1
|
Wang Y, Zhang Y, Wang X, Li Q, Zhao Y, Jiang Y, Guo R, Liu X, Yuan T, Liu Z. Sesamol Mitigates Chronic Iron Overload-Induced Cognitive Impairment and Systemic Inflammation via IL-6 and DMT1 Regulation. Mol Nutr Food Res 2023; 67:e2300012. [PMID: 37452409 DOI: 10.1002/mnfr.202300012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/27/2023] [Indexed: 07/18/2023]
Abstract
SCOPE Excessive iron contributes to oxidative damage and cognitive decline in Alzheimer's disease. Sesamol, a compound in sesame oil that exhibits both anti-inflammatory and neuroprotective properties, is examined in this study for its ability to alleviate cognitive impairments in iron overload mice model. METHODS AND RESULTS An iron overload model is established by intraperitoneally injecting dextran iron (250 mg kg-1 body weight) twice a week for 6 weeks, while sesamol (100 mg kg-1 body weight) is administered daily for the same length of time. The results demonstrate that sesamol protects spatial working memory and learning ability in iron overload mice, and inhibits neuronal loss and brain atrophy induced by iron overload. Moreover, sesamol significantly decreases interleukin-6 and malondialdehyde, and increases glutathione peroxidase 4 in the brains of iron overload mice. Additionally, sesamol maintains iron homeostasis in the brain by regulating the expressions of transferrin receptors, divalent metal transporter 1, and hepcidin, and reducing iron accumulation. Furthermore, sesamol suppresses disturbed systemic iron homeostasis and inflammation, particularly liver interleukin-6 expression. CONCLUSION These findings suggest that sesamol may be effective in mitigating neuroinflammatory responses and cognitive impairments induced by iron overload, potentially through its involvement in mediating the liver-brain axis.
Collapse
Affiliation(s)
- Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinyu Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingyuan Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yishan Jiang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Guo
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tian Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
2
|
El-Borai NB, Elkhadrawey BA, AbuBakr HO, Anis A, El-Bialy BE, Elsabbagh HS, Abou-Zeid SM. Sesamol protects against aluminum oxide nanoparticles-induced hepatorenal toxicity in rats via modulation of oxidative stress, inflammation, apoptosis, and DNA damage. ENVIRONMENTAL TOXICOLOGY 2022; 37:1914-1924. [PMID: 35403826 DOI: 10.1002/tox.23537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 02/25/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Aluminum oxide nanoparticles (Al2 O3 -NPs) are exceedingly used in various industrial and commercial applications, providing growing concerns about their potential adverse impacts on animals and human health. Therefore, the present study was conducted to evaluate the potential protective effect of sesamol (SML) against the induced hepatorenal toxicity of Al2 O3 -NPs. Forty male rats were randomly assigned into four groups and treated orally for 28 consecutive days. Control group received distilled water. SML group received SML (100 mg/kg bw). Al2 O3 -NPs group received Al2 O3 -NPs (100 mg/kg bw). SML + Al2 O3 -NPs group received SML 2 h prior to Al2 O3 -NPs. The results revealed that Al2 O3 -NPs significantly increased serum alanine aminotransferase and aspartate aminotransferase activities and serum urea and creatinine levels. Moreover, Al2 O3 -NPs induced a significant elevation in malondialdehyde level with significant reduction in reduced glutathione content and catalase and superoxide dismutase activities, together with a marked increase of 8-hydroxy-2-desoxyguanosine level in the hepatic and renal tissues. Also, up-regulations of glutathione-S-transferase, tumor necrosis factor-alpha, and caspase-3 mRNA gene expressions were recorded in the liver and kidneys. Additionally, Al2 O3 -NPs induced multifocal areas of necrosis in hepatic parenchyma with glomerular mesangial cell proliferation and glomerular sclerosis in kidney tissues. Conversely, concomitant treatment with sesamol mitigated Al2 O3 -induced hepatorenal toxicity evidenced by improvement of liver and kidney functions that correlated with regulation of oxidant/antioxidant status, inflammatory, and apoptotic biomarkers and reduction of DNA and tissues damages. In conclusion, sesamol could exert a promising protective role against hepatorenal toxicity of Al2 O3 -NPs, possibly via its antioxidant, anti-inflammatory and anti-apoptotic properties.
Collapse
Affiliation(s)
- Nermeen B El-Borai
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Basma A Elkhadrawey
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Huda O AbuBakr
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Anis Anis
- Department of Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Badr E El-Bialy
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Hesham S Elsabbagh
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Shimaa M Abou-Zeid
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
3
|
Talebi A, Hayat P, Ghanbari A, Ardekanian M, Zarbakhsh S. Sesamol protects the function and structure of rat ovaries against side effects of cyclophosphamide by decreasing oxidative stress and apoptosis. J Obstet Gynaecol Res 2022; 48:1786-1794. [PMID: 35613704 DOI: 10.1111/jog.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 04/01/2022] [Accepted: 05/14/2022] [Indexed: 11/28/2022]
Abstract
AIM Chemotherapy with cyclophosphamide can damage ovaries and cause infertility in girls and women. Sesamol is a phenolic antioxidant that can protect various organs from damage. The purpose of this study was to evaluate the effects of sesamol on protecting the function and structure of rat ovaries against the side effects of a chemotherapy model with cyclophosphamide. METHODS Twenty-four adult female Wistar rats were randomly divided into three groups: (1) normal group, without any treatment, (2) control group, immediately after receiving cyclophosphamide, 0.5% dimethyl sulfoxide (DMSO) as the solvent of sesamol was intraperitoneally injected for 14 consecutive days, (3) sesamol group, immediately after receiving cyclophosphamide, 50 mg/kg sesamol was intraperitoneally injected for 14 consecutive days. Four weeks after the last injection, superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels in the ovary, anti-Mullerian hormone (AMH) levels in the serum, number of ovarian follicles in different stages, and expression of proteins growth differentiation factor-9 (GDF-9), Bcl-2, and Bax in the ovary were evaluated. RESULTS The results of SOD activity and MDA levels in the ovary, AMH levels in the serum, number of ovarian follicles in different stages, and expression of proteins GDF9, Bcl-2, and Bax in the ovary were significantly more favorable in the sesamol group than the control group. CONCLUSIONS The results suggest that sesamol may protect function and structure in the rat ovaries against side effects of the chemotherapy model with cyclophosphamide by decreasing oxidative stress and apoptosis in the ovary.
