1
|
Chen Y, Fang B, Liu X, Bai W, Liu P, Duan Z, Lu T, Zhang Q, Dong W, Zhang Y. PTGS2/GRP78 Activation Triggers Endoplasmic Reticulum Stress Leading to Lipid Metabolism Disruption and Cell Apoptosis, Exacerbating Damage in Bovine Mastitis. Biomolecules 2024; 14:1533. [PMID: 39766240 PMCID: PMC11673387 DOI: 10.3390/biom14121533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Lipoteichoic acid (LTA), an organic acid of Gram-positive bacteria, is closely related to mastitis in dairy cows. This study evaluates the effect of LTA-induced endoplasmic reticulum stress (ER stress) in vitro using MAC-T (mammary epithelial cells) and in dairy cows with mastitis. LTA stimulation significantly increases ER stress and apoptosis-related factors in MAC-T. Further analysis suggests that the increase in ER stress may be associated with interactions involving PTGS2 and GRP78. Protein structural studies indicate a strong interaction between PTGS2 and GRP78. Lipidomics results further demonstrate that LTA disrupts lipid balance in MAC-T cells, affecting lipid metabolism in the endoplasmic reticulum, including PC, PE, TAG, and DAG, thereby exacerbating inflammation and ER stress. In dairy cows with mastitis caused by Gram-positive bacterial infection, damaged epithelial cells, inflammatory cell infiltration, and apoptotic vesicles are observed in affected tissues. In contrast, tissues from healthy cows exhibit regular epithelial cells without inflammatory cells or apoptotic vesicles. Furthermore, a significant ER stress and apoptosis increase is observed in mastitis tissues. This study demonstrates the close association between LTA-induced cell damage and ER stress, contributing to understanding the mechanisms underlying LTA-induced damage and supporting strategies for mastitis prevention and control in dairy cows.
Collapse
Affiliation(s)
- Yan Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (B.F.); (W.B.); (P.L.); (Z.D.); (T.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Bo Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (B.F.); (W.B.); (P.L.); (Z.D.); (T.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Xian Liu
- Lanzhou Centers for Disease Control and Prevention, Lanzhou 730030, China;
| | - Wenkai Bai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (B.F.); (W.B.); (P.L.); (Z.D.); (T.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Peiwen Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (B.F.); (W.B.); (P.L.); (Z.D.); (T.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Zhiwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (B.F.); (W.B.); (P.L.); (Z.D.); (T.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Ting Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (B.F.); (W.B.); (P.L.); (Z.D.); (T.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Quanwei Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
| | - Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (B.F.); (W.B.); (P.L.); (Z.D.); (T.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (B.F.); (W.B.); (P.L.); (Z.D.); (T.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| |
Collapse
|
2
|
Fang B, Yang T, Chen Y, Duan Z, Hu J, Wang Q, He Y, Zhang Y, Dong W, Zhang Q, Zhao X. Activation of ARP2/3 and HSP70 Expression by Lipoteichoic Acid: Potential Bidirectional Regulation of Apoptosis in a Mastitis Inflammation Model. Biomolecules 2024; 14:901. [PMID: 39199289 PMCID: PMC11352453 DOI: 10.3390/biom14080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Mastitis typically arises from bacterial invasion, where host cell apoptosis significantly contributes to the inflammatory response. Gram-positive bacteria predominantly utilize the virulence factor lipoteichoic acid (LTA), which frequently leads to chronic breast infections, thereby impacting dairy production and animal husbandry adversely. This study employed LTA to develop models of mastitis in cow mammary gland cells and mice. Transcriptomic analysis identified 120 mRNAs associated with endocytosis and apoptosis pathways that were enriched in the LTA-induced inflammation of the Mammary Alveolar Cells-large T antigen (MAC-T), with numerous differential proteins also concentrated in the endocytosis pathway. Notably, actin-related protein 2/3 complex subunit 3 (ARPC3), actin-related protein 2/3 complex subunit 4 (ARPC4), and the heat shock protein 70 (HSP70) are closely related. STRING analysis revealed interactions among ARPC3, ARPC4, and HSP70 with components of the apoptosis pathway. Histological and molecular biological assessments confirmed that ARPC3, ARPC4, and HSP70 were mainly localized to the cell membrane of mammary epithelial cells. ARPC3 and ARPC4 are implicated in the mechanisms of bacterial invasion and the initiation of inflammation. Compared to the control group, the expression levels of these proteins were markedly increased, alongside the significant upregulation of apoptosis-related factors. While HSP70 appears to inhibit apoptosis and alleviate inflammation, its upregulation presents novel research opportunities. In conclusion, we deduced the development mechanism of ARPC3, ARPC4, and HSP70 in breast inflammation, laying the foundation for further exploring the interaction mechanism between the actin-related protein 2/3 (ARP2/3) complex and HSP70.
Collapse
Affiliation(s)
- Bo Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Tingji Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yan Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Zhiwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Qi Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yuxuan He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Quanwei Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| |
Collapse
|
3
|
Reuter S, Raspe J, Taube C. Microbes little helpers and suppliers for therapeutic asthma approaches. Respir Res 2024; 25:29. [PMID: 38218816 PMCID: PMC10787474 DOI: 10.1186/s12931-023-02660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024] Open
Abstract
Bronchial asthma is a prevalent and increasingly chronic inflammatory lung disease affecting over 300 million people globally. Initially considered an allergic disorder driven by mast cells and eosinophils, asthma is now recognized as a complex syndrome with various clinical phenotypes and immunological endotypes. These encompass type 2 inflammatory endotypes characterized by interleukin (IL)-4, IL-5, and IL-13 dominance, alongside others featuring mixed or non-eosinophilic inflammation. Therapeutic success varies significantly based on asthma phenotypes, with inhaled corticosteroids and beta-2 agonists effective for milder forms, but limited in severe cases. Novel antibody-based therapies have shown promise, primarily for severe allergic and type 2-high asthma. To address this gap, novel treatment strategies are essential for better control of asthma pathology, prevention, and exacerbation reduction. One promising approach involves stimulating endogenous anti-inflammatory responses through regulatory T cells (Tregs). Tregs play a vital role in maintaining immune homeostasis, preventing autoimmunity, and mitigating excessive inflammation after pathogenic encounters. Tregs have demonstrated their ability to control both type 2-high and type 2-low inflammation in murine models and dampen human cell-dependent allergic airway inflammation. Furthermore, microbes, typically associated with disease development, have shown immune-dampening properties that could be harnessed for therapeutic benefits. Both commensal microbiota and pathogenic microbes have demonstrated potential in bacterial-host interactions for therapeutic purposes. This review explores microbe-associated approaches as potential treatments for inflammatory diseases, shedding light on current and future therapeutics.
Collapse
Affiliation(s)
- Sebastian Reuter
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Tüschener Weg 40, 45239, Essen, Germany.
| | - Jonas Raspe
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Tüschener Weg 40, 45239, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Tüschener Weg 40, 45239, Essen, Germany
| |
Collapse
|
4
|
Jóźwiak-Bębenista M, Sokołowska P, Wiktorowska-Owczarek A, Kowalczyk E, Sienkiewicz M. Ketamine - A New Antidepressant Drug with Anti-Inflammatory Properties. J Pharmacol Exp Ther 2024; 388:134-144. [PMID: 37977808 DOI: 10.1124/jpet.123.001823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023] Open
Abstract
Ketamine is a new, potent and rapid-acting antidepressant approved for therapy of treatment-resistant depression, which has a different mechanism of action than currently-available antidepressant therapies. It owes its uniquely potent antidepressant properties to a complex mechanism of action, which currently remains unclear. However, it is thought that it acts by modulating the functioning of the glutamatergic system, which plays an important role in the process of neuroplasticity associated with depression. However, preclinical and clinical studies have also found ketamine to reduce inflammation, either directly or indirectly (by activating neuroprotective branches of the kynurenine pathway), among patients exhibiting higher levels of inflammation. Inflammation and immune system activation are believed to play key roles in the development and course of depression. Therefore, the present work examines the role of the antidepressant effect of ketamine and its anti-inflammatory properties in the treatment of depression. SIGNIFICANCE STATEMENT: The present work examines the relationship between the antidepressant effect of ketamine and its anti-inflammatory properties, and the resulting benefits in treatment-resistant depression (TRD). The antidepressant mechanism of ketamine remains unclear, and there is an urgent need to develop new therapeutic strategies for treatment of depression, particularly TRD.
Collapse
Affiliation(s)
- Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Paulina Sokołowska
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Anna Wiktorowska-Owczarek
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| |
Collapse
|
5
|
Sokołowska P, Seweryn Karbownik M, Jóźwiak-Bębenista M, Dobielska M, Kowalczyk E, Wiktorowska-Owczarek A. Antidepressant mechanisms of ketamine's action: NF-κB in the spotlight. Biochem Pharmacol 2023; 218:115918. [PMID: 37952898 DOI: 10.1016/j.bcp.2023.115918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Ketamine recently approved for therapy of treatment-resistant depression shows a complex and not fully understood mechanism of action. Apart from its classical glutamatergic N-methyl-D-aspartate receptor antagonistic action, it is thought that anti-inflammatory properties of the drug are of clinical relevance due to the contribution of activated inflammatory mediators to the pathophysiology of depression and non-responsiveness of a group of patients to current antidepressant therapies. In a search of the mechanism underlying anti-inflammatory effects of ketamine, the nuclear factor kappa B transcription factor (NF-κB) has been proposed as a target for ketamine. The NF-κB forms precisely regulated protein signaling cascades enabling a rapid response to cellular stimuli. In the central nervous systems, NF-κB signaling appears to have pleiotropic but double-edged functions: on the one hand it participates in the regulation of processes that are crucial in the treatment of depression, such as neuroplasticity, neurogenesis or neuronal survival, on the other - in the activation of neuroinflammation and cell death. Ketamine has been found to reduce inflammation mediated by NF-κB, leading to decreased level of pro-inflammatory cytokines and other inflammatory or stress mediators. Therefore, this review presents recent data on the significance of the NF-κB cascade in the mechanism of ketamine's action and its future perspectives in designing new strategies for the treatment of depression.
