1
|
İnci A, Dökmeci S. Extracellular chaperones in lysosomal storage diseases. Mol Genet Metab 2025; 145:109086. [PMID: 40106871 DOI: 10.1016/j.ymgme.2025.109086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/23/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Lysosomal storage disorders (LSDs) are a diverse group of inherited metabolic disorders characterized by the accumulation of undegraded substrates within lysosomes due to defective lysosomal function. Recent research has highlighted the pivotal role of extracellular chaperones in the pathophysiology of LSDs, revealing their crucial involvement in modulating disease progression. These chaperones aid in stabilizing and refolding misfolded lysosomal enzymes, enhancing their proper trafficking and function, which in turn reduces substrate accumulation. Furthermore, extracellular chaperones have emerged as promising biomarkers, with their levels in bodily fluids offering potential for disease diagnosis and monitoring. This review explores the current understanding of extracellular chaperones in the context of LSDs, examining their mechanisms of action, biomarker and therapeutic potential, and future directions in clinical application of LSDs.
Collapse
Affiliation(s)
- Aslı İnci
- Gazi University School of Medicine, Department of Pediatric Metabolism, Ankara, Turkey; Hacettepe University School of Medicine, Department of Medical Biology, Ankara, Turkey.
| | - Serap Dökmeci
- Hacettepe University School of Medicine, Department of Medical Biology, Ankara, Turkey
| |
Collapse
|
2
|
Madhan S, Dhar R, Devi A. Clinical Impact of Exosome Chemistry in Cancer. ACS APPLIED BIO MATERIALS 2025; 8:1862-1876. [PMID: 39936581 DOI: 10.1021/acsabm.4c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
As we progress into the 21st century, cancer stands as one of the most dreaded diseases. With approximately one in every four individuals facing a lifetime risk of developing cancer, cancer remains one of the most serious health challenges worldwide. Its multifaceted nature makes it an arduous and tricky problem to diagnose and treat. Over the years, researchers have explored plenty of approaches and avenues to improve cancer management. One notable strategy includes the study of extracellular vesicles (EVs) as potential biomarkers and therapeutics. Among these EVs, exosomes have emerged as particularly promising candidates due to their unique characteristic properties and functions. They are small membrane-bound vesicles secreted by cells carrying a cargo of biomolecules such as proteins, nucleic acids, and lipids. These vesicles play crucial roles in intercellular communication, facilitating the transfer of biological information between cell-to-cell communication. Exosomes transport cargoes such as DNA, RNA, proteins, and lipids involved in cellular reprogramming and promoting cancer. In this review, we explore the molecular composition of exosomes, significance of exosomes chemistry in cancer development, and its theranostic application as well as exosomes research complications and solutions.
Collapse
Affiliation(s)
- Shrishti Madhan
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| |
Collapse
|
3
|
Kirby NV, Meade RD, McCormick JJ, King KE, Notley SR, Kenny GP. Brain-derived neurotrophic factor in older adults exposed to simulated indoor overheating. Eur J Appl Physiol 2025; 125:769-780. [PMID: 39417862 DOI: 10.1007/s00421-024-05623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) is a neuroprotective growth factor that increases in young adults during short, intense bouts of passive heat stress. However, this may not reflect the response in heat-vulnerable populations exposed to air temperatures more consistent with indoor overheating during hot weather and heatwaves, especially as the BDNF response to acute stressors may diminish with increasing age. We therefore evaluated the ambient and body temperature-dependent responses of BDNF in older adults during daylong passive heating. METHODS Sixteen older adults (6 females; aged 66-78 years) completed 8-h exposure to four randomized ambient conditions simulating those experienced indoors during hot weather and heatwaves in continental climates: 22 °C (air-conditioning; control), 26 °C (health-agency-recommended indoor temperature limit), 31 °C, and 36 °C (non-airconditioned home); all 45% relative humidity. To further investigate upstream mechanisms of BDNF regulation during thermal strain, we also explored associations between BDNF and circulating heat shock protein 70 (HSP70; taken as an indicator of the heat shock response). RESULTS Circulating BDNF was elevated by ~ 28% (1139 [95%CI: 166, 2112] pg/mL) at end-exposure in the 36 °C compared to the 22 °C control condition (P = 0.026; 26 °C-and 31 °C-22 °C differences: P ≥ 0.090), increasing 90 [22, 158] pg/mL per 1 °C rise in ambient temperature (linear trend: P = 0.011). BDNF was also positively correlated with mean body temperatures (P = 0.013), which increased 0.12 [0.10, 0.13]°C per 1 °C rise in ambient temperature (P < 0.001). By contrast, serum HSP70 did not change across conditions (P ≥ 0.156), nor was it associated with BDNF (P = 0.376). CONCLUSION Our findings demonstrate a progressive increase in circulating BDNF during indoor overheating in older adults.
Collapse
Affiliation(s)
- Nathalie V Kirby
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada.
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Wu H, Qin B, Yang G, Ji P, Gao Y, Zhang L, Wang B, Liu G. The Protective Effects of Melatonin on Hainan Black Goats Under Heat Stress: Understanding Its Actions and Mechanisms. Antioxidants (Basel) 2025; 14:44. [PMID: 39857379 PMCID: PMC11760882 DOI: 10.3390/antiox14010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
As the global climate changes, high temperatures will cause heat stress, which significantly affects the productive efficiency of livestock. Currently, there is a lack of efficient methods to use in targeting this issue. In this study, we report that melatonin supplementation may represent an alternative method to reduce the negative impact of heat stress on livestock, particularly in Hainan black goats. Our results show that melatonin treatment increased the average daily gain of Hainan black goats that were exposed to constantly high temperatures for two months compared to controls. Our mechanistic exploration revealed that melatonin treatment not only reduced the oxidative stress and inflammatory reaction caused by heat stress but also improved goats' metabolic capacity, promoting their growth and development. More importantly, for the first time, we observed that melatonin treatment modified the abundance of the intestinal microflora, altering the metabolism of the goats, which further improved their tolerance to constant heat stress.
Collapse
Affiliation(s)
- Hao Wu
- Sany Institute of China Agricultural University, Sanya 572025, China; (H.W.); (B.Q.); (G.Y.)
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Baochun Qin
- Sany Institute of China Agricultural University, Sanya 572025, China; (H.W.); (B.Q.); (G.Y.)
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Guang Yang
- Sany Institute of China Agricultural University, Sanya 572025, China; (H.W.); (B.Q.); (G.Y.)
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Yu Gao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Bingyuan Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Guoshi Liu
- Sany Institute of China Agricultural University, Sanya 572025, China; (H.W.); (B.Q.); (G.Y.)
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| |
Collapse
|
5
|
Su J, Wang H, Wang Z. The Multiple Roles of Heat Shock Proteins in the Development of Inflammatory Bowel Disease. Curr Mol Med 2025; 25:132-145. [PMID: 38465431 DOI: 10.2174/0115665240286793240306053111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Inflammatory bowel disease (IBD), a chronic inflammatory condition of the human intestine, comprises Crohn's disease (CD) and ulcerative colitis (UC). IBD causes severe gastrointestinal symptoms and increases the risk of developing colorectal carcinoma. Although the etiology of IBD remains ambiguous, complex interactions between genetic predisposition, microbiota, epithelial barrier, and immune factors have been implicated. The disruption of intestinal homeostasis is a cardinal characteristic of IBD. Patients with IBD exhibit intestinal microbiota dysbiosis, impaired epithelial tight junctions, and immune dysregulation; however, the relationship between them is not completely understood. As the largest body surface is exposed to the external environment, the gastrointestinal tract epithelium is continuously subjected to environmental and endogenous stressors that can disrupt cellular homeostasis and survival. Heat shock proteins (HSPs) are endogenous factors that play crucial roles in various physiological processes, such as maintaining intestinal homeostasis and influencing IBD progression. Specifically, HSPs share an intricate association with microbes, intestinal epithelium, and the immune system. In this review, we aim to elucidate the impact of HSPs on IBD development by examining their involvement in the interactions between the intestinal microbiota, epithelial barrier, and immune system. The recent clinical and animal models and cellular research delineating the relationship between HSPs and IBD are summarized. Additionally, new perspectives on IBD treatment approaches have been proposed.
Collapse
Affiliation(s)
- Jinfeng Su
- Department of Neonatology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518100, China
| | - Haiyan Wang
- Department of Obstetrics and Gynecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518100, China
| | - Zun Wang
- Department of Breast and Thyroid Surgery, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518100, China
| |
Collapse
|
6
|
Pandey AK, Trivedi V. Heat shock protein HSPA8 impedes hemin-induced cellular-toxicity in liver. Toxicol In Vitro 2025; 102:105959. [PMID: 39486598 DOI: 10.1016/j.tiv.2024.105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/27/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Accumulation of hemin in cells, tissues, and organs is one of the major pathological conditions linked to hemolytic diseases like malaria. Pro-oxidant hemin confers high toxicity following its accumulation. We tested the cellular toxicity of hemin on HepG2 cells by exploring modulation in various cellular characteristics. Hemin reduces the viability of HepG2 cells and brings about visible morphological changes. Hemin causes perforations on the surface of HepG2 cells observed through SEM. Hemin leads to the extracellular release of liver enzymes and reduces the wound-healing potential of HepG2 cells. Hemin leads to the fragmentation of HepG2 DNA, arrests the cell cycle progression in the S-phase and induces apoptosis in these cells. Western blot analysis revealed that hemin triggers both the extrinsic and intrinsic pathways of apoptosis in HepG2 cells. We have already shown that the cytoprotective protein HSPA8 can polymerize hemin and minimize its toxicity. Similar experiments with hemin in the presence and absence of HSPA8 showed that HSPA8 reverses all the tested toxic effects of hemin on HepG2 cells. The protection from hemin toxicity in HepG2 cells appeared to be due to the extracellular polymerization of hemin by HSPA8.
Collapse
Affiliation(s)
- Alok Kumar Pandey
- Malaria Research Group, Department of Bioscience and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Bioscience and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
7
|
Ali Moussa HY, Shin KC, de la Fuente A, Bensmail I, Abdesselem HB, Ponraj J, Mansour S, Al-Shaban FA, Stanton LW, Abdulla SA, Park Y. Proteomics analysis of extracellular vesicles for biomarkers of autism spectrum disorder. Front Mol Biosci 2024; 11:1467398. [PMID: 39606031 PMCID: PMC11599737 DOI: 10.3389/fmolb.2024.1467398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by symptoms that include social interaction deficits, language difficulties and restricted, repetitive behavior. Early intervention through medication and behavioral therapy can eliminate some ASD-related symptoms and significantly improve the life-quality of the affected individuals. Currently, the diagnosis of ASD is highly limited. Methods To investigate the feasibility of early diagnosis of ASD, we tested extracellular vesicles (EVs) proteins obtained from ASD cases. First, plasma EVs were isolated from healthy controls (HCs) and ASD individuals and were analyzed using proximity extension assay (PEA) technology to quantify 1,196 protein expression level. Second, machine learning analysis and bioinformatic approaches were applied to explore how a combination of EV proteins could serve as biomarkers for ASD diagnosis. Results No significant differences in the EV morphology and EV size distribution between HCs and ASD were observed, but the EV number was slightly lower in ASD plasma. We identified the top five downregulated proteins in plasma EVs isolated from ASD individuals: WW domain-containing protein 2 (WWP2), Heat shock protein 27 (HSP27), C-type lectin domain family 1 member B (CLEC1B), Cluster of differentiation 40 (CD40), and folate receptor alpha (FRalpha). Machine learning analysis and correlation analysis support the idea that these five EV proteins can be potential biomarkers for ASD. Conclusion We identified the top five downregulated proteins in ASD EVs and examined that a combination of EV proteins could serve as biomarkers for ASD diagnosis.
