1
|
Zhao H, Mao H. ERRFI1 exacerbates hepatic ischemia reperfusion injury by promoting hepatocyte apoptosis and ferroptosis in a GRB2-dependent manner. Mol Med 2024; 30:82. [PMID: 38862918 PMCID: PMC11167874 DOI: 10.1186/s10020-024-00837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Programmed cell death is an important mechanism for the development of hepatic ischemia and reperfusion (IR) injury, and multiple novel forms of programmed cell death are involved in the pathological process of hepatic IR. ERRFI1 is involved in the regulation of cell apoptosis in myocardial IR. However, the function of ERRFI1 in hepatic IR injury and its modulation of programmed cell death remain largely unknown. METHODS Here, we performed functional and molecular mechanism studies in hepatocyte-specific knockout mice and ERRFI1-silenced hepatocytes to investigate the significance of ERRFI1 in hepatic IR injury. The histological severity of livers, enzyme activities, hepatocyte apoptosis and ferroptosis were determined. RESULTS ERRFI1 expression increased in liver tissues from mice with IR injury and hepatocytes under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions. Hepatocyte-specific ERRFI1 knockout alleviated IR-induced liver injury in mice by reducing cell apoptosis and ferroptosis. ERRFI1 knockdown reduced apoptotic and ferroptotic hepatocytes induced by OGD/R. Mechanistically, ERRFI1 interacted with GRB2 to maintain its stability by hindering its proteasomal degradation. Overexpression of GRB2 abrogated the effects of ERRFI1 silencing on hepatocyte apoptosis and ferroptosis. CONCLUSIONS Our results revealed that the ERRFI1-GRB2 interaction and GRB2 stability are essential for ERRFI1-regulated hepatic IR injury, indicating that inhibition of ERRFI1 or blockade of the ERRFI1-GRB2 interaction may be potential therapeutic strategies in response to hepatic IR injury.
Collapse
Affiliation(s)
- Hang Zhao
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street Guta District, Jinzhou, 121000, Liaoning, China
| | - Huizi Mao
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China.
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street Guta District, Jinzhou, 121000, Liaoning, China.
| |
Collapse
|
2
|
Wu J, Yu C, Zeng X, Xu Y, Sun C. Protection of propofol on liver ischemia reperfusion injury by regulating Cyp2b10/ Cyp3a25 pathway. Tissue Cell 2022; 78:101891. [DOI: 10.1016/j.tice.2022.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/09/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022]
|
3
|
Zhang S, Rao S, Yang M, Ma C, Hong F, Yang S. Role of Mitochondrial Pathways in Cell Apoptosis during He-Patic Ischemia/Reperfusion Injury. Int J Mol Sci 2022; 23:ijms23042357. [PMID: 35216473 PMCID: PMC8877300 DOI: 10.3390/ijms23042357] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatic ischemia-reperfusion injury is a major cause of post-operative hepatic dysfunction and liver failure after transplantation. Mitochondrial pathways can be either beneficial or detrimental to hepatic cell apoptosis during hepatic ischemia/reperfusion injury, depending on multiple factors. Hepatic ischemia/reperfusion injury may be induced by opened mitochondrial permeability transition pore, released apoptosis-related proteins, up-regulated B-cell lymphoma-2 gene family proteins, unbalanced mitochondrial dynamics, and endoplasmic reticulum stress, which are integral parts of mitochondrial pathways. In this review, we discuss the role of mitochondrial pathways in apoptosis that account for the most deleterious effect of hepatic ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Sen Zhang
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Sijing Rao
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Meiwen Yang
- Department of Surgery, Fuzhou Medical College, Nanchang University, Fuzhou 344099, China;
| | - Chen Ma
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Fengfang Hong
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Correspondence: (F.H.); or (S.Y.)
| | - Shulong Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
- Department of Physiology, Fuzhou Medical College, Nanchang University, Fuzhou 344099, China
- Correspondence: (F.H.); or (S.Y.)
| |
Collapse
|
4
|
Xu Y, Li Z, Lu S, Wang C, Ke S, Li X, Yin B, Yu H, Zhou M, Pan S, Jiang H, Ma Y. Integrative Analysis of the Roles of lncRNAs and mRNAs in Itaconate-Mediated Protection Against Liver Ischemia-Reperfusion Injury in Mice. J Inflamm Res 2021; 14:4519-4536. [PMID: 34526799 PMCID: PMC8435882 DOI: 10.2147/jir.s327467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose Itaconate is well known for its strong anti-inflammatory and antioxidant effect, but little is known about the potential role of long non-coding RNAs (lncRNAs) in the underlying mechanisms of hepatic ischemia-reperfusion (IR) injury. The aim of our study is to identify lncRNAs related to IR injury and itaconate-mediated protection and to demonstrate the mechanism by which itaconate acts in liver IR injury from the new perspective of lncRNAs. Methods 4-Octyl itaconate (OI), a membrane-permeable derivative of itaconate, was used as a substitute for itaconate in our study. By using a mouse model of hepatic IR injury, serum and liver samples were collected to measure indexes of liver injury. Then, the liver samples of the mice were subjected to RNA sequencing (RNA-seq) and subsequent bioinformatics analysis. Results Itaconate attenuated liver IR injury. A total of 138 lncRNAs and 156 messenger RNAs (mRNAs) were markedly differentially expressed in the IR-damaged liver tissues pretreated with OI compared with the matched liver tissues treated with vehicle. Functional analysis indicated that lncRNAs may indirectly participate in the effects of itaconate. Furthermore, 41 mRNAs were examined for the protein-protein interaction (PPI) network analysis, and a key gene cluster was defined. Then, combined the coexpression analysis and the cis and trans regulatory function prediction of lncRNAs, some "candidate" lncRNA-mRNA pairs which might relate to itaconate-mediated liver protection were identified, while the relationship requires future validation. Conclusion Our study revealed that itaconate could protect the liver against IR injury and that lncRNAs might play a role in this process. Our study provides a novel way to investigate the mechanism by which itaconate affects hepatic IR injury and exerts its anti-inflammatory and antioxidative stress effects.
Collapse
Affiliation(s)
- Yanan Xu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zihao Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shounan Lu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Chaoqun Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shanjia Ke
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xinglong Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Bing Yin
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Hongjun Yu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Menghua Zhou
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yong Ma
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
5
|
The Role of Mitochondria in Liver Ischemia-Reperfusion Injury: From Aspects of Mitochondrial Oxidative Stress, Mitochondrial Fission, Mitochondrial Membrane Permeable Transport Pore Formation, Mitophagy, and Mitochondria-Related Protective Measures. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6670579. [PMID: 34285766 PMCID: PMC8275408 DOI: 10.1155/2021/6670579] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
Ischemia-reperfusion injury (IRI) has indeed been shown as a main complication of hepatectomy, liver transplantation, trauma, and hypovolemic shock. A large number of studies have confirmed that microvascular and parenchymal damage is mainly caused by reactive oxygen species (ROS), which is considered to be a major risk factor for IRI. Under normal conditions, ROS as a kind of by-product of cellular metabolism can be controlled at normal levels. However, when IRI occurs, mitochondrial oxidative phosphorylation is inhibited. In addition, oxidative respiratory chain damage leads to massive consumption of adenosine triphosphate (ATP) and large amounts of ROS. Additionally, mitochondrial dysfunction is involved in various organs and tissues in IRI. On the one hand, excessive free radicals induce mitochondrial damage, for instance, mitochondrial structure, number, function, and energy metabolism. On the other hand, the disorder of mitochondrial fusion and fission results in further reduction of the number of mitochondria so that it is not enough to clear excessive ROS, and mitochondrial structure changes to form mitochondrial membrane permeable transport pores (mPTPs), which leads to cell necrosis and apoptosis, organ failure, and metabolic dysfunction, increasing morbidity and mortality. According to the formation mechanism of IRI, various substances have been discovered or synthesized for specific targets and cell signaling pathways to inhibit or slow the damage of liver IRI to the body. Here, based on the development of this field, this review describes the role of mitochondria in liver IRI, from aspects of mitochondrial oxidative stress, mitochondrial fusion and fission, mPTP formation, and corresponding protective measures. Therefore, it may provide references for future clinical treatment and research.
Collapse
|
6
|
Zhang JX, Xu QY, Yang Y, Li N, Zhang Y, Deng LH, Zhu QX, Shen T. Kupffer cell inactivation ameliorates immune liver injury via TNF-α/TNFR1 signal pathway in trichloroethylene sensitized mice. Immunopharmacol Immunotoxicol 2020; 42:545-555. [PMID: 32811237 DOI: 10.1080/08923973.2020.1811306] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
METHODS 36 female BALB/c mice were selected and randomly divided the mice into four groups. We established a BALB/c mouse model of TCE sensitization and pretreatment with GdCl3 (40 mg/kg) by intraperitoneal injection during the during the 17th and 19th days. RESULTS We found F4/80, the marker of Kupffer cell, was increased in TCE positive group. GdCl3 treatment successfully blocked the activation of Kupffer cell. TNF-α was increased significantly in liver of TCE sensitized mice and decreased significantly when low-dose GdCl3 was used. We found TNF receptor 1 (TNFR1) was increased significantly and GdCl3 treatment resumed the expression of TNFR1 to normal level, as well as the F4/80, TNF-α and TNFR1 mRNA. We also found both caspase-8 and caspase-3 increased in TCE positive group and decreased in TCE + GdCl3 positive group. The number of apoptotic cells in TCE sensitized mice increased by TUNEL staining, and GdCl3 treatment alleviated this increase. Some cells showed edema and inflammatory cell aggregation in liver of TCE positive group, while in the TCE + GdCl3 positive group, the cytoplasm became loose and vacuole-like degeneration occurred. CONCLUSION Our study unveils cross-talk between Kupffer cell activation and TNFR1 which mediate apoptosis in liver of TCE sensitized mice.
