesis and efforts to divert the cell-mediated immune response may, therefore, prove to be beneficial in the prevention of mammary tumors.
Collapse
Affiliation(s)
- Mohammed Naseemuddin
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, AL 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
15
|
Toll-like receptor signaling pathways and the evidence linking toll-like receptor signaling to cardiac ischemia/reperfusion injury. Shock 2011; 34:548-57. [PMID: 20458266 DOI: 10.1097/shk.0b013e3181e686f5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Toll-like receptors (TLRs) play a key role in innate immune defenses. After activation by foreign pathogens or host-derived molecules, TLRs signal via overlapping or distinct signaling cascades and eventually induce numerous genes involved in a variety of cellular responses. A growing body of evidence suggests that TLR signaling also plays an important role in cardiac ischemia/reperfusion injury. We review our current understanding of the TLR signaling pathways and their roles in the pathophysiology of cardiac ischemia/reperfusion injury, as well as discuss several mechanisms for TLR activation and regulation.
Collapse
|
16
|
p38 MAP kinase mediates burn serum-induced endothelial barrier dysfunction: involvement of F-actin rearrangement and L-caldesmon phosphorylation. Shock 2011; 34:222-8. [PMID: 20160665 DOI: 10.1097/shk.0b013e3181d75a66] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of this study was to test the hypothesis that circulating factors released after a severe burn cause endothelial barrier dysfunction by triggering endothelial cell (EC) contraction through a p38 mitogen-activated protein (MAP) kinase-dependent mechanism. Human umbilical vein ECs (ECV304 cell line) were cultured to create a monolayer of cells that were then cultured with 20% human normal or burn serum. Monolayer permeability was measured by the influx of labeled albumin across the cells. Endothelial cells contraction was determined by alterations of cell surface area and formation of intracellular gaps. P38 MAP kinase activation, F-actin arrangement, and L-caldesmon phosphorylation were assessed by Western blots or immunofluorescence staining. These studies showed that exposure to burn serum resulted in a significant increase in endothelial permeability in a time-dependent manner, which was paralleled by a rapid and persistent activation of p38 MAP kinases. Morphologically, increased intercellular gaps, reduced cell surface area, and a unique rearrangement of F-actin cytoskeleton were observed in burn serum-treated ECs. Inhibition of p38 MAP kinase suppressed the rearrangement of F-actin cytoskeleton, reduced the occurrence of burn serum-induced formation of intercellular gaps, and ameliorated endothelial hyperpermeability. Further study showed that phosphorylation of L-caldesmon was enhanced in burn serum-treated cells via p38 MAP kinase; overexpression of L-caldesmon by adenovirus transfection, however, attenuated the increase in endothelial permeability by burn serum challenge. Collectively, these results have demonstrated for the first time that p38 MAP kinase is an important participant in mediating burn serum-induced endothelial barrier dysfunction through rearrangement of the F-actin cytoskeleton and phosphorylation of L-caldesmon. Inhibition of p38 MAP kinase in vivo, thus, would be a promising therapeutic strategy in ameliorating burn shock development.
Collapse
|
17
|
|
18
|
Ropelle ER, Flores MB, Cintra DE, Rocha GZ, Pauli JR, Morari J, de Souza CT, Moraes JC, Prada PO, Guadagnini D, Marin RM, Oliveira AG, Augusto TM, Carvalho HF, Velloso LA, Saad MJA, Carvalheira JBC. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition. PLoS Biol 2010; 8:e1000465. [PMID: 20808781 PMCID: PMC2927536 DOI: 10.1371/journal.pbio.1000465] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 07/15/2010] [Indexed: 02/07/2023] Open
Abstract
Overnutrition caused by overeating is associated with insulin and leptin resistance through IKKbeta activation and endoplasmic reticulum (ER) stress in the hypothalamus. Here we show that physical exercise suppresses hyperphagia and associated hypothalamic IKKbeta/NF-kappaB activation by a mechanism dependent upon the pro-inflammatory cytokine interleukin (IL)-6. The disruption of hypothalamic-specific IL-6 action blocked the beneficial effects of exercise on the re-balance of food intake and insulin and leptin resistance. This molecular mechanism, mediated by physical activity, involves the anti-inflammatory protein IL-10, a core inhibitor of IKKbeta/NF-kappaB signaling and ER stress. We report that exercise and recombinant IL-6 requires IL-10 expression to suppress hyperphagia-related obesity. Moreover, in contrast to control mice, exercise failed to reverse the pharmacological activation of IKKbeta and ER stress in C3H/HeJ mice deficient in hypothalamic IL-6 and IL-10 signaling. Hence, inflammatory signaling in the hypothalamus links beneficial physiological effects of exercise to the central action of insulin and leptin.