Collapse
Affiliation(s)
- Houda Yasmine Ali Moussa
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Alberto de la Fuente
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ilham Bensmail
- Proteomics Core Facility, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Houari B. Abdesselem
- Proteomics Core Facility, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | | | - Said Mansour
- HBKU Core Labs, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Fouad A. Al-Shaban
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Lawrence W. Stanton
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
8
|
Tan XR, Low ICC, Soong TW, Lee JKW. Pre-exercise hot water immersion increased circulatory heat shock proteins but did not alter muscle damage markers or endurance capacity after eccentric exercise. Temperature (Austin) 2024; 11:157-169. [PMID: 38846523 PMCID: PMC11152112 DOI: 10.1080/23328940.2024.2313954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 06/09/2024] Open
Abstract
Pre-exercise passive heating attenuates muscle damage caused by eccentric exercise in rats where the induction of heat shock proteins (HSPs) confers a myoprotective effect. We investigated whether pre-exercise hot water immersion (HWI) confers similar benefits in humans. Eleven recreational male athletes were immersed in 41°C water up to 60 min or until rectal temperatures reached 39.5°C. After a 6 h rest, the participants performed an eccentric downhill run for 1 h at -4% gradient to induce muscle damage. An endurance capacity test at 75% VO2max was conducted 18 h later. The control trial was similar except that participants were immersed at 34°C. Blood samples were collected to assess HSPs levels, creatine kinase, and lactate dehydrogenase activities. Plasma eHSP70 was higher post-immersion in HWI trials (1.3 ± 0.4 vs 1.1 ± 0.4; p = 0.005). Plasma eHSP27 was higher before (p = 0.049) and after (p = 0.015) endurance test in HWI. Leukocytic p-HSP27 was increased 18 h after HWI (0.97 ± 0.14 vs 0.67 ± 0.11; p = 0.04). Creatine kinase and lactate dehydrogenase activities were increased by 3-fold and 1.5-fold, respectively, after endurance test in HWI but did not differ across trials (p > 0.05). Mean heart rates were higher during eccentric run and endurance test in HWI as compared to control (p < 0.05). Endurance capacity was similar between trials (57.3 ± 11.5 min vs 55.0 ± 13.5 min; p = 0.564). Pre-exercise heating increased the expression of plasma eHSPs and leukocytic p-HSP27 but did not reduce muscle damage nor enhance endurance capacity.
Collapse
Affiliation(s)
- Xiang Ren Tan
- Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ivan C. C. Low
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jason K. W. Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| |
Collapse
|
9
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Heat shock response during the resolution of inflammation and its progressive suppression in chronic-degenerative inflammatory diseases. Cell Stress Chaperones 2024; 29:116-142. [PMID: 38244765 PMCID: PMC10939074 DOI: 10.1016/j.cstres.2024.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
The heat shock response (HSR) is a crucial biochemical pathway that orchestrates the resolution of inflammation, primarily under proteotoxic stress conditions. This process hinges on the upregulation of heat shock proteins (HSPs) and other chaperones, notably the 70 kDa family of heat shock proteins, under the command of the heat shock transcription factor-1. However, in the context of chronic degenerative disorders characterized by persistent low-grade inflammation (such as insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular diseases) a gradual suppression of the HSR does occur. This work delves into the mechanisms behind this phenomenon. It explores how the Western diet and sedentary lifestyle, culminating in the endoplasmic reticulum stress within adipose tissue cells, trigger a cascade of events. This cascade includes the unfolded protein response and activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome, leading to the emergence of the senescence-associated secretory phenotype and the propagation of inflammation throughout the body. Notably, the activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome not only fuels inflammation but also sabotages the HSR by degrading human antigen R, a crucial mRNA-binding protein responsible for maintaining heat shock transcription factor-1 mRNA expression and stability on heat shock gene promoters. This paper underscores the imperative need to comprehend how chronic inflammation stifles the HSR and the clinical significance of evaluating the HSR using cost-effective and accessible tools. Such understanding is pivotal in the development of innovative strategies aimed at the prevention and treatment of these chronic inflammatory ailments, which continue to take a heavy toll on global health and well-being.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
10
|
de Lemos Muller CH, Schroeder HT, Farinha JB, Lopez P, Reischak-Oliveira Á, Pinto RS, de Bittencourt Júnior PIH, Krause M. Effects of resistance training on heat shock response (HSR), HSP70 expression, oxidative stress, inflammation, and metabolism in middle-aged people. J Physiol Biochem 2024; 80:161-173. [PMID: 37930617 DOI: 10.1007/s13105-023-00994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Resistance training (RT) can increase the heat shock response (HSR) in the elderly. As middle-aged subjects already suffer physiological declines related to aging, it is hypothesized that RT may increase the HSR in these people. To assess the effects of resistance training on heat shock response, intra and extracellular HSP70, oxidative stress, inflammation, body composition, and metabolism in middle-aged subjects. Sixteen volunteers (40 - 59 years) were allocated to two groups: the trained group (n = 7), which performed 12 weeks of RT; and the physically inactive-control group (n = 9), which did not perform any type of exercise. The RT program consisted of 9 whole-body exercises (using standard gym equipment) and functional exercises, carried out 3 times/week. Before and after the intervention, body composition, muscle mass, strength, functional capacity, and blood sample measurements (lipid profile, glucose, insulin, oxidative damage, TNF-α, the HSR, HSP70 expression in leukocytes, and HSP72 in plasma) were performed. The HSR analysis demonstrated that this response is maintained at normal levels in middle-aged people and that RT did not cause any improvement. Also, RT increases muscle mass, strength, and functional capacity. Despite no additional changes of RT on the antioxidant defenses (catalase, glutathione peroxidase, and reductase) or inflammation, lipid peroxidation was diminished by RT (group x time interaction, p = 0.009), indicating that other antioxidant defenses may be improved after RT. HSR is preserved in middle-aged subjects without metabolic complications. In addition, RT reduces lipid peroxidation and can retard muscle mass and strength loss related to the aging process.
Collapse
Affiliation(s)
- Carlos Henrique de Lemos Muller
- Laboratório de Inflamação, Metabolismo e Exercício (LAPIMEX) e Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Helena Trevisan Schroeder
- Laboratório de Inflamação, Metabolismo e Exercício (LAPIMEX) e Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Juliano Boufleur Farinha
- Programa de Pós-Graduação Em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança (ESEFID), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90690-200, Brazil
| | - Pedro Lopez
- Programa de Pós-Graduação Em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança (ESEFID), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90690-200, Brazil
- Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Álvaro Reischak-Oliveira
- Programa de Pós-Graduação Em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança (ESEFID), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90690-200, Brazil
| | - Ronei Silveira Pinto
- Programa de Pós-Graduação Em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança (ESEFID), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90690-200, Brazil
| | - Paulo Ivo Homem de Bittencourt Júnior
- Laboratório de Inflamação, Metabolismo e Exercício (LAPIMEX) e Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Mauricio Krause
- Laboratório de Inflamação, Metabolismo e Exercício (LAPIMEX) e Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
11
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Resolution of inflammation in chronic disease via restoration of the heat shock response (HSR). Cell Stress Chaperones 2024; 29:66-87. [PMID: 38309688 PMCID: PMC10939035 DOI: 10.1016/j.cstres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
Effective resolution of inflammation via the heat shock response (HSR) is pivotal in averting the transition to chronic inflammatory states. This transition characterizes a spectrum of debilitating conditions, including insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments. This manuscript explores a range of physiological, pharmacological, and nutraceutical interventions aimed at reinstating the HSR in the context of chronic low-grade inflammation, as well as protocols to assess the HSR. Monitoring the progression or suppression of the HSR in patients and laboratory animals offers predictive insights into the organism's capacity to combat chronic inflammation, as well as the impact of exercise and hyperthermic treatments (e.g., sauna or hot tub baths) on the HSR. Interestingly, a reciprocal correlation exists between the expression of HSR components in peripheral blood leukocytes (PBL) and the extent of local tissue proinflammatory activity in individuals afflicted by chronic inflammatory disorders. Therefore, the Heck index, contrasting extracellular 70 kDa family of heat shock proteins (HSP70) (proinflammatory) and intracellular HSP70 (anti-inflammatory) in PBL, serves as a valuable metric for HSR assessment. Our laboratory has also developed straightforward protocols for evaluating HSR by subjecting whole blood samples from both rodents and human volunteers to ex vivo heat challenges. Collectively, this discussion underscores the critical role of HSR disruption in the pathogenesis of chronic inflammatory states and emphasizes the significance of simple, cost-effective tools for clinical HSR assessment. This understanding is instrumental in the development of innovative strategies for preventing and managing chronic inflammatory diseases, which continue to exert a substantial global burden on morbidity and mortality.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
12
|
Abstract
The landscape of exosome research has undergone a significant paradigm shift, with a departure from early conceptions of exosomes as vehicles for cellular waste disposal towards their recognition as integral components of cellular communication with therapeutic potential. This chapter presents an exhaustive elucidation of exosome biology, detailing the processes of exosome biogenesis, release, and uptake, and their pivotal roles in signal transduction, tissue repair, regeneration, and intercellular communication. Additionally, the chapter highlights recent innovations and anticipates future directions in exosome research, emphasizing their applicability in clinical settings. Exosomes have the unique ability to navigate through tissue spaces to enter the circulatory system, positioning them as key players in tissue repair. Their contributory role in various processes of tissue repair, although in the nascent stages of investigation, stands out as a promising area of research. These vesicles function as a complex signaling network for intracellular and organ-level communication, critical in both pathological and physiological contexts. The chapter further explores the tissue-specific functionality of exosomes and underscores the advancements in methodologies for their isolation and purification, which have been instrumental in expanding the scope of exosome research. The differential cargo profiles of exosomes, dependent on their cellular origin, position them as prospective diagnostic biomarkers for tissue damage and regenerative processes. Looking ahead, the trajectory of exosome research is anticipated to bring transformative changes to biomedical fields. This includes advancing diagnostic and prognostic techniques that utilize exosomes as non-invasive biomarkers for a plethora of diseases, such as cancer, neurodegenerative, and cardiovascular conditions. Additionally, engineering exosomes through alterations of their native content or surface properties presents a novel frontier, including the synthesis of artificial or hybrid variants with enhanced functional properties. Concurrently, the ethical and regulatory frameworks surrounding exosome research, particularly in clinical translation, will require thorough deliberation. In conclusion, the diverse aspects of exosome research are coalescing to redefine the frontiers of diagnostic and therapeutic methodologies, cementing its importance as a discipline of considerable consequence in the biomedical sciences.