Collapse
Affiliation(s)
- Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Hayat
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Ardekanian
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
4
|
Bosebabu B, Cheruku SP, Chamallamudi MR, Nampoothiri M, Shenoy RR, Nandakumar K, Parihar VK, Kumar N. An Appraisal of Current Pharmacological Perspectives of Sesamol: A Review. Mini Rev Med Chem 2020; 20:988-1000. [DOI: 10.2174/1389557520666200313120419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/20/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022]
Abstract
Sesame (Sesamum indicum L.) seeds have been authenticated for its medicinal value in both
Chinese and Indian systems of medicine. Its numerous potential nutritional benefits are attributed to its
main bioactive constituents, sesamol. As a result of those studies, several molecular mechanisms are
emerging describing the pleiotropic biological effects of sesamol. This review summarized the most
interesting in vitro and in vivo studies on the biological effects of sesamol. The present work summarises
data available from Pubmed and Scopus database. Several molecular mechanisms have been elucidated
describing the pleiotropic biological effects of sesamol. Its major therapeutic effects have been
elicited in managing oxidative and inflammatory conditions, metabolic syndrome and mood disorders.
Further, compelling evidence reflected the ability of sesamol in inhibiting proliferation of the inflammatory
cell, prevention of invasion and angiogenesis via affecting multiple molecular targets and
downstream mechanisms. Sesamol is a safe, non‐toxic chemical that mediates anti‐inflammatory
effects by down‐regulating the transcription of inflammatory markers such as cytokines, redox status,
protein kinases, and enzymes that promote inflammation. In addition, sesamol also induces apoptosis
in cancer cells via mitochondrial and receptor‐mediated pathways, as well as activation of caspase cascades.
In the present review, several pharmacological effects of sesamol are summarised namely, antioxidant,
anti-cancer, neuroprotective, cardioprotective, anti-inflammatory, hypolipidemic, radioprotective,
anti-aging, anti-ulcer, anti-dementia, anti-depressant, antiplatelet, anticonvulsant, anti-anxiolytic,
wound healing, cosmetic (skin whitening), anti-microbial, matrix metalloproteinase (MMPs) inhibition,
hepatoprotective activity and other biological effects. Here we have summarized the proposed
mechanism behind these pharmacological effects.
Collapse
Affiliation(s)
- Bellamkonda Bosebabu
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sri Pragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Rekha R. Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Vipan K. Parihar
- Department of Radiation Oncology, University of California, Irvine, CA 92697- 2695, United States
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
5
|
Majdalawieh AF, Mansour ZR. Sesamol, a major lignan in sesame seeds (Sesamum indicum): Anti-cancer properties and mechanisms of action. Eur J Pharmacol 2019; 855:75-89. [PMID: 31063773 DOI: 10.1016/j.ejphar.2019.05.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
Abstract
Sesamol is a natural phenolic compound and a major lignan isolated from sesame seeds (Sesamum indicum) and sesame oil. The therapeutic potential of sesamol was investigated intensively, and there is compelling evidence that sesamol acts as a metabolic regulator that possesses antioxidant, anti-mutagenic, anti-hepatotoxic, anti-inflammatory, anti-aging, and chemopreventive properties. Various studies have reported that sesamol exerts potent anti-cancer effects. Herein, we provide a comprehensive review that summarizes the in vitro and in vivo anti-cancer activity of sesamol in several cancer cell lines and animal models. The protective role that sesamol plays against oxidative stress through its radical scavenging ability and lipid peroxidation lowering potential is analyzed. The ability of sesamol to regulate apoptosis and various stages of the cell cycle is also outlined. Moreover, the signaling pathways that sesamol seems to target to execute its antioxidant, anti-inflammatory, and pro-apoptotic/anti-proliferative roles are discussed. The signaling pathways that sesamol targets include the p53, MAPK, JNK, PI3K/AKT, TNFα, NF-κB, PPARγ, caspase-3, Nrf2, eNOS, and LOX pathways. The mechanisms of action that sesamol executes to deliver its anti-cancer effects are delineated. In sum, there is ample evidence suggesting that sesamol possesses potent anti-cancer properties in vitro and in vivo. A thorough understanding of the molecular targets of sesamol and the mechanisms of action underlying its anti-cancer effects is necessary for possible employment of sesamol as a chemotherapeutic agent in cancer prevention and therapy.
Collapse
Affiliation(s)
- Amin F Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates.
| | - Zeenah R Mansour
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
6
|
Subramanya SB, Venkataraman B, Meeran MFN, Goyal SN, Patil CR, Ojha S. Therapeutic Potential of Plants and Plant Derived Phytochemicals against Acetaminophen-Induced Liver Injury. Int J Mol Sci 2018; 19:ijms19123776. [PMID: 30486484 PMCID: PMC6321362 DOI: 10.3390/ijms19123776] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/02/2018] [Accepted: 09/15/2018] [Indexed: 12/18/2022] Open
Abstract
Acetaminophen (APAP), which is also known as paracetamol or N-acetyl-p-aminophenol is a safe and potent drug for fever, pain and inflammation when used at its normal therapeutic doses. It is available as over-the-counter drug and used by all the age groups. The overdose results in acute liver failure that often requires liver transplantation. Current clinical therapy for APAP-induced liver toxicity is the administration of N-acetyl-cysteine (NAC), a sulphydryl compound an approved drug which acts by replenishing cellular glutathione (GSH) stores in the liver. Over the past five decades, several studies indicate that the safety and efficacy of herbal extracts or plant derived compounds that are used either as monotherapy or as an adjunct therapy along with conventional medicines for hepatotoxicity have shown favorable responses. Phytochemicals mitigate necrotic cell death and protect against APAP-induced liver toxicityby restoring cellular antioxidant defense system, limiting oxidative stress and subsequently protecting mitochondrial dysfunction and inflammation. Recent experimental evidences indicat that these phytochemicals also regulate differential gene expression to modulate various cellular pathways that are implicated in cellular protection. Therefore, in this review, we highlight the role of the phytochemicals, which are shown to be efficacious in clinically relevant APAP-induced hepatotoxicity experimental models. In this review, we have made comprehensive attempt to delineate the molecular mechanism and the cellular targets that are modulated by the phytochemicals to mediate the cytoprotective effect against APAP-induced hepatotoxicity. In this review, we have also defined the challenges and scope of phytochemicals to be developed as drugs to target APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sandeep B Subramanya
- Department of Physiology, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Sameer N Goyal
- Department of Pharmacology, SVKM's Institute of Pharmacy, Dhule, Maharashtra 424 001, India.
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425 405, India.