Collapse
Affiliation(s)
- Eduardo R. Ropelle
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo B. Flores
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dennys E. Cintra
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Z. Rocha
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José R. Pauli
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Joseane Morari
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Claudio T. de Souza
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Juliana C. Moraes
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Patrícia O. Prada
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rodrigo M. Marin
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alexandre G. Oliveira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Taize M. Augusto
- Department of Anatomy, Cell Biology, Physiology and Biophysics, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Hernandes F. Carvalho
- Department of Anatomy, Cell Biology, Physiology and Biophysics, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lício A. Velloso
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mario J. A. Saad
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José B. C. Carvalheira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
19
|
Peterson CY, Costantini TW, Loomis WH, Putnam JG, Wolf P, Bansal V, Eliceiri BP, Baird A, Coimbra R. Toll-like receptor-4 mediates intestinal barrier breakdown after thermal injury. Surg Infect (Larchmt) 2010; 11:137-44. [PMID: 20374005 PMCID: PMC3304242 DOI: 10.1089/sur.2009.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Toll-like receptor 4 (TLR-4) activation after sterile injury leads to organ dysfunction at distant sites. We have shown previously that intestinal barrier breakdown and alteration of tight junction proteins follows thermal injury; however, the role of TLR-4 in this process remains unclear. We hypothesized that increased intestinal permeability and barrier breakdown after burns is a TLR-4 dependent process; hence, knocking down the TLR-4 gene would have a protective effect on burn-induced intestinal dysfunction. METHODS Male C57BL/6J (TLR-4 wild type [WT]) and C57BL/10ScN (TLR-4 knockout [KO]) mice were assigned randomly to either 30% total body surface area steam burn or sham injury. At 4 h, permeability to intraluminally administered fluorescein isothiocyanate (FITC)-dextran was assessed by measuring the fluorescence of the serum. Intestinal samples were analyzed for the presence of the tight junction protein occludin by immunoblotting and immunohistochemistry. Tumor necrosis factor (TNF)-alpha concentrations in the serum and intestines were measured by enzyme-linked immunosorbent assay at 2 h post-burn. RESULTS Serum concentrations of FITC-dextran were decreased in TLR-4 KO mice compared with TLR-4 WT mice after burn injury (92.0 micrograms/mL and 264.5 micrograms/mL, respectively; p < 0.05). After injury, no difference in intestinal permeability was observed between the TLR-4 KO mice and the TLR-4 WT sham-treated mice. The TLR-4 KO mice had preservation of occludin concentrations after thermal injury in both immunoblot and immunohistochemistry assays, but concentrations were decreased in TLR-4 WT animals. The serum concentrations of TNF-alpha serum were higher in TLR-4 WT burned animals than in the sham-treated mice. The TLR-4 KO animals had unmeasurable concentrations of TNF-alpha. No differences in TNF-alpha were observed in the intestinal tissue at 2 h. CONCLUSIONS Mice with TLR-4 KO have less intestinal permeability to FITC-dextran than do TLR-4 WT mice after burn injury as a result of alterations in the tight junction protein occludin. These findings suggest that the greater intestinal permeability and barrier breakdown after burn injury is a TLR-4-dependent process. Toll-like receptor 4 may provide a useful target for the prevention and treatment of systemic inflammatory response syndrome and multisystem organ failure after injury.