Collapse
Affiliation(s)
- Paulina Sokołowska
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland.
| | - Michał Seweryn Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Maria Dobielska
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Anna Wiktorowska-Owczarek
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| |
Collapse
|
6
|
Bottemanne H, Berkovitch L, Gauld C, Balcerac A, Schmidt L, Mouchabac S, Fossati P. Storm on predictive brain: A neurocomputational account of ketamine antidepressant effect. Neurosci Biobehav Rev 2023; 154:105410. [PMID: 37793581 DOI: 10.1016/j.neubiorev.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
For the past decade, ketamine, an N-methyl-D-aspartate receptor (NMDAr) antagonist, has been considered a promising treatment for major depressive disorder (MDD). Unlike the delayed effect of monoaminergic treatment, ketamine may produce fast-acting antidepressant effects hours after a single administration at subanesthetic dose. Along with these antidepressant effects, it may also induce transient dissociative (disturbing of the sense of self and reality) symptoms during acute administration which resolve within hours. To understand ketamine's rapid-acting antidepressant effect, several biological hypotheses have been explored, but despite these promising avenues, there is a lack of model to understand the timeframe of antidepressant and dissociative effects of ketamine. In this article, we propose a neurocomputational account of ketamine's antidepressant and dissociative effects based on the Predictive Processing (PP) theory, a framework for cognitive and sensory processing. PP theory suggests that the brain produces top-down predictions to process incoming sensory signals, and generates bottom-up prediction errors (PEs) which are then used to update predictions. This iterative dynamic neural process would relies on N-methyl-D-aspartate (NMDAr) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic receptors (AMPAr), two major component of the glutamatergic signaling. Furthermore, it has been suggested that MDD is characterized by over-rigid predictions which cannot be updated by the PEs, leading to miscalibration of hierarchical inference and self-reinforcing negative feedback loops. Based on former empirical studies using behavioral paradigms, neurophysiological recordings, and computational modeling, we suggest that ketamine impairs top-down predictions by blocking NMDA receptors, and enhances presynaptic glutamate release and PEs, producing transient dissociative symptoms and fast-acting antidepressant effect in hours following acute administration. Moreover, we present data showing that ketamine may enhance a delayed neural plasticity pathways through AMPAr potentiation, triggering a prolonged antidepressant effect up to seven days for unique administration. Taken together, the two sides of antidepressant effects with distinct timeframe could constitute the keystone of antidepressant properties of ketamine. These PP disturbances may also participate to a ketamine-induced time window of mental flexibility, which can be used to improve the psychotherapeutic process. Finally, these proposals could be used as a theoretical framework for future research into fast-acting antidepressants, and combination with existing antidepressant and psychotherapy.
Collapse
Affiliation(s)
- Hugo Bottemanne
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France; Sorbonne University, Department of Psychiatry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Lucie Berkovitch
- Saclay CEA Centre, Neurospin, Gif-Sur-Yvette Cedex, France; Department of Psychiatry, GHU Paris Psychiatrie et Neurosciences, Service Hospitalo-Universitaire, Paris, France
| | - Christophe Gauld
- Department of Child Psychiatry, CHU de Lyon, F-69000 Lyon, France; Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS & Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Alexander Balcerac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Liane Schmidt
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France
| | - Stephane Mouchabac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Psychiatry, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Fossati
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France
| |
Collapse
|
7
|
Sharkey JM, Quarrington RD, Krieg JL, Kaukas L, Turner RJ, Leonard A, Jones CF, Corrigan F. Evaluating the effect of post-traumatic hypoxia on the development of axonal injury following traumatic brain injury in sheep. Brain Res 2023; 1817:148475. [PMID: 37400012 DOI: 10.1016/j.brainres.2023.148475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Damage to the axonal white matter tracts within the brain is a key cause of neurological impairment and long-term disability following traumatic brain injury (TBI). Understanding how axonal injury develops following TBI requires gyrencephalic models that undergo shear strain and tissue deformation similar to the clinical situation and investigation of the effects of post-injury insults like hypoxia. The aim of this study was to determine the effect of post-traumatic hypoxia on axonal injury and inflammation in a sheep model of TBI. Fourteen male Merino sheep were allocated to receive a single TBI via a modified humane captive bolt animal stunner, or sham surgery, followed by either a 15 min period of hypoxia or maintenance of normoxia. Head kinematics were measured in injured animals. Brains were assessed for axonal damage, microglia and astrocyte accumulation and inflammatory cytokine expression at 4 hrs following injury. Early axonal injury was characterised by calpain activation, with significantly increased SNTF immunoreactivity, a proteolytic fragment of alpha-II spectrin, but not with impaired axonal transport, as measured by amyloid precursor protein (APP) immunoreactivity. Early axonal injury was associated with an increase in GFAP levels within the CSF, but not with increases in IBA1 or GFAP+ve cells, nor in levels of TNFα, IL1β or IL6 within the cerebrospinal fluid or white matter. No additive effect of post-injury hypoxia was noted on axonal injury or inflammation. This study provides further support that axonal injury post-TBI is driven by different pathophysiological mechanisms, and detection requires specific markers targeting multiple injury mechanisms. Treatment may also need to be tailored for injury severity and timing post-injury to target the correct injury pathway.
Collapse
Affiliation(s)
- Jessica M Sharkey
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Ryan D Quarrington
- Adelaide Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia, Australia
| | - Justin L Krieg
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Lola Kaukas
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Renee J Turner
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Anna Leonard
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Claire F Jones
- Adelaide Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia, Australia; Department of Orthopaedics & Trauma, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Frances Corrigan
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia.
| |
Collapse
|
8
|
Kim KY, Shin KY, Chang KA. Potential Inflammatory Biomarkers for Major Depressive Disorder Related to Suicidal Behaviors: A Systematic Review. Int J Mol Sci 2023; 24:13907. [PMID: 37762207 PMCID: PMC10531013 DOI: 10.3390/ijms241813907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric condition affecting an estimated 280 million individuals globally. Despite the occurrence of suicidal behaviors across various psychiatric conditions, MDD is distinctly associated with the highest risk of suicide attempts and death within this population. In this study, we focused on MDD to identify potential inflammatory biomarkers associated with suicidal risk, given the relationship between depressive states and suicidal ideation. Articles published before June 2023 were searched in PubMed, Embase, Web of Science, and the Cochrane Library to identify all relevant studies reporting blood inflammatory biomarkers in patients with MDD with suicide-related behaviors. Of 571 articles, 24 were included in this study. Overall, 43 significant biomarkers associated with MDD and suicide-related behaviors were identified. Our study provided compelling evidence of significant alterations in peripheral inflammatory factors in MDD patients with suicide-related behaviors, demonstrating the potential roles of interleukin (IL)-1β, IL-6, C-reactive protein, C-C motif chemokine ligand 2, and tumor necrosis factor-α as biomarkers. These findings underscore the intricate relationship between the inflammatory processes of these biomarkers and their interactions in MDD with suicidal risk.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Republic of Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Ki Young Shin
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
9
|
Salimi A, Shabani M, Bayrami D, Saray A, Farshbaf Moghimi N. Gallic acid and sesame oil exert cardioprotection via mitochondrial protection and antioxidant properties on Ketamine-Induced cardiotoxicity model in rats. TOXIN REV 2023. [DOI: 10.1080/15569543.2023.2165503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences
| | - Mohammad Shabani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Deniz Bayrami
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Armin Saray
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nastaran Farshbaf Moghimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
10
|
Xiao S, Zhou Y, Wang Q, Yang D. Ketamine Attenuates Airway Inflammation via Inducing Inflammatory Cells Apoptosis and Activating Nrf2 Pathway in a Mixed-Granulocytic Murine Asthma Model. Drug Des Devel Ther 2022; 16:4411-4428. [PMID: 36597444 PMCID: PMC9805722 DOI: 10.2147/dddt.s391010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Purpose The use of ketamine, an anesthetic, as a treatment for asthma has been investigated in numerous studies. However, how ketamine affects asthma is unclear. The present study examined the effects of ketamine on a murine model of mixed-granulocytic asthma, and the role of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Methods The murine model of mixed-granulocytic asthma was established using ovalbumin (OVA) for sensitization and the combination of OVA and lipopolysaccharides (LPS) for challenge. The main characteristics of asthma, oxidative stress biomarkers, and the expression of the Nrf2 pathway were examined. ML385 was administered to verify the role of the Nrf2 pathway. Results Mice in the OVA +LPS group developed asthmatic characteristics, including airway hyperresponsiveness, mixed-granulocytic airway inflammation, mucus overproduction, as well as increased levels of oxidative stress and impaired apoptosis of inflammatory cells. Among the three concentrations, ketamine at 75mg/kg effectively attenuated these asthmatic symptoms, activated the Nrf2 pathway, decreased oxidative stress, and induced apoptosis of eosinophils and neutrophils in bronchoalveolar lavage fluid (BALF) with a reducing level of myeloid cell leukemia 1(Mcl-1). ML385 (an Nrf2 inhibitor) eliminated the protective effects of ketamine on the mixed-granulocytic asthma model. Conclusion The study concluded that ketamine reduced oxidative stress and attenuated asthmatic symptoms (neutrophilic airway inflammation) by activating the Nrf2-Keap1 pathway, with 75 mg/kg ketamine showing the best results. Ketamine administration also increased neutrophil and eosinophil apoptosis in BALF, which may contribute to the resolution of inflammation. The use of ketamine as a treatment for asthma may therefore be beneficial.
Collapse
Affiliation(s)
- Shilin Xiao
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ying Zhou
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qianyu Wang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Dong Yang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China,Correspondence: Dong Yang, Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan, Beijing, 100144, People’s Republic of China, Tel +86-13661267522, Email
| |
Collapse
|
11
|
Richardson B, MacPherson A, Bambico F. Neuroinflammation and neuroprogression in depression: Effects of alternative drug treatments. Brain Behav Immun Health 2022; 26:100554. [DOI: 10.1016/j.bbih.2022.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/29/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
|
12
|
Jayakumar P, Martínez-Moreno CG, Lorenson MY, Walker AM, Morales T. Prolactin Attenuates Neuroinflammation in LPS-Activated SIM-A9 Microglial Cells by Inhibiting NF-κB Pathways Via ERK1/2. Cell Mol Neurobiol 2022; 42:2171-2186. [PMID: 33821330 PMCID: PMC11421592 DOI: 10.1007/s10571-021-01087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
Prolactin (PRL) is a pleiotropic hormone with multiple functions in several tissues and organs, including the brain. PRL decreases lesion-induced microgliosis and modifies gene expression related to microglial functions in the hippocampus, thereby providing a possible mechanism through which it might participate in neuroimmune modulatory responses and prevent neuronal cell damage. However, the direct contribution of microglial cells to PRL-mediated neuroprotection is still unclear and no studies have yet documented whether PRL can directly activate cellular pathways in microglial cells. The aim of this study is to elucidate in vitro actions of PRL on the immortalized SIM-A9 microglia cell line in basal and LPS-stimulated conditions. PRL alone induced a time-dependent extracellular signal-regulated kinase 1/2 (ERK1/2) activation. Pretreatment with PRL attenuated LPS (200 ng/ml) stimulated pro-inflammatory markers: nitric oxide (NO) levels, inducible nitric oxide synthase (iNOS), interleukins (IL)-6, -1β and tumor necrosis factor (TNF-α) expression at 20 nM dosage. PRL suppressed LPS-induced nuclear factor (NF)-κappaB (NF-κB) p65 subunit phosphorylation and its upstream p-ERK1/2 activity. In conclusion, PRL exhibits anti-inflammatory effects in LPS-stimulated SIM-A9 microglia by downregulating pro-inflammatory mediators corresponding to suppression of LPS-activated ERK1/2 and NF-κB phosphorylation.