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425 405, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| |
Collapse
|
7
|
Kumar A, Choudhary S, Adhikari JS, Chaudhury NK. Sesamol ameliorates radiation induced DNA damage in hematopoietic system of whole body γ-irradiated mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:79-90. [PMID: 28766757 DOI: 10.1002/em.22118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 05/27/2023]
Abstract
Ionizing radiation exposure is harmful and at high doses can lead to acute hematopoietic radiation syndrome. Therefore, agents that can protect hematopoietic system are important for development of radioprotector. Sesamol is a potential molecule for development of radioprotector due to its strong free radical scavenging and antioxidant properties. In the present study, sesamol was evaluated for its role in DNA damage and repair in hematopoietic system of γ-irradiated CB57BL/6 mice and compared with amifostine. C57BL/6 male mice were administered with sesamol 20 mg/kg (i.p.) followed by 2 Gy whole body irradiation (WBI) at 30 min. Mice were sacrificed at 0.5, 3, 24 h postirradiation; bone marrow, splenocytes, and peripheral blood lymphocytes were isolated to measure DNA damages and repair using alkaline comet,γ-H2AXand micronucleus assays. An increase in % of tail DNA was observed in all organs of WBI mice. Whereas in pre-administered sesamol reduced %DNA in tail (P ≤ 0.05). Sesamol has also reduced formation of radiation induced γ-H2AX foci after 0.5 h in these organs and further lowered to respective control values at 24 h of WBI. Similar reduction of % DNA in tail and γ-H2AX foci were observed with amifostine (P ≤ 0.05). Analysis of mnPCE frequency at 24 h has revealed similar extent of protection by sesamol and amifostine. Interestingly, both sesamol and amifostine, alone and with radiation, also increased the granulocytes count significantly compared to the control (P ≤ 0.05). These findings suggest that sesamol has strong potential to protect hematopoietic system by lowering radiation induced DNA damages and can prevent acute hematopoietic syndrome in mice. Environ. Mol. Mutagen. 59:79-90, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arun Kumar
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Sandeep Choudhary
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Jawahar S Adhikari
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Nabo K Chaudhury
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| |
Collapse
|
8
|
Liu Z, Ren B, Wang Y, Zou C, Qiao Q, Diao Z, Mi Y, Zhu D, Liu X. Sesamol Induces Human Hepatocellular Carcinoma Cells Apoptosis by Impairing Mitochondrial Function and Suppressing Autophagy. Sci Rep 2017; 7:45728. [PMID: 28374807 PMCID: PMC5379556 DOI: 10.1038/srep45728] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Sesamol, a nutritional phenolic antioxidant compound enriched in sesame seeds, has been shown to have potential anticancer activities. This study aims at characterizing the antitumor efficacy of sesamol and unveiling the importance of mitochondria in sesamol-induced effects using a human hepatocellular carcinoma cell line, HepG2 cells. Results of this study showed that sesamol treatment suppressed colony formation, elicited S phase arrest during cell cycle progression, and induced both intrinsic and extrinsic apoptotic pathway in vitro with a dose-dependent manner. Furthermore, sesamol treatment elicited mitochondrial dysfunction by inducing a loss of mitochondrial membrane potential. Impaired mitochondria and accumulated H2O2 production resulted in disturbance of redox-sensitive signaling including Akt and MAPKs pathways. Mitochondrial biogenesis was inhibited as suggested by the decline in expression of mitochondrial complex I subunit ND1, and the upstream AMPK/PGC1α signals. Importantly, sesamol inhibited mitophagy and autophagy through impeding the PI3K Class III/Belin-1 pathway. Autophagy stimulator rapamycin reversed sesamol-induced apoptosis and mitochondrial respiration disorders. Moreover, it was also shown that sesamol has potent anti-hepatoma activity in a xenograft nude mice model. These data suggest that mitochondria play an essential role in sesamol-induced HepG2 cells death, and further research targeting mitochondria will provide more chemotherapeutic opportunities.
Collapse
Affiliation(s)
- Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yihui Wang
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Chen Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglian Qiao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhijun Diao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yashi Mi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Zhu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Eugenio-Pérez D, Montes de Oca-Solano HA, Pedraza-Chaverri J. Role of food-derived antioxidant agents against acetaminophen-induced hepatotoxicity. PHARMACEUTICAL BIOLOGY 2016; 54:2340-2352. [PMID: 26955890 DOI: 10.3109/13880209.2016.1150302] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Acetaminophen (APAP), also known as paracetamol and N-acetyl p-aminophenol, is one of the most frequently used drugs for analgesic and antipyretic purposes on a worldwide basis. It is safe and effective at recommended doses but has the potential for causing hepatotoxicity and acute liver failure (ALF) with overdose. To solve this problem, different strategies have been developed, including the use of compounds isolated from food, which have been studied to characterize their efficacy as natural dietary antioxidants. Objective The objective of this study is to show the beneficial effects of a variety of natural compounds and their use against acetaminophen-induced hepatotoxicity. Methods PubMed database was reviewed to compile data about natural compounds with hepatoprotective effects against APAP toxicity. Results and conclusion As a result, the health-promoting properties of 13 different food-derived compounds with protective effect against APAP-induced hepatotoxicity were described as well as the mechanisms involved in hepatoprotection.
Collapse
Affiliation(s)
- Dianelena Eugenio-Pérez
- a Department of Biology, Faculty of Chemistry , National Autonomous University of Mexico (UNAM) , University City , Mexico City , DF , Mexico
| | - Héctor Adolfo Montes de Oca-Solano
- a Department of Biology, Faculty of Chemistry , National Autonomous University of Mexico (UNAM) , University City , Mexico City , DF , Mexico
| | - José Pedraza-Chaverri
- a Department of Biology, Faculty of Chemistry , National Autonomous University of Mexico (UNAM) , University City , Mexico City , DF , Mexico
| |
Collapse
|
10
|
Singh N, Khullar N, Kakkar V, Kaur IP. Hepatoprotective effects of sesamol loaded solid lipid nanoparticles in carbon tetrachloride induced sub-chronic hepatotoxicity in rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:520-532. [PMID: 25410024 DOI: 10.1002/tox.22064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 10/17/2014] [Accepted: 10/18/2014] [Indexed: 06/04/2023]
Abstract
Sesamol is a phenolic component of sesame seed oil, which has been established as an antioxidant and also possesses potential for hepatoprotection. However, its protective role in carbon tetrachloride (CCl4 ) induced sub-chronic hepatotoxicity has not been studied. Limited oral bioavailability (BA) and rapid elimination (as conjugates) in rats is reported for sesamol. Considering its significant antioxidant potential and compromised BA, we packaged sesamol into solid lipid nanoparticles (S-SLNs) to enhance its hepatoprotective bioactivity. S-SLNs prepared by microemulsification method were nearly spherical in shape with an average particle size of 120.30 nm and their oral administration at 8 mg/kg body weight (BW) showed significantly (p < 0.001) better hepatoprotection than free sesamol (FS) and a well established hepatoprotective antioxidant silymarin [SILY (25 mg/kg BW); p < 0.05) in CCl4 induced sub-chronic liver injury in rats. Evaluations were done in terms of histological changes in the liver tissue, liver injury markers (serum alanine aminotransferase, serum aspartate aminotransferase, and serum lactate dehydrogenase); oxidative stress markers (lipid peroxidation, superoxide dismutase, and reduced glutathione) and proinflammatory response marker (tumor necrosis factor-alpha).
