1
|
Sanjeev D, Dagamajalu S, Shaji V, George M, Subbannayya Y, Prasad TSK, Raju R, Devasahayam Arokia Balaya R. A network map of macrophage-stimulating protein (MSP) signaling. J Cell Commun Signal 2023; 17:1113-1120. [PMID: 37142846 PMCID: PMC10409925 DOI: 10.1007/s12079-023-00755-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
Macrophage-stimulating protein (MSP), a serum-derived growth factor belonging to the plasminogen-related kringle domain family, is mainly produced by the liver and released into the blood. MSP is the only known ligand for RON ("Recepteur d'Origine Nantais", also known as MST1R), which is a member of the receptor tyrosine kinase (RTK) family. MSP is associated with many pathological conditions, including cancer, inflammation, and fibrosis. Activation of the MSP/RON system regulates main downstream signaling pathways, including phosphatidylinositol 3-kinase/ AKT serine/threonine kinase/ (PI3-K/AKT), mitogen-activated protein kinases (MAPK), c-Jun N-terminal kinase (JNK) & Focal adhesion kinase (FAK). These pathways are mainly involved in cell proliferation, survival, migration, invasion, angiogenesis & chemoresistance. In this work, we created a pathway resource of signaling events mediated by MSP/RON considering its contribution to diseases. We provide an integrated pathway reaction map of MSP/RON that is composed of 113 proteins and 26 reactions based on the curation of data from the published literature. The consolidated pathway map of MSP/RON mediated signaling events contains seven molecular associations, 44 enzyme catalysis, 24 activation/inhibition, six translocation events, 38 gene regulation events, and forty-two protein expression events. The MSP/RON signaling pathway map can be freely accessible through the WikiPathways Database URL: https://classic.wikipathways.org/index.php/Pathway:WP5353 .
Collapse
Affiliation(s)
- Diya Sanjeev
- Centre for Integrative OmicsData Science (CIODS), Yenepoya (Deemed to be University), Derlakatte, Mangalore, Karnataka 575018 India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Vineetha Shaji
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Mejo George
- Centre for Integrative OmicsData Science (CIODS), Yenepoya (Deemed to be University), Derlakatte, Mangalore, Karnataka 575018 India
| | - Yashwanth Subbannayya
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH UK
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Rajesh Raju
- Centre for Integrative OmicsData Science (CIODS), Yenepoya (Deemed to be University), Derlakatte, Mangalore, Karnataka 575018 India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018 India
| | - Rex Devasahayam Arokia Balaya
- Centre for Integrative OmicsData Science (CIODS), Yenepoya (Deemed to be University), Derlakatte, Mangalore, Karnataka 575018 India
| |
Collapse
|
2
|
Hunt BG, Fox LH, Davis JC, Jones A, Lu Z, Waltz SE. An Introduction and Overview of RON Receptor Tyrosine Kinase Signaling. Genes (Basel) 2023; 14:517. [PMID: 36833444 PMCID: PMC9956929 DOI: 10.3390/genes14020517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
RON is a receptor tyrosine kinase (RTK) of the MET receptor family that is canonically involved in mediating growth and inflammatory signaling. RON is expressed at low levels in a variety of tissues, but its overexpression and activation have been associated with malignancies in multiple tissue types and worse patient outcomes. RON and its ligand HGFL demonstrate cross-talk with other growth receptors and, consequentially, positions RON at the intersection of numerous tumorigenic signaling programs. For this reason, RON is an attractive therapeutic target in cancer research. A better understanding of homeostatic and oncogenic RON activity serves to enhance clinical insights in treating RON-expressing cancers.
Collapse
Affiliation(s)
- Brian G. Hunt
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Levi H. Fox
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - James C. Davis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Angelle Jones
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Zhixin Lu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
- Research Service, Cincinnati Veterans Affairs Hospital Medical Center, Cincinnati, OH 45220, USA
| |
Collapse
|
3
|
Cazes A, Childers BG, Esparza E, Lowy AM. The MST1R/RON Tyrosine Kinase in Cancer: Oncogenic Functions and Therapeutic Strategies. Cancers (Basel) 2022; 14:cancers14082037. [PMID: 35454943 PMCID: PMC9027306 DOI: 10.3390/cancers14082037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary MST1R/RON receptor tyrosine kinase is a highly conserved transmembrane protein present on epithelial cells, macrophages, and recently identified in a T-cell subset. RON activation attenuates inflammation in healthy tissue. Interestingly, it is overexpressed in several epithelial neoplasms with increasing levels of expression associated with worse outcomes. Though the mechanisms involved are still under investigation, RON is involved in carcinogenesis via immune modulation of the immune tumor microenvironment, activation of numerous oncogenic pathways, and is protective under cellular stress. Alternatively, inhibition of RON abrogates tumor progression in both animal and human tissue models. Given this, RON is a targetable protein of great interest for cancer treatment. Here, we review RON’s function in tissue inflammation and cancer progression, and review cancer clinical trials to date that have used agents targeting RON signaling. Abstract The MST1R/RON receptor tyrosine kinase is a homologue of the more well-known MET receptor. Like MET, RON orchestrates cell signaling pathways that promote oncogenesis and enable cancer cell survival; however, it has a more unique role in the regulation of inflammation. RON was originally described as a transmembrane receptor expressed on tissue resident macrophages and various epithelial cells. RON is overexpressed in a variety of cancers and its activation modifies multiple signaling pathways with resultant changes in epithelial and immune cells which together modulate oncogenic phenotypes. While several RON isoforms have been identified with differences in structure, activation, and pathway regulation, increased RON expression and/or activation is consistently associated with worse outcomes. Tyrosine kinase inhibitors targeting RON have been developed, making RON an actionable therapeutic target.
Collapse
|
4
|
Uddin MB, Sajib EH, Hoque SF, Hassan MM, Ahmed SSU. Macrophages in respiratory system. RECENT ADVANCEMENTS IN MICROBIAL DIVERSITY 2022:299-333. [DOI: 10.1016/b978-0-12-822368-0.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
Ruiz-Torres SJ, Bourn JR, Benight NM, Hunt BG, Lester C, Waltz SE. Macrophage-mediated RON signaling supports breast cancer growth and progression through modulation of IL-35. Oncogene 2022; 41:321-333. [PMID: 34743208 PMCID: PMC8758553 DOI: 10.1038/s41388-021-02091-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/20/2023]
Abstract
Tumor associated macrophages (TAMs) play a major role in regulating mammary tumor growth and in directing the responses of tumor infiltrating leukocytes in the microenvironment. However, macrophage-specific mechanisms regulating the interactions of macrophages with tumor cells and other leukocytes that support tumor progression have not been extensively studied. In this study, we show that the activation of the RON receptor tyrosine kinase signaling pathway specifically in macrophages supports breast cancer growth and metastasis. Using clinically relevant murine models of breast cancer, we demonstrate that loss of macrophage RON expression results in decreases in mammary tumor cell proliferation, survival, cancer stem cell self-renewal, and metastasis. Macrophage RON signaling modulates these phenotypes via direct effects on the tumor proper and indirectly by regulating leukocyte recruitment including macrophages, T-cells, and B-cells in the mammary tumor microenvironment. We further show that macrophage RON expression regulates the macrophage secretome including IL-35 and other immunosuppressive factors. Overall, our studies implicate activation of RON signaling in macrophages as a key player in supporting a thriving mammary pro-tumor microenvironment through novel mechanisms including the augmentation of tumor cell properties through IL-35.
Collapse
Affiliation(s)
- Sasha J. Ruiz-Torres
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Jennifer R. Bourn
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Nancy M. Benight
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Brian G. Hunt
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Carissa Lester
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA,Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267, USA,Address correspondence to: Susan E. Waltz, PhD, Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, 3125 Eden Ave, Cincinnati, OH 45267-0521, Tel: 513.558.8675,
| |
Collapse
|
6
|
Singh H, Singh A, Khan AA, Gupta V. Immune mediating molecules and pathogenesis of COVID-19-associated neurological disease. Microb Pathog 2021; 158:105023. [PMID: 34090983 PMCID: PMC8177310 DOI: 10.1016/j.micpath.2021.105023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/30/2021] [Accepted: 05/30/2021] [Indexed: 01/08/2023]
Abstract
Background Long period of SARS-CoV-2 infection has been associated with psychiatric and cognitive disorders in adolescents and children. SARS-CoV-2 remains dormant in the CNS leading to neurological complications. The wide expression of ACE2 in the brain raises concern for its involvement in SARS-CoV-2 infection. Though, the mechanistic insights about blood-brain barriers (BBB) crossing by SARS-CoV-2 and further brain infection are still not clear. Moreover, the mechanism behind dormant SARS-CoV-2 infections leading to chronic neurological disorders needs to be unveiled. There is an urgent need to find out the risk factor involved in COVID-19-associated neurological disease. Therefore, the role of immune-associated genes in the pathogenesis of COVID-19 associated neurological diseases is presented which could contribute to finding associated genetic risk factors. Method The search utilizing multiple databases, specifically, EMBASE, PubMed (Medline), and Google Scholar was performed. Moreover, the literature survey on the involvement of COVID-19, neuropathogenesis, and its consequences was done. Description Persistent inflammatory stimuli may promote the progression of neurodegenerative diseases. An increased expression level of cytokine, chemokine, and decreased expression level of immune cells has been associated with the COVID-19 patient. Cytokine storm was observed in severe COVID-19 patients. The nature of SARS-CoV-2 infection can be neuroinflammatory. Genes of immune response could be associated with neurodegenerative diseases. Conclusion The present review will provide a useful framework and help in understanding COVID-19-associated neuropathogenesis. Experimental studies on immune-associated genes in COVID-19 patients with neurological manifestations could be helpful to establish its neuropathogenesis.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, ICMR-National AIDS Research Institute, Pune, India.