Collapse
Affiliation(s)
- Preethi Jayakumar
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Mary Y Lorenson
- Department of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Ameae M Walker
- Department of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Teresa Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| |
Collapse
|
13
|
Anti-Inflammatory Activity of Bilberry ( Vaccinium myrtillus L.). Curr Issues Mol Biol 2022; 44:4570-4583. [PMID: 36286028 PMCID: PMC9601269 DOI: 10.3390/cimb44100313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammation is important in the pathogenesis of several chronic diseases. The anti-inflammatory properties of berries have been investigated but the anti-inflammatory activity of bilberry has received little attention and a detailed review is yet to be published. Therefore, we compiled information on the phytochemicals of bilberry and preclinical and clinical studies of its anti-inflammatory properties. The review was based on studies from 2007 to date. Phytoconstituents of bilberries were phenolic acids, organic acids, anthocyanins, coumarins, flavonols, flavanols, tannins, terpenoids, and volatile chemicals. Data from cell and animal model studies show that bilberry has an anti-inflammatory effect by lowering tumor necrosis factor-α, interleukin (IL)-6, and IL-1β expression, inducing nitric oxide synthases and cyclooxygenases, and altering the nuclear factor kappa B and Janus kinase-signal transducer and activator of transcription signaling pathways. Bilberry supplementation as fruits (frozen, processed, and whole), juices, and anthocyanins reduced levels of inflammatory markers in most clinical studies of metabolic disorders. Therefore, bilberry may be useful for the prevention and treatment of chronic inflammatory disorders.
Collapse
|
14
|
Activation of Nrf2 by Esculetin Mitigates Inflammatory Responses through Suppression of NF-κB Signaling Cascade in RAW 264.7 Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165143. [PMID: 36014382 PMCID: PMC9412493 DOI: 10.3390/molecules27165143] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022]
Abstract
Inflammation is a major root of several diseases such as allergy, cancer, Alzheimer’s, and several others, and the present state of existing drugs provoked researchers to search for new treatment strategies. Plants are regarded to be unique sources of active compounds holding pharmacological properties, and they offer novel designs in the development of therapeutic agents. Therefore, this study aimed to explore the anti-inflammatory mechanism of esculetin in lipoteichoic acid (LTA)-induced macrophage cells (RAW 264.7). The relative expression of inducible nitric oxide synthase (iNOS), nitric oxide (NO) production and COX-2 expression were intensified in LTA-induced RAW cells. The phosphorylation status of mitogen-activated protein kinases (extracellular signal-regulated kinase (ERK)1/2, p38 MAPK, and c-Jun N-terminal kinase (JNK)) and nuclear factor kappa B (NF-κB) p65 were detected by using Western blot assay. The nuclear translocation of p65 was assessed by confocal microscopic image analysis. Esculetin significantly and concentration-dependently inhibited LTA-induced NO production and iNOS expression, but not COX-2 expression, in RAW cells. Esculetin was not effective in LTA-induced MAPK molecules (ERK, p38 and JNK). However, esculetin recovered LTA-induced IκBα degradation and NF-κB p65 phosphorylation. Moreover, esculetin at a higher concentration of 20 µM evidently inhibited the nuclear translocation of NF-κB p65. At the same high concentration, esculetin augmented Nrf2 expression and decreased DPPH radical generation in RAW 264.7 cells. This study exhibits the value of esculetin for the treatment of LTA-induced inflammation by targeting NF-κB signaling pathways via its antioxidant properties.
Collapse
|
15
|
Ha SE, Bhagwan Bhosale P, Kim HH, Park MY, Abusaliya A, Kim GS, Kim JA. Apigetrin Abrogates Lipopolysaccharide-Induced Inflammation in L6 Skeletal Muscle Cells through NF-κB/MAPK Signaling Pathways. Curr Issues Mol Biol 2022; 44:2635-2645. [PMID: 35735621 PMCID: PMC9221909 DOI: 10.3390/cimb44060180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022] Open
Abstract
Apigetrin is a glycosidic flavonoid derived from Teucrium gnaphalodes that has a wide range of biological activities, including antioxidant, anti-inflammatory, and anticancer. Inflammation is a kind of defense mechanism in the body. Flavonoids are natural phytochemicals that exert anti-inflammatory effects in numerous cells. In the present study, we investigated the anti-inflammatory effect of apigetrin and its underlying mechanism of activity in skeletal muscle cells (L6). The determination of cytotoxicity was performed by MTT assay. We treated L6 cells with apigetrin, and nontoxic concentrations were chosen to perform further experimentation. Apigetrin inhibited the expression of iNOS and COX-2 induced by LPS in a dose-dependent manner. iNOS and COX-2 are inflammatory markers responsible for enhancing the inflammatory response. Apigetrin also inhibited the LPS-induced phosphorylation of p65 and IκB-α. NF-κB signaling regulates the inflammatory process by mediating various proinflammatory genes. Similarly, the MAPK signaling pathway consists of ERK, JNK, and p38, which plays a critical role in the production of cytokines and downstream signaling events leading to inflammation. Apigetrin significantly downregulated the phosphorylation of JNK and p38, but did not affect the phosphorylation of ERK in the LPS-stimulated cells. These findings indicate the correlation between the anti-inflammatory activity of NF-κB and the MAPK signaling pathway. Thus, our overall finding suggests that apigetrin has anti-inflammatory effects and it can be considered for further drug design on L6 skeletal muscle cells.
Collapse
Affiliation(s)
- Sang-Eun Ha
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (S.-E.H.); (P.B.B.); (H.-H.K.); (M.-Y.P.); (A.A.)
| | - Pritam Bhagwan Bhosale
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (S.-E.H.); (P.B.B.); (H.-H.K.); (M.-Y.P.); (A.A.)
| | - Hun-Hwan Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (S.-E.H.); (P.B.B.); (H.-H.K.); (M.-Y.P.); (A.A.)
| | - Min-Yeong Park
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (S.-E.H.); (P.B.B.); (H.-H.K.); (M.-Y.P.); (A.A.)
| | - Abuyaseer Abusaliya
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (S.-E.H.); (P.B.B.); (H.-H.K.); (M.-Y.P.); (A.A.)
| | - Gon-Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (S.-E.H.); (P.B.B.); (H.-H.K.); (M.-Y.P.); (A.A.)
- Correspondence: (G.-S.K.); (J.-A.K.); Tel.: +82-55-772-2346 (G.-S.K.); +82-55-751-8295 (J.-A.K.)
| | - Jin-A Kim
- Department of Physical Therapy, International University of Korea, Jinju 52833, Korea
- Correspondence: (G.-S.K.); (J.-A.K.); Tel.: +82-55-772-2346 (G.-S.K.); +82-55-751-8295 (J.-A.K.)
| |
Collapse
|
16
|
Jayakumar T, Yang CM, Yen TL, Hsu CY, Sheu JR, Hsia CW, Manubolu M, Huang WC, Hsieh CY, Hsia CH. Anti-Inflammatory Mechanism of An Alkaloid Rutaecarpine in LTA-Stimulated RAW 264.7 Cells: Pivotal Role on NF-κB and ERK/p38 Signaling Molecules. Int J Mol Sci 2022; 23:ijms23115889. [PMID: 35682568 PMCID: PMC9180084 DOI: 10.3390/ijms23115889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Lipoteichoic acid (LTA) is a key cell wall component and virulence factor of Gram-positive bacteria. LTA contributes a major role in infection and it mediates inflammatory responses in the host. Rutaecarpine, an indolopyridoquinazolinone alkaloid isolated from Evodia rutaecarpa, has shown a variety of fascinating biological properties such as anti-thrombotic, anticancer, anti-obesity and thermoregulatory, vasorelaxing activity. It has also potent effects on the cardiovascular and endocrine systems. Herein, we investigated rutaecarpine’s (Rut) anti-inflammatory effects in LTA-stimulated RAW macrophage cells. The Western blot and spectrophotometric results revealed that Rut inhibited the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and interleukin (IL)-1β in the LTA-induced macrophage cells. Successively, our mechanistic studies publicized that Rut inhibited LTA-induced phosphorylation of mitogen-activated protein kinase (MAPK) including the extracellular signal-regulated kinase (ERK), and p38, but not c-Jun NH2-terminal kinase (JNK). In addition, the respective Western blot and confocal image analyses exhibited that Rut reserved nuclear transcription factor kappa-B (NF-κB) by hindering inhibitor of nuclear factor κB-α (IκBα) and NF-κB p65 phosphorylation and p65 nuclear translocation. These results indicate that Rut exhibits its anti-inflammatory effects mainly through attenuating NF-κB and ERK/p38 signaling pathways. Overall, this result suggests that Rut could be a potential therapeutic agent for the treatment of Gram-positive bacteria induced inflammatory diseases.
Collapse
Affiliation(s)
- Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.J.); (C.-M.Y.); (C.-Y.H.); (J.-R.S.); (C.-W.H.); (W.-C.H.)
| | - Chun-Ming Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.J.); (C.-M.Y.); (C.-Y.H.); (J.-R.S.); (C.-W.H.); (W.-C.H.)
- Department of Neurology, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Ting-Lin Yen
- Department of Medical Research, Cathay General Hospital, Taipei 106, Taiwan;
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Yuan Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.J.); (C.-M.Y.); (C.-Y.H.); (J.-R.S.); (C.-W.H.); (W.-C.H.)
