1
|
Hsu RM, Szafron JM, Carvalho CC, Humphrey JD, Marsden AL. Constrained optimization of scaffold behavior for improving tissue engineered vascular grafts. J Biomech 2025; 186:112670. [PMID: 40286630 DOI: 10.1016/j.jbiomech.2025.112670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025]
Abstract
Tissue engineered vascular grafts can offer long-term benefits in matching the geometry, properties, and function of native blood vessels. Yet, choosing appropriate design parameters for biodegradeable scaffolds such that they evolve into neovessels with favorable characteristics is challenging with iterative experimental testing alone. Herein, we present an in silico framework for constrained optimization of scaffold microstructure, mechanical behavior, and degradation kinetics. Our approach combines a biomechanical model of growth and remodeling informed by large animal experiments with numerical optimization to identify design parameters that limit clinically relevant failure modes, including stenosis and dilatation, and improve functional matching to native vessel compliance. Towards this end, constraints on geometry were introduced as a straightforward way to prevent adverse remodeling outcomes and shown to be useful in shaping desired outcomes in graft remodeling. Our simulations of long-term graft evolution suggest the need for a modest initial immune response to ensure graded load transfer from polymer to neotissue and to prevent extreme changes in diameter. Optimized designs showed less sensitivity to simulated variability in their design parameters, which could limit subject-to-subject variability. Together, these findings highlight the utility of computational modeling in identifying candidate designs for improved outcomes in tissue engineered vascular grafts - elimination of stenosis/aneurysm, better compliance matching, and consistent changes in behavior over time.
Collapse
Affiliation(s)
- Ryan M Hsu
- Department of Biomedical Engineering, Yale University, United States of America.
| | - Jason M Szafron
- Department of Pediatrics, Stanford University, United States of America; Cardiovascular Institute, Stanford University, United States of America; Department of Biomedical Engineering, Carnegie Mellon University, United States of America.
| | - Camila C Carvalho
- Department of Bioengineering, Stanford University, United States of America.
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, United States of America.
| | - Alison L Marsden
- Department of Pediatrics, Stanford University, United States of America; Cardiovascular Institute, Stanford University, United States of America; Department of Bioengineering, Stanford University, United States of America.
| |
Collapse
|
2
|
Breitenstein P, Visser VL, Motta SE, Martin M, Generali M, Baaijens FPT, Loerakker S, Breuer CK, Hoerstrup SP, Emmert MY. Modulating biomechanical and integrating biochemical cues to foster adaptive remodeling of tissue engineered matrices for cardiovascular implants. Acta Biomater 2025; 197:48-67. [PMID: 40118167 DOI: 10.1016/j.actbio.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Cardiovascular disease remains one of the leading causes of mortality in the Western world. Congenital heart disease affects nearly 1 % of newborns, with approximately one-fourth requiring reconstructive surgery during their lifetime. Current cardiovascular replacement options have significant limitations. Their inability to grow poses particular challenges for pediatric patients. Tissue Engineered Matrix (TEM)-based in situ constructs, with their self-repair and growth potential, offer a promising solution to overcome the limitations of current clinically used replacement options. Various functionalization strategies, involving the integration of biomechanical or biochemical components to enhance biocompatibility, have been developed for Tissue Engineered Vascular Grafts (TEVG) and Tissue Engineered Heart Valves (TEHV) to foster their capacity for in vivo remodeling. In this review, we present the current state of clinical translation for TEVG and TEHV, and provide a comprehensive overview of biomechanical and biochemical functionalization strategies for TEVG and TEHV. We discuss the rationale for functionalization, the implementation of functionalization cues in TEM-based TEVG and TEHV, and the interrelatedness of biomechanical and biochemical cues in the in vivo response. Finally, we address the challenges associated with functionalization and discuss how interdisciplinary research, especially when combined with in silico models, could enhance the translation of these strategies into clinical applications. STATEMENT OF SIGNIFICANCE: Cardiovascular disease remains one of the leading causes of mortality, with current replacements being unable to grow and regenerate. In this review, we present the current state of clinical translation for tissue engineered vascular grafts (TEVG) and heart valves (TEHV). Particularly, we discuss the rationale and implementation for functionalization cues in tissue engineered matrix-based TEVGs and TEHVs, and for the first time we introduce the interrelatedness of biomechanical and biochemical cues in the in-vivo response. These insights pave the way for next-generation cardiovascular implants that promise better durability, biocompatibility, and growth potential. Finally, we address the challenges associated with functionalization and discuss how interdisciplinary research, especially when combined with in silico models, could enhance the translation of these strategies into clinical applications .