| | - Amita Singh
- District Women Hospital, Prayagraj, UP, 211003, India
| | - Abdul Arif Khan
- Department of Microbiology, ICMR-National AIDS Research Institute, Pune, India
| | - Vivek Gupta
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, 282001, India
| |
Collapse
|
7
|
Huang L, Fang X, Shi D, Yao S, Wu W, Fang Q, Yao H. MSP-RON Pathway: Potential Regulator of Inflammation and Innate Immunity. Front Immunol 2020; 11:569082. [PMID: 33117355 PMCID: PMC7577085 DOI: 10.3389/fimmu.2020.569082] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophage-stimulating protein (MSP), a soluble protein mainly synthesized by the liver, is the only known ligand for recepteur d'origine nantais (RON), which is a member of the MET proto-oncogene family. Recent studies show that the MSP-RON signaling pathway not only was important in tumor behavior but also participates in the occurrence or development of many immune system diseases. Activation of RON in macrophages results in the inhibition of nitric oxide synthesis as well as lipopolysaccharide (LPS)-induced inflammatory response. MSP-RON is also associated with chronic inflammatory responses, especially chronic liver inflammation, and might serve as a novel regulator of inflammation, which may affect the metabolism in the body. Another study provided evidence of the relationship between MSP-RON and autoimmune diseases, suggesting a potential role for MSP-RON in the development of drugs for autoimmune diseases. Moreover, MSP-RON plays an important role in maintaining the stability of the tissue microenvironment and contributes to immune escape in the tumor immune microenvironment. Here, we summarize the role of MSP-RON in immunity, based on recent findings, and lay the foundation for further research.
Collapse
Affiliation(s)
- Lingtong Huang
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueling Fang
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuhao Yao
- Department of Stormotologry, Wenzhou Medical University Renji College, Wenzhou, China
| | - Weifang Wu
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Fang
- Department of Critical Care Units, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Chen H, Zhang Y, Jia J, Ren J, Yu H, Zhu C, Wang Y, Zhou R. Macrophage-stimulating protein is decreased in severe preeclampsia and regulates the biological behavior of HTR-8/SVneo trophoblast cells. Placenta 2020; 103:33-42. [PMID: 33070035 DOI: 10.1016/j.placenta.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 01/12/2023]
Abstract
Preeclampsia (PE) is a major challenge for obstetricians. There is no effective way to block the development of PE other than terminating the pregnancy. The biological behavior of trophoblast cells, which are similar to cancer cells, may be closely related to the onset of PE. The vital role of macrophage-stimulating protein (MSP) in the development and progression of cancer has been recognized, while a role for this protein in PE has rarely been reported. This study aimed to explore whether MSP affects severe PE (sPE) and, if so, to characterize the mechanism. Patient information, blood samples and/or placental tissues were collected. An enzyme-linked immunosorbent assay (ELISA) was used to determine the plasma MSP concentration. The relationships between the plasma MSP concentration and clinical characteristics were analyzed. Immunofluorescence was performed to localize MSP in placental tissues. Western blotting and reverse transcription quantitative polymerase chain reaction (RT-qPCR) were used to determine MSP protein and mRNA expression in placental tissues. MSP was overexpressed or underexpressed in the trophoblastic cell line HTR-8/SVneo by lentiviral transfection and the proliferation, apoptosis, migration, invasion and angiogenesis of cells were detected. MSP was downregulated in sPE, and the underexpression of MSP inhibited HTR-8/SVneo cell proliferation, migration, invasion and angiogenesis. We further verified that MSP affects the biological behavior of trophoblast cells through the β-catenin/ZEB1 signaling pathway. These results suggest that decreased MSP in the blood and placental tissues of patients with sPE, especially those with early-onset sPE, leads to reduced trophoblast cell invasion, which plays an important role in the pathogenesis of PE.
Collapse
Affiliation(s)
- Hongqin Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| | - Yanping Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| | - Jin Jia
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| | - Jie Ren
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| | - Hongbiao Yu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| | - Cairong Zhu
- West China School of Public Health, Sichuan University, Sichuan, China
| | - Yanyun Wang
- Laboratory of Molecular and Translational Medicine, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China.
| |
Collapse
|
9
|
Abassi Z, Knaney Y, Karram T, Heyman SN. The Lung Macrophage in SARS-CoV-2 Infection: A Friend or a Foe? Front Immunol 2020; 11:1312. [PMID: 32582222 PMCID: PMC7291598 DOI: 10.3389/fimmu.2020.01312] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Respiratory, circulatory, and renal failure are among the gravest features of COVID-19 and are associated with a very high mortality rate. A common denominator of all affected organs is the expression of angiotensin-converting enzyme 2 (ACE2), a protease responsible for the conversion of Angiotensin 1-8 (Ang II) to Angiotensin 1-7 (Ang 1-7). Ang 1-7 acts on these tissues and in other target organs via Mas receptor (MasR), where it exerts beneficial effects, including vasodilation and suppression of inflammation and fibrosis, along an attenuation of cardiac and vascular remodeling. Unfortunately, ACE2 also serves as the binding receptor of SARS viral spike glycoprotein, enabling its attachment to host cells, with subsequent viral internalization and replication. Although numerous reports have linked the devastating organ injuries to viral homing and attachment to organ-specific cells widely expressing ACE2, little attention has been given to ACE-2 expressed by the immune system. Herein we outline potential adverse effects of SARS-CoV2 on macrophages and dendritic cells, key cells of the immune system expressing ACE2. Specifically, we propose a new hypothesis that, while macrophages play an important role in antiviral defense mechanisms, in the case of SARS-CoV, they may also serve as a Trojan horse, enabling viral anchoring specifically within the pulmonary parenchyma. It is tempting to assume that diverse expression of ACE2 in macrophages among individuals might govern the severity of SARS-CoV-2 infection. Moreover, reallocation of viral-containing macrophages migrating out of the lung to other tissues is theoretically plausible in the context of viral spread with the involvement of other organs.
Collapse
Affiliation(s)
- Zaid Abassi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
| | - Yara Knaney
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tony Karram
- Department of Vascular Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Samuel N Heyman
- Department of Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
10
|
Banu N, Panikar SS, Leal LR, Leal AR. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications. Life Sci 2020; 256:117905. [PMID: 32504757 PMCID: PMC7832382 DOI: 10.1016/j.lfs.2020.117905] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
Abstract
In light of the outbreak of the 2019 novel coronavirus disease (COVID-19), the international scientific community has joined forces to develop effective treatment strategies. The Angiotensin-Converting Enzyme (ACE) 2, is an essential receptor for cell fusion and engulfs the SARS coronavirus infections. ACE2 plays an important physiological role, practically in all the organs and systems. Also, ACE2 exerts protective functions in various models of pathologies with acute and chronic inflammation. While ACE2 downregulation by SARS-CoV-2 spike protein leads to an overactivation of Angiotensin (Ang) II/AT1R axis and the deleterious effects of Ang II may explain the multiorgan dysfunction seen in patients. Specifically, the role of Ang II leading to the appearance of Macrophage Activation Syndrome (MAS) and the cytokine storm in COVID-19 is discussed below. In this review, we summarized the latest research progress in the strategies of treatments that mainly focus on reducing the Ang II-induced deleterious effects rather than attenuating the virus replication. Protective role of ACE2 in the organs and system Downregulation of ACE2 expression by SARS-CoV-2 leads to Ang II-induced organ damage. The appearance of MAS in COVID-19 patient Suggested treatment to diminish the deleterious effect of Ang II or appearance of MAS
Collapse
Affiliation(s)
- Nehla Banu
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sandeep Surendra Panikar
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autonoma de México (UNAM), Apartado Postal 1-1010, Queretaro, Queretaro 76000, Mexico
| | - Lizbeth Riera Leal
- Hospital General Regional número 45, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Annie Riera Leal
- UC DAVIS Institute for Regenerative Cure, Department of Dermatology, University of California, 2921 Stockton Blvd, Rm 1630, 95817 Sacramento, CA, USA.
| |
Collapse
|
11
|
Wawro K, Wawro M, Strzelecka M, Czarnek M, Bereta J. The role of NF-κB and Elk-1 in the regulation of mouse ADAM17 expression. Biol Open 2019; 8:8/2/bio039420. [PMID: 30709842 PMCID: PMC6398470 DOI: 10.1242/bio.039420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ADAM17 is a cell membrane metalloproteinase responsible for the release of ectodomains of numerous proteins from the cell surface. Although ADAM17 is often overexpressed in tumours and at sites of inflammation, little is known about the regulation of its expression. Here we investigate the role of NF-κB and Elk-1 transcription factors and upstream signalling pathways, NF-κB and ERK1/2 in ADAM17 expression in mouse brain endothelial cells stimulated with pro-inflammatory factors (TNF, IL-1β, LPS) or a phorbol ester (PMA), a well-known stimulator of ADAM17 activity. Notably, NF-κB inhibitor, IKK VII, interfered with the IL-1β- and LPS-mediated stimulation of ADAM17 expression. Furthermore, Adam17 promoter contains an NF-κB binding site occupied by p65 subunit of NF-κB. The transient increase in Adam17 mRNA in response to PMA was strongly reduced by an inhibitor of ERK1/2 phosphorylation, U0126. Luciferase reporter assay with vectors encoding the ERK1/2 substrate, Elk-1, fused with constitutively activating or repressing domains, indicated Elk-1 involvement in Adam17 expression. The site-directed mutagenesis of potential Elk-1 binding sites pointed to four functional Elk-1 binding sites in Adam17 promoter. All in all, our results indicate that NF-κB and Elk-1 transcription factors via NF-κB and ERK1/2 signalling pathways contribute to the regulation of mouse Adam17 expression. Summary: We show the involvement of ERK1/2 and NF-κB pathways in the stimulation of mouse Adam17 expression and determine functional Elk-1- and NF-κB binding sites in its promoter.