Collapse
Affiliation(s)
- Neha Singh
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Neeraj Khullar
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Vandita Kakkar
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Indu Pal Kaur
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
11
|
Tanaka Y, Fujii W, Hori H, Kitagawa Y, Ozaki K. Relationship between coumarin-induced hepatocellular toxicity and mitochondrial function in rats. Food Chem Toxicol 2016; 90:1-9. [PMID: 26806632 DOI: 10.1016/j.fct.2016.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/05/2016] [Accepted: 01/13/2016] [Indexed: 12/28/2022]
Abstract
The manifestation of coumarin-induced hepatocellular toxicity may differ and depends on the frequency of administration to rats. A single coumarin dose induces hepatocellular necrosis while repeated doses induce only hepatocyte degeneration. However, the mechanism underlying these effects remains unclear. Therefore, we investigated the mechanism of coumarin-induced hepatotoxicity in rats. Coumarin was administered to male rats as a single dose or for 4 consecutive days, and samples were obtained 4 or 24 h after a single dose or 24 h after the repeated doses. A single coumarin dose significantly induced hepatocellular necrosis in rats; however, toxicity was attenuated after repeated dosing. With a single dose, hepatocellular necrosis was preceded by increased mitochondrial number and size and decreased mitochondrial function. An increased expression of granular cytochrome P450 (CYP) 2E1 protein was observed in the cytoplasm and mitochondria of coumarin-treated rats compared to the expression in the untreated controls. Nevertheless, repeated dosing showed mitochondrial function that was equivalent to that of the control while enlarged CYP2E1 protein droplets were distributed outside the mitochondria. These results suggest that mitochondrial function and CYP2E1 expression might be involved in coumarin-induced hepatocellular toxicity in rats. A reduction in mitochondrial CYP2E1 might be implicated in the acquisition of coumarin resistance after repeated doses.
Collapse
Affiliation(s)
- Yasuhiro Tanaka
- Suntory Business Expert Limited, 8-1-1 Seikadai Seika-cho, Soraku-gun, Kyoto 619-0238, Japan; Laboratory of Pathology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge, Hirakata, Osaka 573-0101, Japan
| | - Wataru Fujii
- Suntory Business Expert Limited, 8-1-1 Seikadai Seika-cho, Soraku-gun, Kyoto 619-0238, Japan
| | - Hisako Hori
- Suntory Business Expert Limited, 8-1-1 Seikadai Seika-cho, Soraku-gun, Kyoto 619-0238, Japan
| | - Yoshinori Kitagawa
- Suntory Business Expert Limited, 8-1-1 Seikadai Seika-cho, Soraku-gun, Kyoto 619-0238, Japan
| | - Kiyokazu Ozaki
- Laboratory of Pathology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge, Hirakata, Osaka 573-0101, Japan.
| |
Collapse
|
12
|
Pal S, Ghosh M, Ghosh S, Bhattacharyya S, Sil PC. Atorvastatin induced hepatic oxidative stress and apoptotic damage via MAPKs, mitochondria, calpain and caspase12 dependent pathways. Food Chem Toxicol 2015; 83:36-47. [PMID: 26051349 DOI: 10.1016/j.fct.2015.05.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 01/05/2023]
Abstract
Atorvastatin (ATO), a 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, is used widely for the treatment of hypercholesterolemia and hypertriglyceridemia. Application of this drug has now been made somehow limited because of ATO associated several acute and chronic side effects. The present study has been carried out to investigate the dose-dependent hepatic tissue toxicity in ATO induced oxidative impairment and cell death in mice. Administration of ATO enhanced ALT, ALP level, increased reactive oxygen species (ROS) production and altered the pro oxidant-antioxidant status of liver by reducing intracellular GSH level, anti-oxidant enzymes activities and increasing intracellular lipid peroxidation. Our experimental evidence suggests that ATO markedly decreased mitochondrial membrane potential, disturbed the Bcl-2 family protein balance, enhanced cytochrome c release in the cytosol, increased the levels of Apaf1, caspase-9, -3, cleaved PARP protein and ultimately led to apoptotic cell death. Besides, ATO distinctly increased the phosphorylation of p38, JNK, and ERK MAPKs, enhanced Caspase12 and calpain level. Histological studies also support the dose-dependent toxic effect of ATO in these organs pathophysiology. These results reveal that ATO induces hepatic tissue toxicity via MAPKs, mitochondria and ER dependent signaling pathway, in which calcium ions and ROS act as the pivotal mediators of the apoptotic signaling.