Collapse
Affiliation(s)
- Anita Yadav
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aparajita Nandy
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anu Sharma
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
13
|
Parikh K, Shepley BR, Tymko MM, Hijmans JG, Hoiland RL, Desouza CA, Sekhon MS, Ainslie PN, Bain AR. Cerebral uptake of microvesicles occurs in normocapnic but not hypocapnic passive hyperthermia in young healthy male adults. J Physiol 2023; 601:5601-5616. [PMID: 37975212 DOI: 10.1113/jp285265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Passive hyperthermia causes cerebral hypoperfusion primarily from heat-induced respiratory alkalosis. However, despite the cerebral hypoperfusion, it is possible that the mild alkalosis might help to attenuate cerebral inflammation. In this study, the cerebral exchange of extracellular vesicles (microvesicles), which are known to elicit pro-inflammatory responses when released in conditions of stress, were examined in hyperthermia with and without respiratory alkalosis. Ten healthy male adults were heated passively, using a warm water-perfused suit, up to core temperature + 2°C. Blood samples were taken from the radial artery and internal jugular bulb. Microvesicle concentrations were determined in platelet-poor plasma via cells expressing CD62E (activated endothelial cells), CD31+ /CD42b- (apoptotic endothelial cells), CD14 (monocytes) and CD45 (pan-leucocytes). Cerebral blood flow was measured via duplex ultrasound of the internal carotid and vertebral arteries to determine cerebral exchange kinetics. From baseline to poikilocapnic (alkalotic) hyperthermia, there was no change in microvesicle concentration from any cell origin measured (P-values all >0.05). However, when blood CO2 tension was normalized to baseline levels in hyperthermia, there was a marked increase in cerebral uptake of microvesicles expressing CD62E (P = 0.028), CD31+ /CD42b- (P = 0.003) and CD14 (P = 0.031) compared with baseline, corresponding to large increases in arterial but not jugular venous concentrations. In a subset of seven participants who underwent hypercapnia and hypocapnia in the absence of heating, there was no change in microvesicle concentrations or cerebral exchange, suggesting that hyperthermia potentiated the CO2 /pH-mediated cerebral uptake of microvesicles. These data provide insight into a potential beneficial role of respiratory alkalosis in heat stress. KEY POINTS: The hyperthermia-induced hyperventilatory response is observed in most humans, despite causing potentially harmful reductions in cerebral blood flow. We tested the hypothesis that the respiratory-induced alkalosis is associated with lower circulating microvesicle concentrations, specifically in the brain, despite the reductions in blood flow. At core temperature + 2°C with respiratory alkalosis, microvesicles derived from endothelial cells, monocytes and leucocytes were at concentrations similar to baseline in the arterial and cerebral venous circulation, with no changes in cross-brain microvesicle kinetics. However, when core temperature was increased by 2°C with CO2 /pH normalized to resting levels, there was a marked cerebral uptake of microvesicles derived from endothelial cells and monocytes. The CO2 /pH-mediated alteration in cerebral microvesicle uptake occurred only in hyperthermia. These new findings suggest that the heat-induced hyperventilatory response might serve a beneficial role by preventing potentially inflammatory microvesicle uptake in the brain.
Collapse
Affiliation(s)
- Khushali Parikh
- Faculty of Human Kinetics, Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| | - Brooke R Shepley
- Faculty of Human Kinetics, Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Jamie G Hijmans
- Department of Integrative Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Collaborative Entity for Researching Brain Ischemia, University of British Columbia, Vancouver, BC, Canada
| | | | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Collaborative Entity for Researching Brain Ischemia, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Anthony R Bain
- Faculty of Human Kinetics, Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
14
|
Abdolalian M, Zarif MN, Javan M. The role of extracellular vesicles on the occurrence of clinical complications in β-thalassemia. Exp Hematol 2023; 127:28-39. [PMID: 37652128 DOI: 10.1016/j.exphem.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Thalassemia is the most common monogenic disorder of red blood cells (RBCs) caused by defects in the synthesis of globin chains. Thalassemia phenotypes have a wide spectrum of clinical manifestations and vary from severe anemia requiring regular blood transfusions to clinically asymptomatic states. Ineffective erythropoiesis and toxicity caused by iron overload are major factors responsible for various complications in thalassemia patients, especially patients with β-thalassemia major (β-TM). Common complications in patients with thalassemia include iron overload, thrombosis, cardiac morbidity, vascular dysfunction, inflammation, and organ dysfunction. Extracellular vesicles (EVs) are small membrane vesicles released from various cells' plasma membranes due to activation and apoptosis. Based on studies, EVs play a role in various processes, including clot formation, vascular damage, and proinflammatory processes. In recent years, they have also been studied as biomarkers in the diagnosis and prognosis of diseases. Considering the high concentration of EVs in thalassemia and their role in cellular processes, this study reviews the role of EVs in the common complications of patients with β-thalassemia for the first time.
Collapse
Affiliation(s)
- Mehrnaz Abdolalian
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran; Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Mahin Nikogouftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Mohammadreza Javan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran; Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
15
|
Palacios-Luna JE, López-Marrufo MV, Bautista-Bautista G, Velarde-Guerra CS, Villeda-Gabriel G, Flores-Herrera O, Osorio-Caballero M, Aguilar-Carrasco JC, Palafox-Vargas ML, García-López G, Díaz-Ruíz O, Arechavaleta-Velasco F, Flores-Herrera H. Progesterone modulates extracellular heat-shock proteins and interlukin-1β in human choriodecidual after Escherichia coli infection. Placenta 2023; 142:85-94. [PMID: 37659254 DOI: 10.1016/j.placenta.2023.08.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
INTRODUCTION Chorioamnionitis is an adverse condition in human pregnancy caused by many bacterial pathogens including Escherichia coli (E. coli); which has been associated with higher risk of preterm birth. We recently reported that human maternal decidua (MDec) tissue responds to E. coli infection by secreting extracellular heat-shock proteins (eHsp)-60, -70 and interlukin-1β (IL-1β). Previous studies have shown that progesterone (P4) regulates the immune response, but it is unknown whether P4 inhibits the secretion of eHsp. The aim of this investigation was to determine the role of P4 on the secretion of eHsp-27, -60, -70 and IL-1β in MDec after 3, 6, and 24 h of E. coli infection. METHODS Nine human feto-maternal interface (HFMi) tissues were included and mounted in the Transwell culture system. Only the maternal decidua (MDec) was stimulated for 3, 6 and 24 h with E. coli alone or in combination with progesterone and RU486. After each treatment, the HFMi tissue was recovered to determine histological changes and the culture medium recovered to evaluate the levels of eHsp-27, -60, -70 and IL-1β by ELISA and mRNA expression by RT-PCR. RESULTS No structural changes were observed in the HFMi tissue treated with P4 and RU486. However, stimulation with E. coli produces diffuse inflammation and ischemic necrosis. E. coli induced infection decreases, in time- and dose-dependent manner, eHsp-27 and increases eHsp-60, eHsp-70 and IL-1β levels. In contrast, incubation of HFMi tissue with E. coli + P4 reversed eHsp and IL-1β secretion levels relative to E. coli stimulation group but not relative to the control group. The same profile was observed on the expression of eHsp-27 and eHsp-60. DISCUSSION we found that progesterone modulates the anti-inflammatory (eHsp-27) and pro-inflammatory (eHsp-60 and eHsp-70) levels of eHsp induced by E. coli infection in human choriodecidual tissue. eHsp-60 and eHsp-70 levels were not completely reversed; maintaining the secretion of IL-1β, which has been associated with adverse events during pregnancy.
Collapse
Affiliation(s)
- Janelly Estefania Palacios-Luna
- Departamento de Inmunobioquímica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Mariana Victoria López-Marrufo
- Departamento de Ginecología y Obstetricia. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Gerardo Bautista-Bautista
- Departamento de Inmunobioquímica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Cinthia Selene Velarde-Guerra
- Departamento de Inmunobioquímica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Graciela Villeda-Gabriel
- Departamento de Inmunología e Infectología, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mauricio Osorio-Caballero
- Departamento de Salud Sexual y Reproductiva. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Jose Carlos Aguilar-Carrasco
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México. Mexico
| | - Martha Leticia Palafox-Vargas
- Departamento de Anatomía Patológica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México. Mexico
| | - Oscar Díaz-Ruíz
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fabián Arechavaleta-Velasco
- Unidad de Investigación en Medicina Reproductiva. Hospital de Gineco-Obstetricia No. 4 "Luis Castelazo Ayala" Instituto Mexicano Del Seguro Social, Ciudad de México. Mexico.
| | - Hector Flores-Herrera
- Departamento de Inmunobioquímica. Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" (INPerIER), Ciudad de México, Mexico.
| |
Collapse
|
16
|
Juiputta J, Chankitisakul V, Boonkum W. Appropriate Genetic Approaches for Heat Tolerance and Maintaining Good Productivity in Tropical Poultry Production: A Review. Vet Sci 2023; 10:591. [PMID: 37888543 PMCID: PMC10611393 DOI: 10.3390/vetsci10100591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Heat stress is a major environmental threat to poultry production systems, especially in tropical areas. The effects of heat stress have been discovered in several areas, including reduced growth rate, reduced egg production, low feed efficiency, impaired immunological responses, changes in intestinal microflora, metabolic changes, and deterioration of meat quality. Although several methods have been used to address the heat stress problem, it persists. The answer to this problem can be remedied sustainably if genetic improvement approaches are available. Therefore, the purpose of this review article was to present the application of different approaches to genetic improvement in poultry in the hope that users will find suitable solutions for their poultry population and be able to plan future poultry breeding programs.
Collapse
Affiliation(s)
- Jiraporn Juiputta
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (J.J.); (V.C.)
| | - Vibuntita Chankitisakul
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (J.J.); (V.C.)
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; (J.J.); (V.C.)
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
17
|
Erb C, Reinehr S, Theiss C, Dick HB, Joachim SC. HSP27 induced glaucomatous damage in mice of young and advanced age. Front Cell Neurosci 2023; 17:1257297. [PMID: 37744880 PMCID: PMC10513106 DOI: 10.3389/fncel.2023.1257297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Age-related diseases such as glaucoma, a leading cause of blindness, are having an upward trend due to an aging society. In glaucoma, some patients display altered antibody profiles and increased antibody titers, for example against heat shock protein 27 (HSP27). An intravitreal injection of HSP27 leads to glaucoma-like damage in rats. We now aimed to investigate if aged mice are more prone to this damage than younger ones. Methods We intravitreally injected HSP27 into young (1-2 months) and aged (7-8 months) mice to compare glaucomatous damage. Respective age-matched controls received PBS. Not injected eyes served as naive controls. Results Optical coherence tomography 4 weeks after injection showed no changes in retinal thickness in all groups at both ages. Cell counts and RT-qPCR revealed a significant reduction in RGC numbers in HSP27 mice at both ages. Comparing aged and young HSP27 mice, no differences in Rbpms and Pou4f1 (RGCs) expression was detected, while the Tubb3 expression (neuronal cells) was significantly upregulated in aged HSP27 animals. Neither microglia/macrophages nor (resident) microglia counts revealed significant differences in HSP27 mice at both ages. Nevertheless, increased relative Iba1 and Tmem119 expression was detected in young and aged HSP27 mice. Aged HSP27 mice displayed a significantly lower Iba1 expression than young ones, whereas Cd68 levels were upregulated. A larger GFAP+ area and an upregulation of GFAP expression in HSP27 animals of both ages indicated a macrogliosis. Also, elevated Il1b and Nos2 expression levels were observed in young and aged HSP27 mice. However, only Il1b levels were upregulated when comparing 7-8 months to 1-2 months old animals. A larger HSP25+ area was seen in aged HSP27 animals, while Hspb2 expression levels were downregulated in both HSP27 groups. The aged HSP27 group displayed an upregulated Hspb2 expression compared to young mice. Furthermore, a higher optic nerve degeneration score was noted in young and aged HSP27 groups. Discussion These findings indicate that an intravitreal injection of HSP27 led to RGC loss accompanied by inflammation. Age-dependent effects (7-8 months vs. 1-2 months) were not very prominent. The results suggest a potential role of extracellular HSP27 in the development of glaucoma.