Collapse
Affiliation(s)
- Carrie Y. Peterson
- Division of Trauma, Critical Care and Burns, Department of Surgery, University of California, San Diego, San Diego, California
| | - Todd W. Costantini
- Division of Trauma, Critical Care and Burns, Department of Surgery, University of California, San Diego, San Diego, California
| | - William H. Loomis
- Division of Trauma, Critical Care and Burns, Department of Surgery, University of California, San Diego, San Diego, California
| | - James G. Putnam
- Division of Trauma, Critical Care and Burns, Department of Surgery, University of California, San Diego, San Diego, California
| | - Paul Wolf
- Department of Pathology, Veterans Affairs Medical Center, San Diego, California
| | - Vishal Bansal
- Division of Trauma, Critical Care and Burns, Department of Surgery, University of California, San Diego, San Diego, California
| | - Brian P. Eliceiri
- Division of Trauma, Critical Care and Burns, Department of Surgery, University of California, San Diego, San Diego, California
| | - Andrew Baird
- Division of Trauma, Critical Care and Burns, Department of Surgery, University of California, San Diego, San Diego, California
| | - Raul Coimbra
- Division of Trauma, Critical Care and Burns, Department of Surgery, University of California, San Diego, San Diego, California
| |
Collapse
|
20
|
Shyu KG, Wang BW, Lin CM, Chang H. Cyclic stretch enhances the expression of toll-like receptor 4 gene in cultured cardiomyocytes via p38 MAP kinase and NF-kappaB pathway. J Biomed Sci 2010; 17:15. [PMID: 20202224 PMCID: PMC2844375 DOI: 10.1186/1423-0127-17-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 03/05/2010] [Indexed: 12/17/2022] Open
Abstract
Background Toll-like receptor 4 (TLR4) plays an important role in innate immunity. The role of TLR4 in stretched cardiomyocytes is not known. We sought to investigate whether mechanical stretch could regulate TLR4 expression, as well as the possible molecular mechanisms and signal pathways mediating the expression of TLR4 by cyclic mechanical stretch in cardiomyocytes. Methods Neonatal Wistar rat cardiomyocytes grown on a flexible membrane base were stretched by vacuum to 20% of maximum elongation at 60 cycles/min. Western blot, real-time polymerase chain reaction, and promoter activity assay were performed. In vitro monocyte adhesion to stretched myocyte was detected. Results Cyclic stretch significantly increased TLR4 protein and mRNA expression after 2 h to 24 h of stretch. Addition of SB203580, TNF-α antibody, and p38α MAP kinase siRNA 30 min before stretch inhibited the induction of TLR4 protein. Cyclic stretch increased, while SB203580 abolished the phosphorylated p38 protein. Gel shifting assay showed significant increase of DNA-protein binding activity of NF-κB after stretch and SB203580 abolished the DNA-protein binding activity induced by cyclic stretch. DNA-binding complexes induced by cyclic stretch could be supershifted by p65 monoclonal antibody. Cyclic stretch increased TLR4 promoter activity while SB203580 and NF-κB siRNA decreased TLR4 promoter activity. Cyclic stretch increased adhesion of monocyte to cardiomyocytes while SB203580, TNF-α antibody, and TLR4 siRNA attenuated the adherence of monocyte. TNF-α and Ang II significantly increased TLR4 protein expression. Addition of losartan, TNF-α antibody, or p38α siRNA 30 min before Ang II and TNF-α stimulation significantly blocked the increase of TLR4 protein by AngII and TNF-α. Conclusions Cyclic mechanical stretch enhances TLR4 expression in cultured rat neonatal cardiomyocytes. The stretch-induced TLR4 is mediated through activation of p38 MAP kinase and NF-κB pathways. TLR4 up-regulation by cyclic stretch increases monocyte adherence.
Collapse
Affiliation(s)
- Kou-Gi Shyu
- Department of Emergency Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
21
|
Postischemic vascular permeability requires both TLR-2 and TLR-4, but only TLR-2 mediates the transendothelial migration of leukocytes. Shock 2009; 31:592-8. [PMID: 19008784 DOI: 10.1097/shk.0b013e318193c859] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ischemia-reperfusion (I/R) activates innate immunity involving Toll-like receptor (TLR) 2 and TLR-4 signaling. Leukocyte migration and vascular permeability contribute to postischemic tissue damage. We hypothesized that TLR-2 and TLR-4 directly mediate leukocyte migration and vascular permeability during I/R. We used in vivo microscopy on postischemic murine cremaster muscle to quantify leukocyte adhesion as well as transendothelial and interstitial migration in sham-operated wild-type mice and in wild-type, TLR-2(-/-), and TLR-4-mutant mice 30 and 120 min after I/R. Alterations in fluorescein isothiocyanate-dextran leakage across cremasteric venules were determined as a measure of endothelial permeability. I/R-induced leukocyte adhesion in TLR-2(-/-) and TLR-4-mutant mice was comparable to that in wild-type mice. The number of transmigrated leukocytes was increased upon I/R in wild-type mice as compared with the sham-operated group. In contrast, leukocyte transmigration was significantly attenuated in TLR-2(-/-) but not in TLR-4-mutant mice. Motility and polarization of interstitially migrating leukocytes did not significantly differ in TLR-2(-/-) and TLR-4-mutant mice from wild-type mice. Postischemic vascular leakage was significantly lower in both TLR-2(-/-) and TLR-4-mutant than in wild-type mice. We conclude that both TLR-2 signaling and TLR-4 signaling enhance postischemic vascular permeability and that TLR-2 has additional effects on the transendothelial migration of leukocytes at the postischemic vascular wall.
Collapse
|
22
|
What's new in Shock, December 2008? Shock 2008; 30:615-7. [PMID: 19011530 DOI: 10.1097/shk.0b013e31818d55ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|