Collapse
Affiliation(s)
- Sankhadeep Pal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Manoranjan Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Shatadal Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sudip Bhattacharyya
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
13
|
Mohammed NEM, Messiha BAS, Abo-Saif AA. Effect of amlodipine, lisinopril and allopurinol on acetaminophen-induced hepatotoxicity in rats. Saudi Pharm J 2015; 24:635-644. [PMID: 27829805 PMCID: PMC5094429 DOI: 10.1016/j.jsps.2015.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 04/30/2015] [Indexed: 12/09/2022] Open
Abstract
Background Exposure to chemotherapeutic agents such as acetaminophen may lead to serious liver injury. Calcium deregulation, angiotensin II production and xanthine oxidase activity are suggested to play mechanistic roles in such injury. Objective This study evaluates the possible protective effects of the calcium channel blocker amlodipine, the angiotensin converting enzyme inhibitor lisinopril, and the xanthine oxidase inhibitor allopurinol against experimental acetaminophen-induced hepatotoxicity, aiming to understand its underlying hepatotoxic mechanisms. Material and methods Animals were allocated into a normal control group, a acetaminophen hepatotoxicity control group (receiving a single oral dose of acetaminophen; 750 mg/kg/day), and four treatment groups receive N-acetylcysteine (300 mg/kg/day; a reference standard), amlodipine (10 mg/kg/day), lisinopril (20 mg/kg/day) and allopurinol (50 mg/kg/day) orally for 14 consecutive days prior to acetaminophen administration. Evaluation of hepatotoxicity was performed by the assessment of hepatocyte integrity markers (serum transaminases), oxidative stress markers (hepatic malondialdehyde, glutathione and catalase), and inflammatory markers (hepatic myeloperoxidase and nitrate/nitrite), in addition to a histopathological study. Results Rats pre-treated with amlodipine, lisinopril or allopurinol showed significantly lower serum transaminases, significantly lower hepatic malondialdehyde, myeloperoxidase and nitrate/nitrite, as well as significantly higher hepatic glutathione and catalase levels, compared with acetaminophen control rats. Serum transaminases were normalized in the lisinopril treatment group, while hepatic myeloperoxidase was normalized in the all treatment groups. Histopathological evaluation strongly supported the results of biochemical estimations. Conclusion Amlodipine, lisinopril or allopurinol can protect against acetaminophen-induced hepatotoxicity, showing mechanistic roles of calcium channels, angiotensin converting enzyme and xanthine oxidase enzyme in the pathogenesis of hepatotoxicity induced by acetaminophen.
Collapse
Affiliation(s)
- Nesreen E M Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Sueif, Egypt
| | - Basim A S Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni Sueif University, Beni-Sueif, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Sueif, Egypt
| |
Collapse
|
14
|
Singh N, Khullar N, Kakkar V, Kaur IP. Sesamol loaded solid lipid nanoparticles: a promising intervention for control of carbon tetrachloride induced hepatotoxicity. Altern Ther Health Med 2015; 15:142. [PMID: 25935744 PMCID: PMC4456697 DOI: 10.1186/s12906-015-0655-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 04/17/2015] [Indexed: 02/08/2023]
Abstract
Background Sesamol, a component of sesame seed oil, exhibited significant antioxidant activity in a battery of in vitro and ex vivo tests including lipid peroxidation induced in rat liver homogenates. Latter established its potential for hepatoprotection. However, limited oral bioavailability, fast elimination (as conjugates) and tendency towards gastric irritation/toxicity (especially forestomach of rodents) may limit its usefulness. Presently, we packaged sesamol into solid lipid nanoparticles (S-SLNs) to enhance its biopharmaceutical performance and compared the efficacy with that of free sesamol and silymarin, a well established hepatoprotectant, against carbon tetrachloride induced hepatic injury in rats, post induction. A self recovery group in which no treatment was given was used to observe the self-healing capacity of liver. Methods S-SLNs prepared by microemulsification method were administered to rats post-treatment with CCl4 (1 ml/kg body weight (BW) twice weekly for 2 weeks, followed by 1.5 ml/kg BW twice weekly for the subsequent 2 weeks). Liver damage and recovery on treatment was assessed in terms of histopathology, serum injury markers (alanine aminotransferase, aspartate aminotransferase), oxidative stress markers (lipid peroxidation, superoxide dismutase, and reduced glutathione) and a pro-inflammatory response marker (tumor necrosis factor alpha). Result S-SLNs (120.30 nm) at a dose of 8 mg/kg BW showed significantly better hepatoprotection than corresponding dose of free sesamol (FS; p < 0.001). Effects achieved with S-SLNs were comparable with silymarin (SILY), administered at a dose of 25 mg/kg BW. Self recovery group confirmed absence of regenerative capacity of hepatic tissue, post injury. Conclusion Use of lipidic nanocarrier system for sesamol improved its efficiency to control hepatic injury. Enhanced effect is probably due to: a) improved oral bioavailability, b) controlled and prolonged effect of entrapped sesamol and iii) reduction in irritation and toxicity, if any, upon oral administration. S-SLNs may be considered as a therapeutic option for hepatic ailments as effectiveness post induction of liver injury, is demonstrated presently.
Collapse
|
15
|
Pal S, Sarkar A, Pal PB, Sil PC. Protective effect of arjunolic acid against atorvastatin induced hepatic and renal pathophysiology via MAPK, mitochondria and ER dependent pathways. Biochimie 2015; 112:20-34. [PMID: 25736991 DOI: 10.1016/j.biochi.2015.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/20/2015] [Indexed: 01/21/2023]
Abstract
3-Hydroxy-3-methylglutaryl-CoA reductase inhibitor, atorvastatin (ATO), is a highly effective drug used for the treatment of hypercholesterolemia and hypertriglyceridemia. Its application is restricted now-a-days due to several acute and chronic side effects. ATO induced anti hypercholesterolemia and hepatic tissue toxicity has been reported to follow different mechanisms. The present study has been carried out to investigate the protective role of arjunolic acid (AA) against ATO induced oxidative impairment and cell death in hepatic and renal tissue in mice. Administration of ATO (at a dose 30 mg/kg/day for 8 weeks) enhanced serum markers, increased reactive oxygen species (ROS) production and altered the pro oxidant-antioxidant status of liver and kidney tissues. Our experimental evidence suggests that ATO exposure induces apoptotic cell deathby the activation of caspase-3 and reciprocal regulation of Bcl-2/Bax with the concomitant reduction of mitochondrial membrane potential and increased level of cytosolic cytochrome c, Apaf1, caspase-9. Besides, ATO markedly increased the phosphorylation of MAPKs, enhanced caspase-12 and calpain level. Histological studies and DNA fragmentation analysis also support the toxic effect of ATO in these organs pathophysiology. Post treatment with AA (at a dose of 20 mg/kg body weight for 4 days), however, reduced ATO-induced oxidative stress and suppressed all these apoptotic events. Results suggest that AA could effectively and extensively counteract these adverse effects and might protect liver and kidney from ATO-induced severe tissue toxicity.