Collapse
Affiliation(s)
- Karolina Wawro
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Mateusz Wawro
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Magdalena Strzelecka
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Maria Czarnek
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| |
Collapse
|
12
|
de Carvalho Marchesin J, Celiberto LS, Orlando AB, de Medeiros AI, Pinto RA, Zuanon JAS, Spolidorio LC, dos Santos A, Taranto MP, Cavallini DCU. A soy-based probiotic drink modulates the microbiota and reduces body weight gain in diet-induced obese mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
13
|
Brown NE, Paluch AM, Nashu MA, Komurov K, Waltz SE. Tumor Cell Autonomous RON Receptor Expression Promotes Prostate Cancer Growth Under Conditions of Androgen Deprivation. Neoplasia 2018; 20:917-929. [PMID: 30121008 PMCID: PMC6098205 DOI: 10.1016/j.neo.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Current treatment strategies provide minimal results for patients with castration-resistant prostate cancer (CRPC). Attempts to target the androgen receptor have shown promise, but resistance ultimately develops, often due to androgen receptor reactivation. Understanding mechanisms of resistance, including androgen receptor reactivation, is crucial for development of more efficacious CRPC therapies. Here, we report that the RON receptor tyrosine kinase is highly expressed in the majority of human hormone-refractory prostate cancers. Further, we show that exogenous expression of RON in human and murine prostate cancer cells circumvents sensitivity to androgen deprivation and promotes prostate cancer cell growth in both in vivo and in vitro settings. Conversely, RON loss induces sensitivity of CRPC cells to androgen deprivation. Mechanistically, we demonstrate that RON overexpression leads to activation of multiple oncogenic transcription factors (namely, β-catenin and NF-κB), which are sufficient to drive androgen receptor nuclear localization and activation of AR responsive genes under conditions of androgen deprivation and support castration-resistant growth. In total, this study demonstrates the functional significance of RON during prostate cancer progression and provides a strong rationale for targeting RON signaling in prostate cancer as a means to limit resistance to androgen deprivation therapy.
Collapse
Affiliation(s)
- Nicholas E Brown
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Andrew M Paluch
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Madison A Nashu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kakajan Komurov
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Susan E Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267, USA.
| |
Collapse
|
14
|
Brown NE, Sullivan C, Waltz SE. Therapeutic Considerations for Ron Receptor Expression in Prostate Cancer. EMS CANCER SCIENCE JOURNAL 2018; 1:003. [PMID: 30775725 PMCID: PMC6377156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
INTRODUCTION The Ron receptor tyrosine kinase was initially discovered as a protein which played a critical role in regulating inflammatory responses. This effect was primarily determined through studies in various macrophage populations. Since its initial discovery, a role has emerged for Ron as a driver of cancer within epithelial cells. After numerous publications have detailed a role for Ron in promoting tumor initiation, growth, and metastasis, Ron has been designated as an emerging therapeutic option in a variety of cancers. AREAS COVERED This review discusses the current literature regarding the role of Ron in prostate cancer and places special emphasis on the role of Ron in both epithelial cells and macrophages. Whole body loss of Ron signaling initially exposed a variety of prostate cancer growth mechanisms regulated by Ron. With the knowledge that Ron plays an integral part in regulating the function of epithelial cells and macrophages, studies commenced to discern the cell type specific functions for Ron in prostate cancer. A novel role for Ron in promoting Castration Resistant Prostate Cancer has recently been uncovered, and the results of these studies are summarized herein. Furthermore, this review gives a summary of several currently available compounds which show promise at targeting Ron in both epithelial and macrophage populations. OUTLOOK Sufficient evidence has been provided for the initiation of clinical trials focused on targeting Ron in both macrophage and epithelial compartments for the treatment of prostate cancer. A number of therapeutic avenues for targeting Ron in prostate cancer are currently available; however, special consideration will need to take place knowing that Ron signaling impacts multiple cell types. Further understanding of the cell type specific functions of Ron in prostate cancer will help inform and shape future clinical research and therapeutic strategies.
Collapse
Affiliation(s)
- Nicholas E. Brown
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Camille Sullivan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267, USA
| |
Collapse
|
15
|
Ekiz HA, Lai SCA, Gundlapalli H, Haroun F, Williams MA, Welm AL. Inhibition of RON kinase potentiates anti-CTLA-4 immunotherapy to shrink breast tumors and prevent metastatic outgrowth. Oncoimmunology 2018; 7:e1480286. [PMID: 30228950 PMCID: PMC6140584 DOI: 10.1080/2162402x.2018.1480286] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 12/16/2022] Open
Abstract
The advent of immune checkpoint blockade as a new strategy for immunotherapy has changed the outlook for many aggressive cancers. Although complete tumor eradication is attainable in some cases, durable clinical responses are observed only in a small fraction of patients, underlining urgent need for improvement. We previously showed that RON, a receptor tyrosine kinase expressed in macrophages, suppresses antitumor immune responses, and facilitates progression and metastasis of breast cancer. Here, we investigated the molecular changes that occur downstream of RON activation in macrophages, and whether inhibition of RON can cooperate with checkpoint immunotherapy to eradicate tumors. Activation of RON by its ligand, MSP, altered the gene expression profile of macrophages drastically and upregulated surface levels of CD80 and PD-L1, ligands for T-cell checkpoint receptors CTLA-4 and PD-1. Genetic deletion or pharmacological inhibition of RON in combination with anti-CTLA-4, but not with anti-PD-1, resulted in improved clinical responses against orthotopically transplanted tumors compared to single-agent treatment groups, resulting in complete tumor eradication in 46% of the animals. Positive responses to therapy were associated with higher levels of T-cell activation markers and tumor-infiltrating lymphocytes. Importantly, co-inhibition of RON and anti-CTLA-4 was also effective in clearing metastatic breast cancer cells in lungs, resulting in clinical responses in nearly 60% of the mice. These findings suggest that RON inhibition can be a novel approach to potentiate responses to checkpoint immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Huseyin Atakan Ekiz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Shu-Chin Alicia Lai
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Harika Gundlapalli
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Fadi Haroun
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Matthew A Williams
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Ruiz-Torres SJ, Benight NM, Karns RA, Lower EE, Guan JL, Waltz SE. HGFL-mediated RON signaling supports breast cancer stem cell phenotypes via activation of non-canonical β-catenin signaling. Oncotarget 2017; 8:58918-58933. [PMID: 28938607 PMCID: PMC5601703 DOI: 10.18632/oncotarget.19441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/11/2017] [Indexed: 12/16/2022] Open
Abstract
Breast cancer stem cells (BCSCs), which drive tumor progression, recurrence, and metastasis, are considered a major challenge for breast cancer treatments, thus the discovery of novel pathways regulating BCSC maintenance remains essential to develop new strategies to effectively target this population and combat disease mortality. The HGFL-RON signaling is overexpressed in human breast cancers and is associated with increased breast cancer progression, metastasis, and poor prognosis. Here, we report that overexpression of RON/MST1R and HGFL/MST1 in cell lines and primary tumors increases BCSC self-renewal, numbers, and tumorigenic potential after syngeneic transplantation. Transcriptome analyses also reveal that the HGFL-RON signaling pathway regulates additional BCSC functions and supports an immunosuppressive microenvironment to stimulate tumor formation and progression. Moreover, we show that genetic and chemical downregulation of HGFL-RON signaling disrupts BCSC phenotypes and tumor growth by suppressing the RON-mediated phosphorylation/activation of β-CATENIN/CTNNB1 and its effector NF-κB/RELA. These studies indicate that HGFL-RON signaling regulates BCSC phenotypes and the tumor microenvironment to drive tumorigenesis and present HGFL/RON as novel therapeutic targets to effectively eradicate BCSCs in patients.