Collapse
Affiliation(s)
- Clivia Erb
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Bochum, Germany
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
18
|
Mazurakova A, Solarova Z, Koklesova L, Caprnda M, Prosecky R, Khakymov A, Baranenko D, Kubatka P, Mirossay L, Kruzliak P, Solar P. Heat shock proteins in cancer - Known but always being rediscovered: Their perspectives in cancer immunotherapy. Adv Med Sci 2023; 68:464-473. [PMID: 37926002 DOI: 10.1016/j.advms.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Heat shock proteins (HSPs) represent cellular chaperones that are classified into several families, including HSP27, HSP40, HSP60, HSP70, and HSP90. The role of HSPs in the cell includes the facilitation of protein folding and maintaining protein structure. Both processes play crucial roles during stress conditions in the cell such as heat shock, degradation, and hypoxia. Moreover, HSPs are important modulators of cellular proliferation and differentiation, and are strongly associated with the molecular orchestration of carcinogenesis. The expression and/or activity of HSPs in cancer cells is generally abnormally high and is associated with increased metastatic potential and activity of cancer stem cells, more pronounced angiogenesis, downregulated apoptosis, and the resistance to anticancer therapy in many patients. Based on the mentioned reasons, HSPs have strong potential as valid diagnostic, prognostic, and therapeutic biomarkers in clinical oncology. In addition, numerous papers describe the role of HSPs as chaperones in the regulation of immune responses inside and outside the cell. Importantly, highly expressed/activated HSPs may be inhibited via immunotherapeutic targets in various types of cancers. The aim of this work is to provide a comprehensive overview of the relationship between HSPs and the tumor cell with the intention of highlighting the potential use of HSPs in personalized cancer management.
Collapse
Affiliation(s)
- Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Solarova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Robert Prosecky
- 2nd Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Artur Khakymov
- International Research Centre "Biotechnologies of the Third Millennium", Faculty of Biotechnologies (BioTech), ITMO University, Saint-Petersburg, Russian Federation
| | - Denis Baranenko
- International Research Centre "Biotechnologies of the Third Millennium", Faculty of Biotechnologies (BioTech), ITMO University, Saint-Petersburg, Russian Federation
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.
| | - Peter Solar
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia.
| |
Collapse
|
19
|
Xanthopoulos A, Samt AK, Guder C, Taylor N, Roberts E, Herf H, Messner V, Trill A, Holzmann KLK, Kiechle M, Seifert-Klauss V, Zschaeck S, Schatka I, Tauber R, Schmidt R, Enste K, Pockley AG, Lobinger D, Multhoff G. Hsp70-A Universal Biomarker for Predicting Therapeutic Failure in Human Female Cancers and a Target for CTC Isolation in Advanced Cancers. Biomedicines 2023; 11:2276. [PMID: 37626772 PMCID: PMC10452093 DOI: 10.3390/biomedicines11082276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Heat shock protein 70 (Hsp70) is frequently overexpressed in many different tumor types. However, Hsp70 has also been shown to be selectively presented on the plasma membrane of tumor cells, but not normal cells, and this membrane form of Hsp70 (mHsp70) could be considered a universal tumor biomarker. Since viable, mHsp70-positive tumor cells actively release Hsp70 in lipid micro-vesicles, we investigated the utility of Hsp70 in circulation as a universal tumor biomarker and its potential as an early predictive marker of therapeutic failure. We have also evaluated mHsp70 as a target for the isolation and enumeration of circulating tumor cells (CTCs) in patients with different tumor entities. Circulating vesicular Hsp70 levels were measured in the peripheral blood of tumor patients with the compHsp70 ELISA. CTCs were isolated using cmHsp70.1 and EpCAM monoclonal antibody (mAb)-based bead approaches and characterized by immunohistochemistry using cytokeratin and CD45-specific antibodies. In two out of 35 patients exhibiting therapeutic failure two years after initial diagnosis of non-metastatic breast cancer, progressively increasing levels of circulating Hsp70 had already been observed during therapy, whereas levels in patients without subsequent recurrence remained unaltered. With regards to CTC isolation from patients with different tumors, an Hsp70 mAb-based selection system appears superior to an EpCAM mAb-based approach. Extracellular and mHsp70 can therefore serve as a predictive biomarker for therapeutic failure in early-stage tumors and as a target for the isolation of CTCs in various tumor diseases.
Collapse
Affiliation(s)
- Alexia Xanthopoulos
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
| | - Ann-Kathrin Samt
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
| | - Christiane Guder
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
| | - Nicholas Taylor
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
| | - Erika Roberts
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
| | - Hannah Herf
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
| | - Verena Messner
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
| | - Anskar Trill
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
| | - Katharina Larissa Kreszentia Holzmann
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
| | - Marion Kiechle
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.K.); (V.S.-K.)
| | - Vanadin Seifert-Klauss
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.K.); (V.S.-K.)
| | - Sebastian Zschaeck
- Department of Radiation Oncology and Radiotherapy, Charité Berlin, 10117 Berlin, Germany;
| | - Imke Schatka
- Department of Nuclear Medicine, Charité Berlin, 10117 Berlin, Germany;
| | - Robert Tauber
- Department of Urology, Klinkum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany;
| | - Robert Schmidt
- Krankenhaus für Naturheilweisen, 81545 Munich, Germany; (R.S.); (K.E.)
| | - Katrin Enste
- Krankenhaus für Naturheilweisen, 81545 Munich, Germany; (R.S.); (K.E.)
| | - Alan Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Dominik Lobinger
- Department of Thoracic Surgery, München Klinik Bogenhausen, Lehrkrankenhaus der TU München, 81925 Munich, Germany;
| | - Gabriele Multhoff
- Center for Translational Cancer Research TU München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (A.X.); (A.-K.S.); (C.G.); (N.T.); (E.R.); (H.H.); (V.M.); (A.T.)
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| |
Collapse
|
20
|
Chen XF, Chen XQ, Luo HL, Xia LN, Huang SH, Chen Q. PRM-based quantitative proteomics analysis of altered HSP abundance in villi and decidua of patients with early missed abortion. Proteome Sci 2023; 21:12. [PMID: 37587463 PMCID: PMC10429090 DOI: 10.1186/s12953-023-00213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
OBJECTIVE In this study, we aimed to identify differentially expressed heat shock protein (HSP) profiles in the villi and decidua from patients with early missed abortion (EMA). METHODS By using high-throughput and high-precision parallel reaction monitoring (PRM)-based targeted proteomics techniques, this study examined the abundance of HSPs in the villi and decidua of 10 patients with EMA and 10 controls. Moreover, the abundance of 3 HSPs in the villi of another 22 patients with EMA and 22 controls was verified with Western blotting and immunohistochemistry (IHC). RESULTS There were potential differences in the abundance of 16 HSPs and 42 polypeptides in human villi and decidua compared with those of the control group. Among them, HSP90AB1, HSPD1 and HSPA13 were downregulated in abundance in villi of patients with EMA, with a statistically significant difference, which was consistent with the verification results of Western blots and IHC. CONCLUSION Using a PRM-based targeted proteomics technique, this study is the first to screen and quantitatively analyze the expression profile of HSPs in the villi and decidua of patients with EMA. The significant downregulation of HSP90AB1, HSPD1 and HSPA13 was found to have a potentially intimate association with the occurrence of EMA. The findings in our study may provide novel potential research targets related to HSPs for the pathogenesis, prevention and treatment of EMA.
Collapse
Affiliation(s)
- Xiao-Fang Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China
- Department of Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, 330000, Jiangxi, China
| | - Xiao-Qing Chen
- Department of Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, 330000, Jiangxi, China
| | - Hai-Lian Luo
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Nanchang, 330000, Jiangxi, China
| | - Li-Na Xia
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Nanchang, 330000, Jiangxi, China
| | - Shu-Hui Huang
- Key Laboratory of Birth Defect for Prevention and Control of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, 330000, Jiangxi, China.
| | - Qi Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
21
|
Horner E, Lord JM, Hazeldine J. The immune suppressive properties of damage associated molecular patterns in the setting of sterile traumatic injury. Front Immunol 2023; 14:1239683. [PMID: 37662933 PMCID: PMC10469493 DOI: 10.3389/fimmu.2023.1239683] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Associated with the development of hospital-acquired infections, major traumatic injury results in an immediate and persistent state of systemic immunosuppression, yet the underlying mechanisms are poorly understood. Detected in the circulation in the minutes, days and weeks following injury, damage associated molecular patterns (DAMPs) are a heterogeneous collection of proteins, lipids and DNA renowned for initiating the systemic inflammatory response syndrome. Suggesting additional immunomodulatory roles in the post-trauma immune response, data are emerging implicating DAMPs as potential mediators of post-trauma immune suppression. Discussing the results of in vitro, in vivo and ex vivo studies, the purpose of this review is to summarise the emerging immune tolerising properties of cytosolic, nuclear and mitochondrial-derived DAMPs. Direct inhibition of neutrophil antimicrobial activities, the induction of endotoxin tolerance in monocytes and macrophages, and the recruitment, activation and expansion of myeloid derived suppressor cells and regulatory T cells are examples of some of the immune suppressive properties assigned to DAMPs so far. Crucially, with studies identifying the molecular mechanisms by which DAMPs promote immune suppression, therapeutic strategies that prevent and/or reverse DAMP-induced immunosuppression have been proposed. Approaches currently under consideration include the use of synthetic polymers, or the delivery of plasma proteins, to scavenge circulating DAMPs, or to treat critically-injured patients with antagonists of DAMP receptors. However, as DAMPs share signalling pathways with pathogen associated molecular patterns, and pro-inflammatory responses are essential for tissue regeneration, these approaches need to be carefully considered in order to ensure that modulating DAMP levels and/or their interaction with immune cells does not negatively impact upon anti-microbial defence and the physiological responses of tissue repair and wound healing.
Collapse
Affiliation(s)
- Emily Horner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
22
|
Tomazeli EC, Alfaro M, Zambonelli A, Garde E, Pérez G, Jiménez I, Ramírez L, Salman H, Pisabarro AG. Transcriptome Metabolic Characterization of Tuber borchii SP1-A New Spanish Strain for In Vitro Studies of the Bianchetto Truffle. Int J Mol Sci 2023; 24:10981. [PMID: 37446159 DOI: 10.3390/ijms241310981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Truffles are ascomycete hypogeous fungi belonging to the Tuberaceae family of the Pezizales order that grow in ectomycorrhizal symbiosis with tree roots, and they are known for their peculiar aromas and flavors. The axenic culture of truffle mycelium is problematic because it is not possible in many cases, and the growth rate is meager when it is possible. This limitation has prompted searching and characterizing new strains that can be handled in laboratory conditions for basic and applied studies. In this work, a new strain of Tuber borchii (strain SP1) was isolated and cultured, and its transcriptome was analyzed under different in vitro culture conditions. The results showed that the highest growth of T. borchii SP1 was obtained using maltose-enriched cultures made with soft-agar and in static submerged cultures made at 22 °C. We analyzed the transcriptome of this strain cultured in different media to establish a framework for future comparative studies, paying particular attention to the central metabolic pathways, principal secondary metabolite gene clusters, and the genes involved in producing volatile aromatic compounds (VOCs). The results showed a transcription signal for around 80% of the annotated genes. In contrast, most of the transcription effort was concentrated on a limited number of genes (20% of genes account for 80% of the transcription), and the transcription profile of the central metabolism genes was similar in the different conditions analyzed. The gene expression profile suggests that T. borchii uses fermentative rather than respiratory metabolism in these cultures, even in aerobic conditions. Finally, there was a reduced expression of genes belonging to secondary metabolite clusters, whereas there was a significative transcription of those involved in producing volatile aromatic compounds.