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.J.); (C.-M.Y.); (C.-Y.H.); (J.-R.S.); (C.-W.H.); (W.-C.H.)
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Wei Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.J.); (C.-M.Y.); (C.-Y.H.); (J.-R.S.); (C.-W.H.); (W.-C.H.)
| | - Manjunath Manubolu
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43212, USA;
| | - Wei-Chieh Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.J.); (C.-M.Y.); (C.-Y.H.); (J.-R.S.); (C.-W.H.); (W.-C.H.)
| | - Cheng-Ying Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (C.-Y.H.); (C.-H.H.)
| | - Chih-Hsuan Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.J.); (C.-M.Y.); (C.-Y.H.); (J.-R.S.); (C.-W.H.); (W.-C.H.)
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
- Correspondence: (C.-Y.H.); (C.-H.H.)
| |
Collapse
|
17
|
Network pharmacology analysis and experimental validation to explore the mechanism of Bushao Tiaozhi capsule (BSTZC) on hyperlipidemia. Sci Rep 2022; 12:6992. [PMID: 35484204 PMCID: PMC9051129 DOI: 10.1038/s41598-022-11139-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Bushao Tiaozhi Capsule (BSTZC) is a novel drug in China that is used in clinical practice and has significant therapeutic effects on hyperlipidemia (HLP). In our previous study, BSTZC has a good regulatory effect on lipid metabolism of HLP rats. However, its bioactive compounds, potential targets, and underlying mechanism remain largely unclear. We extracted the active ingredients and targets in BSTZC from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and literature mining. Subsequently, core ingredients, potential targets, and signaling pathways were determined through bioinformatics analysis, including constructed Drug-Ingredient-Gene symbols-Disease (D-I-G-D), protein–protein interaction (PPI), the Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, the reliability of the core targets was evaluated using in vivo studies. A total of 36 bioactive ingredients and 209 gene targets were identified in BSTZC. The network analysis revealed that quercetin, kaempferol, wogonin, isorhamnetin, baicalein and luteolin may be the core ingredients. The 26 core targets of BSTZC, including IL-6, TNF, VEGFA, and CASP3, were considered potential therapeutic targets. Furthermore, GO and KEGG analyses indicated that the treatment of HLP by BSTZC might be related to lipopolysaccharide, oxidative stress, inflammatory response and cell proliferation, differentiation and apoptosis. The pathway analysis showed enrichment for different pathways like MAPK signaling pathway, AGE-RAGE signaling pathway in diabetic, IL-17 signaling pathway and TNF signaling pathway. In this study, network pharmacology analysis, and experiment verification were combined, and revealed that BSTZC may regulate key inflammatory markers and apoptosis for ameliorating HLP.
Collapse
|
18
|
Zhang C, Guo W, Yao X, Xia J, Zhang Z, Li J, Chen H, Lin L. Database mining and animal experiment-based validation of the efficacy and mechanism of Radix Astragali (Huangqi) and Rhizoma Atractylodis Macrocephalae (Baizhu) as core drugs of Traditional Chinese medicine in cancer-related fatigue. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114892. [PMID: 34883219 DOI: 10.1016/j.jep.2021.114892] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In China, Traditional Chinese medicine (TCM) is often used as the main therapy for cancer-related fatigue (CRF). However, there is limited evidence to prove its therapeutic effect and mechanism. AIM OF THE STUDY We aimed to provide a basis for the therapeutic effect of TCM for CRF. MATERIALS AND METHODS We performed a meta-analysis to investigate the efficacy of TCM treatment for CRF. Through frequency statistics and association rule mining, we screened the core Chinese medicine components, Astragalus mongholicus Bunge., root (Radix astragali, Huangqi) and Atractylodes macrocephala Koidz., rhizome (Rhizoma atractylodis macrocephalae, Baizhu). We then used animal experiments to verify the effectiveness of these two TCMs and changes in related indicators in mice. Relevant molecular mechanisms were explored through network pharmacological analysis. RESULTS Twenty-four randomised control trials (RCTs) involving 1865 patients were included in the meta-analysis. TCM produced more positive effects on CRF than standard therapy alone. Radix astragali and Rhizoma atractylodis macrocephalae, as the core drug pair for the treatment of CRF, enhanced the physical fitness of mice; reduced abdominal circumference, level of inflammatory factors, and tumour weight; and increased body weight and blood sugar. Network pharmacology analysis showed that the mechanism of action of Radix astragali and Rhizoma atractylodis macrocephalae on CRF mainly involved compounds, such as quercetin, kaempferol and luteolin, acting through multiple targets, such as Protein kinase B α (AKT1), Tumour necrosis factor (TNF), and Interleukin-6 (IL-6). These molecules regulate cytokines, cancer signalling, and metabolic pathways and confer an anti-CRF effect. CONCLUSIONS TCM may be a promising therapy to relieve CRF in cancer patients. Our research may provide a reference for the clinical application of TCM for treating CRF.
Collapse
Affiliation(s)
- Chi Zhang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Wei Guo
- The First Hospital Affiliated of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Xiaohui Yao
- The School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Jiangnan Xia
- The School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Zexin Zhang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jing Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Hanrui Chen
- The First Hospital Affiliated of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lizhu Lin
- The First Hospital Affiliated of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Bai R, Li Z, Hou Y, Lv S, Wang R, Hua W, Wu H, Dai L. Identification of Diagnostic Markers Correlated With HIV + Immune Non-response Based on Bioinformatics Analysis. Front Mol Biosci 2022; 8:809085. [PMID: 35004856 PMCID: PMC8727996 DOI: 10.3389/fmolb.2021.809085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 01/17/2023] Open
Abstract
Background: HIV-infected immunological non-responders (INRs) are characterized by their inability to reconstitute CD4+ T cell pools after antiretroviral therapy. The risk of non-AIDS-related diseases in INRs is increased, and the outcome and prognosis of INRs are inferior to that of immunological responders (IRs). However, few markers can be used to define INRs precisely. In this study, we aim to identify further potential diagnostic markers associated with INRs through bioinformatic analyses of public datasets. Methods: This study retrieved the microarray data sets of GSE106792 and GSE77939 from the Gene Expression Omnibus (GEO) database. After merging two microarray data and adjusting the batch effect, differentially expressed genes (DEGs) were identified. Gene Ontology (GO) resource and Kyoto Encyclopedia of Genes and Genomes (KEGG) resource were conducted to analyze the biological process and functional enrichment. We performed receiver operating characteristic (ROC) curves to filtrate potential diagnostic markers for INRs. Gene Set Enrichment Analysis (GSEA) was conducted to perform the pathway enrichment analysis of individual genes. Single sample GSEA (ssGSEA) was performed to assess scores of immune cells within INRs and IRs. The correlations between the diagnostic markers and differential immune cells were examined by conducting Spearman’s rank correlation analysis. Subsequently, miRNA-mRNA-TF interaction networks in accordance with the potential diagnostic markers were built with Cytoscape. We finally verified the mRNA expression of the diagnostic markers in clinical samples of INRs and IRs by performing RT-qPCR. Results: We identified 52 DEGs in the samples of peripheral blood mononuclear cells (PBMC) between INRs and IRs. A few inflammatory and immune-related pathways, including chronic inflammatory response, T cell receptor signaling pathway, were enriched. FAM120AOS, LTA, FAM179B, JUN, PTMA, and SH3YL1 were considered as potential diagnostic markers. ssGSEA results showed that the IRs had significantly higher enrichment scores of seven immune cells compared with IRs. The miRNA-mRNA-TF network was constructed with 97 miRNAs, 6 diagnostic markers, and 26 TFs, which implied a possible regulatory relationship. Conclusion: The six potential crucial genes, FAM120AOS, LTA, FAM179B, JUN, PTMA, and SH3YL1, may be associated with clinical diagnosis in INRs. Our study provided new insights into diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Ruojing Bai
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuying Hou
- Institute of Neurology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Shiyun Lv
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ran Wang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Hua
- Travel Clinic, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lili Dai
- Travel Clinic, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Nikkheslat N. Targeting inflammation in depression: Ketamine as an anti-inflammatory antidepressant in psychiatric emergency. Brain Behav Immun Health 2021; 18:100383. [PMID: 34849492 PMCID: PMC8609146 DOI: 10.1016/j.bbih.2021.100383] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 02/02/2023] Open
Abstract
Major depressive disorder (MDD) is a common psychiatric disorder with multifactorial aetiology and complex pathophysiology. Despite availability of various pharmacological and non-pharmacological therapeutic strategies, treatment resistant depression (TRD) remains a significant challenge with specific concern for those patients with severe depressive symptoms in particular suicidal ideations who require immediate and effective intervention. Inflammation has been widely studied for its association with MDD and treatment response. Ketamine known as a dissociative anaesthetic has a novel rapid-acting antidepressant effect at lower doses. Anti-inflammatory actions of ketamine appear to play a role in mechanisms underlying its antidepressant effects. Considering the rapid antidepressant action of ketamine, this review provides a brief overview of antidepressant properties of ketamine as well as its effects on peripheral and central inflammation to better understand the mechanisms underlying the therapeutic action of ketamine as an anti-inflammatory antidepressant target in psychiatric emergency. Development of effective medications, which act rapidly with dual effect on both inflammation and MDD would be of a significant clinical importance for a successful and personalised treatment of inflammatory-induced TRD and suicidal thoughts and behaviour. Anti-inflammatory actions of ketamine play a role in mechanisms underlying its antidepressant effects. Ketamine’s dual effect on inflammation and depression is particularly important in treatment of inflammatory-induced TRD and suicidal patients. Ketamine affects CNS receptors and pathways, neurotransmitter systems, synaptogenesis, and inflammatory responses. Ketamine remains a promising target for treatment of TRD and suicidal thoughts.