Collapse
Affiliation(s)
- Jia-Xiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Ministry of Education, Key Laboratory of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - Qiong-Ying Xu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Yi Yang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Na Li
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Yan Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Li-Hua Deng
- Shenzhen Prevention and Treatment Center for Occupational Disease, Shenzhen, Guangdong, PR China
| | - Qi-Xing Zhu
- Ministry of Education, Key Laboratory of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Ministry of Education, Key Laboratory of Dermatology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
7
|
Characteristics of Changes in Inflammatory Cytokines as a Function of Hepatic Ischemia-Reperfusion Injury Stage in Mice. Inflammation 2020; 42:2139-2147. [PMID: 31494794 DOI: 10.1007/s10753-019-01078-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liver ischemia-reperfusion injury (IRI) can severely compromise the prognosis of patients receiving liver surgery. While inflammation contributes to the damage resulting from IRI, only a limited number of inflammation biomarkers have been identified as being associated with the different stages of hepatic IRI. As an approach to identify some of these inflammatory cytokines and the molecular mechanisms involved within different stages of hepatic IRI, we used an advanced antibody array assay to detect multiple proteins. With this technology, we observed specific differences in the content of inflammatory cytokines between ischemic and sham controls, as well as a function of the different reperfusion stages in a hepatic IRI mouse model. For example, while liver tissue content of IL-12p40/p70 was significantly increased in the ischemic stage, it was significantly decreased in the reperfusion stage as compared with that of the sham group. For other inflammatory cytokines, no changes were obtained between the ischemic and reperfusion stages with levels of IL-17, Eotaxin-2, Eotaxin, and sTNF RII all being consistently increased, while those of TIMP-1, TIMP-2, BLC, and MCSF consistently decreased as compared with that of the sham group at all reperfusion stages examined. Results from protein function annotation Gene Ontology and the KEGG pathway revealed that inflammatory cytokines are enriched in a network associated with activation of inflammatory response signaling pathways such as TLR, TNF, and IL-17 when comparing responses of the IR versus sham groups. The identification of cytokines along with their roles at specific stages of IRI may reveal important new biological markers for the diagnosis and prognosis of hepatic IRI.
Collapse
|
8
|
Zhang C, Ye B, Wei J, Wang Q, Xu C, Yu G. MiR-199a-5p regulates rat liver regeneration and hepatocyte proliferation by targeting TNF-α TNFR1/TRADD/CASPASE8/CASPASE3 signalling pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4110-4118. [PMID: 31682476 DOI: 10.1080/21691401.2019.1683566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abnormally expressed miR-199a-5p (miR-199a) has been frequently reported in multiple types of malignancies. Nevertheless, its effect in liver regeneration (LR) is largely still unclear. Herein, we investigated the function of miR-199a in hepatocyte proliferation during LR. As a result, miR-199a expression was significantly increased 12-30 h, in rat hepatic tissue, after partial hepatectomy (PH). The down-regulated expression of miR-199a inhibited proliferation as well as promoted cell apoptosis of BRL-3A. Additionally, TNF-α was found as a target of miR-199a. The administration of TNF-α siRNA regulated the effects of miR-199a on hepatocyte proliferation as well as miR-199a-modulated TNF-α/TNFR1/TRADD/CASPASE8/CASPASE3 signalling pathways. Taken together, these present findings suggested that miR-199a promoted hepatocyte proliferation as well as LR via targeting TNF-α/TNFR1/TRADD/CASPASE8/CASPASE3.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan International Joint Laboratory for Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Bingyu Ye
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan International Joint Laboratory for Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Jiaojiao Wei
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Qiwen Wang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan International Joint Laboratory for Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan International Joint Laboratory for Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Guoying Yu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan International Joint Laboratory for Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
9
|
Shu G, Qiu Y, Hao J, Fu Q, Deng X. Nuciferine alleviates acute alcohol-induced liver injury in mice: Roles of suppressing hepatic oxidative stress and inflammation via modulating miR-144/Nrf2/HO-1 cascade. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
10
|
Evodiamine alleviates kidney ischemia reperfusion injury in rats: A biochemical and histopathological study. J Cell Biochem 2019; 120:17159-17166. [DOI: 10.1002/jcb.28976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
|
11
|
Lin HP, Zheng YQ, Zhou ZP, Wang GX, Guo PF. Ryanodine receptor antagonism alleviates skeletal muscle ischemia reperfusion injury by modulating TNF-α and IL-10. Clin Hemorheol Microcirc 2018; 70:51-58. [PMID: 29660904 DOI: 10.3233/ch-170276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Intracellular calcium overload has been implicated in various pathological conditions including ischemia reperfusion injury. This study aims to explore the effect and probable mechanism of dantrolene, a ryanodine receptor and intracellular calcium antagonist, on the skeletal muscle ischemia reperfusion injury. MATERIALS AND METHODS SD rats were randomly divided into three groups: sham group which underwent anaesthesia and exposure of femoral vein, reperfusion group that received 2 h ischemia and the amount of diluent via femoral vein before 4 h reperfusion, dantrolene group that underwent 2 h ischemia and was given 2 mg/kg dantrolene via femoral vein before 4 h reperfusion. The parameters measured at the end of reperfusion included serum maleic dialdehyde (MDA), tissue myeloperoxidase (MPO) and muscle histology, as well as serum TNF-α and IL-10. RESULTS Levels of MDA, MPO and TNF-α increased in the reperfusion group, whereas the relevant expressions in the dantrolene group decreased significantly. Histological examination demonstrated significant improvements between the same both groups. IL-10 reflected the protection observed above with a significant up-regulation of expression after dantrolene administration. CONCLUSION Ryanodine receptor antagonist dantrolene exerted a significant protective effect against the inflammatory injury of skeletal muscle ischemia reperfusion. The underlying molecular mechanism is probably related to the suppression of TNF-α levels and the increment of IL-10 expression.
Collapse
Affiliation(s)
- Hai-Peng Lin
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-Qing Zheng
- Department of E.N.T, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Zhi-Ping Zhou
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Gao-Xiong Wang
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ping-Fan Guo
- Department of Vascular Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Khan IU, Yoon Y, Kim A, Jo KR, Choi KU, Jung T, Kim N, Son Y, Kim WH, Kweon OK. Improved Healing after the Co-Transplantation of HO-1 and BDNF Overexpressed Mesenchymal Stem Cells in the Subacute Spinal Cord Injury of Dogs. Cell Transplant 2018; 27:1140-1153. [PMID: 29909686 PMCID: PMC6158544 DOI: 10.1177/0963689718779766] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abundant expression of proinflammatory cytokines after a spinal cord injury (SCI) creates an inhibitory microenvironment for neuroregeneration. The mesenchymal stem cells help to mitigate the inflammation and improve neural growth and survival. For this purpose, we potentiated the function of adipose-derived mesenchymal stem cells (Ad-MSCs) by transfecting them with brain-derived neurotrophic factor (BDNF) and heme oxygenase-1 (HO-1), through a lentivirus, to produce BDNF overexpressed Ad-MSCs (BDNF-MSCs), and HO-1 overexpressed Ad-MSCs (HO-1-MSCs). Sixteen SCI beagle dogs were randomly assigned into four treatment groups. We injected both HO-1 and BDNF-overexpressed MSCs as a combination group, to selectively control inflammation and induce neuroregeneration in SCI dogs, and compared this with BDNF-MSCs, HO-1-MSCs, and GFP-MSCs injected dogs. The groups were compared in terms of improvement in canine Basso, Beattie, and Bresnahan (cBBB) score during 8 weeks of experimentation. After 8 weeks, spinal cords were harvested and subjected to western blot analysis, immunofluorescent staining, and hematoxylin and eosin (H&E) staining. The combination group showed a significant improvement in hindlimb functions, with a higher BBB score, and a robust increase in neuroregeneration, depicted by a higher expression of Tuj-1, NF-M, and GAP-43 due to a decreased expression of the inflammatory markers interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), and an increased expression of interleukin-10 (IL-10) (P ≤ 0.05). H&E staining showed more reduced intraparenchymal fibrosis in the combination group than in other groups (P ≤ 0.05). It was thus suggested that the cotransplantation of HO-1 and BDNF-MSCs is more effective in promoting the healing of SCI. HO-1-MSCs reduce inflammation, which favors BDNF-induced neuroregeneration in SCI of dogs.