Collapse
Affiliation(s)
- Sasha J Ruiz-Torres
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Nancy M Benight
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rebekah A Karns
- Division of Bioinformatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elyse E Lower
- Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Susan E Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.,Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267, USA
| |
Collapse
|
17
|
Xu J, Mukerjee S, Silva-Alves CRA, Carvalho-Galvão A, Cruz JC, Balarini CM, Braga VA, Lazartigues E, França-Silva MS. A Disintegrin and Metalloprotease 17 in the Cardiovascular and Central Nervous Systems. Front Physiol 2016; 7:469. [PMID: 27803674 PMCID: PMC5067531 DOI: 10.3389/fphys.2016.00469] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/30/2016] [Indexed: 01/19/2023] Open
Abstract
ADAM17 is a metalloprotease and disintegrin that lodges in the plasmatic membrane of several cell types and is able to cleave a wide variety of cell surface proteins. It is somatically expressed in mammalian organisms and its proteolytic action influences several physiological and pathological processes. This review focuses on the structure of ADAM17, its signaling in the cardiovascular system and its participation in certain disorders involving the heart, blood vessels, and neural regulation of autonomic and cardiovascular modulation.
Collapse
Affiliation(s)
- Jiaxi Xu
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Snigdha Mukerjee
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | | | | | - Josiane C Cruz
- Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Camille M Balarini
- Centro de Ciências da Saúde, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Valdir A Braga
- Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brazil
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | | |
Collapse
|
18
|
HGFL supports mammary tumorigenesis by enhancing tumor cell intrinsic survival and influencing macrophage and T-cell responses. Oncotarget 2016; 6:17445-61. [PMID: 25938541 PMCID: PMC4627320 DOI: 10.18632/oncotarget.3641] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/07/2015] [Indexed: 01/11/2023] Open
Abstract
The Ron receptor is overexpressed in human breast cancers and is associated with heightened metastasis and poor survival. Ron overexpression in the mammary epithelium of mice is sufficient to induce aggressive mammary tumors with a high degree of metastasis. Despite the well-documented role of Ron in breast cancer, few studies have examined the necessity of the endogenous Ron ligand, hepatocyte growth factor-like protein (HGFL) in mammary tumorigenesis. Herein, mammary tumor growth and metastasis were examined in mice overexpressing Ron in the mammary epithelium with or without HGFL. HGFL ablation decreased oncogenic Ron activation and delayed mammary tumor initiation. HGFL was important for tumor cell proliferation and survival. HGFL loss resulted in increased numbers of macrophages and T-cells within the tumor. T-cell proliferation and cytotoxicity dramatically increased in HGFL deficient mice. Biochemical analysis of HGFL proficient tumors showed increased local HGFL production, with HGFL loss decreasing β-catenin expression and NF-κB activation. Re-expression of HGFL in HGFL deficient tumor cells stimulated cell migration and invasion with coordinate activation of NF-κB and reduced apoptosis. Together, these results demonstrate critical in vivo functions for HGFL in promoting breast tumorigenesis and suggest that targeting HGFL may inhibit tumor growth and reactivate anti-tumor immune responses.
Collapse
|
19
|
Wang T, Chen X, Zhang W, Xiang X, Leng C, Jia Q. Roles of macrophage stimulating protein and tyrosine kinase receptor RON in smoke-induced airway inflammation of rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:8797-8808. [PMID: 26464622 PMCID: PMC4583854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/23/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To investigate the roles of macrophage stimulating protein (MSP) and its tyrosine kinase receptor RON in smoke-induced airway inflammation of rats. METHODS Inhalation of combustion smoke was administered in rats to induce airway inflammation. Alveolar macrophages (AM) of healthy and smoking rats were isolated at different time points, cultured and then treated with different concentrations of MSP for 24 h. RESULTS When compared with healthy rats, MSP increased in the serum and bronchoalveolar lavage fluid (BALF) of smoking rats in a time dependent manner. In smoking rats, the RON expression in the lung and AM was higher than in healthy rats, and these increases were time dependent. MSP stimulated the production of malondialdehyde (MDA) and reduced superoxide dismutase (SOD) activity in rat AM cells in a dose dependent manner. MSP also stimulated the release of inflammatory factors TNF-α, IL-8, IL-1β and IL-10 in rat AM in a dose-dependent manner. Moreover, at the same MSP concentration, the contents of MDA, TNF-α, IL-8 and IL-1β in the AM of smoking rates were higher than in healthy rats, while the IL-10 content and SOD activity were lower than in healthy rats. CONCLUSION MSP and its receptor RON are involved in the smoke-induced airway inflammation in rats via promoting AM to release inflammatory cytokines and inducing the increase of oxygen free radical.
Collapse
Affiliation(s)
- Tao Wang
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Xiaoju Chen
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Wenbo Zhang
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Xiaojun Xiang
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Changyan Leng
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Qinyao Jia
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| |
Collapse
|
20
|
Cleynen I, Vazeille E, Artieda M, Verspaget HW, Szczypiorska M, Bringer MA, Lakatos PL, Seibold F, Parnell K, Weersma RK, Mahachie John JM, Morgan-Walsh R, Staelens D, Arijs I, De Hertogh G, Müller S, Tordai A, Hommes DW, Ahmad T, Wijmenga C, Pender S, Rutgeerts P, Van Steen K, Lottaz D, Vermeire S, Darfeuille-Michaud A. Genetic and microbial factors modulating the ubiquitin proteasome system in inflammatory bowel disease. Gut 2014; 63:1265-1274. [PMID: 24092863 DOI: 10.1136/gutjnl-2012-303205] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Altered microbiota composition, changes in immune responses and impaired intestinal barrier functions are observed in IBD. Most of these features are controlled by proteases and their inhibitors to maintain gut homeostasis. Unrestrained or excessive proteolysis can lead to pathological gastrointestinal conditions. The aim was to validate the identified protease IBD candidates from a previously performed systematic review through a genetic association study and functional follow-up. DESIGN We performed a genetic association study in a large multicentre cohort of patients with Crohn's disease (CD) and UC from five European IBD referral centres in a total of 2320 CD patients, 2112 UC patients and 1796 healthy controls. Subsequently, we did an extensive functional assessment of the candidate genes to explore their causality in IBD pathogenesis. RESULTS Ten single nucleotide polymorphisms (SNPs) in four genes were significantly associated with CD: CYLD, USP40, APEH and USP3. CYLD was the most significant gene with the intronically located rs12324931 the strongest associated SNP (p(FDR)=1.74e-17, OR=2.24 (1.83 to 2.74)). Five SNPs in four genes were significantly associated with UC: USP40, APEH, DAG1 and USP3. CYLD, as well as some of the other associated genes, is part of the ubiquitin proteasome system (UPS). We therefore determined if the IBD-associated adherent-invasive Escherichia coli (AIEC) can modulate the UPS functioning. Infection of intestinal epithelial cells with the AIEC LF82 reference strain modulated the UPS turnover by reducing poly-ubiquitin conjugate accumulation, increasing 26S proteasome activities and decreasing protein levels of the NF-κB regulator CYLD. This resulted in IκB-α degradation and NF-κB activation. This activity was very important for the pathogenicity of AIEC since decreased CYLD resulted in increased ability of AIEC LF82 to replicate intracellularly. CONCLUSIONS Our results reveal the UPS, and CYLD specifically, as an important contributor to IBD pathogenesis, which is favoured by both genetic and microbial factors.