Collapse
Affiliation(s)
- Emilia Chuina Tomazeli
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006 Pamplona, Spain
- Bionanoplus, 31194 Oricain, Spain
| | - Manuel Alfaro
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006 Pamplona, Spain
| | - Alessandra Zambonelli
- Department of Agro-Food Sciences and Technologies, University of Bologna (UNIBO), 40126 Bologna, Italy
| | - Edurne Garde
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006 Pamplona, Spain
| | - Gumer Pérez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006 Pamplona, Spain
| | - Idoia Jiménez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006 Pamplona, Spain
| | - Lucía Ramírez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006 Pamplona, Spain
| | | | - Antonio G Pisabarro
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006 Pamplona, Spain
| |
Collapse
|
23
|
Kubota S, Pasri P, Okrathok S, Jantasaeng O, Rakngam S, Mermillod P, Khempaka S. Transcriptome analysis of the uterovaginal junction containing sperm storage tubules in heat-stressed breeder hens. Poult Sci 2023; 102:102797. [PMID: 37285691 PMCID: PMC10250161 DOI: 10.1016/j.psj.2023.102797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023] Open
Abstract
Sperm storage tubules (SSTs) in the uterovaginal junction (UVJ) of the oviduct are major sites of sperm storage after artificial insemination or mating. Female birds may regulate sperm motility in the UVJ. Heat stress can decrease the reproductive ability of broiler breeder hens. However, its effects on UVJ remain unclear. Changes in gene expression aid in understanding heat stress-affected molecular mechanisms. Herein, we wanted to conduct a comparative transcriptomic analysis to identify the differentially expressed genes (DEGs) in the UVJ of breeder hens under thermoneutral (23°C) and heat stress (36°C for 6 h) conditions. The results indicated that cloacal temperatures and respiratory rates were significantly increased in heat-stressed breeder hens (P < 0.05). Total RNA was extracted from the hen UVJ tissues containing SSTs after heat exposure. Transcriptome analysis identified 561 DEGs, including 181 upregulated DEGs containing heat shock protein (HSP) transcripts and 380 downregulated DEGs containing immune-related genes, such as interleukin 4-induced 1, radical S-adenosyl methionine domain containing 2, and 2'-5'-oligoadenylate synthetase like, in heat-stressed hens. Gene Ontology analysis revealed the significantly enriched terms involving HSPs. Kyoto Encyclopedia of Genes and Genomes analysis identified 9 significant pathways, including the protein processing in endoplasmic reticulum (11 genes including HSPs), neuroactive ligand-receptor interaction (13 genes including luteinizing hormone/choriogonadotropin receptor), biosynthesis of amino acids (4 genes including tyrosine aminotransferase), ferroptosis (3 genes including heme oxygenase 1), and nitrogen metabolism (carbonic anhydrase [CA]-12 and CA6) pathways. Protein-protein interaction network analysis of DEGs revealed 2 large networks, one containing upregulated HSPs and the other containing downregulated interferon-stimulating genes. Overall, heat stress inhibits innate immunity in the UVJ tissues of broiler chickens, and heat-stressed chickens protect their cells by increasing the expression levels of HSPs. The identified genes are potential candidates for further exploration of the UVJ in heat-stressed hens. The identified molecular pathways and networks increase our understanding of the sperm storage reservoirs (UVJ containing SSTs) within the reproductive tract and may be used to prevent heat stress-induced fertility loss in breeder hens.
Collapse
Affiliation(s)
- Satoshi Kubota
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Phocharapon Pasri
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Supattra Okrathok
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Orapin Jantasaeng
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sitthipong Rakngam
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pascal Mermillod
- UMR de Physiologie de la Reproduction et des Comportements, National Research Institute for Agronomy, Food and Environment (INRAe), 37380 Nouzilly, France
| | - Sutisa Khempaka
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
24
|
Mouawad N, Capasso G, Ruggeri E, Martinello L, Severin F, Visentin A, Facco M, Trentin L, Frezzato F. Is It Still Possible to Think about HSP70 as a Therapeutic Target in Onco-Hematological Diseases? Biomolecules 2023; 13:biom13040604. [PMID: 37189352 DOI: 10.3390/biom13040604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The search for molecules to be targeted that are involved in apoptosis resistance/increased survival and pathogenesis of onco-hematological malignancies is ongoing since these diseases are still not completely understood. Over the years, a good candidate has been identified in the Heat Shock Protein of 70kDa (HSP70), a molecule defined as “the most cytoprotective protein ever been described”. HSP70 is induced in response to a wide variety of physiological and environmental insults, allowing cells to survive lethal conditions. This molecular chaperone has been detected and studied in almost all the onco-hematological diseases and is also correlated to poor prognosis and resistance to therapy. In this review, we give an overview of the discoveries that have led us to consider HSP70 as a therapeutic target for mono- or combination-therapies in acute and chronic leukemias, multiple myeloma and different types of lymphomas. In this excursus, we will also consider HSP70 partners, such as its transcription factor HSF1 or its co-chaperones whose druggability could indirectly affect HSP70. Finally, we will try to answer the question asked in the title of this review considering that, despite the effort made by research in this field, HSP70 inhibitors never reached the clinic.
Collapse
|
25
|
Hazra J, Vijayakumar A, Mahapatra NR. Emerging role of heat shock proteins in cardiovascular diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:271-306. [PMID: 36858739 DOI: 10.1016/bs.apcsb.2022.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Heat Shock Proteins (HSPs) are evolutionarily conserved proteins from prokaryotes to eukaryotes. They are ubiquitous proteins involved in key physiological and cellular pathways (viz. inflammation, immunity and apoptosis). Indeed, the survivability of the cells under various stressful conditions depends on appropriate levels of HSP expression. There is a growing line of evidence for the role of HSPs in regulating cardiovascular diseases (CVDs) (viz. hypertension, atherosclerosis, atrial fibrillation, cardiomyopathy and heart failure). Furthermore, studies indicate that a higher concentration of circulatory HSP antibodies correlate to CVDs; some are even potential markers for CVDs. The multifaceted roles of HSPs in regulating cellular signaling necessitate unraveling their links to pathophysiology of CVDs. This review aims to consolidate our understanding of transcriptional (via multiple transcription factors including HSF-1, NF-κB, CREB and STAT3) and post-transcriptional (via microRNAs including miR-1, miR-21 and miR-24) regulation of HSPs. The cytoprotective nature of HSPs catapults them to the limelight as modulators of cell survival. Yet another attractive prospect is the development of new therapeutic strategies against cardiovascular diseases (from hypertension to heart failure) by targeting the regulation of HSPs. Moreover, this review provides insights into how genetic variation of HSPs can contribute to the manifestation of CVDs. It would also offer a bird's eye view of the evolving role of different HSPs in the modulation and manifestation of cardiovascular disease.
Collapse
Affiliation(s)
- Joyita Hazra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Anupama Vijayakumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
26
|
Caballero-Herrero MJ, Jumilla E, Buitrago-Ruiz M, Valero-Navarro G, Cuevas S. Role of Damage-Associated Molecular Patterns (DAMPS) in the Postoperative Period after Colorectal Surgery. Int J Mol Sci 2023; 24:ijms24043862. [PMID: 36835273 PMCID: PMC9958549 DOI: 10.3390/ijms24043862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Anastomotic leakage (AL) is a defect of the intestinal wall at the anastomotic site and is one of the most severe complications in colorectal surgery. Previous studies have shown that the immune system response plays a significant role in the development of AL. In recent years, DAMPs (damage-associated molecular patterns) have been identified as cellular compounds with the ability to activate the immune system. The NLRP3 inflammasome plays an important role in the inflammatory responses which are mediated by DAMPs such as ATP, HSP proteins or uric acid crystals, when found in extracellular environments. Recent publications suggest that systemic concentration of DAMPs in patients with colorectal surgery may determine the inflammatory process and have a role in the occurrence of AL and other post-surgery complications. This review provides valuable knowledge about the current evidence supporting this hypothesis and highlights the possible role of these compounds in postoperative processes, which could open a new path to explore new strategies to prevent possible post-surgical complications.
Collapse
Affiliation(s)
- María José Caballero-Herrero
- Molecular Inflammation Group, Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Esther Jumilla
- Molecular Inflammation Group, Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Manuel Buitrago-Ruiz
- General and Digestive System Surgery, Morales Meseguer University Hospital, 30008 Murcia, Spain
| | - Graciela Valero-Navarro
- General and Digestive System Surgery, Morales Meseguer University Hospital, 30008 Murcia, Spain
- Surgical Research in Health Area, Institute of Biosanitary Research Pascual Parrilla (IMIB), Department of Surgery, Pediatrics, Obstetrics and Gynecology, University of Murcia, 30100 Murcia, Spain
- Correspondence: (G.V.-N.); (S.C.); Tel.: +34-968360900 (ext. 2358) (G.V.-N.); +34-868885039 (S.C.)
| | - Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120 Murcia, Spain
- Correspondence: (G.V.-N.); (S.C.); Tel.: +34-968360900 (ext. 2358) (G.V.-N.); +34-868885039 (S.C.)
| |
Collapse
|
27
|
Graf F, Zehentner B, Fellner L, Scherer S, Neuhaus K. Three Novel Antisense Overlapping Genes in E. coli O157:H7 EDL933. Microbiol Spectr 2023; 11:e0235122. [PMID: 36533921 PMCID: PMC9927249 DOI: 10.1128/spectrum.02351-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
The abundance of long overlapping genes in prokaryotic genomes is likely to be significantly underestimated. To date, only a few examples of such genes are fully established. Using RNA sequencing and ribosome profiling, we found expression of novel overlapping open reading frames in Escherichia coli O157:H7 EDL933 (EHEC). Indeed, the overlapping candidate genes are equipped with typical structural elements required for transcription and translation, i.e., promoters, transcription start sites, as well as terminators, all of which were experimentally verified. Translationally arrested mutants, unable to produce the overlapping encoded protein, were found to have a growth disadvantage when grown competitively against the wild type. Thus, the phenotypes found imply biological functionality of the genes at the level of proteins produced. The addition of 3 more examples of prokaryotic overlapping genes to the currently limited, yet constantly growing pool of such genes emphasizes the underestimated coding capacity of bacterial genomes. IMPORTANCE The abundance of long overlapping genes in prokaryotic genomes is likely to be significantly underestimated, since such genes are not allowed in genome annotations. However, ribosome profiling catches mRNA in the moment of being template for protein production. Using this technique and subsequent experiments, we verified 3 novel overlapping genes encoded in antisense of known genes. This adds more examples of prokaryotic overlapping genes to the currently limited, yet constantly growing pool of such genes.
Collapse
Affiliation(s)
- Franziska Graf
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technische Universität München, Freising, Germany
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Barbara Zehentner
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Lea Fellner
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Siegfried Scherer
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technische Universität München, Freising, Germany
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technische Universität München, Freising, Germany
- Chair for Microbial Ecology, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| |
Collapse
|
28
|
Esfahanian N, Knoblich CD, Bowman GA, Rezvani K. Mortalin: Protein partners, biological impacts, pathological roles, and therapeutic opportunities. Front Cell Dev Biol 2023; 11:1028519. [PMID: 36819105 PMCID: PMC9932541 DOI: 10.3389/fcell.2023.1028519] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Mortalin (GRP75, HSPA9A), a heat shock protein (HSP), regulates a wide range of cellular processes, including cell survival, growth, and metabolism. The regulatory functions of mortalin are mediated through a diverse set of protein partners associated with different cellular compartments, which allows mortalin to perform critical functions under physiological conditions, including mitochondrial protein quality control. However, alteration of mortalin's activities, its abnormal subcellular compartmentalization, and its protein partners turn mortalin into a disease-driving protein in different pathological conditions, including cancers. Here, mortalin's contributions to tumorigenic pathways are explained. Pathology information based on mortalin's RNA expression extracted from The Cancer Genome Atlas (TCGA) transcriptomic database indicates that mortalin has an independent prognostic value in common tumors, including lung, breast, and colorectal cancer (CRC). Subsequently, the binding partners of mortalin reported in different cellular models, from yeast to mammalian cells, and its regulation by post-translational modifications are discussed. Finally, we focus on colorectal cancer and discuss how mortalin and its tumorigenic downstream protein targets are regulated by a ubiquitin-like protein through the 26S proteasomal degradation machinery. A broader understanding of the function of mortalin and its positive and negative regulation in the formation and progression of human diseases, particularly cancer, is essential for developing new strategies to treat a diverse set of human diseases critically associated with dysregulated mortalin.