Collapse
Affiliation(s)
- Sankhadeep Pal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Abhijit Sarkar
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Pabitra Bikash Pal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
16
|
Yu H, Barrass N, Gales S, Lenz E, Parry T, Powell H, Thurman D, Hutchison M, Wilson ID, Bi L, Qiao J, Qin Q, Ren J. Metabolism by conjugation appears to confer resistance to paracetamol (acetaminophen) hepatotoxicity in the cynomolgus monkey. Xenobiotica 2014; 45:270-7. [PMID: 25335570 DOI: 10.3109/00498254.2014.973000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. Paracetamol overdose remains the leading cause of acute liver failure in humans. This study was undertaken in cynomolgus monkeys to study the pharmacokinetics, metabolism and the potential for hepatotoxic insult from paracetamol administration as a possible model for human toxicity. 2. No adverse effects were observed for doses of up to 900 mg/kg/d for 14 d. Only minor sporadic increases in alanine aminotransferase, aspartate aminotransferase and glutamate dehydrogenase in a number of animals were observed, with no clear dose response. 3. Toxicokinetic analysis showed good plasma exposure, albeit with less than proportional rises in Cmax and AUC, with increasing dose. The Cmax values in monkey were up to 3.5 times those associated with human liver toxicity and the AUC approx. 1000 times those associated with liver enzyme changes in 31-44% of human subjects. 4. Metabolite profiling of urine by (1)H NMR spectroscopy revealed paracetamol and its glucuronide and sulphate metabolites. Glutathione-derived metabolites, e.g. the cysteinyl conjugate, were only present in very low concentrations whilst the mercapturate was not detected. 5. These in vivo observations demonstrated that the cynomolgus monkey is remarkably resistant to paracetamol-induced toxicity and a poor model for investigating paracetamol-related hepatotoxicity in humans.
Collapse
Affiliation(s)
- Hong Yu
- Centre for Drug Safety and Research (CDSER), Shanghai Institute of Materia Medica (SIMM) , Pudong, Shanghai , PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ghosh M, Pal S, Sil PC. Taurine attenuates nano-copper-induced oxidative hepatic damage via mitochondria-dependent and NF-κB/TNF-α-mediated pathway. Toxicol Res (Camb) 2014; 3:474-486. [DOI: 10.1039/c4tx00030g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
|
18
|
Sonia Angeline M, Sarkar A, Anand K, Ambasta R, Kumar P. Sesamol and naringenin reverse the effect of rotenone-induced PD rat model. Neuroscience 2013; 254:379-94. [DOI: 10.1016/j.neuroscience.2013.09.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/12/2013] [Accepted: 09/15/2013] [Indexed: 01/05/2023]
|
19
|
Hassanzadeh P, Hassanzadeh A. Implication of NGF and endocannabinoid signaling in the mechanism of action of sesamol: a multi-target natural compound with therapeutic potential. Psychopharmacology (Berl) 2013; 229:571-8. [PMID: 23624775 DOI: 10.1007/s00213-013-3111-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 04/11/2013] [Indexed: 01/19/2023]
Abstract
RATIONALE Sesamol, a natural compound with anti-inflammatory, antioxidant and neuroprotective properties, has shown promising antidepressant-like effects. However, its molecular target(s) have not been well defined, which merits further investigation. OBJECTIVES Based on the interaction between the neurotrophin and endocannabinoid (eCB) systems and their contribution to emotional reactivity and antidepressant action, we aimed to investigate the involvement of nerve growth factor (NGF) and eCB signalling in the mechanism of action of sesamol. METHODS Following acute and 4-week intraperitoneal (i.p.) administration of sesamol (40, 80 and 100 mg/kg), the classical antidepressant amitriptyline (2.5, 5 and 10 mg/kg) or the benzodiazepine flurazepam (5, 10 and 20 mg/kg), brain regional levels of NGF and eCB contents were quantified in rats by Bio-Rad protein assay and isotope-dilution liquid chromatography/mass spectrometry, respectively. In the case of any significant change, the cannabinoid CB1 and CB2 receptor antagonists (AM251 and SR144528) were administered i.p. 30 min prior to the injection of sesamol, amitriptyline or flurazepam. RESULTS Following the chronic treatment, sesamol, similar to amitriptyline, resulted in the sustained elevation of NGF and eCB contents in dose-dependent and brain region-specific fashion. Neither acute nor chronic treatment with flurazepam altered brain NGF or eCB contents. Pretreatment with 3 mg/kg AM251, but not SR144528, prevented the elevation of NGF protein levels. AM251 exerted no effect by itself. CONCLUSIONS Sesamol, similar to amitriptyline, is able to affect brain NGF and eCB signalling under the regulatory drive of the CB1 receptors.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Evin, P.O. Box: 19835-187, Tehran, Iran,
| | | |
Collapse
|
20
|
Chandrasekaran VRM, Hsu DZ, Liu MY. Beneficial effect of sesame oil on heavy metal toxicity. JPEN J Parenter Enteral Nutr 2013; 38:179-85. [PMID: 23744838 DOI: 10.1177/0148607113490960] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heavy metals become toxic when they are not metabolized by the body and accumulate in the soft tissue. Chelation therapy is mainly for the management of heavy metal-induced toxicity; however, it usually causes adverse effects or completely blocks the vital function of the particular metal chelated. Much attention has been paid to the development of chelating agents from natural sources to counteract lead- and iron-induced hepatic and renal damage. Sesame oil (a natural edible oil) and sesamol (an active antioxidant) are potently beneficial for treating lead- and iron-induced hepatic and renal toxicity and have no adverse effects. Sesame oil and sesamol significantly inhibit iron-induced lipid peroxidation by inhibiting the xanthine oxidase, nitric oxide, superoxide anion, and hydroxyl radical generation. In addition, sesame oil is a potent inhibitor of proinflammatory mediators, and it attenuates lead-induced hepatic damage by inhibiting nitric oxide, tumor necrosis factor-α, and interleukin-1β levels. Because metal chelating therapy is associated with adverse effects, treating heavy metal toxicity in addition with sesame oil and sesamol may be better alternatives. This review deals with the possible use and beneficial effects of sesame oil and sesamol during heavy metal toxicity treatment.