Collapse
Affiliation(s)
- Imdad Ullah Khan
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Yongseok Yoon
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Ahyoung Kim
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Kwang Rae Jo
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Kyeung Uk Choi
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Taeseong Jung
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Namyul Kim
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - YeonSung Son
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Wan Hee Kim
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Oh-Kyeong Kweon
- 1 Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| |
Collapse
|
13
|
Zhang T, Zhao Q, Ye F, Huang CY, Chen WM, Huang WQ. Alda-1, an ALDH2 activator, protects against hepatic ischemia/reperfusion injury in rats via inhibition of oxidative stress. Free Radic Res 2018; 52:629-638. [PMID: 29589772 DOI: 10.1080/10715762.2018.1459042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous studies have proved that activation of aldehyde dehydrogenase two (ALDH2) can attenuate oxidative stress through clearance of cytotoxic aldehydes, and can protect against cardiac, cerebral, and lung ischemia/reperfusion (I/R) injuries. In this study, we investigated the effects of the ALDH2 activator Alda-1 on hepatic I/R injury. Partial warm ischemia was performed in the left and middle hepatic lobes of Sprague-Dawley rats for 1 h, followed by 6 h of reperfusion. Rats received either Alda-1 or vehicle by intravenous injection 30 min before ischemia. Blood and tissue samples of the rats were collected after 6-h reperfusion. Histological injury, proinflammatory cytokines, reactive oxygen species (ROS), cellular apoptosis, ALDH2 expression and activity, 4-hydroxy-trans-2-nonenal (4-HNE) and malondialdehyde (MDA) were measured. BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R). Cell viability, ROS, and mitochondrial membrane potential were determined. Pretreatment with Alda-1 significantly alleviated I/R-induced elevations of alanine aminotransferase and aspartate amino transferase, and significantly blunted the pathological injury of the liver. Moreover, Alda-1 significantly inhibited ROS and proinflammatory cytokines production, 4-HNE and MDA accumulation, and apoptosis. Increased ALDH2 activity was found after Alda-1 administration. No significant changes in ALDH2 expression were observed after I/R. ROS was also higher in H/R cells than in control cells, which was aggravated upon treatment with 4-HNE, and reduced by Alda-1 treatment. Cell viability and mitochondrial membrane potential were inhibited in H/R cells, which was attenuated upon Alda-1 treatment. Activation of ALDH2 by Alda-1 attenuates hepatic I/R injury via clearance of cytotoxic aldehydes.
Collapse
Affiliation(s)
- Tao Zhang
- a Department of Anesthesiology , the First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China
| | - Qiang Zhao
- b Organ transplantation center , the First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China
| | - Fang Ye
- a Department of Anesthesiology , the First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China
| | - Chan-Yan Huang
- a Department of Anesthesiology , the First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China
| | - Wan-Mei Chen
- a Department of Anesthesiology , the First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China
| | - Wen-Qi Huang
- a Department of Anesthesiology , the First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
14
|
Singla S, Sysol JR, Dille B, Jones N, Chen J, Machado RF. Hemin Causes Lung Microvascular Endothelial Barrier Dysfunction by Necroptotic Cell Death. Am J Respir Cell Mol Biol 2017; 57:307-314. [PMID: 28421813 DOI: 10.1165/rcmb.2016-0287oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hemin, the oxidized prosthetic moiety of hemoglobin, has been implicated in the pathogenesis of acute chest syndrome in patients with sickle cell disease by virtue of its endothelial-activating properties. In this study, we examined whether hemin can cause lung microvascular endothelial barrier dysfunction. By assessing transendothelial resistance using electrical cell impedance sensing, and by directly measuring trans-monolayer fluorescein isothiocyanate-dextran flux, we found that hemin does cause endothelial barrier dysfunction in a concentration-dependent manner. Pretreatment with either a Toll-like receptor 4 inhibitor, TAK-242, or an antioxidant, N-acetylcysteine, abrogated this effect. Increased monolayer permeability was found to be associated with programmed cell death by necroptosis, as evidenced by Trypan blue staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, Western blotting for activated forms of key effectors of cell death pathways, and studies utilizing specific inhibitors of necroptosis and apoptosis. Further studies examining the role of endothelial cell necroptosis in promoting noncardiogenic pulmonary edema during acute chest syndrome are warranted and may open a new avenue of potential treatments for this devastating disease.
Collapse
Affiliation(s)
- Sunit Singla
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Justin R Sysol
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Benjamin Dille
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Nicole Jones
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Jiwang Chen
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
15
|
Shin JK, Lee SM. Genipin protects the liver from ischemia/reperfusion injury by modulating mitochondrial quality control. Toxicol Appl Pharmacol 2017; 328:25-33. [DOI: 10.1016/j.taap.2017.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 12/26/2022]
|
16
|
Hu C, Li L. Pre-conditions for eliminating mitochondrial dysfunction and maintaining liver function after hepatic ischaemia reperfusion. J Cell Mol Med 2017; 21:1719-1731. [PMID: 28301072 PMCID: PMC5571537 DOI: 10.1111/jcmm.13129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
The liver, the largest organ with multiple synthesis and secretion functions in mammals, consists of hepatocytes and Kupffer, stem, endothelial, stellate and other parenchymal cells. Because of early and extensive contact with the external environment, hepatic ischaemia reperfusion (IR) may result in mitochondrial dysfunction, autophagy and apoptosis of cells and tissues under various pathological conditions. Because the liver requires a high oxygen supply to maintain normal detoxification and synthesis functions, it is extremely susceptible to ischaemia and subsequent reperfusion with blood. Consequently, hepatic IR leads to acute or chronic liver failure and significantly increases the total rate of morbidity and mortality through multiple regulatory mechanisms. An increasing number of studies indicate that mitochondrial structure and function are impaired after hepatic IR, but that the health of liver tissues or liver grafts can be effectively rescued by attenuation of mitochondrial dysfunction. In this review, we mainly focus on the subsequent therapeutic interventions related to the conservation of mitochondrial function involved in mitigating hepatic IR injury and the potential mechanisms of protection. Because mitochondria are abundant in liver tissue, clarification of the regulatory mechanisms between mitochondrial dysfunction and hepatic IR should shed light on clinical therapies for alleviating hepatic IR‐induced injury.
Collapse
Affiliation(s)
- Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Zhang Y, Chen Z, Feng N, Tang J, Zhao X, Liu C, Xu H, Zhang M. Protective effect of propofol preconditioning on ischemia-reperfusion injury in human hepatocyte. J Thorac Dis 2017; 9:702-710. [PMID: 28449478 DOI: 10.21037/jtd.2017.02.80] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Blood reperfusion after ischemia is the main measure to restore cell function. This study was aimed to explore the effect of propofol on rat and cell models of liver ischemia-reperfusion (I/R) injury, and to investigate its possible mechanism. METHODS Wistar rats were divided into four groups: control group, sham group, I/R group, and propofol group. Human hepatocyte HL7702 was divided into six groups: control group, I/R group and propofol (5, 10, 20 and 40 µmol/L) groups. After the animal and cell models were established, the alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA) and adenosine triphosphate (ATP) levels in liver tissues and hepatocytes were measured. Cell viability and apoptosis of hepatocytes were respectively determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry. Furthermore, the expressions of apoptosis-related proteins in hepatocytes were determined by Western blot analysis. RESULTS ALT, AST and MDA levels were all decreased significantly, and the ATP level was increased significantly in propofol group compared with that in I/R group in both liver tissues and hepatocytes. Additionally, cell viability of hepatocytes in propofol group was higher than that in I/R group, while the percentage of apoptotic cells in propofol group was less than that in I/R group. Moreover, the expression of caspase-3 decreased and the expression of Bcl-2 increased significantly after propofol preconditioning. CONCLUSIONS Our findings suggested that propofol preconditioning might be an effective strategy for protecting the liver from I/R injury, which might provide a scientific basis for clinical application.
Collapse
Affiliation(s)
- Yuzhu Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China.,Department of Anesthesiology, Zibo Central Hospital, Zibo 255000, China
| | - Zhenzhen Chen
- Department of Anesthesiology, Zibo Central Hospital, Zibo 255000, China
| | - Nianhai Feng
- Department of Anesthesiology, Zibo Central Hospital, Zibo 255000, China
| | - Junxia Tang
- Department of Anesthesiology, Zibo Central Hospital, Zibo 255000, China
| | - Xingbo Zhao
- Department of Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Chengxiao Liu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Hongyu Xu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China.,Department of Anesthesiology, Zibo Central Hospital, Zibo 255000, China
| | - Mengyuan Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| |
Collapse
|
18
|
Suyavaran A, Thirunavukkarasu C. Preconditioning methods in the management of hepatic ischemia reperfusion- induced injury: Update on molecular and future perspectives. Hepatol Res 2017; 47:31-48. [PMID: 26990696 DOI: 10.1111/hepr.12706] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/12/2016] [Accepted: 03/11/2016] [Indexed: 12/14/2022]
Abstract
Hepatic IR (ischemia reperfusion) injury is a commonly encountered obstacle in the post-operative management of hepatic surgery. Hepatic IR occurs during 'Pringle maneuver' for reduction of blood loss or during a brief period of cold storage followed by reperfusion of liver grafts. The stress induced during hepatic IR, triggers a spectrum of cellular responses leading to the varying degrees of hepatic complications which in turn affect the post operative care. Different preconditioning methods either activate or subdue different sets of molecular signals, resulting in varied levels of protection against hepatic IR injury. Yet, there is a serious lacuna in the knowledge regarding the choice of preconditioning methods and the resulting molecular changes in order to assess the efficiency and choice of these methods correctly. This review provides an update on the various preconditioning approaches such as surgical/ischemic, antioxidant, pharmaceutical and genetic preconditioning strategies published during last six years (2009-2015). Further, we discuss the attenuation or inhibition of specific inflammatory, apoptotic and necrotic markers in the various experimental models of liver IR subjected to different preconditioning strategies. While enlisting the controversies in the ischemic preconditioning strategy, we bring out the uncertainties in the existing molecular targets and their reliability in the attenuation of hepatic IR injury. Future research studies would include the novel preconditioning strategies employ i) the targeted gene silencing of key molecular targets inducing IR, ii) hyper expression of beneficial molecular signals against IR via gene transfer techniques. The above studies would see the combination of these latest techniques with the established preconditioning strategies for better post-operative hepatic management.