Collapse
Affiliation(s)
- Isabelle Cleynen
- Department of Clinical and Experimental Medicine, TARGID, KU Leuven, Leuven, Belgium
| | - Emilie Vazeille
- Clermont Université, Inserm U1071, Université d'Auvergne, INRA USC 2018, Clermont-Ferrand, France Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | | | - Hein W Verspaget
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands Dutch Initiative on Crohn and Colitis (ICC)
| | | | - Marie-Agnès Bringer
- Clermont Université, Inserm U1071, Université d'Auvergne, INRA USC 2018, Clermont-Ferrand, France
| | - Peter L Lakatos
- 1st Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Frank Seibold
- Department of Gastroenterology, Spitalnetz Bern, Switzerland
| | - Kirstie Parnell
- Peninsula Medical School, University of Exeter & Plymouth, Exeter, UK
| | - Rinse K Weersma
- Dutch Initiative on Crohn and Colitis (ICC) Department of Gastroenterology and Hepatology, University Medical Center Groningen and the University of Groningen, Groningen, The Netherlands
| | - Jestinah M Mahachie John
- Systems and Modeling Unit, Montefiore Institute, University of Liège, Liège, Belgium Bioinformatics and Modeling, GIGA-R, University of Liège, Liège, Belgium
| | - Rebecca Morgan-Walsh
- Clinical and Experimental Sciences, Faculty of medicine, University of Southampton, Southampton, UK
| | - Dominiek Staelens
- Department of Clinical and Experimental Medicine, TARGID, KU Leuven, Leuven, Belgium
| | - Ingrid Arijs
- Department of Clinical and Experimental Medicine, TARGID, KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Morphology and Molecular Pathology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Stefan Müller
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Atilla Tordai
- Hungarian National Blood Transfusion Service, Molecular Diagnostics, Budapest, Hungary
| | - Daniel W Hommes
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands Dutch Initiative on Crohn and Colitis (ICC) Division of Digestive Diseases, Inflammatory Bowel Diseases Center, UCLA, Los Angeles, USA
| | - Tariq Ahmad
- Peninsula Medical School, University of Exeter & Plymouth, Exeter, UK
| | - Cisca Wijmenga
- Dutch Initiative on Crohn and Colitis (ICC) Department of Genetics, University Medical Center Groningen and the University of Groningen, Groningen, The Netherlands
| | - Sylvia Pender
- Clinical and Experimental Sciences, Faculty of medicine, University of Southampton, Southampton, UK
| | - Paul Rutgeerts
- Department of Clinical and Experimental Medicine, TARGID, KU Leuven, Leuven, Belgium
| | - Kristel Van Steen
- Systems and Modeling Unit, Montefiore Institute, University of Liège, Liège, Belgium Bioinformatics and Modeling, GIGA-R, University of Liège, Liège, Belgium
| | - Daniel Lottaz
- Department of Rheumatology, Clinical Immunology and Allergology, University Hospital of Bern, Inselspital, Switzerland
| | - Severine Vermeire
- Department of Clinical and Experimental Medicine, TARGID, KU Leuven, Leuven, Belgium
| | - Arlette Darfeuille-Michaud
- Clermont Université, Inserm U1071, Université d'Auvergne, INRA USC 2018, Clermont-Ferrand, France Centre Hospitalier Universitaire, Clermont-Ferrand, France
| |
Collapse
|
21
|
Kulkarni RM, Stuart WD, Gurusamy D, Waltz SE. Ron receptor signaling is protective against DSS-induced colitis in mice. Am J Physiol Gastrointest Liver Physiol 2014; 306:G1065-74. [PMID: 24742989 PMCID: PMC4059975 DOI: 10.1152/ajpgi.00421.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the intestine that result in painful and debilitating complications. Currently no cure exists for IBD, and treatments are primarily aimed at reducing inflammation to alleviate symptoms. Genome-wide linkage studies have identified the Ron receptor tyrosine kinase (TK) and its ligand, hepatocyte growth factor-like protein (HGFL), as genes highly associated with IBD. However, only scant information exists on the role of Ron or HGFL in IBD. Based on the linkage of Ron to IBD, we directly examined the biological role of Ron in colitis. Wild-type mice and mice lacking the TK signaling domain of Ron (TK-/- mice) were utilized in a well-characterized model of chronic colitis induced by cyclic exposure to dextran sulfate sodium. In this model, TK-/- mice were more susceptible to injury as judged by increased mortality compared with control mice and developed more severe colitis. Loss of Ron led to significantly reduced body weights and more aggressive clinical and histopathologies. Ron loss also resulted in a dramatic reduction in colonic epithelial cell proliferation and increased proinflammatory cytokine production, which was associated with alterations in important signaling pathways known to regulate IBD. Examination of human gene expression data further supports the contention that loss of Ron signaling is associated with IBD. In total, our studies point to important functional roles for Ron in IBD by regulating healing of the colonic epithelium and by controlling cytokine secretion.
Collapse
Affiliation(s)
| | - William D. Stuart
- 1Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio; and
| | - Devikala Gurusamy
- 1Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio; and
| | - Susan E. Waltz
- 1Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio; and ,2Department of Research, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| |
Collapse
|
22
|
Manecka DL, Lelièvre V, Anouar Y. Inhibition of constitutive TNF production is associated with PACAP-mediated differentiation in PC12 cells. FEBS Lett 2014; 588:3008-14. [PMID: 24928446 DOI: 10.1016/j.febslet.2014.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 06/01/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP) is a trophic neuropeptide that promotes cell survival and neuritogenesis in the central and peripheral nervous system. Our previous transcriptomic studies revealed the down-regulation of the cytokine tumor necrosis factor (TNF) during PACAP-induced PC12 cell differentiation. Here we show that TNF is constitutively expressed in PC12 cells in a manner dependent on NF-κB transcription factor, and that PACAP rapidly inhibits TNF expression and secretion. The inhibition occurs through suppression of RelB subunit of NF-κB, and is likely to prevent the deleterious effects of the cytokine on survival and neurite outgrowth during PC12 cell differentiation.
Collapse
Affiliation(s)
- Destiny-Love Manecka
- Inserm, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France; Institute for Research and Innovation in Biomedicine, Normandy University, University of Rouen, Mont-Saint-Aignan, France
| | | | - Youssef Anouar
- Inserm, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France; Institute for Research and Innovation in Biomedicine, Normandy University, University of Rouen, Mont-Saint-Aignan, France.
| |
Collapse
|
23
|
Kulkarni RM, Stuart WD, Waltz SE. Ron receptor-dependent gene regulation of Kupffer cells during endotoxemia. Hepatobiliary Pancreat Dis Int 2014; 13:281-92. [PMID: 24919612 PMCID: PMC4108450 DOI: 10.1016/s1499-3872(14)60254-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ron receptor tyrosine kinase signaling in macrophages, including Kupffer cells and alveolar macrophages, suppresses endotoxin-induced proinflammatory cytokine/chemokine production. Further, we have also identified genes from Ron replete and Ron deplete livers that were differentially expressed during the progression of liver inflammation associated with acute liver failure in mice by microarray analyses. While important genes and signaling pathways have been identified downstream of Ron signaling during progression of inflammation by this approach, the precise role that Ron receptor plays in regulating the transcriptional landscape in macrophages, and particular in isolated Kupffer cells, has still not been investigated. METHODS Kupffer cells were isolated from wild-type (TK+/+) and Ron tyrosine kinase deficient (TK-/-) mice. Ex vivo, the cells were treated with lipopolysaccharide (LPS) in the presence or absence of the Ron ligand, hepatocyte growth factor-like protein (HGFL). Microarray and qRT-PCR analyses were utilized to identify alterations in gene expression between genotypes. RESULTS Microarray analyses identified genes expressed differentially in TK+/+ and TK-/- Kupffer cells basally as well as after HGFL and LPS treatment. Interestingly, our studies identified Mefv, a gene that codes for the anti-inflammatory protein pyrin, as an HGFL-stimulated Ron-dependent gene. Moreover, lipocalin 2, a proinflammatory gene, which is induced by LPS, was significantly suppressed by HGFL treatment. Microarray results were validated by qRT-PCR studies on Kupffer cells treated with LPS and HGFL. CONCLUSION The studies herein suggest a novel mechanism whereby HGFL-induced Ron receptor activation promotes the expression of anti-inflammatory genes while inhibiting genes involved in inflammation with a net effect of diminished inflammation in macrophages.
Collapse
|
24
|
Cary DC, Clements JE, Henderson AJ. RON receptor tyrosine kinase, a negative regulator of inflammation, is decreased during simian immunodeficiency virus-associated central nervous system disease. THE JOURNAL OF IMMUNOLOGY 2013; 191:4280-7. [PMID: 24043899 DOI: 10.4049/jimmunol.1300797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Expressed on tissue-resident macrophages, the receptor tyrosine kinase, recepteur d'orgine nantais (RON), functions to maintain inflammation homeostasis by activating genes that promote wound repair and resolve inflammation while repressing genes that perpetuate tissue damage and cell death. Chronic HIV-1 infection is associated with dysregulated inflammation, and we hypothesize that diminished RON expression contributes to the development of end organ diseases such as HIV-1-associated CNS disease. To explore RON function in vivo, we used CNS tissue from a well-characterized SIV macaque model and examined the temporal regulation of RON in the brain during the course of infection. Following prolonged SIV infection, RON expression was inversely correlated with the development of CNS disease; RON was maintained in animals that did not develop CNS lesions and was reduced in SIV-infected macaques that demonstrated moderate to severe inflammatory lesions. Arginase-1 expression was reduced in the brain during late infection, whereas expression of the inflammatory genes, IL-12p40 and TNF-α, was elevated. To validate a role for RON in regulating HIV-1 in primary cells, we used human tissue-resident macrophages isolated from tonsil as a tractable cell model. RON signaling in tissue-resident macrophages, both ligand dependent and independent, limited HIV-1 replication. Furthermore, prolonged HIV-1 infection in vitro resulted in downregulation of RON. We propose a model in which, following chronic HIV-1 infection in the brain, RON expression is decreased, genes that quell inflammation are repressed, and inflammatory mediators are induced to promote tissue inflammation.