Collapse
|
29
|
Braun JEA. Extracellular chaperone networks and the export of J-domain proteins. J Biol Chem 2023; 299:102840. [PMID: 36581212 PMCID: PMC9867986 DOI: 10.1016/j.jbc.2022.102840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022] Open
Abstract
An extracellular network of molecular chaperones protects a diverse array of proteins that reside in or pass through extracellular spaces. Proteins in the extracellular milieu face numerous challenges that can lead to protein misfolding and aggregation. As a checkpoint for proteins that move between cells, extracellular chaperone networks are of growing clinical relevance. J-domain proteins (JDPs) are ubiquitous molecular chaperones that are known for their essential roles in a wide array of fundamental cellular processes through their regulation of heat shock protein 70s. As the largest molecular chaperone family, JDPs have long been recognized for their diverse functions within cells. Some JDPs are elegantly selective for their "client proteins," some do not discriminate among substrates and others act cooperatively on the same target. The realization that JDPs are exported through both classical and unconventional secretory pathways has fueled investigation into the roles that JDPs play in protein quality control and intercellular communication. The proposed functions of exported JDPs are diverse. Studies suggest that export of DnaJB11 enhances extracellular proteostasis, that intercellular movement of DnaJB1 or DnaJB6 enhances the proteostasis capacity in recipient cells, whereas the import of DnaJB8 increases resistance to chemotherapy in recipient cancer cells. In addition, the export of DnaJC5 and concurrent DnaJC5-dependent ejection of dysfunctional and aggregation-prone proteins are implicated in the prevention of neurodegeneration. This review provides a brief overview of the current understanding of the extracellular chaperone networks and outlines the first wave of studies describing the cellular export of JDPs.
Collapse
Affiliation(s)
- Janice E A Braun
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
30
|
Palanivelu L, Liu CH, Lin LT. Immunogenic cell death: The cornerstone of oncolytic viro-immunotherapy. Front Immunol 2023; 13:1038226. [PMID: 36755812 PMCID: PMC9899992 DOI: 10.3389/fimmu.2022.1038226] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 01/24/2023] Open
Abstract
According to the World Health Organization, cancer is one of the leading global health concerns, causing nearly 10 million deaths in 2020. While classical chemotherapeutics produce strong cytotoxicity on cancer cells, they carry limitations of drug resistance and off-target effects and sometimes fail to elicit adequate antitumor protection against tumor relapse. Additionally, most cancer cells have developed various ways to escape immune surveillance. Nevertheless, novel anticancer strategies such as oncolytic viro-immunotherapy can trigger immunogenic cell death (ICD), which can quickly grasp the attention of the host defense machinery, resulting in an ensuing antitumor immune response. Specifically, oncolytic viruses (OVs) can infect and destroy targeted cancer cells and stimulate the immune system by exposing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) to promote inflammatory reactions, and concomitantly prime and induce antitumor immunity by the release of neoantigens from the damaged cancer cells. Thus, OVs can serve as a novel system to sensitize tumor cells for promising immunotherapies. This review discusses the concept of ICD in cancer, centralizing ICD-associated danger signals and their consequence in antitumor responses and ICD induced by OVs. We also shed light on the potential strategies to enhance the immunogenicity of OVs, including the use of genetically modified OVs and their combination with ICD-enhancing agents, which are helpful as forthcoming anticancer regimens.
Collapse
Affiliation(s)
- Lalitha Palanivelu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hsuan Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan,Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan,*Correspondence: Liang-Tzung Lin,
| |
Collapse
|
31
|
Noori L, Filip K, Nazmara Z, Mahakizadeh S, Hassanzadeh G, Caruso Bavisotto C, Bucchieri F, Marino Gammazza A, Cappello F, Wnuk M, Scalia F. Contribution of Extracellular Vesicles and Molecular Chaperones in Age-Related Neurodegenerative Disorders of the CNS. Int J Mol Sci 2023; 24:927. [PMID: 36674442 PMCID: PMC9861359 DOI: 10.3390/ijms24020927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Many neurodegenerative disorders are characterized by the abnormal aggregation of misfolded proteins that form amyloid deposits which possess prion-like behavior such as self-replication, intercellular transmission, and consequent induction of native forms of the same protein in surrounding cells. The distribution of the accumulated proteins and their correlated toxicity seem to be involved in the progression of nervous system degeneration. Molecular chaperones are known to maintain proteostasis, contribute to protein refolding to protect their function, and eliminate fatally misfolded proteins, prohibiting harmful effects. However, chaperone network efficiency declines during aging, prompting the onset and the development of neurological disorders. Extracellular vesicles (EVs) are tiny membranous structures produced by a wide range of cells under physiological and pathological conditions, suggesting their significant role in fundamental processes particularly in cellular communication. They modulate the behavior of nearby and distant cells through their biological cargo. In the pathological context, EVs transport disease-causing entities, including prions, α-syn, and tau, helping to spread damage to non-affected areas and accelerating the progression of neurodegeneration. However, EVs are considered effective for delivering therapeutic factors to the nervous system, since they are capable of crossing the blood-brain barrier (BBB) and are involved in the transportation of a variety of cellular entities. Here, we review the neurodegeneration process caused mainly by the inefficiency of chaperone systems as well as EV performance in neuropathies, their potential as diagnostic biomarkers and a promising EV-based therapeutic approach.
Collapse
Affiliation(s)
- Leila Noori
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Kamila Filip
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Zohreh Nazmara
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Simin Mahakizadeh
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj 3149779453, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
32
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 PMCID: PMC12001818 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
33
|
Parma B, Wurdak H, Ceppi P. Harnessing mitochondrial metabolism and drug resistance in non-small cell lung cancer and beyond by blocking heat-shock proteins. Drug Resist Updat 2022; 65:100888. [DOI: 10.1016/j.drup.2022.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022]
|
34
|
Tukaj S, Sitko K. Heat Shock Protein 90 (Hsp90) and Hsp70 as Potential Therapeutic Targets in Autoimmune Skin Diseases. Biomolecules 2022; 12:biom12081153. [PMID: 36009046 PMCID: PMC9405624 DOI: 10.3390/biom12081153] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/22/2022] Open
Abstract
Over a hundred different autoimmune diseases have been described to date, which can affect every organ in the body, including the largest one, the skin. In fact, up to one-fifth of the world's population suffers from chronic, noninfectious inflammatory skin diseases, the development of which is significantly influenced by an autoimmune response. One of the hallmarks of autoimmune diseases is the loss of immune tolerance, which leads to the formation of autoreactive lymphocytes or autoantibodies and, consequently, to chronic inflammation and tissue damage. The treatment of autoimmune skin diseases mainly focuses on immunosuppression (using, e.g., corticosteroids) but almost never leads to the development of permanent mechanisms of immune tolerance. In addition, current therapies and their long-term administration may cause serious adverse effects. Hence, safer and more effective therapies that bring sustained balance between pro- and anti-inflammatory responses are still desired. Both intra- and extracellular heat shock proteins (Hsps), specifically well-characterized inducible Hsp90 and Hsp70 chaperones, have been highlighted as therapeutic targets for autoimmune diseases. This review presents preclinical data on the involvement of Hsp90 and Hsp70 in modulating the immune response, specifically in the context of the treatment of selected autoimmune skin diseases with emphasis on autoimmune bullous skin diseases and psoriasis.
Collapse
|
35
|
Sager RA, Khan F, Toneatto L, Votra SD, Backe SJ, Woodford MR, Mollapour M, Bourboulia D. Targeting extracellular Hsp90: A unique frontier against cancer. Front Mol Biosci 2022; 9:982593. [PMID: 36060252 PMCID: PMC9428293 DOI: 10.3389/fmolb.2022.982593] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular chaperone Heat Shock Protein-90 (Hsp90) is known to interact with over 300 client proteins as well as regulatory factors (eg. nucleotide and proteins) that facilitate execution of its role as a chaperone and, ultimately, client protein activation. Hsp90 associates transiently with these molecular modulators during an eventful chaperone cycle, resulting in acquisition of flexible structural conformations, perfectly customized to the needs of each one of its client proteins. Due to the plethora and diverse nature of proteins it supports, the Hsp90 chaperone machinery is critical for normal cellular function particularly in response to stress. In diseases such as cancer, the Hsp90 chaperone machinery is hijacked for processes which encompass many of the hallmarks of cancer, including cell growth, survival, immune response evasion, migration, invasion, and angiogenesis. Elevated levels of extracellular Hsp90 (eHsp90) enhance tumorigenesis and the potential for metastasis. eHsp90 has been considered one of the new targets in the development of anti-cancer drugs as there are various stages of cancer progression where eHsp90 function could be targeted. Our limited understanding of the regulation of the eHsp90 chaperone machinery is a major drawback for designing successful Hsp90-targeted therapies, and more research is still warranted.
Collapse
Affiliation(s)
- Rebecca A. Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Farzana Khan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Lorenzo Toneatto
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - SarahBeth D. Votra
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Sarah J. Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
- *Correspondence: Dimitra Bourboulia,
| |
Collapse
|
36
|
Costa-Beber LC, Hirsch GE, Heck TG, Ludwig MS. Chaperone duality: the role of extracellular and intracellular HSP70 as a biomarker of endothelial dysfunction in the development of atherosclerosis. Arch Physiol Biochem 2022; 128:1016-1023. [PMID: 32293198 DOI: 10.1080/13813455.2020.1745850] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The 70-kDa heat shock proteins (HSP70) may provide relevant information about the endothelial dysfunction in cardiovascular diseases. Located in the intracellular milieu (iHSP70), they are essential chaperones that inhibit nuclear factor kappa B activation, stimulate nitric oxide production and superoxide dismutase activity, and inhibit apoptosis. However, under stressful conditions, HSP70 can be released into the extracellular medium (eHSP70) and act as an inflammatory mediator. Although studies have reported the vasoprotective role of iHSP70, the evidence regarding eHSP70 is contradictory. eHSP70 can activate NFκB and activator protein-1, thus stimulating the release of inflammatory cytokines and production of reactive oxygen species. Due to the antagonistic nature of HSP70 according to its location, the eHSP70/iHSP70 ratio (Heck index) has been proposed as a better marker of inflammatory status; however, more studies are required to confirm this hypothesis. Therefore, this review summarises studies that, together, describe the role of HSP70 in endothelial dysfunction.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, Brazil
| | - Gabriela Elisa Hirsch
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, Brazil
| |
Collapse
|
37
|
Xu P, Lin H, Jiao H, Zhao J, Wang X. Advances in epigenetic mechanisms of chick embryo heat acclimation. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2094845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Peng Xu
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Hai Lin
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Hongchao Jiao
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Jingpeng Zhao
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaojuan Wang
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
38
|
Adur MK, Seibert JT, Romoser MR, Bidne KL, Baumgard LH, Keating AF, Ross JW. Porcine endometrial heat shock proteins are differentially influenced by pregnancy status, heat stress, and altrenogest supplementation during the peri-implantation period. J Anim Sci 2022; 100:6620802. [PMID: 35772767 PMCID: PMC9246672 DOI: 10.1093/jas/skac129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
Heat stress (HS) deleteriously affects multiple components of porcine reproduction and is causal to seasonal infertility. Environment-induced hyperthermia causes a HS response (HSR) typically characterized by increased abundance of intracellular heat shock proteins (HSP). Gilts exposed to HS during the peri-implantation period have compromised embryo survival, however if (or how) HS disrupts the porcine endometrium is not understood. Study objectives were to evaluate the endometrial HSP abundance in response to HS during this period and assess the effect of oral progestin (altrenogest; ALT) supplementation. Postpubertal gilts (n = 42) were artificially inseminated during behavioral estrus (n = 28) or were kept cyclic (n = 14), and randomly assigned to thermal neutral (TN; 21 ± 1 °C) or diurnal HS (35 ± 1 °C for 12 h/31.6 ± 1 °C for 12 h) conditions from day 3 to 12 postestrus (dpe). Seven of the inseminated gilts from each thermal treatment group received ALT (15 mg/d) during this period. Using quantitative PCR, transcript abundance of HSP family A (Hsp70) member 1A (HSPA1A, P = 0.001) and member 6 (HSPA6, P < 0.001), and HSP family B (small) member 8 (HSB8, P = 0.001) were increased while HSP family D (Hsp60) member 1 (HSPD1, P = 0.01) was decreased in the endometrium of pregnant gilts compared to the cyclic gilts. Protein abundance of HSPA1A decreased (P = 0.03) in pregnant gilt endometrium due to HS, while HSP family B (small) member 1 (HSPB1) increased (P = 0.01) due to HS. Oral ALT supplementation during HS reduced the transcript abundance of HSP90α family class B member 1 (HSP90AB1, P = 0.04); but HS increased HSP90AB1 (P = 0.001), HSPA1A (P = 0.02), and HSPA6 (P = 0.04) transcript abundance irrespective of ALT. ALT supplementation decreased HSP90α family class A member 1 (HSP90AA1, P = 0.001) protein abundance, irrespective of thermal environment, whereas ALT only decreased HSPA6 (P = 0.02) protein abundance in TN gilts. These results indicate a notable shift of HSP in the porcine endometrium during the peri-implantation period in response to pregnancy status and heat stress.