Collapse
|
21
|
Pal PB, Sinha K, Sil PC. Mangiferin, a natural xanthone, protects murine liver in Pb(II) induced hepatic damage and cell death via MAP kinase, NF-κB and mitochondria dependent pathways. PLoS One 2013; 8:e56894. [PMID: 23451106 PMCID: PMC3581562 DOI: 10.1371/journal.pone.0056894] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/15/2013] [Indexed: 12/16/2022] Open
Abstract
One of the most well-known naturally occurring environmental heavy metals, lead (Pb) has been reported to cause liver injury and cellular apoptosis by disturbing the prooxidant-antioxidant balance via oxidative stress. Several studies, on the other hand, reported that mangiferin, a naturally occurring xanthone, has been used for a broad range of therapeutic purposes. In the present study, we, therefore, investigated the molecular mechanisms of the protective action of mangiferin against lead-induced hepatic pathophysiology. Lead [Pb(II)] in the form of Pb(NO3)2 (at a dose of 5 mg/kg body weight, 6 days, orally) induced oxidative stress, hepatic dysfunction and cell death in murine liver. Post treatment of mangiferin at a dose of 100 mg/kg body weight (6 days, orally), on the other hand, diminished the formation of reactive oxygen species (ROS) and reduced the levels of serum marker enzymes [alanine aminotranferase (ALT) and alkaline phosphatase (ALP)]. Mangiferin also reduced Pb(II) induced alterations in antioxidant machineries, restored the mitochondrial membrane potential as well as mutual regulation of Bcl-2/Bax. Furthermore, mangiferin inhibited Pb(II)-induced activation of mitogen-activated protein kinases (MAPKs) (phospho-ERK 1/2, phosphor-JNK phospho- p38), nuclear translocation of NF-κB and apoptotic cell death as was evidenced by DNA fragmentation, FACS analysis and histological assessment. In vitro studies using hepatocytes as the working model also showed the protective effect of mangiferin in Pb(II) induced cytotoxicity. All these beneficial effects of mangiferin contributes to the considerable reduction of apoptotic hepatic cell death induced by Pb(II). Overall results demonstrate that mangiferin exhibit both antioxidative and antiapoptotic properties and protects the organ in Pb(II) induced hepatic dysfunction.
Collapse
Affiliation(s)
- Pabitra Bikash Pal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, India
| | - Krishnendu Sinha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, India
| |
Collapse
|
22
|
|
23
|
Ghosh M, Das J, Sil PC. D(+) galactosamine induced oxidative and nitrosative stress-mediated renal damage in rats via NF-κB and inducible nitric oxide synthase (iNOS) pathways is ameliorated by a polyphenol xanthone, mangiferin. Free Radic Res 2012; 46:116-132. [PMID: 22118634 DOI: 10.3109/10715762.2011.644240] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study investigated the possible protective effect of mangiferin against D(+) galactosamine (DGal)-induced nephrotoxicity. DGal intoxication increased reactive oxygen species (ROS), reactive nitrogen species and tumor necrosis factor-α (TNF-α) production and disturbed the antioxidant machineries in the kidney tissue. Mangiferin treatment post to DGal exposure reduced all these DGal-induced adverse effects. Signal transduction studies showed that DGal significantly increased the protein expression of Bax, cytochrome c, caspase 3/9 and inducible nitric oxide synthase (iNOS) in the cytosol and NF-κB in nuclear fraction. The same exposure, on the other hand, reduced the protein expression of Bcl-2 in the cytosol. Mangiferin treatment could, however, reduce the DGal-induced up-regulation of cytochrome c, NF-κB, iNOS, caspase 3/9 and alter the reciprocal regulation of Bcl-2 family proteins. Histological studies also revealed the nephroprotective effect of mangiferin against DGal induced nephrotoxicity. Combining, results suggest that mangiferin protects rat's kidney in DGal-induced oxidative/nitrosative stress and acute nephrotoxicity via its antioxidant activities.
Collapse
Affiliation(s)
- Manoranjan Ghosh
- Division of Molecular Medicine, Bose Institute, CIT Scheme VII M, West Bengal, Kolkata, India
| | | | | |
Collapse
|
24
|
Sarkar A, Das J, Manna P, Sil PC. Nano-copper induces oxidative stress and apoptosis in kidney via both extrinsic and intrinsic pathways. Toxicology 2011; 290:208-217. [DOI: 10.1016/j.tox.2011.09.086] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 01/14/2023]
|
25
|
Chandrasekaran VRM, Chien SP, Hsu DZ, Liu MY. Anti-hepatotoxic effects of 3,4-methylenedioxyphenol and N-acetylcysteine in acutely acetaminophen-overdosed mice. Hum Exp Toxicol 2011; 30:1609-15. [DOI: 10.1177/0960327110394226] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
3,4-Methylenedioxyphenol (sesamol) is effective against acetaminophen-induced liver injury in rats. Whether sesamol’s anti-hepatotoxic effect is comparable to that of N-acetylcysteine has never been studied. We investigated the anti-hepatotoxic effects of sesamol and N-acetylcysteine on acetaminophen-induced hepatotoxicity in mice. Equimolar doses (1 mmol/kg) of sesamol and N-acetylcysteine significantly inhibited acetaminophen (300 mg/kg)-increased serum aspartate transaminase and alanine transaminase levels 6 h post-administration. Sesamol and N-acetylcysteine maintained hepatic glutathione levels and inhibited lipid peroxidation. Moreover, the combination of sesamol and N-acetylcysteine antagonistically inhibited sesamol’s protection against acetaminophen-induced liver injury. We conclude that the protective effect of sesamol against acetaminophen-induced liver damage is comparable to that of N-acetylcysteine by maintaining glutathione levels and inhibiting lipid peroxidation in mice.
Collapse
Affiliation(s)
| | - Se-Ping Chien
- Institute of Living Science, Tainan University of Technology, Tainan, Taiwan
| | - Dur-Zong Hsu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| |
Collapse
|
26
|
Periasamy S, Mo FE, Chen SY, Chang CC, Liu MY. Sesamol Attenuates Isoproterenol-induced Acute Myocardial Infarction via Inhibition of Matrix Metalloproteinase-2 and -9 Expression in Rats. Cell Physiol Biochem 2011; 27:273-80. [DOI: 10.1159/000327953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2011] [Indexed: 11/19/2022] Open
|
27
|
Chandrasekaran VRM, Periasamy S, Liu LL, Liu MY. 17β-Estradiol protects against acetaminophen-overdose-induced acute oxidative hepatic damage and increases the survival rate in mice. Steroids 2011; 76:118-24. [PMID: 20933533 DOI: 10.1016/j.steroids.2010.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/24/2010] [Accepted: 09/28/2010] [Indexed: 11/17/2022]
Abstract
Acetaminophen overdose causes acute liver injury or even death in both humans and experimental animals. We investigated the effect of 17β-estradiol against acetaminophen-induced acute liver injury and mortality in mice. Male mice were given acetaminophen (p-acetamidophenol; 300 mg/kg; orally) to induce acute liver injury. Acetaminophen significantly increased the levels of aspartate transaminase, alanine transaminase, myeloperoxidase, lipid peroxidation, and glutathione reductase, but it decreased superoxide dismutase, catalase, and glutathione. In addition, acetaminophen-induced mortality began 4h post-treatment, and all mice died within 9h. 17β-Estradiol (200 μg/kg; i.p.) protected against acetaminophen-induced oxidative hepatic damage by inhibiting neutrophil infiltration and stimulating the antioxidant defense system. However, 17β-estradiol did not affect acetaminophen-induced glutathione depletion or increased glutathione reductase activity. We conclude that 17β-estradiol specifically attenuates acute hepatic damage and decreases mortality in acetaminophen-overdosed male mice.