Collapse
Affiliation(s)
- Arumugam Suyavaran
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | |
Collapse
|
19
|
Zhu G, Qiu W, Li Y, Zhao C, He F, Zhou M, Wang L, Zhao D, Lu Y, Zhang J, Liu Y, Yu T, Wang Y. Sublytic C5b-9 Induces Glomerular Mesangial Cell Apoptosis through the Cascade Pathway of MEKK2-p38 MAPK-IRF-1-TRADD-Caspase 8 in Rat Thy-1 Nephritis. THE JOURNAL OF IMMUNOLOGY 2016; 198:1104-1118. [PMID: 28039298 DOI: 10.4049/jimmunol.1600403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
The apoptosis of glomerular mesangial cells (GMCs) in the early phase of rat Thy-1 nephritis (Thy-1N), a model of human mesangioproliferative glomerulonephritis (MsPGN), is primarily triggered by sublytic C5b-9. However, the mechanism of GMC apoptosis induced by sublytic C5b-9 remains unclear. In this study, we demonstrate that expressions of TNFR1-associated death domain-containing protein (TRADD) and IFN regulatory factor-1 (IRF-1) were simultaneously upregulated in the renal tissue of Thy-1N rats (in vivo) and in GMCs under sublytic C5b-9 stimulation (in vitro). In vitro, TRADD was confirmed to be a downstream gene of IRF-1, because IRF-1 could bind to TRADD gene promoter to promote its transcription, leading to caspase 8 activation and GMC apoptosis. Increased phosphorylation of p38 MAPK was verified to contribute to IRF-1 and TRADD production and caspase 8 activation, as well as to GMC apoptosis induced by sublytic C5b-9. Furthermore, phosphorylation of MEK kinase 2 (MEKK2) mediated p38 MAPK activation. More importantly, three sites (Ser153/164/239) of MEKK2 phosphorylation were identified and demonstrated to be necessary for p38 MAPK activation. In addition, silencing of renal MEKK2, IRF-1, and TRADD genes or inhibition of p38 MAPK activation in vivo had obvious inhibitory effects on GMC apoptosis, secondary proliferation, and urinary protein secretion in rats with Thy-1N. Collectively, these findings indicate that the cascade axis of MEKK2-p38 MAPK-IRF-1-TRADD-caspase 8 may play an important role in GMC apoptosis following exposure to sublytic C5b-9 in rat Thy-1N.
Collapse
Affiliation(s)
- Ganqian Zhu
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Yongting Li
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Chenhui Zhao
- Department of Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China; and
| | - Fengxia He
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Mengya Zhou
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Lulu Wang
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Dan Zhao
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Yanlai Lu
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Jing Zhang
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Yu Liu
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Tianyi Yu
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China; .,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| |
Collapse
|
20
|
Hydrogen sulfide protects against TNF-α induced neuronal cell apoptosis through miR-485-5p/TRADD signaling. Biochem Biophys Res Commun 2016; 478:1304-9. [PMID: 27562714 DOI: 10.1016/j.bbrc.2016.08.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/20/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Increasing studies suggest that miRNAs are served as responders and regulators for pathological change in human. miR-485-5p is such a miRNA that has been proved to be affected by spinal cord I/R injury. This study was to investigate the functional involvement and mechanism of miR-485-5p in sulfuretted hydrogen (H2S) protecting neural cell from injury. METHODS In this study, serum tumor necrosis factor (TNF-α) and miR-485-5p were detected in 20 patients with spinal cord ischemia/reperfusion (I/R) injury and in 20 healthy control. H2S was administered by GYY4137 treatment. Two TNF-α-stimulated neural human cell lines, AGE1.HN and SY-SH-5Y, were used for in vitro I/R experiments. Quantitative RT-PCR was performed to determine miR-485-5p expression. QRT-PCR and western blot were respectively performed to evaluate expression of tumor necrosis factor receptor type 1-associated DEATH domain protein (TRADD). RESULTS The result showed that serum TNF-α was significantly reduced in patients compared with healthy control. In vitro TNF-α treatment dose dependently caused GE1.HN and SY-SH-5Y apoptosis, whereas this promotion action was reversed by CYY4137. Moreover, we found that H2S protected neuronal cell against apoptosis via TRADD dependent. By luciferase reporting gene assay, western blot and qRT-PCR, we confirmed that TRADD expression was regulated by miR-485-5p. Such miR-485-5p/TRADD axis was proved to be involved in GE1.HN and SY-SH-5Y neural cell-protective process of H2S. CONCLUSION In summary, our data for the first time identifies miR-485-5p/TRADD axis in hydrogen sulfide protecting against TNF-α-induced neuronal cell apoptosis.
Collapse
|
21
|
Kang JW, Hong JM, Lee SM. Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis. J Pineal Res 2016; 60:383-93. [PMID: 26882442 DOI: 10.1111/jpi.12319] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 12/14/2022]
Abstract
Liver fibrosis leads to liver cirrhosis and failure, and no effective treatment is currently available. Growing evidence supports a link between mitochondrial dysfunction and liver fibrogenesis and mitochondrial quality control-based therapy has emerged as a new therapeutic target. We investigated the protective mechanisms of melatonin against mitochondrial dysfunction-involved liver fibrosis, focusing on mitophagy and mitochondrial biogenesis. Rats were treated with carbon tetrachloride (CCl4) dissolved in olive oil (0.5 mL/kg, twice a week, i.p.) for 8 wk. Melatonin was administered orally at 2.5, 5, and 10 mg/kg once a day. Chronic CCl4 exposure induced collagen deposition, hepatocellular damage, and oxidative stress, and melatonin attenuated these increases. Increases in mRNA and protein expression levels of transforming growth factor β1 and α-smooth muscle actin in response to CCl4 were attenuated by melatonin. Melatonin attenuated hallmarks of mitochondrial dysfunction, such as mitochondrial swelling and glutamate dehydrogenase release. Chronic CCl4 exposure impaired mitophagy and mitochondrial biogenesis, and melatonin attenuated this impairment, as indicated by increases in mitochondrial DNA and in protein levels of PTEN-induced putative kinase 1 (PINK1); Parkin; peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α); nuclear respiratory factor 1 (NRF1); and transcription factor A, mitochondrial (TFAM). CCl4-mediated decreases in mitochondrial fission- and fusion-related proteins, such as dynamin-related protein 1 (DRP1) and mitofusin 2, were also attenuated by melatonin. Moreover, melatonin induced AMP-activated protein kinase (AMPK) phosphorylation. These results suggest that melatonin protects against liver fibrosis via upregulation of mitophagy and mitochondrial biogenesis, and may be useful as an anti-fibrotic treatment.
Collapse
Affiliation(s)
- Jung-Woo Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Jeong-Min Hong
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| |
Collapse
|
22
|
Lai CC, Huang PH, Yang AH, Chiang SC, Tang CY, Tseng KW, Huang CH. Baicalein Reduces Liver Injury Induced by Myocardial Ischemia and Reperfusion. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:531-50. [PMID: 27109160 DOI: 10.1142/s0192415x16500294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Baicalein is a component of the root of Scutellaria baicalensis Georgi, which has traditionally been used to treat liver disease in China. In the present study, we investigated baicalein' ability to reduce the liver injury induced by myocardial ischemia and reperfusion (I/R). Myocardial I/R was induced in this experiment by a 40[Formula: see text]min occlusion of the left anterior descending coronary artery and a 3[Formula: see text]h reperfusion in rats. The induced myocardial I/R significantly increased the serum levels of aspartate transaminase (AST) and alanine transaminase (ALT), indicating the presence of liver injury. Hepatic apoptosis was significantly increased. The serum levels of tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]), interleukin-1[Formula: see text] (IL-1[Formula: see text]), and interleukin-6 (IL-6) were significantly elevated, as was the TNF-[Formula: see text] level in the liver. Intravenous pretreatment with baicalein (3, 10, or 30[Formula: see text]mg/kg) 10[Formula: see text]min before myocardial I/R significantly reduced the serum level increase of AST and ALT, apoptosis in the liver, and the elevation of TNF-[Formula: see text], IL-1[Formula: see text], and IL-6 levels. Moreover, baicalein increased Bcl-2 and decreased Bax in the liver. Phosphorylation of the prosurvival kinases, including Akt and extracellular signal-regulated kinases 1 and 2 (ERK1/2), was also increased. In conclusion, we found that baicalein can reduce the liver injury induced by myocardial I/R. The underlying mechanisms are likely related to the inhibition of the extrinsic and intrinsic apoptotic pathways, possibly via the inhibition of TNF-[Formula: see text] production, the modulation of Bcl-2 and Bax, and the activation of Akt and ERK1/2. Our findings may provide a rationale for the application of baicalein or traditional Chinese medicine containing large amounts of baicalein to prevent liver injury in acute myocardial infarction and cardiac surgery.