Collapse
Affiliation(s)
- Malavika K Adur
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Matthew R Romoser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Katie L Bidne
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
39
|
Izadpanah A, Delirezh N, Mahmodlou R. Ex vivo Optimization of Glucose-Regulated Protein 94/Glycoprotein 96 Expressions in Mammospheres; Implication for Breast Cancer Immunotherapy. CELL JOURNAL 2022; 24:261-266. [PMID: 35717566 PMCID: PMC9445520 DOI: 10.22074/cellj.2022.7908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/22/2021] [Indexed: 12/03/2022]
Abstract
OBJECTIVE The induction of immunity against cancer stem cells (CSCs) can boost the efficiency of cancer vaccines. Heat shock proteins (HSPs) are required for the successful activation of anti-tumor immune responses. Glycoprotein 96 (gp96) is a well-known HSP that promotes the cross-presentation of tumor antigens. The aim of the present study was to optimize the temperature for induction of gp96 in grade 3 breast cancer spheres. MATERIALS AND METHODS In the experimental study, CSCs were enriched from breast tumor tissue samples and cultured in DMEM-F12 with epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), B27, and bovine serum albumin (BSA) for 22 days. The expression level of CD24 and CD44 as CSC markers was measured by flow cytometry in secondary mammospheres, and the expression of NANOG, SOX2, and OCT4 genes in CSCs was also analyzed using the real-time polymerase chain reaction (PCR). To find the optimal temperature regulation of gp96, the mammosphere was incubated at different temperatures for 1 hour, and gp96 expression was measured using the western blotting assay. RESULTS Primary mammospheres were obtained after seven days of culture, and secondary spheres formed 22 days after passage. Flow cytometry analysis showed that cells with CD24- CD44+ phenotype were enriched in the culture period (from 2.6% on day 1 to 32.6% on day 22). Real-time PCR indicated that OCT4, NANOG, and SOX2 expression in mammospheres were increased by 3.8 ± 0.6, 17.8 ± 0.6, and 7.7 ± 0.8 fold respectively in comparison to the MCF-7 cell line. Western blot analysis showed that gp96 production was significantly upregulated when mammospheres were incubated at both 42°C and 43°C in comparison to the control group. CONCLUSION Altogether, we found that heat-induced upregulated expression of gp96 in CSCs enriched mammospheres from breast tumor tissue might be used as a complementary procedure to generate more immunogenic antigens in immunotherapy settings.
Collapse
Affiliation(s)
- Amirhossein Izadpanah
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran,Department of Stem cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and
Technology, Tehran, Iran
| | - Nowruz Delirezh
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran,P.O.Box: 165Department of MicrobiologyFaculty of Veterinary MedicineUrmia UniversityUrmiaIran
| | - Rahim Mahmodlou
- Department of Surgery, Emam Khomeini General Hospital, Urmia, Iran
| |
Collapse
|
40
|
Li DY, Liang S, Wen JH, Tang JX, Deng SL, Liu YX. Extracellular HSPs: The Potential Target for Human Disease Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072361. [PMID: 35408755 PMCID: PMC9000741 DOI: 10.3390/molecules27072361] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
Heat shock proteins (HSPs) are highly conserved stress proteins known as molecular chaperones, which are considered to be cytoplasmic proteins with functions restricted to the intracellular compartment, such as the cytoplasm or cellular organelles. However, an increasing number of observations have shown that HSPs can also be released into the extracellular matrix and can play important roles in the modulation of inflammation and immune responses. Recent studies have demonstrated that extracellular HSPs (eHSPs) were involved in many human diseases, such as cancers, neurodegenerative diseases, and kidney diseases, which are all diseases that are closely linked to inflammation and immunity. In this review, we describe the types of eHSPs, discuss the mechanisms of eHSPs secretion, and then highlight their functions in the modulation of inflammation and immune responses. Finally, we take cancer as an example and discuss the possibility of targeting eHSPs for human disease therapy. A broader understanding of the function of eHSPs in development and progression of human disease is essential for developing new strategies to treat many human diseases that are critically related to inflammation and immunity.
Collapse
Affiliation(s)
- Dong-Yi Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
| | - Shan Liang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
| | - Jun-Hao Wen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
| | - Ji-Xin Tang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (D.-Y.L.); (S.L.); (J.-H.W.)
- Correspondence: (J.-X.T.); (S.-L.D.); (Y.-X.L.)
| | - Shou-Long Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Correspondence: (J.-X.T.); (S.-L.D.); (Y.-X.L.)
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (J.-X.T.); (S.-L.D.); (Y.-X.L.)
| |
Collapse
|
41
|
Chen Y, Dong B, Huang L, Zhou J, Huang H. Research progress on the role and mechanism of action of exosomes in autoimmune thyroid disease. Int Rev Immunol 2022; 42:334-346. [PMID: 35353670 DOI: 10.1080/08830185.2022.2057482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 11/09/2022]
Abstract
Exosomes are widely distributed extracellular vesicles (EVs), which are currently a major research hotspot for researchers based on their wide range of sources, stable membrane structure, low immunogenicity, and containing a variety of biomolecules. A large number of literatures have shown that exosomes and exosome cargoes (especially microRNAs) play an important role in the activation of inflammation, development of tumor, differentiation of cells, regulation of immunity and so on. Studies have found that exosomes can stimulate the immune response of the body and participate in the occurrence and development of various diseases, including autoimmune diseases. Furthermore, the potential of exosomes as therapeutic tools in various diseases has also attracted much attention. Autoimmune thyroid disease (AITD) is one of the most common autoimmune diseases, mainly composed of Graves' disease (GD) and Hashimoto's thyroiditis (HT), which affects the health of many people and has a genetic predisposition, but its pathogenesis is still being explored. Starting from the relevant biological characteristics of exosomes, this review summarizes the current research status of exosomes and the association between exosomes and some diseases, with a focus on the situation of AITD and the potential role of exosomes (including substances in their vesicles) in AITD in combination with the current published literature, aiming to provide new directions for the pathogenesis, diagnosis or therapy of AITD.Supplemental data for this article is available online at.
Collapse
Affiliation(s)
- Yuping Chen
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Bingtian Dong
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Lichun Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jingxiong Zhou
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Huibin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
42
|
Rathi D, Verma JK, Pareek A, Chakraborty S, Chakraborty N. Dissection of grasspea (Lathyrus sativus L.) root exoproteome reveals critical insights and novel proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111161. [PMID: 35151446 DOI: 10.1016/j.plantsci.2021.111161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/20/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
The plant exoproteome is crucial because its constituents greatly influence plant phenotype by regulating physiological characteristics to adapt to environmental stresses. The root exudates constitute a dynamic aspect of plant exoproteome, as its molecular composition ensures a beneficial rhizosphere in a species-specific manner. We investigated the root exoproteome of grasspea, a stress-resilient pulse and identified 2861 non-redundant proteins, belonging to a myriad of functional classes, including root development, rhizosphere augmentation as well as defense functions against soil-borne pathogens. Significantly, we identified 1986 novel exoproteome constituents of grasspea, potentially involved in cell-to-cell communication and root meristem maintenance, among other critical roles. Sequence-based comparison revealed that grasspea shares less than 30 % of its exoproteome with the reports so far from model plants as well as crop species. Further, the exoproteome revealed 65 % proteins to be extracellular in nature and of these, 37 % constituents were predicted to follow unconventional protein secretion (UPS) mode. We validated the UPS for four stress-responsive proteins, which were otherwise predicted to follow classical protein secretion (CPS). Conclusively, we recognized not only the highest number of root exudate proteins, but also pinpointed novel signatures of dicot root exoproteome.
Collapse
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra Kumar Verma
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Akanksha Pareek
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
43
|
Neufurth M, Wang S, Schröder HC, Al-Nawas B, Wang X, Müller WEG. 3D bioprinting of tissue units with mesenchymal stem cells, retaining their proliferative and differentiating potential, in polyphosphate-containing bio-ink. Biofabrication 2021; 14. [PMID: 34852334 DOI: 10.1088/1758-5090/ac3f29] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022]
Abstract
The three-dimensional (3D)-printing processes reach increasing recognition as important fabrication techniques to meet the growing demands in tissue engineering. However, it is imperative to fabricate 3D tissue units, which contain cells that have the property to be regeneratively active. In most bio-inks, a metabolic energy-providing component is missing. Here a formulation of a bio-ink is described, which is enriched with polyphosphate (polyP), a metabolic energy providing physiological polymer. The bio-ink composed of a scaffold (N,O-carboxymethyl chitosan), a hydrogel (alginate) and a cell adhesion matrix (gelatin) as well as polyP substantially increases the viability and the migration propensity of mesenchymal stem cells (MSC). In addition, this ink stimulates not only the growth but also the differentiation of MSC to mineral depositing osteoblasts. Furthermore, the growth/aggregate pattern of MSC changes from isolated cells to globular spheres, if embedded in the polyP bio-ink. The morphogenetic activity of the MSC exposed to polyP in the bio-ink is corroborated by qRT-PCR data, which show a strong induction of the steady-state-expression of alkaline phosphatase, connected with a distinct increase in the expression ratio between RUNX2 and Sox2. We propose that polyP should become an essential component in bio-inks for the printing of cells that retain their regenerative activity.
Collapse
Affiliation(s)
- Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Bilal Al-Nawas
- Clinic for Oral and Maxillofacial Surgery and Plastic Surgery, University Medical Center of the Johannes Gutenberg University, Augustusplatz 2, 55131 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
44
|
Zou J, Peng H, Liu Y. The Roles of Exosomes in Immunoregulation and Autoimmune Thyroid Diseases. Front Immunol 2021; 12:757674. [PMID: 34867996 PMCID: PMC8634671 DOI: 10.3389/fimmu.2021.757674] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
Exosomes are extracellular microvesicles (30-150 nm) released from cells that contain proteins, lipids, RNA and DNA. They can deliver bioactive molecules and serve as carriers facilitating cell-cell communication, such as antigen presentation, inflammatory activation, autoimmune diseases (AIDs) and tumor metastasis. Recently, much attention has been attracted to the biology and functions of exosomes in immune regulation and AIDs, including autoimmune thyroid diseases (AITDs). Some studies have shown that exosomes are involved in the occurrence and development of AITDs, but they are still in the preliminary stage of exploration. This review mainly introduces the association of exosomes with immune regulation and emphasizes the potential role of exosomes in AITDs, aiming to provide new research strategies and directions for the pathogenesis and early diagnosis of AITDs.