Collapse
Affiliation(s)
- Daniele C Cary
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| | | | | |
Collapse
|
25
|
Chaudhuri A, Wilson NS, Yang B, Paler Martinez A, Liu J, Zhu C, Bricker N, Couto S, Modrusan Z, French D, Cupp J, Ashkenazi A. Host genetic background impacts modulation of the TLR4 pathway by RON in tissue-associated macrophages. Immunol Cell Biol 2013; 91:451-60. [PMID: 23817579 PMCID: PMC3736205 DOI: 10.1038/icb.2013.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/04/2013] [Accepted: 05/20/2013] [Indexed: 12/27/2022]
Abstract
Toll-like receptors (TLRs) enable metazoans to mount effective innate immune responses to microbial and viral pathogens, as well as to endogenous host-derived ligands. It is understood that genetic background of the host can influence TLR responsiveness, altering susceptibility to pathogen infection, autoimmunity and cancer. Macrophage stimulatory protein (MSP), which activates the receptor tyrosine kinase recepteur d'origine nantais (RON), promotes key macrophage functions such as motility and phagocytic activity. MSP also acts via RON to modulate signaling by TLR4, which recognizes a range of pathogen or endogenous host-derived molecules. Here, we show that RON exerts divergent control over TLR4 activity in macrophages from different mouse genetic backgrounds. RON potently modulated the TLR4 response in macrophages from M2-prone FVB mice, as compared with M1-skewed C57Bl6 mice. Moreover, global expression analysis revealed that RON suppresses the TLR4-dependent type-I interferon gene signature only in FVB macrophages. This leads to attenuated production of the potent inflammatory mediator, tumor necrosis factor-α. Eliminating RON kinase activity markedly decreased carcinogen-mediated tumorigenesis in M2/Th2-biased FVB mice. We propose that host genetic background influences RON function, thereby contributing to the variability in TLR4 responsiveness in rodents and, potentially, in humans. These findings provide novel insight into the complex interplay between genetic context and immune function.
Collapse
Affiliation(s)
- Amitabha Chaudhuri
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Nicholas S Wilson
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Becky Yang
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | | | - Jinfeng Liu
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, USA
| | - Catherine Zhu
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Nicole Bricker
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Suzana Couto
- Departments of Pathology and Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA, USA
| | - Dorothy French
- Departments of Pathology and Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - James Cupp
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA, USA
| | - Avi Ashkenazi
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| |
Collapse
|
26
|
ADAM17 is critical for multipolar exit and radial migration of neuronal intermediate progenitor cells in mice cerebral cortex. PLoS One 2013; 8:e65703. [PMID: 23755270 PMCID: PMC3670835 DOI: 10.1371/journal.pone.0065703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 05/02/2013] [Indexed: 01/24/2023] Open
Abstract
The radial migration of neuronal progenitor cells is critical for the development of cerebral cortex layers. They go through a critical step transforming from multipolar to bipolar before outward migration. A Disintegrin and Metalloprotease 17 (ADAM17) is a transmembrane protease which can process many substrates involved in cell-cell interaction, including Notch, ligands of EGFR, and some cell adhesion molecules. In this study, we used in utero electroporation to knock down or overexpress ADAM17 at embryonic day 14.5 (E14.5) in neuronal progenitor cells to examine the role of ADAM17 in cortical embryonic neurogenesis. Our results showed that the radial migration of ADAM17-knocked down cells were normal till E16.5 and reached the intermediate zone (IZ). Then most transfected cells stopped migration and stayed at the IZ to inner cortical plate (CP) layer at E18.5, and there was higher percentage of multipolar cells at IZ layer in the ADAM17-knocked down group compared to the cells in control group. Marker staining revealed that those ADAM17-knocked down cells differentiated normally from neural stem cells (NSCs) to neuronal intermediate progenitor cells (nIPCs) but did not differentiate into mature neurons. The migration and multipolar exit defects caused by ADAM17 knockdown could be partially rescued by over-expressing an shRNA resistant ADAM17, while overexpressing ADAM17 alone did not affect the radial migration. Taken together, our results showed for the first time that, ADAM17 is critical in regulating the multipolar-stage exit and radial migration of the nIPCs during telencephalon cortex development in mice.
Collapse
|
27
|
Lee KE, Kim EY, Kim CS, Choi JS, Bae EH, Ma SK, Kim KK, Lee JU, Kim SW. Macrophage-stimulating protein attenuates gentamicin-induced inflammation and apoptosis in human renal proximal tubular epithelial cells. Biochem Biophys Res Commun 2013; 434:527-33. [DOI: 10.1016/j.bbrc.2013.03.108] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/13/2013] [Indexed: 12/15/2022]
|
28
|
Gurusamy D, Gray JK, Pathrose P, Kulkarni RM, Finkleman FD, Waltz SE. Myeloid-specific expression of Ron receptor kinase promotes prostate tumor growth. Cancer Res 2013; 73:1752-63. [PMID: 23328584 DOI: 10.1158/0008-5472.can-12-2474] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ron receptor kinase (MST1R) is important in promoting epithelial tumorigenesis, but the potential contributions of its specific expression in stromal cells have not been examined. Herein, we show that the Ron receptor is expressed in mouse and human stromal cells of the prostate tumor microenvironment. To test the significance of stromal Ron expression, prostate cancer cells were orthotopically implanted into the prostates of either wild-type or Ron tyrosine kinase deficient (TK(-/-); Mst1r(-/-)) hosts. In TK(-/-) hosts, prostate cancer cell growth was significantly reduced as compared with tumor growth in TK(+/+) hosts. Prostate tumors in TK(-/-) hosts exhibited an increase in tumor cell apoptosis, macrophage infiltration and altered cytokine expression. Reciprocal bone marrow transplantation studies and myeloid cell-specific ablation of Ron showed that loss of Ron in myeloid cells is sufficient to inhibit prostate cancer cell growth. Interestingly, depletion of CD8(+) T cells, but not CD4(+) T cells, was able to restore prostate tumor growth in hosts devoid of myeloid-specific Ron expression. These studies show a critical role for the Ron receptor in the tumor microenvironment, whereby Ron loss in tumor-associated macrophages inhibits prostate cancer cell growth, at least in part, by derepressing the activity of CD8(+) T cells.
Collapse
Affiliation(s)
- Devikala Gurusamy
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
INTRODUCTION Since its discovery nearly 20 years ago, the Ron receptor tyrosine kinase has been extensively studied. These studies have elucidated many of the major signaling pathways activated by Ron. In the context of the inflammation and cancer, studies have shown that Ron plays differential roles; Ron activation limits the inflammatory response, whereas in cancer, Ron activation is associated with increased metastases and poor prognosis. AREAS COVERED This review discusses the current literature with regard to Ron signaling and consequences of its activation in cancer as well as its role in cancer therapy. Further, we discuss the mechanisms by which Ron influences the inflammatory response and its role in chronic inflammatory diseases. Finally, we discuss Ron's connection between chronic inflammation and progression to cancer. EXPERT OPINION The complex nature of Ron's signaling paradigm necessitates additional studies to understand the pathways by which Ron is functioning and how these differ in inflammation and cancer. This will be vital to understanding the impact that Ron signaling has in disease states. Additional studies of targeted therapies, either alone or in conjunction with current therapies are needed to determine if inhibition of Ron signaling will provide long-term benefits to cancer patients.
Collapse
Affiliation(s)
- Nancy M Benight
- University of Cincinnati College of Medicine, Cincinnati Veterans Affairs Medical Center, Department of Cancer and Cell Biology, OH 45267-0521, USA
| | | |
Collapse
|
30
|
Fukuda I, Ishihara T, Ohmachi S, Sakikawa I, Morita A, Ikeda M, Yamane S, Toyosaki-Maeda T, Takinami Y, Okamoto H, Numata Y, Fukui N. Potential plasma biomarkers for progression of knee osteoarthritis using glycoproteomic analysis coupled with a 2D-LC-MALDI system. Proteome Sci 2012; 10:36. [PMID: 22672759 PMCID: PMC3514375 DOI: 10.1186/1477-5956-10-36] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 05/21/2012] [Indexed: 01/14/2023] Open
Abstract
Background Although osteoarthritis (OA) is a highly prevalent joint disease, to date, no reliable biomarkers have been found for the disease. In this study, we attempted to identify factors the amounts of which significantly change in association with the progression of knee OA. Methods A total of 68 subjects with primary knee OA were enrolled in the study. These subjects were followed up over an 18-month period, and plasma and serum samples were obtained together with knee radiographs every 6 months, i.e., 0, 6, 12 and 18 months after the enrollment. Progressors and non-progressors were determined from the changes on radiographs, and plasma samples from those subjects were subjected to N-glycoproteomic 2D-LC-MALDI analysis. MS peaks were identified, and intensities for respective peaks were compared between the progressors and non-progressors to find the peak intensities of which differed significantly between the two groups of subjects. Proteins represented by the chosen peaks were identified by MS/MS analysis. Expression of the identified proteins was evaluated in synovial tissues from 10 OA knee joints by in situ hybridization, western blotting analysis and ELISA. Results Among the subjects involved in the study, 3 subjects were determined to be progressors, and 6 plasma and serum samples from these subjects were subjected to the analysis together with another 6 samples from the non-progressors. More than 3000 MS peaks were identified by N-glycoproteomic 2D-LC-MALDI analysis. Among them, 4 peaks were found to have significantly different peak intensities between the progressors and non-progressors. MS/MS analysis revealed that these peaks represented clusterin, hemopexin, alpha-1 acid glycoprotein-2, and macrophage stimulating protein, respectively. The expression of these genes in OA synovium was confirmed by in situ hybridization, and for clusterin and hemopexin, by western blotting analysis and ELISA as well. Conclusions In this study, 4 potential biomarkers were identified as potential prognostic markers for knee OA through N-glycoproteomic analysis. To the best of our knowledge, this is the first report for the use of glycoproteomic technology in exploring potential biomarkers for knee OA.