Collapse
Affiliation(s)
- Naghmeh Nikkheslat
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, UK
| |
Collapse
|
21
|
Auraptene, a Monoterpene Coumarin, Inhibits LTA-Induced Inflammatory Mediators via Modulating NF- κB/MAPKs Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5319584. [PMID: 34824589 PMCID: PMC8610650 DOI: 10.1155/2021/5319584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/01/2021] [Indexed: 12/04/2022]
Abstract
Objective Oxidative stress-mediated inflammatory events involve in the progress of several diseases such as asthma, cancers, and multiple sclerosis. Auraptene (AU), a natural prenyloxycoumarin, possesses numerous pharmacological activities. Here, the anti-inflammatory effects of AU were investigated in lipoteichoic acid- (LTA-) induced macrophage cells (RAW 264.7). Methods The expression of cyclooxygenase (COX-2), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and inducible nitric oxide synthase (iNOS) and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, c-Jun N-terminal kinase (JNK), heme oxygenase (HO-1), p65, and IκBα were all identified by western blotting assay. The level of nitric oxide (NO) was measured by spectrometer analysis. The nuclear translocation of p65 nuclear factor kappa B (NF-κB) was assessed by the confocal microscopic staining method. Native polyacrylamide gel electrophoresis was performed to perceive the activity of antioxidant enzyme catalase (CAT). Results AU expressively reduced NO production and COX-2, TNF-α, IL-1 β, and iNOS expression in LTA-stimulated cells. AU at higher concentration (10 µM) inhibited ERK and JNK, but not p38 phosphorylation induced by LTA. Moreover, AU blocked IκB and p65 phosphorylation, and p65 nuclear translocation. However, AU pretreatment was not effective on antioxidant HO-1 expression, CAT activity, and reduced glutathione (GSH, a nonenzymatic antioxidant), in LTA-induced RAW 264.7 cells. Conclusion The findings of this study advocate that AU shows anti-inflammatory effects via reducing NF-κB/MAPKs signaling pathways.
Collapse
|
22
|
Wu GJ, Chen KY, Yang JD, Liu SH, Chen RM. Naringin Improves Osteoblast Mineralization and Bone Healing and Strength through Regulating Estrogen Receptor Alpha-Dependent Alkaline Phosphatase Gene Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13020-13033. [PMID: 34723490 DOI: 10.1021/acs.jafc.1c04353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phytoestrogens are strongly recommended for treating osteoporosis. Our previous study showed that naringin, a citrus flavonoid, can enhance the bone mass in ovariectomized rats. In this study, we further elucidated the mechanisms of naringin-induced osteoblast maturation and bone healing. Treatment of human osteoblasts with naringin increased cell viability and proliferation. In parallel, exposure to naringin enhanced translocation of estrogen receptor alpha (ERα) to nuclei and its transactivation activity. Sequentially, naringin induced alkaline phosphatase (ALP) mRNA and protein expression and its enzyme activity. Pretreatment with methylpiperidinopyrazole (MPP), a specific inhibitor of ERα, attenuated naringin-induced augmentations in ERα transactivation activity, ALP gene expression, and cell mineralization. The beneficial effects of naringin were also confirmed in mouse MC3T3-E1 cells. Moreover, administration of mice with a bone defect with naringin increased levels of ERα and ALP in damaged sites and simultaneously enhanced the healing rate and bone strength. Nevertheless, treatment with MPP weakened naringin-triggered expression of ERα and ALP and improved bone healing and mass. Therefore, naringin could improve osteoblast mineralization and bone healing via regulating ERα-dependent ALP gene expression. Naringin can be clinically applied for treatment of osteoporosis-related bone diseases.
Collapse
Affiliation(s)
- Gong-Jhe Wu
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Kung-Yen Chen
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Cell Physiology and Molecular Image Research Center and Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Jr-Di Yang
- Cell Physiology and Molecular Image Research Center and Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Urology, National Yang Ming Chiao Tung University Hospital, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ruei-Ming Chen
- Cell Physiology and Molecular Image Research Center and Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
23
|
Stanojević S, Blagojević V, Ćuruvija I, Vujić V. Lactobacillus rhamnosus Affects Rat Peritoneal Cavity Cell Response to Stimulation with Gut Microbiota: Focus on the Host Innate Immunity. Inflammation 2021; 44:2429-2447. [PMID: 34505975 DOI: 10.1007/s10753-021-01513-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/05/2021] [Indexed: 12/01/2022]
Abstract
Gut microbiota contribute to shaping the immune repertoire of the host, whereas probiotics may exert beneficial effects by modulating immune responses. Having in mind the differences in both the composition of gut microbiota and the immune response between rats of Albino Oxford (AO) and Dark Agouti (DA) rat strains, we investigated if intraperitoneal (i.p.) injection of live Lactobacillus rhamnosus (LB) may influence peritoneal cavity cell response to in vitro treatments with selected microbiota in the rat strain-dependent manner. Peritoneal cavity cells from AO and DA rats were lavaged two (d2) and seven days (d7) following i.p. injection with LB and tested for NO, urea, and H2O2 release basally, or upon in vitro stimulation with autologous E.coli and Enterococcus spp. Whereas the single i.p. injection of LB nearly depleted resident macrophages and increased the proportion of small inflammatory macrophages and monocytes on d2 in both rat strains, greater proportion of MHCIIhiCD163- and CCR7+ cells and increased NO/diminished H2O2 release in DA compared with AO rats suggest a more intense inflammatory priming by LB in this rat strain. Even though E.coli- and/or Enterococcus spp.-induced rise in H2O2 release in vitro was abrogated by LB in cells from both rat strains, LB prevented microbiota-induced increase in NO/urea ratio only in cells from AO and augmented it in cells from DA rats. Thus, the immunomodulatory properties may not be constant for particular probiotic bacteria, but shaped by innate immunity of the host.
Collapse
Affiliation(s)
- Stanislava Stanojević
- Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia. .,Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia.
| | - Veljko Blagojević
- Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia
| | - Ivana Ćuruvija
- Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia
| | - Vesna Vujić
- Department of Chemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
24
|
Melanson B, Leri F. Effect of ketamine on the physiological responses to combined hypoglycemic and psychophysical stress. IBRO Neurosci Rep 2021; 11:81-87. [PMID: 34485972 PMCID: PMC8406162 DOI: 10.1016/j.ibneur.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/20/2021] [Indexed: 12/01/2022] Open
Abstract
There is evidence that hypoglycemic stress can interact with other stressors, and that ketamine can mitigate the impact of these stressors on behavior and physiology. The current study in male Sprague-Dawley rats investigated whether pre-treatment with 0, 10, or 20 mg/kg ketamine could modulate the interaction between hypoglycemia induced by 0 or 300 mg/kg 2-deoxy-D-glucose (2-DG) and the psychophysical stress of forced swimming (FSS; 6 sessions, 10 min/session) on serum concentrations of corticosterone (CORT) and the pro-inflammatory cytokine, tumor necrosis factor (TNF)-α. It was found that 2-DG enhanced the CORT response to an initial session of FSS, and this effect dissipated after multiple sessions. More importantly, animals displayed significantly higher levels of CORT and lower levels of TNF-α in response to a drug-free test swim conducted 1 week after exposure to the combined stressors, and these responses were not observed in rats that were pre-treated with ketamine. Overall, these findings indicate that ketamine has the potential to reduce the negative impact of interacting stressors on the biological reactivity of the hypothalamic-pituitary-adrenal axis and the immune system.
Collapse
Affiliation(s)
- Brett Melanson
- Department of Psychology and Collaborative Neuroscience, Program University of Guelph, Guelph, ON, Canada
| | - Francesco Leri
- Department of Psychology and Collaborative Neuroscience, Program University of Guelph, Guelph, ON, Canada
| |
Collapse
|
25
|
Costa-Beber LC, Goettems-Fiorin PB, Dos Santos JB, Friske PT, Frizzo MN, Heck TG, Hirsch GE, Ludwig MS. Ovariectomy enhances female rats' susceptibility to metabolic, oxidative, and heat shock response effects induced by a high-fat diet and fine particulate matter. Exp Gerontol 2020; 145:111215. [PMID: 33340683 DOI: 10.1016/j.exger.2020.111215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/20/2020] [Accepted: 12/12/2020] [Indexed: 01/21/2023]
Abstract
Obesity and exposure to fine particulate matter (air pollutant PM2.5) are important risk factors for metabolic and cardiovascular diseases. They are also related to early menopause. The reduction of 17β-estradiol (E2) levels during female climacteric, marked by menopause, is of significant concern because of its imminent influence on metabolism, redox and inflammatory status. This complex homeostasis-threatening scenario may induce a heat shock response (HSR) in cells, enhancing the expression of the 70 kDa heat shock protein (HSP70). A failure in this mechanism could predispose women to cardiovascular diseases. In this study, we evaluated if the climacteric could represent an additional risk among obese rats exposed to PM2.5 by worsening lipid, oxidative, and inflammatory parameters and HSP70 in cardiac tissue. We induced obesity in female Wistar rats using a high-fat diet (HFD) (58.3% as fats) and exposed them to 50 μL of saline 0.9% (control, n = 15) or 250 μg residual oil fly ash (ROFA, the inorganic portion of PM2.5) (polluted, n = 15) by intranasal instillation, 5 days/w for 12 weeks. At the 12th week, we subdivided these animals into four groups: control (n = 6), OVX (n = 9), polluted (n = 6) and polluted + OVX (n = 9). OVX and polluted + OVX were submitted to a bilateral ovariectomy (OVX), a surgical model for menopause, while control and polluted received a false surgery (sham). ROFA exposure and HFD consumption were continued for 12 additional weeks, after which the animals were euthanized. ROFA enhanced the susceptibility to ovariectomy-induced dyslipidemia, while ovariectomy predisposed female rats to the ROFA-induced decrease of cardiac iHSP70 expression. Ovariectomy also decreased the IL-6 levels and IL-6/IL-10 in obese animals, reinforcing a metabolic impairment and a failure to respond to unfavorable conditions. Our results support the hypothesis that obese ovariectomized animals are predisposed to a metabolic worsening under polluted conditions and are at higher risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil.