Collapse
|
28
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
29
|
Chandrasekaran VRM, Chien SP, Hsu DZ, Chang YC, Liu MY. Effects of Sesame Oil Against After the Onset of Acetaminophen-Induced Acute Hepatic Injury in Rats. JPEN J Parenter Enteral Nutr 2010; 34:567-73. [DOI: 10.1177/0148607110362584] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Se-Ping Chien
- Department of Living Science, Tainan University of Technology, Tainan
| | - Dur-Zong Hsu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan
| | - Yu-Chung Chang
- Department of Surgery, National Cheng Kung University Medical College, Tainan
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan
- Sustainable Environment Research Centre, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
30
|
Ramachandran S, Rajendra Prasad N, Karthikeyan S. Sesamol inhibits UVB-induced ROS generation and subsequent oxidative damage in cultured human skin dermal fibroblasts. Arch Dermatol Res 2010; 302:733-44. [DOI: 10.1007/s00403-010-1072-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 07/08/2010] [Accepted: 07/28/2010] [Indexed: 01/08/2023]
|
31
|
Apoptosis-inducing action of two products from oxidation of sesamol, an antioxidative constituent of sesame oil: a possible cytotoxicity of oxidized antioxidant. Toxicol In Vitro 2010; 24:1720-6. [PMID: 20510349 DOI: 10.1016/j.tiv.2010.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 04/19/2010] [Accepted: 05/19/2010] [Indexed: 11/22/2022]
Abstract
Many effects of sesamol, an antioxidative constituent of sesame oil, have been reported for human health benefits due to its antioxidative action. However, we recently isolated two cytotoxic products, trimer and tetramer of sesamol, from oxidation of sesamol by an assay-guided purification. In this study, we have revealed some cytotoxic characteristics of these products in rat thymocytes and human leukemia K562 cells. Incubation of cells with trimer or tetramer at 10-30 microM for 24h significantly increased cell lethality and population of rat thymocytes containing hypodiploid DNA, suggesting cell death with DNA fragmentation, while it was not the case for 30 microM sesamol. The cytotoxic action of tetramer was more potent than that of trimer in rat thymocytes when their concentrations were 10-30 microM. The incubation of cells with 10 microM tetramer for 24h increased the population of cells with exposed phosphatidylserine, the activity of caspases, and the nick of DNA. These results indicate tetramer-induced apoptosis. In K562 cells, the incubation with tetramer at 10 microM for 72 h significantly inhibited the growth without affecting the lethality. However, tetramer at 30 microM significantly increased cell lethality. It is likely that tetramer exerts more cytotoxic action on normal non-proliferative cells (rat thymocytes) rather than proliferative cancer cells (human leukemia K562 cells). It may be necessary to consider the condition for preservation of sesamol and the safety of products from in vivo oxidation of sesamol for human health.
Collapse
|
32
|
Ghosh J, Das J, Manna P, Sil PC. Acetaminophen induced renal injury via oxidative stress and TNF-alpha production: therapeutic potential of arjunolic acid. Toxicology 2010; 268:8-18. [PMID: 19922764 DOI: 10.1016/j.tox.2009.11.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/19/2009] [Accepted: 11/09/2009] [Indexed: 12/16/2022]
Abstract
Acetaminophen (APAP) causes acute and chronic renal failure. The mechanisms leading to hepatic injury have been extensively studied, but the molecular mechanisms regarding APAP-induced nephro-toxicity are poorly defined. In earlier studies, we have demonstrated that arjunolic acid (AA) possesses protective roles against chemically induced organ pathophysiology. The purpose of the present study was to explore whether AA plays any protective role against APAP induced acute renal toxicity; and if so, what pathways it utilizes for the mechanism of its protective action. Exposure of rats with a nephro-toxic dose of APAP altered a number of biomarkers (like blood urea nitrogen and serum creatinine levels, etc.) related to renal oxidative stress, decreased antioxidant activity, elevated renal tumor necrosis factor-alpha and nitric oxide levels. AA treatment both pre- and post to APAP exposure protected the alteration of these biomarkers, compensated deficits in the antioxidant defense mechanisms, and suppressed lipid peroxidation in renal tissue. Investigating the inherent molecular signaling of this pathophysiology and its protection, we found that the mitochondrial pathway was not activated during APAP-induced cell death as no dissipation of mitochondrial membrane potential or release of cytochrome C was detected in the respective experiments. Our experimental evidence suggests that APAP-induced nephro-toxicity is a caspase-dependent process that involves activation of caspase-9 and caspase-3 in the absence of cytosolic cytochrome C release. These results provide evidence that inhibition of NO overproduction and maintenance of intracellular antioxidant status may play a pivotal role in the protective effects of AA against APAP-induced renal damage. AA represents a potential therapeutic option to protect renal tissue from the detrimental effects of acute acetaminophen overdose.
Collapse
Affiliation(s)
- Jyotirmoy Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, West Bengal, India
| | | | | | | |
Collapse
|
33
|
Periasamy S, Chen SY, Hsu DZ, Liu MY. Comments on Vennila and Pugalendi. Vennila L, Pugalendi KV. Protective effect of sesamol against myocardial infarction caused by isoproterenol in Wistar rats. Redox Rep 2010; 15: 36-42. Redox Rep 2010; 15:288-9. [PMID: 21208529 PMCID: PMC7067342 DOI: 10.1179/135100010x12826446921860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Srinivasan Periasamy
- Department of Environmental and Occupational Health National Cheng Kung University Medical CollegeTainan 70428, Taiwan
| | - Shin Yi Chen
- Department of Environmental and Occupational Health National Cheng Kung University Medical CollegeTainan 70428, Taiwan
| | - Dur-Zong Hsu
- Department of Environmental and Occupational Health National Cheng Kung University Medical CollegeTainan 70428, Taiwan
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health National Cheng Kung University Medical CollegeTainan 70428, Taiwan;,
| |
Collapse
|
34
|
What is new in Shock, July 2009?: from bench to bedside. Shock 2009; 32:1-3. [PMID: 19525825 DOI: 10.1097/shk.0b013e3181a7b219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|