Collapse
Affiliation(s)
- Chang-Chi Lai
- * Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital and National Yang-Ming, University School of Medicine Taipei, Taiwan.,‡ Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Po-Hsun Huang
- ‡ Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,¶ Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,∥ Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - An-Han Yang
- † Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital and National Yang-Ming, University School of Medicine Taipei, Taiwan
| | - Shu-Chiung Chiang
- § Institute of Hospital and Health Care Administration, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chia-Yu Tang
- * Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital and National Yang-Ming, University School of Medicine Taipei, Taiwan.,‡ Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Kuo-Wei Tseng
- ** Department of Physical Education and Health, University of Taipei Taipei, Taiwan
| | - Cheng-Hsiung Huang
- * Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital and National Yang-Ming, University School of Medicine Taipei, Taiwan
| |
Collapse
|
23
|
Mitochondrial Dysfunction and Autophagy in Hepatic Ischemia/Reperfusion Injury. BIOMED RESEARCH INTERNATIONAL 2015; 2015:183469. [PMID: 26770970 PMCID: PMC4684839 DOI: 10.1155/2015/183469] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/26/2022]
Abstract
Ischemia/reperfusion (I/R) injury remains a major complication of liver resection, transplantation, and hemorrhagic shock. Although the mechanisms that contribute to hepatic I/R are complex and diverse involving the interaction of cell injury in hepatocytes, immune cells, and endothelium, mitochondrial dysfunction is a cardinal event culminating in hepatic reperfusion injury. Mitochondrial autophagy, so-called mitophagy, is a key cellular process that regulates mitochondrial homeostasis and eliminates damaged mitochondria in a timely manner. Growing evidence accumulates that I/R injury is attributed to defective mitophagy. This review aims to summarize the current understanding of autophagy and its role in hepatic I/R injury and highlight the various therapeutic approaches that have been studied to ameliorate injury.
Collapse
|
24
|
Cheng Z, Yue L, Zhao W, Yang X, Shu G. Protective effects of protostemonine on LPS/GalN-induced acute liver failure: Roles of increased hepatic expression of heme oxygenase-1. Int Immunopharmacol 2015; 29:798-807. [DOI: 10.1016/j.intimp.2015.08.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/10/2015] [Accepted: 08/30/2015] [Indexed: 12/23/2022]
|
25
|
Cinti A, De Giorgi M, Chisci E, Arena C, Galimberti G, Farina L, Bugarin C, Rivolta I, Gaipa G, Smolenski RT, Cerrito MG, Lavitrano M, Giovannoni R. Simultaneous Overexpression of Functional Human HO-1, E5NT and ENTPD1 Protects Murine Fibroblasts against TNF-α-Induced Injury In Vitro. PLoS One 2015; 10:e0141933. [PMID: 26513260 PMCID: PMC4626094 DOI: 10.1371/journal.pone.0141933] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022] Open
Abstract
Several biomedical applications, such as xenotransplantation, require multiple genes simultaneously expressed in eukaryotic cells. Advances in genetic engineering technologies have led to the development of efficient polycistronic vectors based on the use of the 2A self-processing oligopeptide. The aim of this work was to evaluate the protective effects of the simultaneous expression of a novel combination of anti-inflammatory human genes, ENTPD1, E5NT and HO-1, in eukaryotic cells. We produced an F2A system-based multicistronic construct to express three human proteins in NIH3T3 cells exposed to an inflammatory stimulus represented by tumor necrosis factor alpha (TNF-α), a pro-inflammatory cytokine which plays an important role during inflammation, cell proliferation, differentiation and apoptosis and in the inflammatory response during ischemia/reperfusion injury in several organ transplantation settings. The protective effects against TNF-α-induced cytotoxicity and cell death, mediated by HO-1, ENTPD1 and E5NT genes were better observed in cells expressing the combination of genes as compared to cells expressing each single gene and the effect was further improved by administrating enzymatic substrates of the human genes to the cells. Moreover, a gene expression analyses demonstrated that the expression of the three genes has a role in modulating key regulators of TNF-α signalling pathway, namely Nemo and Tnfaip3, that promoted pro-survival phenotype in TNF-α injured cells. These results could provide new insights in the research of protective mechanisms in transplantation settings.
Collapse
Affiliation(s)
- Alessandro Cinti
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
| | - Marco De Giorgi
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
- Medical University of Gdansk, Gdansk, Poland
| | - Elisa Chisci
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
| | - Claudia Arena
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
| | - Gloria Galimberti
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
| | - Laura Farina
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
| | - Cristina Bugarin
- M. Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca, Monza, Italy
| | - Ilaria Rivolta
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Giuseppe Gaipa
- M. Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca, Monza, Italy
| | - Ryszard Tom Smolenski
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
- Medical University of Gdansk, Gdansk, Poland
| | - Maria Grazia Cerrito
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
| | - Marialuisa Lavitrano
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
| | - Roberto Giovannoni
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
- * E-mail:
| |
Collapse
|
26
|
Negi G, Nakkina V, Kamble P, Sharma SS. Heme oxygenase-1, a novel target for the treatment of diabetic complications: focus on diabetic peripheral neuropathy. Pharmacol Res 2015; 102:158-67. [PMID: 26432957 DOI: 10.1016/j.phrs.2015.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/01/2015] [Accepted: 09/18/2015] [Indexed: 01/07/2023]
Abstract
Diabetic neuropathy is a complex disorder induced by long standing diabetes. Many signaling pathways and transcription factors have been proposed to be involved in the development and progression of related processes. Years of research points to critical role of oxidative stress, neuroinflammation and apoptosis in the pathogenesis of neuropathy in diabetes. Heme oxygenase-1 (HO-1) is heat-shock protein induced under conditions of different kinds of stress and has been implicated in cellular defense against oxidative stress. HO-1 degrades heme to biliverdin, carbon monoxide (CO) and free iron. Biliverdin and CO are gaining particular interest because these two have been found to mediate most of anti-inflammatory, antioxidant and anti-apoptotic effects of HO-1. Although extensively studied in different kinds of cancers and cardiovascular conditions, role of HO-1 in diabetic neuropathy is still under investigation. In this paper, we review the unique therapeutic potential of HO-1 and its role in mitigating various pathological processes that lead to diabetic neuropathy. This review also highlights the therapeutic approaches such as pharmacological and natural inducers of HO-1, gene delivery of HO-1 or its reaction products that in future, could lead to progression of HO-1 activators through the preclinical stages of drug development to clinical trials.
Collapse
Affiliation(s)
- Geeta Negi
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Vanaja Nakkina
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Pallavi Kamble
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Shyam S Sharma
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India.
| |
Collapse
|
27
|
Zhang LM, Zhao XC, Sun WB, Li R, Jiang XJ. Sevoflurane post-conditioning protects primary rat cortical neurons against oxygen-glucose deprivation/resuscitation via down-regulation in mitochondrial apoptosis axis of Bid, Bim, Puma-Bax and Bak mediated by Erk1/2. J Neurol Sci 2015; 357:80-7. [PMID: 26152828 DOI: 10.1016/j.jns.2015.06.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 11/23/2022]
Abstract
Temporal post-conditioning helps provide neuroprotection against brain injury secondary to ischemia-reperfusion and is considered an effective intervention, but the exact mechanism of sevoflurane post-conditioning is unclear. The essential axis involves activator Bid, Bim, Puma (BH3s), Bax, and Bak; activates the mitochondrial death program; and might be involved in a cell death signal. Extracellular signal-related kinases 1/2 (Erk1/2) play a pivotal role in cell growth and proliferation. We hypothesized that sevoflurane post-conditioning might inhibit Bid, Bim, Puma, Bax, and Bak expression and is activated by phosphor-Erk1/2 to decrease neuronal death. To test this hypothesis, we exposed primary cortical neuron cultures to oxygen-glucose deprivation for 1h, along with resuscitation for 24h (OGD/R). MTT assays, propidium iodide uptake (PI), JC-1 fluorescence, and Western blot indicated the following: decreased cell viability (P<0.05); increased cell death (P<0.05); decreased mitochondrial membrane potential (P<0.05); and decreased Bid, Bim, Puma, Bax, and Bak expression with OGD/R exposure. Inhibition of Erk1/2 phosphorylation could attenuate sevoflurane post-conditioning that mediated an increase in neuronal viability and mitochondrial membrane potential, as well as a decrease in cell death and Bid, Bim, Puma, Bax, and Bak expression after OGD/R treatment. The results demonstrated that sevoflurane post-conditioning caused a marked decrease in cortical neuronal death secondary to OGD/R exposure through the downregulation of the mitochondrial apoptosis axis involving Bid, Bim, Puma, Bax, and Bak that was mediated by the phosphorylation/activation of Erk1/2.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Xiao-Chun Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wen-Bo Sun
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Rui Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiao-Jing Jiang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
28
|
Fang H, Zhang S, Guo W, Cao S, Yan B, Lu Y, Li J. Cobalt protoporphyrin protects the liver against apoptosis in rats of brain death. Clin Res Hepatol Gastroenterol 2015; 39:475-81. [PMID: 25573491 DOI: 10.1016/j.clinre.2014.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 02/04/2023]
Abstract
Brain death (BD) leads to a marked increase in apoptosis, which influences the viability of donor organs. Induction of heme oxygenase 1 (HO-1) has been shown to exert beneficial effects in different liver injury models. Therefore, we examined the effect of pretreating rats with cobalt protoporphyrin (CoPP), an HO-1 inducer, on apoptosis in liver during BD and elucidated the mechanisms involved. First, rats were killed at 0, 1, 2, 4 and 6 h after BD induction to examine the expression of hepatic HO-1. Second, rats were randomly divided into four groups (n=6): (S group) rats undergoing sham operation, (CS group) rats pretreated with CoPP for 24 h before the sham operation, (B group) rats undergoing BD for 6 h, (CB group) rats pretreated with CoPP for 24 h before BD induction. The expression levels of hepatic HO-1 mRNA and protein in rats increased at 0, 1, 2, 4 and 6h after BD induction, compared with sham operated rats. In the CB group compared with the B group, the increased hepatic expression of HO-1 correlated with a significant decrease in serum ALT/AST levels, fewer apoptotic cells in liver, increased hepatic expression of Mcl-1 and Bcl-2, and decreased hepatic expression of Bax, cytosolic cytochrome c and cleaved caspase-3. CoPP inhibits apoptosis in liver of BD rats in part via modulating the mitochondrial apoptosis pathway. HO-1 may serve as a potential target for improving the quality of organs from BD donors.