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Atmospheric Pollution Laboratory, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 Porto Alegre, RS, Brazil
| | - Jaíne Borges Dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil
| | - Paula Taís Friske
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Atmospheric Pollution Laboratory, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 Porto Alegre, RS, Brazil; Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil; Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| | - Gabriela Elisa Hirsch
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil; Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| |
Collapse
|
26
|
The Bradykinin-BDKRB1 Axis Regulates Aquaporin 4 Gene Expression and Consequential Migration and Invasion of Malignant Glioblastoma Cells via a Ca 2+-MEK1-ERK1/2-NF-κB Mechanism. Cancers (Basel) 2020; 12:cancers12030667. [PMID: 32182968 PMCID: PMC7139930 DOI: 10.3390/cancers12030667] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain tumor and is very aggressive. Rapid migration and invasion of glioblastoma cells are two typical features driving malignance of GBM. Bradykinin functionally prompts calcium influx via activation of bradykinin receptor B1/B2 (BDKRB1/2). In this study, we evaluated the roles of bradykinin in migration and invasion of glioblastoma cells and the possible mechanisms. Expressions of aquaporin 4 (AQP4) mRNA and protein were upregulated in human glioblastomas. Furthermore, exposure of human U87 MG glioblastoma cells to bradykinin specifically increased levels of BDKRB1. Successively, bradykinin stimulated influx of calcium, phosphorylation of MEK1 and extracellular signal-regulated kinase (ERK)1/2, translocation and transactivation of nuclear factor-kappaB (NF-κB), and expressions of AQP4 mRNA and protein. Concomitantly, migration and invasion of human glioblastoma cells were elevated by bradykinin. Knocking-down BDKRB1 concurrently decreased AQP4 mRNA expression and cell migration and invasion. The bradykinin-induced effects were further confirmed in murine GL261 glioblastoma cells. Therefore, bradykinin can induce AQP4 expression and subsequent migration and invasion through BDKRB1-mediated calcium influx and subsequent activation of a MEK1-ERK1/2-NF-κB pathway. The bradykinin-BDKRB1 axis and AQP4 could be precise targets for treating GBM patients.
Collapse
|
27
|
Sharma S, Akundi RS. Mitochondria: A Connecting Link in the Major Depressive Disorder Jigsaw. Curr Neuropharmacol 2019; 17:550-562. [PMID: 29512466 PMCID: PMC6712299 DOI: 10.2174/1570159x16666180302120322] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/02/2018] [Accepted: 02/27/2018] [Indexed: 12/19/2022] Open
Abstract
Background Depression is a widespread phenomenon with varying degrees of pathology in different patients. Various hypotheses have been proposed for the cause and continuance of depression. Some of these include, but not limited to, the monoamine hypothesis, the neuroendocrine hypothesis, and the more recent epigenetic and inflammatory hypotheses. Objective In this article, we review all the above hypotheses with a focus on the role of mitochondria as the connecting link. Oxidative stress, respiratory activity, mitochondrial dynamics and metabolism are some of the mitochondria-dependent factors which are affected during depression. We also propose exogenous ATP as a contributing factor to depression. Result Literature review shows that pro-inflammatory markers are elevated in depressive individuals. The cause for elevated levels of cytokines in depression is not completely understood. We propose exogenous ATP activates purinergic receptors which in turn increase the levels of various pro-inflammatory factors in the pathophysiology of depression. Conclusion Mitochondria are integral to the function of neurons and undergo dysfunction in major depressive disorder patients. This dysfunction is reflected in all the various hypotheses that have been proposed for depression. Among the newer targets identified, which also involve mitochondria, includes the role of exogenous ATP. The diversity of purinergic receptors, and their differential expression among various individuals in the population, due to genetic and environmental (prenatal) influences, may influence the susceptibility and severity of depression. Identifying specific receptors involved and using patient-specific purinergic receptor antagonist may be an appropriate therapeutic course in the future.
Collapse
Affiliation(s)
- Shilpa Sharma
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Ravi S Akundi
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
28
|
van Erp EA, Lakerveld AJ, Mulder HL, Luytjes W, Ferwerda G, van Kasteren PB. Pathogenesis of Respiratory Syncytial Virus Infection in BALB/c Mice Differs Between Intratracheal and Intranasal Inoculation. Viruses 2019; 11:v11060508. [PMID: 31163619 PMCID: PMC6631102 DOI: 10.3390/v11060508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract disease requiring hospitalization in infants. There are no market-approved vaccines or antiviral agents available, but a growing number of vaccines and therapeutics are in (pre)clinical stages of development. Reliable animal models are crucial to evaluate new vaccine concepts, but in vivo RSV research is hampered by the lack of well-characterized animal models that faithfully mimic the pathogenesis of RSV infection in humans. Mice are frequently used in RSV infection and vaccination studies. However, differences in the use of mouse strains, RSV subtypes, and methodology often lead to divergent study outcomes. To our knowledge, a comparison between different RSV inoculation methods in mice has not been described in the literature, even though multiple methods are being used across different studies. In this study, we evaluated various pathological and immunological parameters in BALB/c mice after intratracheal or intranasal inoculation with RSV-A2. Our study reveals that intranasal inoculation induces robust pathology and inflammation, whereas this is not the case for intratracheal inoculation. As immunopathology is an important characteristic of RSV disease in infants, these data suggest that in mice intranasal inoculation is a more appropriate method to study RSV infection than intratracheal inoculation. These findings will contribute to the rational experimental design of future in vivo RSV experiments.
Collapse
Affiliation(s)
- Elisabeth A van Erp
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands.
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands.
- Radboud Center for Infectious Diseases, Radboudumc, 6525 GA Nijmegen, The Netherlands.
| | - Anke J Lakerveld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands.
| | - H Lie Mulder
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands.
| | - Willem Luytjes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands.
| | - Gerben Ferwerda
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands.
- Radboud Center for Infectious Diseases, Radboudumc, 6525 GA Nijmegen, The Netherlands.
| | - Puck B van Kasteren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands.
| |
Collapse
|
29
|
Wood CE, Keller-Wood M. Current paradigms and new perspectives on fetal hypoxia: implications for fetal brain development in late gestation. Am J Physiol Regul Integr Comp Physiol 2019; 317:R1-R13. [PMID: 31017808 DOI: 10.1152/ajpregu.00008.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The availability of oxygen to the fetus is limited by the route taken by oxygen from the atmosphere to fetal tissues, aided or diminished by pregnancy-associated changes in maternal physiology and, ultimately, a function of atmospheric pressure and composition of the mother's inspired gas. Much of our understanding of the fetal physiological response to hypoxia comes from experiments designed to elucidate the cardiovascular and endocrine responses to transient hypoxia. Complementing this work is equally impactful research into the origins of intrauterine growth restriction in which animal models designed to restrict the transfer of oxygen from the maternal to the fetal circulation were used. A common assumption has been that outcomes measured after a period of hypoxia are related to cellular deprivation of oxygen and reoxygenation: an assumption based on a focus on what we can see "under the streetlights." Recent studies demonstrate that availability of oxygen may not tell the whole story. Transient hypoxia in the fetal sheep stimulates transcriptomics responses that mirror inflammation. This response is accompanied by the appearance of bacteria in the fetal brain and other tissues, likely resulting from a hypoxia-stimulated release of bacteria from the placenta. The appearance of bacteria in the fetus after transient hypoxia complements the recent discovery of bacterial DNA in the normal human placenta and in the tissues of fetal sheep. An understanding of the mechanism of the physiological, cellular, and molecular responses to hypoxia requires an appreciation of stimuli other than cellular oxygen deprivation: stimuli that we would have never known about without looking "between the streetlights," illuminating direct responses to the manipulated variables.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine , Gainesville, Florida
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida College of Pharmacy , Gainesville, Florida
| |
Collapse
|
30
|
Chang EI, Zarate MA, Arndt TJ, Richards EM, Rabaglino MB, Keller-Wood M, Wood CE. Ketamine Reduces Inflammation Pathways in the Hypothalamus and Hippocampus Following Transient Hypoxia in the Late-Gestation Fetal Sheep. Front Physiol 2019; 9:1858. [PMID: 30666211 PMCID: PMC6330334 DOI: 10.3389/fphys.2018.01858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
The physiological response to hypoxia in the fetus has been extensively studied with regard to redistribution of fetal combined ventricular output and sparing of oxygen delivery to fetal brain and heart. Previously, we have shown that the fetal brain is capable of mounting changes in gene expression that are consistent with tissue inflammation. The present study was designed to use transcriptomics and systems biology modeling to test the hypothesis that ketamine reduces or prevents the upregulation of inflammation-related pathways in hypothalamus and hippocampus after transient hypoxic hypoxia. Chronically catheterized fetal sheep (122 ± 5 days gestation) were subjected to 30 min hypoxia (relative reduction in PaO2∼50%) caused by infusion of nitrogen into the inspired gas of the pregnant ewe. RNA was isolated from fetal hypothalamus and hippocampus collected 24 h after hypoxia, and was analyzed for gene expression using the Agilent 15.5 k ovine microarray. Ketamine, injected 10 min prior to hypoxia, reduced the cerebral immune response activation to the hypoxia in both brain regions. Genes both upregulated by hypoxia and downregulated by ketamine after hypoxia were significantly associated with gene ontology terms and KEGG pathways that are, themselves, associated with the tissue response to exposure to bacteria. We conclude that the results are consistent with interruption of the cellular response to bacteria by ketamine.
Collapse
Affiliation(s)
- Eileen I Chang
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Miguel A Zarate
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Thomas J Arndt
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Elaine M Richards
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, United States
| | - Maria B Rabaglino
- CEPROCOR, National Scientific and Technical Research Council (CONICET), Córdoba, Argentina
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, United States
| | - Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
31
|
Rascón-Martínez D, Carrillo-Torres O, Ramos-Nataren R, Rendón-Jaramillo L. Advantages of ketamine as a perioperative analgesic. REVISTA MÉDICA DEL HOSPITAL GENERAL DE MÉXICO 2018. [DOI: 10.1016/j.hgmx.2016.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
32
|
Blagojević V, Kovačević-Jovanović V, Ćuruvija I, Petrović R, Vujnović I, Vujić V, Stanojević S. Rat strain differences in peritoneal immune cell response to selected gut microbiota: A crossroad between tolerance and autoimmunity? Life Sci 2018; 197:147-157. [DOI: 10.1016/j.lfs.2018.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 02/06/2023]
|
33
|
Ketamine suppresses the substance P-induced production of IL-6 and IL-8 by human U373MG glioblastoma/astrocytoma cells. Int J Mol Med 2017; 39:687-692. [PMID: 28204809 DOI: 10.3892/ijmm.2017.2875] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/19/2017] [Indexed: 11/05/2022] Open
Abstract
The neuropeptide substance P (SP) is an important mediator of neurogenic inflammation within the central and peripheral nervous systems. SP has been shown to induce the expression of pro-inflammatory cytokines implicated in the pathogenesis of several disorders of the human brain via the neurokinin-1 receptor (NK-1R). Ketamine, an intravenous anesthetic agent, functions as a competitive antagonist of the excitatory neurotransmission N-methyl-D‑aspartate (NMDA) receptor, and also antagonizes the NK-1R by interfering with the binding of SP. In the present study, we investigated the anti-inflammatory effects of ketamine on the SP-induced activation of a human astrocytoma cell line, U373MG, which expresses high levels of NK-1R. The results from our experiments indicated that ketamine suppressed the production of interleukin (IL)-6 and IL-8 by the U373MG cells. Furthermore, ketamine inhibited the SP-induced activation of extracellular signal‑regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB). Taken together, these observations suggest that ketamine may suppress the SP-induced activation (IL-6 and IL-8 production) of U373MG cells by inhibiting the phosphorylation of signaling molecules (namely ERK1/2, p38 MAPK and NF-κB), thereby exerting anti‑inflammatory effects. Thus, ketamine may modulate SP-induced inflammatory responses by NK-1R‑expressing cells through the suppression of signaling molecules (such as ERK1/2, p38 MAPK and NF-κB).