Collapse
Affiliation(s)
- Junli Zou
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| | - Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yingzhao Liu
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| |
Collapse
|
45
|
Van den Broek B, Wuyts C, Irobi J. Extracellular vesicle-associated small heat shock proteins as therapeutic agents in neurodegenerative diseases and beyond. Adv Drug Deliv Rev 2021; 179:114009. [PMID: 34673130 DOI: 10.1016/j.addr.2021.114009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Increasing evidence points towards using extracellular vesicles (EVs) as a therapeutic strategy in neurodegenerative diseases such as multiple sclerosis, Parkinson's, and Alzheimer's disease. EVs are nanosized carriers that play an essential role in intercellular communication and cellular homeostasis by transporting an active molecular cargo, including a large variety of proteins. Recent publications demonstrate that small heat shock proteins (HSPBs) exhibit a beneficial role in neurodegenerative diseases. Moreover, it is defined that HSPBs target the autophagy and the apoptosis pathway, playing a prominent role in chaperone activity and cell survival. This review elaborates on the therapeutic potential of EVs and HSPBs, in particular HSPB1 and HSPB8, in neurodegenerative diseases. We conclude that EVs and HSPBs positively influence neuroinflammation, central nervous system (CNS) repair, and protein aggregation in CNS disorders. Moreover, we propose the use of HSPB-loaded EVs as advanced nanocarriers for the future development of neurodegenerative disease therapies.
Collapse
Affiliation(s)
- Bram Van den Broek
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Charlotte Wuyts
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Joy Irobi
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
46
|
Lecona-Valera AN, Rodriguez MH, Argotte-Ramos RS, Rodriguez MC. The chaperone micronemal protein Hsp70-1 from Plasmodium berghei ookinetes is shed during gliding on solid surface sustrata. Mol Biochem Parasitol 2021; 246:111428. [PMID: 34756988 DOI: 10.1016/j.molbiopara.2021.111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Plasmodium the causative agent of malaria is a member of the phylum Apicomplexa, where all invasive forms have a substrate-dependent motility called gliding, key to malaria transmission. Gliding allows parasite host-cell recognition, binding, cell entry and trespassing the cytoplasm. In this process Plasmodium releases molecules from micronemes and the cell surface that are deposited on trails left behind on the substratum as the parasite progresses. Previously we identified the heat shock protein 70-1 (HSP 70-1) on the surface and micronemes of P. berghei ookinetes, the parasite form that invades the mosquito midgut. To investigate if this protein is shed of from the parasite during invasion, we searched HSP 70-1 in gliding trails deposited on a solid surface by P. berghei ookinetes.
Collapse
Affiliation(s)
- A N Lecona-Valera
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Ave. Universidad No. 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, CP 62100, México
| | - M H Rodriguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Ave. Universidad No. 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, CP 62100, México
| | - R S Argotte-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Ave. Universidad No. 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, CP 62100, México
| | - M C Rodriguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Ave. Universidad No. 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, CP 62100, México.
| |
Collapse
|
47
|
Poggio P, Sorge M, Seclì L, Brancaccio M. Extracellular HSP90 Machineries Build Tumor Microenvironment and Boost Cancer Progression. Front Cell Dev Biol 2021; 9:735529. [PMID: 34722515 PMCID: PMC8551675 DOI: 10.3389/fcell.2021.735529] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
HSP90 is released by cancer cells in the tumor microenvironment where it associates with different co-chaperones generating complexes with specific functions, ranging from folding and activation of extracellular clients to the stimulation of cell surface receptors. Emerging data indicate that these functions are essential for tumor growth and progression. The understanding of the exact composition of extracellular HSP90 complexes and the molecular mechanisms at the basis of their functions in the tumor microenvironment may represent the first step to design innovative diagnostic tools and new effective therapies. Here we review the impact of extracellular HSP90 complexes on cancer cell signaling and behavior.
Collapse
Affiliation(s)
- Pietro Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
48
|
Alven A, Lema C, Redfern RL. Impact of Low Humidity on Damage-associated Molecular Patterns at the Ocular Surface during Dry Eye Disease. Optom Vis Sci 2021; 98:1231-1238. [PMID: 34510151 PMCID: PMC8585693 DOI: 10.1097/opx.0000000000001802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
SIGNIFICANCE Dry eye is one of the leading causes for individuals to seek eye care, whereas the pathogenesis is poorly understood. One mechanism in which dry eye inflammation may ensue is by the release of damage-associated molecular patterns (DAMPs) by damaged cells to stimulate the production of cytokines and matrix metalloproteinases. Examining DAMP levels on the ocular surface during dry eye disease (DED) will increase our understanding of their potential involvement in the pathogenesis of DED. PURPOSE This study aimed to quantitate DAMPs, high-mobility group box 1 (HMGB1), and heat shock proteins on the ocular surface of normal and dry eye subjects and to examine the impact of low-humidity environment (LHE) on DAMPs and inflammation in dry eye subjects. METHODS Basal tears (10 to 20 μL) and conjunctival impression cytology samples were analyzed for HMGB1, HSP-27, HSP-60, HSP-70, and HSP-90α by ELISA or Luminex assays in normal (n = 15) and DED (n = 15) subjects. In addition, a subset of DED subjects were exposed to LHE for 2 hours. The level of DAMPs in the tear film was evaluated by ELISA or Luminex assay. Interleukin 6, interleukin 8, or metalloproteinase (MMP) 9 mRNA were quantitated by real-time polymerase chain reaction from conjunctival impression cytology samples. RESULTS Compared with age-matched normal subjects, HMGB1 was significantly elevated in the tear film of DED subjects (P = .03), whereas there was no significant difference in heat shock proteins. Conjunctival impression cytology samples revealed no significant difference in intracellular DAMP levels between both groups. After exposure to an LHE, there was an increase in corneal staining (P = .005), HSP-60 levels in the tear film (P = .01), and MMP-9 mRNA in the conjunctiva (P = .001). CONCLUSIONS Dry eye subjects had higher levels of HMGB1 in their tear film. Exposure to an LHE worsened corneal staining, increased conjunctival MMP-9 mRNA expression, and increased tear film HSP-60 levels. Larger studies are needed to understand the involvement of DAMPs in stimulating dry eye inflammation.
Collapse
Affiliation(s)
- Alyce Alven
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas
| | - Carolina Lema
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas
| | | |
Collapse
|
49
|
Gomez CR. Role of heat shock proteins in aging and chronic inflammatory diseases. GeroScience 2021; 43:2515-2532. [PMID: 34241808 PMCID: PMC8599533 DOI: 10.1007/s11357-021-00394-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
Advanced age is associated with a decline in response to stress. This contributes to the establishment of chronic inflammation, one of the hallmarks of aging and age-related disease. Heat shock proteins (HSP) are determinants of life span, and their progressive malfunction leads to age-related pathology. To discuss the function of HSP on age-related chronic inflammation and illness. An updated review of literature and discussion of relevant work on the topic of HSP in normal aging and chronic inflammatory pathology was performed. HSP contribute to inflamm-aging. They also play a key role in age-associated pathology linked to chronic inflammation such as autoimmune disorders, neurological disease, cardiovascular disorder, and cancer. HSP may be targeted for control of their effects related to age and chronic inflammation. Research on HSP functions in age-linked chronic inflammatory disorders provides an opportunity to improve health span and delay age-related chronic disorders.
Collapse
Affiliation(s)
- Christian R Gomez
- Department of Pathology, University of Mississippi Medical Cent, er, 2500 N. State St, Jackson, MS, 39216, USA.
- Department of Radiation Oncology, University of Mississippi Medical Center, 2500 N. State St, Jackson, MS, 39216, USA.
- Preclinical Research Unit, Center for Clinical and Translational Science, University of Mississippi, 2500 N. State St, Jackson, MS, 39216, USA.
- Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 N. State St, Jackson, MS, 39216, USA.
- Division of Lung Diseases, National Institutes of Health (NIH), National Heart, Lung and Blood Institute (NHLBI), Bethesda, MD, USA.
| |
Collapse
|
50
|
Liu M, Sun X, Zhu L, Zhu M, Deng K, Nie X, Mo H, Du T, Huang B, Hu L, Liang L, Wang D, Luo Y, Yi J, Zhang J, Zhong X, Cao C, Chen H. Long Noncoding RNA RP11-115N4.1 Promotes Inflammatory Responses by Interacting With HNRNPH3 and Enhancing the Transcription of HSP70 in Unexplained Recurrent Spontaneous Abortion. Front Immunol 2021; 12:717785. [PMID: 34484222 PMCID: PMC8414257 DOI: 10.3389/fimmu.2021.717785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Background Unexplained recurrent spontaneous abortion (URSA) is a common pregnancy complication and the etiology is unknown. URSA-associated lncRNAs are expected to be potential biomarkers for diagnosis, and might be related to the disease pathogenesis. Objective To investigate differential lncRNAs in peripheral blood of non-pregnant URSA patients and matched healthy control women and to explore the possible mechanism of differential lncRNAs leading to URSA. Methods We profiled lncRNAs expression in peripheral blood from 5 non-pregnant URSA patients and 5 matched healthy control women by lncRNA microarray analysis. Functions of URSA-associated lncRNAs were further investigated in vitro. Results RP11-115N4.1 was identified as the most differentially expressed lncRNA which was highly upregulated in peripheral blood of non-pregnant URSA patients (P = 3.63E-07, Fold change = 2.96), and this dysregulation was further validated in approximately 26.67% additional patients (4/15). RP11-115N4.1 expression was detected in both lymphocytes and monocytes of human peripheral blood, and in vitro overexpression of RP11-115N4.1 decreased cell proliferation in K562 cells significantly. Furthermore, heat-shock HSP70 genes (HSPA1A and HSPA1B) were found to be significantly upregulated upon RP11-115N4.1 overexpression by transcriptome analysis (HSPA1A (P = 4.39E-08, Fold change = 4.17), HSPA1B (P = 2.26E-06, Fold change = 2.99)). RNA pull down and RNA immunoprecipitation assay (RIP) analysis demonstrated that RP11-115N4.1 bound to HNRNPH3 protein directly, which in turn activate heat-shock proteins (HSP70) analyzed by protein-protein interaction and HNRNPH3 knockdown assays. Most importantly, the high expression of HSP70 was also verified in the serum of URSA patients and the supernatant of K562 cells with RP11-115N4.1 activation, and HSP70 in supernatant can exacerbate inflammatory responses in monocytes by inducing IL-6, IL-1β, and TNF-α and inhibit the migration of trophoblast cells, which might associate with URSA. Conclusion Our results demonstrated that the activation of RP11-115N4.1 can significantly increase the protein level of HSP70 via binding to HNRNPH3, which may modulate the immune responses and related to URSA. Moreover, RP11-115N4.1 may be a novel etiological biomarker and a new therapeutic target for URSA.
Collapse
Affiliation(s)
- Meilan Liu
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyue Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liqiong Zhu
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Menglan Zhu
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kewen Deng
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolu Nie
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hanjie Mo
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tao Du
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bingqian Huang
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lihao Hu
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liuhong Liang
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dongyan Wang
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yinger Luo
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinling Yi
- Department of Gynecology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianping Zhang
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xingming Zhong
- Key Laboratory of Male Reproduction and Genetics of National Health Council, Family Planning Research Institute of Guangdong Province, Guangzhou, China.,Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Chunwei Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui Chen
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|