Collapse
Affiliation(s)
- Hongbo Fang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Liver Transplantation Center of Henan Province, Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, Jianshe East Road No. 1, Zhengzhou City, Henan 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Liver Transplantation Center of Henan Province, Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, Jianshe East Road No. 1, Zhengzhou City, Henan 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Liver Transplantation Center of Henan Province, Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, Jianshe East Road No. 1, Zhengzhou City, Henan 450052, China
| | - Shengli Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Liver Transplantation Center of Henan Province, Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, Jianshe East Road No. 1, Zhengzhou City, Henan 450052, China
| | - Bing Yan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Liver Transplantation Center of Henan Province, Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, Jianshe East Road No. 1, Zhengzhou City, Henan 450052, China
| | - Yantao Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Liver Transplantation Center of Henan Province, Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, Jianshe East Road No. 1, Zhengzhou City, Henan 450052, China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Liver Transplantation Center of Henan Province, Key Laboratory of Hepatobiliary and Pancreatic Surgery & Digestive Organ Transplantation of Henan Province, Jianshe East Road No. 1, Zhengzhou City, Henan 450052, China
| |
Collapse
|
29
|
Zhang L, Zhao X, Jiang X. Sevoflurane Post-conditioning Protects Primary Rat Cortical Neurons Against Oxygen–Glucose Deprivation/Resuscitation: Roles of Extracellular Signal-Regulated Kinase 1/2 and Bid, Bim, Puma. Neurochem Res 2015; 40:1609-19. [DOI: 10.1007/s11064-015-1639-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/30/2015] [Accepted: 06/12/2015] [Indexed: 11/29/2022]
|
30
|
Huang HF, Zeng Z, Wang KH, Zhang HY, Wang S, Zhou WX, Wang ZB, Xu WG, Duan J. Heme oxygenase-1 protects rat liver against warm ischemia/reperfusion injury via TLR2/TLR4-triggered signaling pathways. World J Gastroenterol 2015; 21:2937-2948. [PMID: 25780291 PMCID: PMC4356913 DOI: 10.3748/wjg.v21.i10.2937] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/09/2014] [Accepted: 11/11/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the efficacy and molecular mechanisms of induced heme oxygenase (HO)-1 in protecting liver from warm ischemia/reperfusion (I/R) injury.
METHODS: Partial warm ischemia was produced in the left and middle hepatic lobes of SD rats for 75 min, followed by 6 h of reperfusion. Rats were treated with saline, cobalt protoporphyrin (CoPP) or zinc protoporphyrin (ZnPP) at 24 h prior to the ischemia insult. Blood and samples of ischemic lobes subjected to ischemia were collected at 6 h after reperfusion. Serum transaminases level, plasma lactate dehydrogenase and myeloperoxidase activity in liver were measured. Liver histological injury and inflammatory cell infiltration were evaluated by tissue section and liver immunohistochemical analysis. We used quantitative reverse transcription polymerase chain reaction to analyze liver expression of inflammatory cytokines and chemokines. The cell lysates were subjected to immunoprecipitation with anti-Toll-IL-1R-containing adaptor inducing interferon-β (TRIF) and anti-myeloid differentiation factor 88 (MyD88), and then the immunoprecipitates were analyzed by SDS-PAGE and immunoblotted with the indicated antibodies.
RESULTS: HO-1 protected livers from I/R injury, as evidenced by diminished liver enzymes and well-preserved tissue architecture. In comparison with ZnPP livers 6 h after surgery, CoPP treatment livers showed a significant increase inflammatory cell infiltration of lymphocytes, plasma cells, neutrophils and macrophages. The Toll-like receptor (TLR)-4 and TANK binding kinase 1 protein levels of rats treated with CoPP significantly reduced in TRIF-immunoprecipitated complex, as compared with ZnPP treatment. In addition, pretreatment with CoPP reduced the expression levels of TLR2, TLR4, IL-1R-associated kinase (IRAK)-1 and tumor necrosis factor receptor-associated factor 6 in MyD88-immunoprecipitated complex. The inflammatory cytokines and chemokines mRNA expression rapidly decreased in CoPP-pretreated liver, compared with the ZnPP-treated group. However, the expression of negative regulators Toll-interacting protein, suppressor of cytokine signaling-1, IRAK-M and Src homology 2 domain-containing inositol-5-phosphatase-1 in CoPP treatment rats were markedly up-regulated as compared with ZnPP-treated rats.
CONCLUSION: HO-1 protects liver against I/R injury by inhibiting TLR2/TLR4-triggered MyD88- and TRIF-dependent signaling pathways and increasing expression of negative regulators of TLR signaling in rats.
Collapse
|
31
|
Wang Y, Xiong X, Guo H, Wu M, Li X, Hu Y, Xie G, Shen J, Tian Q. ZnPP reduces autophagy and induces apoptosis, thus aggravating liver ischemia/reperfusion injury in vitro. Int J Mol Med 2014; 34:1555-1564. [PMID: 25319231 DOI: 10.3892/ijmm.2014.1968] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 09/18/2014] [Indexed: 11/06/2022] Open
Abstract
There is growing evidence indicating that autophagy plays a protective role in liver ischemia/reperfusion (IR) injury. Heme oxygenase-1 (HO-1) can also prevent liver IR injury by limiting inflammation and inducing an anti-apoptotic response. Autophagy also plays a crucial role in liver IR injury. The aim of the present study was to investigate the role of HO-1 in liver IR injury and the association between HO-1, autophagy and apoptotic pathways. IR simulation was performed using buffalo rat liver (BRL) cells, and HO-1 activity was either induced by hemin (HIR group) or inhibited by zinc protoporphyrin (ZnPP) (ZIR group). In the HIR and ZIR group, the expression of HO-1 and autophagy-related genes [light chain 3-Ⅱ (LC3-Ⅱ)] was assessed by RT-qPCR and the protein expression of caspases, autophagy-related genes and genes associated with apoptotic pathways (Bax) was detected by western blot anlaysis. The results of RT-PCR revealed the genetically decreased expression of HO-1 and autophagy-related genes in the ZIR group. Similar results were obtained by western blot analysis and immunofluorescence. An ultrastructural analysis revealed a lower number of autophagosomes in the ZIR group; in the HIR group, the number of autophagosomes was increased. The expression of Bax and cytosolic cytochrome c was increased, while that of Bcl-2 was decreased following treatment of the cells with ZnPP prior to IR simulation; the oppostie occurred in the HIR group. Cleaved caspase-3, caspase-9 and poly(ADP-ribose) polymerase (PARP) protein were activated in the IR and ZIR groups. The disruption of mitochondrial membrane potential was also observed in the ZIR group. In general, the downregulation of HO-1 reduced autophagy and activated the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Yun Wang
- Department of Oncological Surgery 2, Xuzhou City Central Hospital, The Affiliated Hospital of Southeast University Medical School (Xuzhou), The Tumor Research Institute of Southeast University (Xuzhou), Xuzhou, Jiangsu 221009, P.R. China
| | - Xuanxuan Xiong
- Department of Gastroenterology 2, Xuzhou City Central Hospital, The Affiliated Hospital of Southeast University Medical School (Xuzhou), Xuzhou, Jiangsu 221009, P.R. China
| | - Hao Guo
- Department of Oncological Surgery 2, Xuzhou City Central Hospital, The Affiliated Hospital of Southeast University Medical School (Xuzhou), The Tumor Research Institute of Southeast University (Xuzhou), Xuzhou, Jiangsu 221009, P.R. China
| | - Mingbo Wu
- Department of Gastroenterology 2, Xuzhou City Central Hospital, The Affiliated Hospital of Southeast University Medical School (Xuzhou), Xuzhou, Jiangsu 221009, P.R. China
| | - Xiangcheng Li
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuanchao Hu
- Department of Oncological Surgery 2, Xuzhou City Central Hospital, The Affiliated Hospital of Southeast University Medical School (Xuzhou), The Tumor Research Institute of Southeast University (Xuzhou), Xuzhou, Jiangsu 221009, P.R. China
| | - Guangwei Xie
- Department of Oncological Surgery 2, Xuzhou City Central Hospital, The Affiliated Hospital of Southeast University Medical School (Xuzhou), The Tumor Research Institute of Southeast University (Xuzhou), Xuzhou, Jiangsu 221009, P.R. China
| | - Jian Shen
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Qingzhong Tian
- Department of Oncological Surgery 2, Xuzhou City Central Hospital, The Affiliated Hospital of Southeast University Medical School (Xuzhou), The Tumor Research Institute of Southeast University (Xuzhou), Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
32
|
Bakhautdin B, Das D, Mandal P, Roychowdhury S, Danner J, Bush K, Pollard K, Kaspar JW, Li W, Salomon RG, McMullen MR, Nagy LE. Protective role of HO-1 and carbon monoxide in ethanol-induced hepatocyte cell death and liver injury in mice. J Hepatol 2014; 61:1029-1037. [PMID: 24946281 PMCID: PMC4203703 DOI: 10.1016/j.jhep.2014.06.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 04/04/2014] [Accepted: 06/02/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Alcoholic liver disease is associated with inflammation and cell death. Heme oxygenase-1 (HO-1) is a stress-inducible enzyme with anti-apoptotic and anti-inflammatory properties. Here we tested the hypothesis that induction of HO-1 or treatment with a carbon monoxide releasing molecule (CORM) during chronic ethanol exposure protects and/or reverses ethanol-induced liver injury. METHODS Female C57BL/6J mice were allowed free access to a complete liquid diet containing ethanol or to pair-fed control diets for 25days. Mice were treated with cobalt protoporphyrin (CoPP) to induce HO-1 expression during ethanol feeding or once liver injury had been established. Mice were also treated with CORM-A1, a CO-releasing molecule (CORM), after ethanol-induced liver injury was established. The impact of HO-1 induction on ethanol-induced cell death was investigated in primary cultures of hepatocytes. RESULTS Induction of HO-1 during or after ethanol feeding, as well as treatment with CORM-A1, ameliorated ethanol-induced increases in AST and expression of mRNAs for inflammatory cytokines. Treatment with CoPP or CORM-A1 also reduced hepatocyte cell death, indicated by decreased accumulation of CK18 cleavage products and reduced RIP3 expression in hepatocytes. Exposure of primary hepatocyte cultures to ethanol increased their sensitivity to TNFα-induced cell death; this response was attenuated by necrostatin-1, an inhibitor of necroptosis, but not by caspase inhibitors. Induction of HO-1 with CoPP or CORM-3 treatment normalized the sensitivity of hepatocytes to TNFα-induced cell death after ethanol exposure. CONCLUSIONS Therapeutic strategies to increase HO-1 and/or modulate CO availability ameliorated chronic ethanol-induced liver injury in mice, at least in part by decreasing hepatocellular death.