Collapse
|
34
|
Tan S, Wang Y, Chen K, Long Z, Zou J. Ketamine Alleviates Depressive-Like Behaviors via Down-Regulating Inflammatory Cytokines Induced by Chronic Restraint Stress in Mice. Biol Pharm Bull 2017; 40:1260-1267. [DOI: 10.1248/bpb.b17-00131] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sijie Tan
- Department of Histology and Embryology, School of Medicine, University of South China
| | - Yan Wang
- Department of Histology and Embryology, School of Medicine, University of South China
| | - Ke Chen
- Department of Ultrasound Diagnosis, Affiliated Nanhua Hospital, University of South China
| | - Zhifeng Long
- Department of Histology and Embryology, School of Medicine, University of South China
| | - Ju Zou
- Department of Parasitology, School of Medicine, University of South China
| |
Collapse
|
35
|
Chen JT, Chen TG, Chang YC, Chen CY, Chen RM. Roles of NMDARs in maintenance of the mouse cerebrovascular endothelial cell-constructed tight junction barrier. Toxicology 2016; 339:40-50. [DOI: 10.1016/j.tox.2015.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/18/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
|
36
|
SINKOVICS JOSEPHG. The cnidarian origin of the proto-oncogenes NF-κB/STAT and WNT-like oncogenic pathway drives the ctenophores (Review). Int J Oncol 2015; 47:1211-29. [PMID: 26239915 PMCID: PMC4583530 DOI: 10.3892/ijo.2015.3102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/26/2015] [Indexed: 01/09/2023] Open
Abstract
The cell survival pathways of the diploblastic early multicellular eukaryotic hosts contain and operate the molecular machinery resembling those of malignantly transformed individual cells of highly advanced multicellular hosts (including Homo). In the present review, the STAT/NF-κB pathway of the cnidarian Nematostella vectensis is compared with that of human tumors (malignant lymphomas, including Reed-Sternberg cells) pointing out similarities, including possible viral initiation in both cases. In the ctenophore genome and proteome, β-catenin gains intranuclear advantages due to a physiologically weak destructive complex in the cytoplasm, and lack of natural inhibitors (the dickkopfs). Thus, a scenario similar to what tumor cells initiate and achieve is presented through several constitutive loss-of-function type mutations in the destructive complex and in the elimination of inhibitors. Vice versa, malignantly transformed individual cells of advanced multicellular hosts assume pheno-genotypic resemblance to cells of unicellular or early multicellular hosts, and presumably to their ancient predecessors, by returning to the semblance of immortality and to the resumption of the state of high degree of resistance to physicochemical insults. Human leukemogenic and oncogenic pathways are presented for comparisons. The supreme bioengineers RNA/DNA complex encoded both the malignantly transformed immortal cell and the human cerebral cortex. The former generates molecules for the immortality of cellular life in the Universe. The latter invents the inhibitors of the process in order to gain control over it.
Collapse
Affiliation(s)
- JOSEPH G. SINKOVICS
- St. Joseph Hospital's Cancer Institute Affiliated with the H.L. Moffitt Comprehensive Cancer Center; Department of Molecular Medicine, The University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
37
|
Involvement of Mitochondrial Pathway of Apoptosis in Urothelium in Ketamine-Associated Urinary Dysfunction. Am J Med Sci 2015; 349:344-51. [DOI: 10.1097/maj.0000000000000431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Yuhas Y, Ashkenazi S, Berent E, Weizman A. Immunomodulatory activity of ketamine in human astroglial A172 cells: Possible relevance to its rapid antidepressant activity. J Neuroimmunol 2015; 282:33-8. [PMID: 25903726 DOI: 10.1016/j.jneuroim.2015.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 11/24/2022]
Abstract
To determine if the immunomodulatory effect of ketamine is relevant to its rapid antidepressant activity, cultured human astroglial cells were incubated with ketamine, cytokine mix, or both. At 24h, ketamine dose-dependently (100-500 μM) decreased IL-6 and TNFα production and gene expression and, at clinically relevant concentration (100 μM), augmented IL-β release and gene expression in both unstimulated and cytokine-stimulated cells. In unstimulated cells, ketamine also increased IL-8 production and mRNA expression. The reduction in IL-6 mRNA was significant within 1h in unstimulated cells and at 4h after stimulation. Ketamine suppressed the production of the only established depression-relevant proinflammatory cytokines, IL-6 and TNFα.
Collapse
Affiliation(s)
- Yael Yuhas
- Laboratory of Pediatric Infectious Diseases, Felsenstein Medical Research Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Shai Ashkenazi
- Laboratory of Pediatric Infectious Diseases, Felsenstein Medical Research Center, Petach Tikva, Israel; Department of Pediatrics A, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eva Berent
- Laboratory of Pediatric Infectious Diseases, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Abraham Weizman
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Research Unit, Geha Mental Health Center, Petach Tikva, Israel
| |
Collapse
|
39
|
Anderson SL, Duke-Novakovski T, Singh B. The immune response to anesthesia: part 2 sedatives, opioids, and injectable anesthetic agents. Vet Anaesth Analg 2014; 41:553-66. [PMID: 24962601 DOI: 10.1111/vaa.12191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/24/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To review the immune response to injectable anesthetics and sedatives and to compare the immunomodulatory properties between inhalation and injectable anesthetic protocols. STUDY DESIGN Review. METHODS AND DATABASES Multiple literature searches were performed using PubMed and Google Scholar from March 2012 through November 2013. Relevant anesthetic and immune terms were used to search databases without year published or species constraints. The online database for Veterinary Anaesthesia and Analgesia and the Journal of Veterinary Emergency and Critical Care were searched by issue starting in 2000 for relevant articles. CONCLUSION Sedatives, injectable anesthetics, opioids, and local anesthetics have immunomodulatory effects that may have positive or negative consequences on disease processes such as endotoxemia, generalized sepsis, tumor growth and metastasis, and ischemia-reperfusion injury. Therefore, anesthetists should consider the immunomodulatory effects of anesthetic drugs when designing anesthetic protocols for their patients.
Collapse
Affiliation(s)
- Stacy L Anderson
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | |
Collapse
|
40
|
Zunszain PA, Horowitz MA, Cattaneo A, Lupi MM, Pariante CM. Ketamine: synaptogenesis, immunomodulation and glycogen synthase kinase-3 as underlying mechanisms of its antidepressant properties. Mol Psychiatry 2013; 18:1236-41. [PMID: 23877835 PMCID: PMC3835937 DOI: 10.1038/mp.2013.87] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 01/23/2023]
Abstract
Major depressive disorder is an extremely debilitating condition affecting millions of people worldwide. Nevertheless, currently available antidepressant medications still have important limitations, such as a low response rate and a time lag for treatment response that represent a significant problem when dealing with individuals who are vulnerable and prone to self-harm. Recent clinical trials have shown that the N-methyl-D-aspartate receptor antagonist, ketamine, can induce an antidepressant response within hours, which lasts up to 2 weeks, and is effective even in treatment-resistant patients. Nonetheless, its use is limited due to its psychotomimetic and addictive properties. Understanding the molecular pathways through which ketamine exerts its antidepressant effects would help in the developing of novel antidepressant agents that do not evoke the same negative side effects of this drug. This review focuses specifically on the effects of ketamine on three molecular mechanisms that are relevant to depression: synaptogenesis, immunomodulation and regulation of glycogen synthase kinase-3 activity.
Collapse
Affiliation(s)
- P A Zunszain
- Section of Stress, Psychiatry and Immunology, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, UK,Section of Stress, Psychiatry and Immunology, Department of Psychological Medicine, Institute of Psychiatry, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK. E-mail:
| | - M A Horowitz
- Section of Stress, Psychiatry and Immunology, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, UK
| | - A Cattaneo
- Section of Stress, Psychiatry and Immunology, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, UK
| | - M M Lupi
- Section of Stress, Psychiatry and Immunology, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, UK
| | - C M Pariante
- Section of Stress, Psychiatry and Immunology, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, UK
| |
Collapse
|
41
|
Owen JL, Mohamadzadeh M. Microbial activation of gut dendritic cells and the control of mucosal immunity. J Interferon Cytokine Res 2013. [PMID: 23962004 DOI: 10.1089/jlr.2013.0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current data support a role for gut colonization in maintaining balanced mucosal and systemic immune responses and have suggested aberrant innate immune recognition of enteric bacteria as an initiator of the adaptive immune damage associated with inflammatory bowel disease (Crohn's disease and ulcerative colitis). In fact, data from human studies and experimental mouse models have implicated transformation of the gut microbiota from a beneficial symbiotic state to one of imbalance or "dysbiosis" in the pathogenesis of several autoinflammatory diseases, including allergic skin and respiratory disorders, rheumatoid arthritis, type I diabetes, and colorectal cancer. The host has evolved to co-exist and maintain a mutualistic relationship with the commensal microbes of the gut, and it is the function of the host innate immune system to initiate and maintain this homeostasis, while retaining the ability to respond appropriately to pathogenic organisms. In this review, we discuss the molecular and cellular interactions of the mucosal immune system that decide this delicate balance of mutualism. Furthermore, we will highlight the role of dendritic cells in preserving this precarious balance and how gene products of commensal microbes may play an integral role in re-establishing this balance once it has gone awry.