Collapse
Affiliation(s)
- Isao Fukuda
- Department of Pathomechanisms, Clinical Research Center, National Hospital Organization Sagamihara Hospital, Sagamihara, Kanagawa, 228-8522, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bai L, McEachern D, Yang CY, Lu J, Sun H, Wang S. LRIG1 modulates cancer cell sensitivity to Smac mimetics by regulating TNFα expression and receptor tyrosine kinase signaling. Cancer Res 2012; 72:1229-38. [PMID: 22241084 DOI: 10.1158/0008-5472.can-11-2428] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Smac mimetics block inhibitor of apoptosis proteins to trigger TNFα-dependent apoptosis in cancer cells. However, only a small subset of cancer cells seem to be sensitive to Smac mimetics and even sensitive cells can develop resistance. Herein, we elucidated mechanisms underlying the intrinsic and acquired resistance of cancer cells to Smac mimetics. In vitro and in vivo investigations revealed that the expression of the cell surface protein LRIG1, a negative regulator of receptor tyrosine kinases (RTK), is downregulated in resistant derivatives of breast cancer cells sensitive to Smac mimetics. RNA interference-mediated downregulation of LRIG1 markedly attenuated the growth inhibitory activity of the Smac mimetic SM-164 in drug-sensitive breast and ovarian cancer cells. Furthermore, LRIG1 downregulation attenuated TNFα gene expression induced by Smac mimetics and increased the activity of multiple RTKs, including c-Met and Ron. The multitargeted tyrosine kinase inhibitors Crizotinib and GSK1363089 greatly enhanced the anticancer activity of SM-164 in all resistant cell derivatives, with the combination of SM-164 and GSK1363089 also completely inhibiting the outgrowth of resistant tumors in vivo. Together, our findings show that both upregulation of RTK signaling and attenuated TNFα expression caused by LRIG1 downregulation confers resistance to Smac mimetics, with implications for a rational combination strategy.
Collapse
Affiliation(s)
- Longchuan Bai
- University of Michigan Comprehensive Cancer Center and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
32
|
Marshall AM, McClaine RJ, Gurusamy D, Gray JK, Lewnard KE, Khan SA, Waltz SE. Estrogen receptor alpha deletion enhances the metastatic phenotype of Ron overexpressing mammary tumors in mice. Mol Cancer 2012; 11:2. [PMID: 22226043 PMCID: PMC3286430 DOI: 10.1186/1476-4598-11-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 01/06/2012] [Indexed: 12/20/2022] Open
Abstract
Background The receptor tyrosine kinase family includes many transmembrane proteins with diverse physiological and pathophysiological functions. The involvement of tyrosine kinase signaling in promoting a more aggressive tumor phenotype within the context of chemotherapeutic evasion is gaining recognition. The Ron receptor is a tyrosine kinase receptor that has been implicated in the progression of breast cancer and evasion of tamoxifen therapy. Results Here, we report that Ron expression is correlated with in situ, estrogen receptor alpha (ERα)-positive tumors, and is higher in breast tumors following neoadjuvant tamoxifen therapy. We also demonstrate that the majority of mammary tumors isolated from transgenic mice with mammary specific-Ron overexpression (MMTV-Ron mice), exhibit appreciable ER expression. Moreover, genetic-ablation of ERα, in the context of Ron overexpression, leads to delayed mammary tumor initiation and growth, but also results in an increased metastasis. Conclusions Ron receptor overexpression is associated with ERα-positive human and murine breast tumors. In addition, loss of ERα on a Ron overexpressing background in mice leads to the development of breast tumors which grow slower but which exhibit more metastasis and suggests that targeting of ERα, as in the case of tamoxifen therapy, may reduce the growth of Ron overexpressing breast cancers but may cause these tumors to be more metastatic.
Collapse
Affiliation(s)
- Aaron M Marshall
- Department of Cancer and Cell Biology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Ron receptor overexpression in the murine prostate induces prostate intraepithelial neoplasia. Cancer Lett 2011; 314:92-101. [PMID: 22004727 DOI: 10.1016/j.canlet.2011.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/06/2011] [Accepted: 09/18/2011] [Indexed: 01/11/2023]
Abstract
Previous studies have shown that the Ron receptor is overexpressed in prostate cancer and Ron expression increases with disease severity in humans and the mouse TRAMP model. Here, the causal role of Ron overexpression in the murine prostate was examined in the development and progression of prostate cancer. Transgenic mouse strains were generated which selectively overexpressed Ron in the prostate epithelium and prostate histopathology was evaluated and compared to wild type controls. Ron overexpression led to the development of prostate intraepithelial neoplasia (mPIN) with local invasion and was associated with increases in prostate cell proliferation and decreases in cell death.
Collapse
|
34
|
Stuart WD, Kulkarni RM, Gray JK, Vasiliauskas J, Leonis MA, Waltz SE. Ron receptor regulates Kupffer cell-dependent cytokine production and hepatocyte survival following endotoxin exposure in mice. Hepatology 2011; 53:1618-28. [PMID: 21520175 PMCID: PMC3082400 DOI: 10.1002/hep.24239] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Previous studies demonstrated that targeted deletion of the Ron receptor tyrosine kinase (TK) domain in mice leads to marked hepatocyte protection in a well-characterized model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (GalN)-sensitized mice. Hepatocyte protection in TK-/- mice was observed despite paradoxically elevated serum levels of tumor necrosis factor alpha (TNF-α). To understand the role of Ron in the liver, purified populations of Kupffer cells and hepatocytes from wildtype (TK+/+) and TK-/- mice were studied. Utilizing quantitative reverse-transcription polymerase chain reaction (RT-PCR), we demonstrated that Ron is expressed in these cell types. Moreover, we also recapitulated the protected hepatocyte phenotype and exaggerated cytokine production observed in the TK-/- mice in vivo through the use of purified cultured cells ex vivo. We show that isolated TK-/- Kupffer cells produce increased levels of TNF-α and select cytokines compared to TK+/+ cells following LPS stimulation. We also show that conditioned media from LPS-treated TK-/- Kupffer cells was more toxic to hepatocytes than control media, suggesting the exaggerated levels of cytokines produced from the TK-/- Kupffer cells are detrimental to wildtype hepatocytes. In addition, we observed that TK-/- hepatocytes were more resistant to cell death compared to TK+/+ hepatocytes, suggesting that Ron functions in both the epithelial and inflammatory cell compartments to regulate acute liver injury. These findings were confirmed in vivo in mice with hepatocyte and macrophage cell-type-specific conditional Ron deletions. Mice with Ron loss selectively in hepatocytes exhibited less liver damage and increased survival compared to mice with Ron loss in macrophages. CONCLUSION We dissected cell-type-specific roles for Ron such that this receptor modulates cytokine production from Kupffer cells and inhibits hepatocyte survival in response to injury.
Collapse
Affiliation(s)
- William D. Stuart
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267–0521
| | - Rishikesh M. Kulkarni
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267–0521
| | - Jerilyn K. Gray
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267–0521
| | - Juozas Vasiliauskas
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267–0521
| | - Mike A. Leonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267–0521
| | - Susan E. Waltz
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267–0521, Departments of Research, Cincinnati Veterans Affairs Medical Center and Shriners Hospital for Children, Cincinnati, OH 45267–0521,Address correspondence to: Susan E. Waltz, Ph.D., Department of Cancer and Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, 3125 Eden Ave, Cincinnati, OH 45267–0521, Tel: 513.558.8675, Fax: 513.558.4428,
| |
Collapse
|
35
|
Drafahl KA, McAndrew CW, Meyer AN, Haas M, Donoghue DJ. The receptor tyrosine kinase FGFR4 negatively regulates NF-kappaB signaling. PLoS One 2010; 5:e14412. [PMID: 21203561 PMCID: PMC3008709 DOI: 10.1371/journal.pone.0014412] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 11/24/2010] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND NFκB signaling is of paramount importance in the regulation of apoptosis, proliferation, and inflammatory responses during human development and homeostasis, as well as in many human cancers. Receptor Tyrosine Kinases (RTKs), including the Fibroblast Growth Factor Receptors (FGFRs) are also important in development and disease. However, a direct relationship between growth factor signaling pathways and NFκB activation has not been previously described, although FGFs have been known to antagonize TNFα-induced apoptosis. METHODOLOGY/PRINCIPAL FINDINGS Here, we demonstrate an interaction between FGFR4 and IKKβ (Inhibitor of NFκB Kinase β subunit), an essential component in the NFκB pathway. This novel interaction was identified utilizing a yeast two-hybrid screen [1] and confirmed by coimmunoprecipitation and mass spectrometry analysis. We demonstrate tyrosine phosphorylation of IKKβ in the presence of activated FGFR4, but not kinase-dead FGFR4. Following stimulation by TNFα (Tumor Necrosis Factor α) to activate NFκB pathways, FGFR4 activation results in significant inhibition of NFκB signaling as measured by decreased nuclear NFκB localization, by reduced NFκB transcriptional activation in electophoretic mobility shift assays, and by inhibition of IKKβ kinase activity towards the substrate GST-IκBα in in vitro assays. FGF19 stimulation of endogenous FGFR4 in TNFα-treated DU145 prostate cancer cells also leads to a decrease in IKKβ activity, concomitant reduction in NFκB nuclear localization, and reduced apoptosis. Microarray analysis demonstrates that FGF19 + TNFα treatment of DU145 cells, in comparison with TNFα alone, favors proliferative genes while downregulating genes involved in apoptotic responses and NFκB signaling. CONCLUSIONS/SIGNIFICANCE These results identify a compelling link between FGFR4 signaling and the NFκB pathway, and reveal that FGFR4 activation leads to a negative effect on NFκB signaling including an inhibitory effect on proapoptotic signaling. We anticipate that this interaction between an RTK and a component of NFκB signaling will not be limited to FGFR4 alone.