Collapse
Affiliation(s)
- Bakytzhan Bakhautdin
- Center for Liver Disease Research, Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Dola Das
- Center for Liver Disease Research, Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Palash Mandal
- Center for Liver Disease Research, Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sanjoy Roychowdhury
- Center for Liver Disease Research, Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jazmine Danner
- Center for Liver Disease Research, Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Katelyn Bush
- Center for Liver Disease Research, Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Katherine Pollard
- Center for Liver Disease Research, Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - James W Kaspar
- Center for Liver Disease Research, Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Wei Li
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, United States
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, United States
| | - Megan R McMullen
- Center for Liver Disease Research, Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Laura E Nagy
- Center for Liver Disease Research, Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
33
|
Cardiomyocyte apoptosis contributes to pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated mice. Clin Sci (Lond) 2014; 127:519-26. [PMID: 24712830 DOI: 10.1042/cs20130642] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cirrhotic cardiomyopathy is defined as systolic and diastolic dysfunctions, electrophysiological changes and macroscopic structural changes. However, the underlying mechanisms of this syndrome remain unclear. A possible role of myocardial apoptosis in the pathogenesis has not been previously examined. We hypothesized that dysregulation of apoptotic signalling participates in cardiac dysfunction in the cirrhotic heart. Therefore, we evaluated apoptotic pathways in the hearts of mice with chronic BDL (bile duct ligation). A cirrhotic cardiomyopathy model was induced by BDL in mice. Left ventricular geometry and volumes were evaluated by MRI. Intrinsic and extrinsic apoptotic pathways were evaluated by immunohistochemical staining and Western blot analysis. Fas-mediated apoptosis was inhibited by in vivo administration of an anti-FasL (Fas ligand) monoclonal antibody, and subsequently cardiac contractility was measured in isolated cardiomyocytes. BDL-mice showed significantly more PARP [poly(ADP-ribose) polymerase] staining than sham controls (18.2±11.4 compared with 6.7±5.3; P<0.05). Fas protein expression and PARP cleavage were activated, whereas FLIP (Fas-associated death domain-like interleukin 1β-converting enzyme-inhibitory protein) was decreased compared with sham controls. The Bcl-2/Bax ratio was increased in BDL-mice compared with sham controls. Anti-FasL monoclonal antibody injection in BDL-mice improved systolic and diastolic dysfunctions in cardiomyocytes, but had no effect in sham controls. A net pro-apoptotic balance exists in BDL hearts, mainly mediated by activation of the extrinsic pathway, and abrogation of apoptosis improved contractility. These results suggest that apoptosis contributes to depressed cardiac contractility in a murine model of cirrhotic cardiomyopathy.
Collapse
|
34
|
Wang C, Chen K, Xia Y, Dai W, Wang F, Shen M, Cheng P, Wang J, Lu J, Zhang Y, Yang J, Zhu R, Zhang H, Li J, Zheng Y, Zhou Y, Guo C. N-acetylcysteine attenuates ischemia-reperfusion-induced apoptosis and autophagy in mouse liver via regulation of the ROS/JNK/Bcl-2 pathway. PLoS One 2014; 9:e108855. [PMID: 25264893 PMCID: PMC4181678 DOI: 10.1371/journal.pone.0108855] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/25/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (HIRI) remains a pivotal clinical problem after hemorrhagic shock, transplantation, and some types of toxic hepatic injury. Apoptosis and autophagy play important roles in cell death during HIRI. It is also known that N-acetylcysteine (NAC) has significant pharmacologic effects on HIRI including elimination of reactive oxygen species (ROS) and attenuation of hepatic apoptosis. However, the effects of NAC on HIRI-induced autophagy have not been reported. In this study, we evaluated the effects of NAC on autophagy and apoptosis in HIRI, and explored the possible mechanism involved. METHODS A mouse model of segmental (70%) hepatic warm ischemia was adopted to determine hepatic injury. NAC (150 mg/kg), a hepatoprotection agent, was administered before surgery. We hypothesized that the mechanism of NAC may involve the ROS/JNK/Bcl-2 pathway. We evaluated the expression of JNK, P-JNK, Bcl-2, Beclin 1 and LC3 by western blotting and immunohistochemical staining. Autophagosomes were evaluated by transmission electron microscopy (TEM). RESULTS We found that ALT, AST and pathological changes were significantly improved in the NAC group. Western blotting analysis showed that the expression levels of Beclin 1 and LC3 were significantly decreased in NAC-treated mice. In addition, JNK, p-JNK, Bax, TNF-α, NF-κB, IL2, IL6 and levels were also decreased in NAC-treated mice. CONCLUSION NAC can prevent HIRI-induced autophagy and apoptosis by influencing the JNK signal pathway. The mechanism is likely to involve attenuation of JNK and p-JNK via scavenged ROS, an indirect increase in Bcl-2 level, and finally an alteration in the balance of Beclin 1 and Bcl-2.
Collapse
Affiliation(s)
- Chengfen Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Miao Shen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping Cheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junshan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Yang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rong Zhu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huawei Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Du Y, Guo D, Wu Q, Liu D, Bi H. Zinc chloride inhibits human lens epithelial cell migration and proliferation involved in TGF-β1 and TNF-α signaling pathways in HLE B-3 cells. Biol Trace Elem Res 2014; 159:425-33. [PMID: 24752973 DOI: 10.1007/s12011-014-9979-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/10/2014] [Indexed: 01/23/2023]
Abstract
Zinc is one of the most abundant essential elements in the human body, which is an essential, coenzyme-like component of many enzymes, and is indispensable to their functions. However, high levels of zinc ions can lead to cell damage. In the present study, we explored the effects of high concentrations of zinc chloride (ZnCl2) on lens epithelial cell proliferation and migration and further investigated the effects of different concentrations of ZnCl2 on caspase-9 and caspase-12, transforming growth factor-beta 1 (TGF-β1), and tumor necrosis factor-alpha (TNF-α). We found that ZnCl2 could inhibit human lens epithelial (HLE) B-3 cell migration and induce apoptosis/necrosis. In addition, ZnCl2 can efficiently decrease the expressions of caspase-9 and caspase-12, increase the expression of TNF-α at both gene and protein levels, and thus induces cell death. Taken together, our results indicate that ZnCl2 can inhibit HLE B-3 cell migration and proliferation by decreasing the expression of TGF-β1 and increasing the expression of TNF-α and finally lead to HLE B-3 cell death.