Collapse
Affiliation(s)
- Jennifer L Owen
- 1 Department of Infectious Diseases and Pathology, University of Florida , Gainesville, Florida
| | | |
Collapse
|
42
|
Owen JL, Mohamadzadeh M. Microbial activation of gut dendritic cells and the control of mucosal immunity. J Interferon Cytokine Res 2013; 33:619-31. [PMID: 23962004 DOI: 10.1089/jir.2013.0046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Current data support a role for gut colonization in maintaining balanced mucosal and systemic immune responses and have suggested aberrant innate immune recognition of enteric bacteria as an initiator of the adaptive immune damage associated with inflammatory bowel disease (Crohn's disease and ulcerative colitis). In fact, data from human studies and experimental mouse models have implicated transformation of the gut microbiota from a beneficial symbiotic state to one of imbalance or "dysbiosis" in the pathogenesis of several autoinflammatory diseases, including allergic skin and respiratory disorders, rheumatoid arthritis, type I diabetes, and colorectal cancer. The host has evolved to co-exist and maintain a mutualistic relationship with the commensal microbes of the gut, and it is the function of the host innate immune system to initiate and maintain this homeostasis, while retaining the ability to respond appropriately to pathogenic organisms. In this review, we discuss the molecular and cellular interactions of the mucosal immune system that decide this delicate balance of mutualism. Furthermore, we will highlight the role of dendritic cells in preserving this precarious balance and how gene products of commensal microbes may play an integral role in re-establishing this balance once it has gone awry.
Collapse
Affiliation(s)
- Jennifer L Owen
- 1 Department of Infectious Diseases and Pathology, University of Florida , Gainesville, Florida
| | | |
Collapse
|
43
|
Owen JL, Mohamadzadeh M. Microbial activation of gut dendritic cells and the control of mucosal immunity. J Interferon Cytokine Res 2013. [PMID: 23962004 DOI: 10.1089/jir.2013.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Current data support a role for gut colonization in maintaining balanced mucosal and systemic immune responses and have suggested aberrant innate immune recognition of enteric bacteria as an initiator of the adaptive immune damage associated with inflammatory bowel disease (Crohn's disease and ulcerative colitis). In fact, data from human studies and experimental mouse models have implicated transformation of the gut microbiota from a beneficial symbiotic state to one of imbalance or "dysbiosis" in the pathogenesis of several autoinflammatory diseases, including allergic skin and respiratory disorders, rheumatoid arthritis, type I diabetes, and colorectal cancer. The host has evolved to co-exist and maintain a mutualistic relationship with the commensal microbes of the gut, and it is the function of the host innate immune system to initiate and maintain this homeostasis, while retaining the ability to respond appropriately to pathogenic organisms. In this review, we discuss the molecular and cellular interactions of the mucosal immune system that decide this delicate balance of mutualism. Furthermore, we will highlight the role of dendritic cells in preserving this precarious balance and how gene products of commensal microbes may play an integral role in re-establishing this balance once it has gone awry.
Collapse
Affiliation(s)
- Jennifer L Owen
- 1 Department of Infectious Diseases and Pathology, University of Florida , Gainesville, Florida
| | | |
Collapse
|
44
|
BAI TAO, DONG DAOSONG, PEI LING. Resveratrol mitigates isoflurane-induced neuroapoptosis by inhibiting the activation of the Akt-regulated mitochondrial apoptotic signaling pathway. Int J Mol Med 2013; 32:819-26. [DOI: 10.3892/ijmm.2013.1464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/26/2013] [Indexed: 11/06/2022] Open
|
45
|
Chen RM, Tai YT, Chen TG, Lin TH, Chang HC, Chen TL, Wu GJ. Propofol protects against nitrosative stress-induced apoptotic insults to cerebrovascular endothelial cells via an intrinsic mitochondrial mechanism. Surgery 2013; 154:58-68. [DOI: 10.1016/j.surg.2013.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 02/05/2013] [Indexed: 11/16/2022]
|
46
|
Lightfoot YL, Mohamadzadeh M. Tailoring gut immune responses with lipoteichoic acid-deficient Lactobacillus acidophilus. Front Immunol 2013; 4:25. [PMID: 23390423 PMCID: PMC3565175 DOI: 10.3389/fimmu.2013.00025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/21/2013] [Indexed: 01/11/2023] Open
Abstract
As highlighted by the development of intestinal autoinflammatory disorders when tolerance is lost, homeostatic interactions between gut microbiota, resident immune cells, and the gut epithelium are key in the maintenance of gastrointestinal health. Gut immune responses, whether stimulatory or regulatory, are dictated by the activated dendritic cells (DCs) that first interact with microorganisms and their gene products to then elicit T and B cell responses. Previously, we have demonstrated that treatment with genetically modified Lactobacillus acidophilus is sufficient to tilt the immune balance from proinflammatory to regulatory in experimental models of colitis and colon cancer. Given the significant role of DCs in efficiently orchestrating intestinal immune responses, characterization of the signals induced within these cells by the surface layer molecules, such as lipoteichoic acid (LTA), and proteins of L. acidophilus is critical for future treatment and prevention of gastrointestinal diseases. Here, we discuss the potential regulatory pathways involved in the downregulation of pathogenic inflammation in the gut, and explore questions regarding the immune responses to LTA-deficient L. acidophilus that require future studies.
Collapse
Affiliation(s)
- Yaíma L Lightfoot
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida Gainesville, FL, USA ; Division of Gastroenterology Hepatology & Nutrition, Department of Medicine, College of Medicine, University of Florida Gainesville, FL, USA
| | | |
Collapse
|
47
|
Abstract
Mice are commonly used as an experimental model to investigate the Equid herpesvirus 1 (EHV-1) infection. This model easily reproduces the disease, and the clinical signs are more or less similar to those observed in the horse, the natural host. During natural infection, the acute course of respiratory infection is mandatory for the development of adaptive immune response. Since interactions between EHV-1 and anesthetics are possible, the study investigated whether the early events of murine pulmonary immune response could be affected by different anesthetics. Therefore, mice were experimentally infected with a unique EHV-1 strain under the effects of ether, ketamine/xylazine, or isoflurane. Clinical signs and histopathological lesions in the lungs were described, and the cell death and proliferation rates of sham-inoculated or infected animals were quantified using immunohistochemistry. Clinical signs were more severe in animals anesthetized with ether. Qualitative differences in the recruited inflammatory cells were observed following application of anesthesia. The level of infection between the infected groups was not statistically significant. However, lungs from ketamine/xylazine-anesthetized animals showed the highest cell death rates, whereas those from isoflurane-anesthetized animals showed the highest proliferation rates. It has been emphasized that anesthetics alone or their interactions with EHV-1 modify the response against the infection. An appropriate selection of the anesthetic during experimental studies is relevant to minimize wrong conclusions.
Collapse
|
48
|
Cheng SF, Ho JWY, Chan KYY, Leung TY, Lam HS, Fong ON, Li K, Ng PC. IL-15 and macrophage secretory factors facilitate immune activation of neonatal natural killer cells by lipoteichoic acid. Cytokine 2012. [PMID: 23201488 DOI: 10.1016/j.cyto.2012.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neonates possess a relatively "naive", yet inducible immune system. Our hypothesis is that upon strategic antigen exposure, cytokine priming and sensitization by accessory cells, natural killer (NK) cells could be activated to become a functional phenotype. We investigated the in vitro stimulation of cord blood (CB) and adult NK cells upon challenge with lipoteichoic acid (LTA), interleukin (IL)-15 and LTA-primed autologous macrophage-conditioned medium, using CD107a and CD69 phenotypes as indicators of activation. We also examined response of CB macrophages to LTA, in terms of P44/42 extracellular signal-regulated kinases (ERK1/2) activation and cytokine secretion. LTA significantly induced secretion of inflammatory cytokines tumor necrotic factor (TNF)-α, IL-6, IL-12 and activated the upstream signal of ERK1/2 phosphorylation in neonatal macrophages. The magnitude of responses to stimulation differed between neonatal and adult NK cells. Co-stimulation with IL-15 was critical for expansion of the CD69 and CD107a NK subpopulations in both neonatal and adult cells, upon a LTA challenge. NK cell activation could be enhanced by LTA-primed autologous macrophages through secretory factors. Our results indicated that neonatal macrophages and NK cells can evoke immunologic responses to a Gram-positive bacterial antigen. The combinatory priming strategy is relevant for development of novel protocols, such as IL-15 treatment, to compensate for the immaturity of the innate immune system in newborns against bacterial infections.
Collapse
Affiliation(s)
- Siu Fung Cheng
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Mechanisms of ketamine-induced immunosuppression. ACTA ACUST UNITED AC 2012; 50:172-7. [DOI: 10.1016/j.aat.2012.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 07/17/2012] [Accepted: 08/20/2012] [Indexed: 01/01/2023]
|
50
|
Jung B, Clavieras N, Nougaret S, Molinari N, Roquilly A, Cisse M, Carr J, Chanques G, Asehnoune K, Jaber S. Effects of etomidate on complications related to intubation and on mortality in septic shock patients treated with hydrocortisone: a propensity score analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R224. [PMID: 23171852 PMCID: PMC3672604 DOI: 10.1186/cc11871] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 11/12/2012] [Indexed: 12/19/2022]
Abstract
Introduction Endotracheal intubation in the ICU is associated with a high incidence of complications. Etomidate use is debated in septic shock because it increases the risk of critical illness-related corticosteroid insufficiency, which may impact outcome. We hypothesized that hydrocortisone, administered in all septic shock cases in our ICU, may counteract some negative effects of etomidate. The aim of our study was to compare septic shock patients who received etomidate versus another induction drug both for short-term safety and for long-term outcomes. Methods A single-center observational study was carried out in septic shock patients, treated with hydrocortisone and intubated within the first 48 hours of septic shock. Co-primary end points were life-threatening complications incidence occurring within the first hour after intubation and mortality during the ICU stay. Statistical analyses included unmatched and matched cohorts using a propensity score analysis. P < 0.05 was considered significant. Results Sixty patients in the etomidate cohort and 42 patients in the non-etomidate cohort were included. Critical illness-related corticosteroid insufficiency was 79% in the etomidate cohort and 52% in the non-etomidate cohort (P = 0.01). After intubation, life-threatening complications occurred in 36% of the patients whatever the cohort. After adjustment with propensity score analysis, etomidate was a protective factor for death in the ICU both in unmatched (hazard ratio, 0.33 (0.15 to 0.75); P < 0.01)) and matched cohorts (hazard ratio, 0.33 (0.112 to 0.988); P = 0.04). Conclusion In septic shock patients treated with hydrocortisone, etomidate did not decrease life-threatening complications following intubation, but when associated with hydrocortisone it also did not impair outcome.
Collapse
|