Collapse
Affiliation(s)
- Kristine A. Drafahl
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Christopher W. McAndrew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - April N. Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Martin Haas
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Daniel J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Ray M, Yu S, Sharda DR, Wilson CB, Liu Q, Kaushal N, Prabhu KS, Hankey PA. Inhibition of TLR4-induced IκB kinase activity by the RON receptor tyrosine kinase and its ligand, macrophage-stimulating protein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:7309-16. [PMID: 21078906 PMCID: PMC4815273 DOI: 10.4049/jimmunol.1000095] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The RON receptor tyrosine kinase regulates the balance between classical (M1) and alternative (M2) macrophage activation. In primary macrophages, the ligand for Ron, macrophage-stimulating protein (MSP), inhibits the expression of inducible NO synthase, a marker of classically activated macrophages, whereas promoting the expression of arginase I, a marker of alternative activation. Ron(-/-) mice express increased levels of IL-12, a product of classically activated macrophages, after endotoxin administration, resulting in increased serum IFN-γ levels and enhanced susceptibility to septic shock. In this study, we demonstrate that MSP inhibits LPS-induced IL-12p40 expression, and this inhibition is dependent on the docking site tyrosines in Ron. To further define this inhibition, we examined the effect of Ron on signaling pathways downstream of Ron. We found that MSP does not inhibit the MyD88-independent activation of IFN regulatory factor 3 and production of IFN-β in response to LPS, nor does it inhibit MyD88-dependent TGF-β-activated kinase phosphorylation or MAPK activation in primary macrophages. However, the induction of IκB kinase activity, IκB degradation, and DNA binding of NF-κB after LPS stimulation is delayed in the presence of MSP. In addition, Ron inhibits serine phosphorylation of p65 and NF-κB transcriptional activity induced by LPS stimulation of TLR4. Finally, MSP inhibits the NF-κB-dependent upregulation of the nuclear IκB family member, IκBζ, a positive regulator of secondary response genes including IL-12p40. LPS also induces expression of Ron and an N-terminally truncated form of Ron, Sf-Ron, in primary macrophages, suggesting that the upregulation of Ron by LPS could provide classical feedback regulation of TLR signaling.
Collapse
Affiliation(s)
- Manujendra Ray
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802
- Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802
| | - Shan Yu
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802
- Graduate Program in Physiology, The Pennsylvania State University, University Park, PA 16802
| | - Daniel R. Sharda
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802
- Graduate Program in Pathobiology, The Pennsylvania State University, University Park, PA 16802
| | - Caleph B. Wilson
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802
- Graduate Program in Pathobiology, The Pennsylvania State University, University Park, PA 16802
| | - QingPing Liu
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802
| | - Naveen Kaushal
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802
| | - K. Sandeep Prabhu
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802
- Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802
- Graduate Program in Pathobiology, The Pennsylvania State University, University Park, PA 16802
| | - Pamela A. Hankey
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802
- Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802
- Graduate Program in Physiology, The Pennsylvania State University, University Park, PA 16802
- Graduate Program in Pathobiology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
37
|
Nikolaidis NM, Kulkarni RM, Gray JK, Collins MH, Waltz SE. Ron receptor deficient alveolar myeloid cells exacerbate LPS-induced acute lung injury in the murine lung. Innate Immun 2010; 17:499-507. [PMID: 21088048 DOI: 10.1177/1753425910383725] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Previous studies have shown that the Ron receptor tyrosine kinase is an important regulator of the acute lung inflammatory response induced by intranasal administration of bacterial LPS. Compared to wild-type mice, complete loss of the Ron receptor in all cell types in vivo was associated with increased lung damage as determined by histological analyses and several markers of lung injury including increases in pro-inflammatory cytokines such as TNF-α. Tumor-necrosis factor-α is a multifunctional cytokine secreted by macrophages, which plays a major role in inflammation and is a central mediator of several disease states including rheumatoid arthritis and sepsis. Based on increased TNF-α production observed in the Ron-deficient mice, we hypothesized that Ron receptor function in the inflammatory cell compartment is essential for the regulating lung injury in vivo. To test this hypothesis, we generated myeloid lineage-specific Ron-deficient mice. In this study, we report that loss of Ron signaling selectively in myeloid cells results in increased lung injury following intranasal administration of LPS as measured by increases in TNF-α production, ensuing neutrophil accumulation and increased lung histopathology. These findings corroborate the role of Ron receptor tyrosine kinase as a negative regulator of inflammation and further demonstrate the in vivo significance of Ron signaling selectively in myeloid cells as a major regulator of this response in vivo. These data authenticate Ron as a potential target in innate immunity and TNF-α-mediated pathologies.
Collapse
Affiliation(s)
- Nikolaos M Nikolaidis
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Ohio, USA
| | | | | | | | | |
Collapse
|
38
|
Laskin DL, Chen L, Hankey PA, Laskin JD. Role of STK in mouse liver macrophage and endothelial cell responsiveness during acute endotoxemia. J Leukoc Biol 2010; 88:373-82. [PMID: 20453108 DOI: 10.1189/jlb.0210113] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acute endotoxemia is associated with excessive production of proinflammatory mediators by hepatic macrophages and endothelial cells, which have been implicated in liver injury and sepsis. In these studies, we analyzed the role of MSP and its receptor STK in regulating the activity of these cells. Acute endotoxemia, induced by administration of LPS (3 mg/kg) to mice, resulted in increased expression of STK mRNA and protein in liver macrophages and endothelial cells, an effect that was dependent on TLR-4. This was correlated with decreased MSP and increased pro-MSP in serum. In Kupffer cells, but not endothelial cells, MSP suppressed LPS-induced NOS-2 expression, with no effect on COX-2. LPS treatment of mice caused a rapid (within 3 h) increase in the proinflammatory proteins NOS-2, IL-1beta, and TNF-alpha, as well as TREM-1 and TREM-3 and the anti-inflammatory cytokine IL-10 in liver macrophages and endothelial cells. Whereas LPS-induced expression of proinflammatory proteins was unchanged in STK-/- mice, IL-10 expression was reduced significantly. Enzymes mediating eicosanoid biosynthesis including COX-2 and mPGES-1 also increased in macrophages and endothelial cells after LPS administration. In STK-/- mice treated with LPS, mPGES-1 expression increased, although COX-2 expression was reduced. LPS-induced up-regulation of SOD was also reduced in STK-/- mice in liver macrophages and endothelial cells. These data suggest that MSP/STK signaling plays a role in up-regulating macrophage and endothelial cell anti-inflammatory activity during hepatic inflammatory responses. This may be important in protecting the liver from tissue injury.
Collapse
Affiliation(s)
- Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, 160 Frelinghuysen Rd., Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
39
|
What's new in Shock, February 2010? Shock 2010; 33:109-12. [PMID: 20081494 DOI: 10.1097/shk.0b013e3181cd567e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Thobe MN, Gurusamy D, Pathrose P, Waltz SE. The Ron receptor tyrosine kinase positively regulates angiogenic chemokine production in prostate cancer cells. Oncogene 2009; 29:214-26. [PMID: 19838218 PMCID: PMC2806938 DOI: 10.1038/onc.2009.331] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Overexpression of the Ron receptor tyrosine kinase has recently been shown in a wide variety of human cancers. However, no studies have examined Ron receptor expression or function during prostate tumorigenesis. We report here that Ron is highly expressed in human prostate adenocarcinoma and metastatic lymph nodes compared to normal prostate or benign prostate hyperplasia. Furthermore, we show that Ron is overexpressed in PC-3 and DU145 prostate cancer cell lines, and that levels of angiogenic chemokines produced by prostate cancer cells positively correlates with Ron expression. Knockdown of Ron in PC-3 or DU145 cells results in a significant decrease in angiogenic chemokine production and is associated with decreased activation of the transcription factor NF-kappaB. Moreover, exogenous overexpression of Ron in LNCaP cells is sufficient to induce a significant increase in angiogenic chemokines that can be abrogated by inhibition of NF-kappaB signaling. Given that the function of angiogenic chemokines is important in the development of new blood vessels, we also examined the ability of Ron to modulate endothelial cell migration. Our data show that knockdown of Ron in prostate cancer cells results both in significantly less endothelial cell chemotaxis compared to Ron-expressing cells in vitro as well as in reduced tumor growth and decreased microvessel density following orthotopic transplantation into the prostate in vivo. In total, our data suggest that the Ron receptor is important in modulating prostate tumor growth by modulating angiogenic chemokine production and subsequent endothelial cell recruitment.
Collapse
Affiliation(s)
- M N Thobe
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | |
Collapse
|