Collapse
Affiliation(s)
- Yuxiang Du
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | | | | | | | | |
Collapse
|
36
|
Luo YP, Jiang L, Kang K, Fei DS, Meng XL, Nan CC, Pan SH, Zhao MR, Zhao MY. Hemin inhibits NLRP3 inflammasome activation in sepsis-induced acute lung injury, involving heme oxygenase-1. Int Immunopharmacol 2014; 20:24-32. [DOI: 10.1016/j.intimp.2014.02.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/22/2014] [Accepted: 02/14/2014] [Indexed: 01/09/2023]
|
37
|
Role of heme oxygenase 1 in TNF/TNF receptor-mediated apoptosis after hepatic ischemia/reperfusion in rats. Shock 39: 380-388, 2013. Shock 2014; 40:75-6. [PMID: 23770766 DOI: 10.1097/shk.0b013e3182971d2b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Jiao SF, Sun K, Chen XJ, Zhao X, Cai N, Liu YJ, Xu LM, Kong XM, Wei LX. Inhibition of tumor necrosis factor alpha reduces the outgrowth of hepatic micrometastasis of colorectal tumors in a mouse model of liver ischemia-reperfusion injury. J Biomed Sci 2014; 21:1. [PMID: 24397824 PMCID: PMC3902418 DOI: 10.1186/1423-0127-21-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/04/2014] [Indexed: 12/13/2022] Open
Abstract
Background Patients with colorectal cancer (CRC) often develop liver metastases, in which case surgery is considered the only potentially curative treatment option. However, liver surgery is associated with a risk of ischemia-reperfusion (IR) injury, which is thought to promote the growth of colorectal liver metastases. The influence of IR-induced tumor necrosis factor alpha (TNF-α) elevation in the process still is unknown. To investigate the role of TNF-α in the growth of pre-existing micrometastases in the liver following IR, we used a mouse model of colorectal liver metastases. In this model, mice received IR treatment seven days after intrasplenic injections of colorectal CT26 cells. Prior to IR treatment, either TNF-α blocker Enbrel or low-dose TNF-α, which could inhibit IR-induced TNF-α elevation, was administered by intraperitoneal injection. Results Hepatic IR treatment significantly promoted CT26 tumor growth in the liver, but either Enbrel or low-dose TNF-α pretreatment reversed this trend. Further studies showed that the CT26 + IR group prominently increased the levels of ALT and AST, liver necrosis, inflammatory infiltration and the expressions of hepatic IL-6, MMP9 and E-selectin compared to those of CT26 group. Inhibition of TNF-α elevation remarkably attenuated the increases of these liver inflammatory damage indicators and tumor-promoting factors. Conclusion These findings suggested that inhibition of TNF-α elevation delayed the IR-enhanced outgrowth of colorectal liver metastases by reducing IR-induced inflammatory damage and the formation of tumor-promoting microenvironments. Both Enbrel and low-dose TNF-α represented the potential therapeutic approaches for the protection of colorectal liver metastatic patients against IR injury-induced growth of liver micrometastases foci.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xian-Ming Kong
- Medical Sciences Research Center, Renji hospital, School of Medicine, Shanghai Jiaotong University, 1630 Dongfang Road, Shanghai 200127, China.
| | | |
Collapse
|
39
|
Hematin and Neuroglobin. Crit Care Med 2014; 42:218-9. [DOI: 10.1097/ccm.0000000000000006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Shen M, Lu J, Dai W, Wang F, Xu L, Chen K, He L, Cheng P, Zhang Y, Wang C, Wu D, Yang J, Zhu R, Zhang H, Zhou Y, Guo C. Ethyl pyruvate ameliorates hepatic ischemia-reperfusion injury by inhibiting intrinsic pathway of apoptosis and autophagy. Mediators Inflamm 2013; 2013:461536. [PMID: 24453420 PMCID: PMC3886226 DOI: 10.1155/2013/461536] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury is a pivotal clinical problem occurring in many clinical conditions such as transplantation, trauma, and hepatic failure after hemorrhagic shock. Apoptosis and autophagy have been shown to contribute to cell death in hepatic I/R injury. Ethyl pyruvate, a stable and simple lipophilic ester, has been shown to have anti-inflammatory properties. In this study, the purpose is to explore both the effect of ethyl pyruvate on hepatic I/R injury and regulation of intrinsic pathway of apoptosis and autophagy. METHODS Three doses of ethyl pyruvate (20 mg/kg, 40 mg/kg, and 80 mg/kg) were administered 1 h before a model of segmental (70%) hepatic warm ischemia was established in Balb/c mice. All serum and liver tissues were obtained at three different time points (4 h, 8 h, and 16 h). RESULTS Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and pathological features were significantly ameliorated by ethyl pyruvate (80 mg/kg). The expression of Bcl-2, Bax, Beclin-1, and LC3, which play an important role in the regulation of intrinsic pathway of apoptosis and autophagy, was also obviously decreased by ethyl pyruvate (80 mg/kg). Furthermore, ethyl pyruvate inhibited the HMGB1/TLR4/ NF-κb axis and the release of cytokines (TNF-α and IL-6). CONCLUSION Our results showed that ethyl pyruvate might attenuate to hepatic I/R injury by inhibiting intrinsic pathway of apoptosis and autophagy, mediated partly through downregulation of HMGB1/TLR4/ NF-κb axis and the competitive interaction with Beclin-1 of HMGB1.
Collapse
Affiliation(s)
- Miao Shen
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Fan Wang
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Ling Xu
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Lei He
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Ping Cheng
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Yan Zhang
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Chengfen Wang
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Dong Wu
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Jing Yang
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Rong Zhu
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Huawei Zhang
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Yinqun Zhou
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Chuanyong Guo
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| |
Collapse
|
41
|
Kim SJ, Lee SM. NLRP3 inflammasome activation in D-galactosamine and lipopolysaccharide-induced acute liver failure: role of heme oxygenase-1. Free Radic Biol Med 2013; 65:997-1004. [PMID: 23994575 DOI: 10.1016/j.freeradbiomed.2013.08.178] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/22/2013] [Accepted: 08/22/2013] [Indexed: 12/14/2022]
Abstract
D-Galactosamine (GalN) and lipopolysaccharide (LPS) are commonly used to study mechanisms of hepatic malfunction that result in hepatic inflammation and subsequent fulminant hepatic failure. Inflammasomes are intracellular multiprotein complexes that in response to cellular danger signals trigger the biological maturation of proinflammatory cytokines. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that induces anti-inflammatory and antioxidant activity against oxidative cellular stress. This study examined activation of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome in GalN/LPS-induced hepatic injury and the role of HO-1 in the signaling pathways of inflammasome. Mice (C57BL/6) were pretreated twice with hemin (HO-1 inducer, 30 mg/kg) and zinc protoporphyrin (ZnPP; HO-1 inhibitor, 10mg/kg) at 12 and 2h before GalN (800 mg/kg)/LPS (40 μg/kg) administration. HO-1 induction with hemin reversed the lethality induced by GalN/LPS administration, and ZnPP pretreatment blocked this change. Lipid peroxidation markedly increased after GalN/LPS treatment, whereas glutathione content decreased in the GalN/LPS group. These changes were attenuated by hemin, but ZnPP reversed the effects of hemin. Serum levels of tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β increased after GalN/LPS treatment; these increases were attenuated by hemin. Hepatic mRNA levels of TNF-α, IL-1β, and NLRP3 increased after GalN/LPS treatment, and hemin attenuated increases in TNF-α and IL-1β. After GalN/LPS treatment, the hepatic expression of NLRP3, ASC, and caspase-1 (p10) was increased. In immunoprecipitation studies, hemin attenuated the interaction of NLRP3 with ASC and caspase-1. GalN/LPS induced expression of the thioredoxin-interacting protein (TXNIP) gene and the interaction between NLRP3 and TXNIP; again, hemin attenuated these effects. The effects of hemin were reversed by ZnPP. Our findings suggest that activation of the NLRP3 inflammasome leads to a GalN/LPS-induced inflammatory response through TXNIP-NLRP3 interaction. Furthermore, HO-1 overexpression may protect the liver against GalN/LPS-induced inflammation through suppression of the NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Seok-Joo Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
42
|
Edmunds MC, Czopek A, Wigmore SJ, Kluth DC. Paradoxical effects of heme arginate on survival of myocutaneous flaps. Am J Physiol Regul Integr Comp Physiol 2013; 306:R10-22. [PMID: 24089372 DOI: 10.1152/ajpregu.00240.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischemia reperfusion injury (IRI) contributes to partial flap and solid organ transplant failure. Heme-oxygenase 1 (HO-1) is an inducible, cytoprotective enzyme which protects against IRI in solid organ transplant models. Heme arginate (HA), a HO-1 inducer, is a promising, translatable, preconditioning agent. This study investigated the effects of preconditioning with HA on the clinical outcome of a myocutaneous IRI model. Forty male Lewis rats were randomized to intravenously receive 1) Control-NaCl, 2) HA, 3) HA and tin mesoporphyrin (SnMP), a HO-1 inhibitor; and 4) SnMP alone. Twenty-four hours later, an in situ transverse rectus abdominis myocutaneous flap was performed under isoflurane anesthesia. Viability of flaps was measured clinically and by laser-Doppler perfusion scanning. In vitro work on human epidermal keratinocytes (HEKa) assessed the effects of HA, SnMP, and the iron chelator desferrioxamine on 1) cytotoxicity, 2) intracellular reactive oxygen species (ROS) concentration, and 3) ROS-mediated DNA damage. In contrast to our hypothesis, HA preconditioning produced over 30% more flap necrosis at 48 h compared with controls (P = 0.02). HA-containing treatments produced significantly worse flap perfusion at all postoperative time points. In vitro work showed that HA is cytotoxic to keratinocytes. This cytotoxicity was independent of HO-1 and was mediated by the generation of ROS by free heme. In contrast to solid organ data, pharmacological preconditioning with HA significantly worsened clinical outcome, thus indicating that this is not a viable approach in free flap research.
Collapse
Affiliation(s)
- Marie-Claire Edmunds
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, Department of Surgery, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom; and
| | | | | | | |
Collapse
|
43
|
Reply. Shock 2013; 40:76-7. [DOI: 10.1097/shk.0b013e3182971d43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
What’s New in Shock? April 2013. Shock 2013. [DOI: 10.1097/shk.0b013e31828f0622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|