Collapse
Affiliation(s)
- Pascal Breitenstein
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Valery L Visser
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Sarah E Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Marcy Martin
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Christopher K Breuer
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Surgery, Nationwide Children's Hospital, Columbus, OH, USA; Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland; Wyss Zurich Translational Center, University of Zurich and ETH Zurich, Zurich 8092, Switzerland
| | - Maximilian Y Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin 13353, Germany; Charité Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
3
|
Delcarro A, Coubeau L. Inferior vena cava reconstruction with non-fascial autologous peritoneum: Retrospective study and literature review. World J Surg 2024; 48:978-988. [PMID: 38502051 DOI: 10.1002/wjs.12127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Inferior vena cava (IVC) resection is essential for complete (R0) excision of some malignancies. However, the optimal material for IVC reconstruction remains unclear. Our objective is to demonstrate the efficacy, safety, and advantages of using Non-Fascial Autologous Peritoneum (NFAP) for IVC reconstruction. To conduct a literature review of surgical strategies for tumors involving the IVC. METHODS We reviewed all IVC reconstructions performed at our institution between 2015 and 2023. Preoperative, operative, postoperative, and follow-up data were collected and analyzed. RESULTS A total of 33 consecutive IVC reconstructions were identified: seven direct sutures, eight venous homografts (VH), and 18 NFAP. With regard to NFAP, eight tubular (mean length, 12.5 cm) and 10 patch (mean length, 7.9 cm) IVC reconstructions were performed. Resection was R0 in 89% of the cases. Two patients had Clavien-Dindo grade I complications, 2 grade II, 2 grade III and 2 grade V complications. The only graft-related complication was a case of early partial thrombosis, which was conservatively treated. At a mean follow-up of 25.9 months, graft patency was 100%. There were seven recurrences and six deaths. Mean overall survival (OS) was 23.4 months and mean disease-free survival (DFS) was 14.4 months. According to our results, no statistically significant differences were found between NFAP and VH. CONCLUSIONS NFAP is a safe and effective alternative for partial or complete IVC reconstruction and has many advantages over other techniques, including its lack of cost, wide and ready availability, extreme handiness, and versatility. Further comparative studies are required to determine the optimal technique for IVC reconstruction.
Collapse
Affiliation(s)
| | - Laurent Coubeau
- Department of Abdominal Surgery and Transplantation, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
4
|
Turner ME, Blum KM, Watanabe T, Schwarz EL, Nabavinia M, Leland JT, Villarreal DJ, Schwartzman WE, Chou TH, Baker PB, Matsumura G, Krishnamurthy R, Yates AR, Hor KN, Humphrey JD, Marsden AL, Stacy MR, Shinoka T, Breuer CK. Tissue engineered vascular grafts are resistant to the formation of dystrophic calcification. Nat Commun 2024; 15:2187. [PMID: 38467617 PMCID: PMC10928115 DOI: 10.1038/s41467-024-46431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Advancements in congenital heart surgery have heightened the importance of durable biomaterials for adult survivors. Dystrophic calcification poses a significant risk to the long-term viability of prosthetic biomaterials in these procedures. Herein, we describe the natural history of calcification in the most frequently used vascular conduits, expanded polytetrafluoroethylene grafts. Through a retrospective clinical study and an ovine model, we compare the degree of calcification between tissue-engineered vascular grafts and polytetrafluoroethylene grafts. Results indicate superior durability in tissue-engineered vascular grafts, displaying reduced late-term calcification in both clinical studies (p < 0.001) and animal models (p < 0.0001). Further assessments of graft compliance reveal that tissue-engineered vascular grafts maintain greater compliance (p < 0.0001) and distensibility (p < 0.001) than polytetrafluoroethylene grafts. These properties improve graft hemodynamic performance, as validated through computational fluid dynamics simulations. We demonstrate the promise of tissue engineered vascular grafts, remaining compliant and distensible while resisting long-term calcification, to enhance the long-term success of congenital heart surgeries.
Collapse
Affiliation(s)
- Mackenzie E Turner
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Molecular Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Kevin M Blum
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tatsuya Watanabe
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Erica L Schwarz
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mahboubeh Nabavinia
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Joseph T Leland
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Delaney J Villarreal
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - William E Schwartzman
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ting-Heng Chou
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei City, Taiwan
| | - Peter B Baker
- Pathology Department at Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Goki Matsumura
- Department of Medical Safety Management, Tokyo Women's Medical University, Tokyo, Japan
| | - Rajesh Krishnamurthy
- Department of Radiology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Andrew R Yates
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kan N Hor
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Alison L Marsden
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, CA, USA
| | - Mitchel R Stacy
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA.
- Department of Surgery, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
5
|
Thorsnes QS, Turner PR, Ali MA, Cabral JD. Integrating Fused Deposition Modeling and Melt Electrowriting for Engineering Branched Vasculature. Biomedicines 2023; 11:3139. [PMID: 38137359 PMCID: PMC10740633 DOI: 10.3390/biomedicines11123139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
We demonstrate for the first time the combination of two additive manufacturing technologies used in tandem, fused deposition modelling (FDM) and melt electrowriting (MEW), to increase the range of possible MEW structures, with a focus on creating branched, hollow scaffolds for vascularization. First, computer-aided design (CAD) was used to design branched mold halves which were then used to FDM print conductive polylactic acid (cPLA) molds. Next, MEW was performed over the top of these FDM cPLA molds using polycaprolactone (PCL), an FDA-approved biomaterial. After the removal of the newly constructed MEW scaffolds from the FDM molds, complementary MEW scaffold halves were heat-melded together by placing the flat surfaces of each half onto a temperature-controlled platform, then pressing the heated halves together, and finally allowing them to cool to create branched, hollow constructs. This hybrid technique permitted the direct fabrication of hollow MEW structures that would otherwise not be possible to achieve using MEW alone. The scaffolds then underwent in vitro physical and biological testing. Specifically, dynamic mechanical analysis showed the scaffolds had an anisotropic stiffness of 1 MPa or 5 MPa, depending on the direction of the applied stress. After a month of incubation, normal human dermal fibroblasts (NHDFs) were seen growing on the scaffolds, which demonstrated that no deleterious effects were exerted by the MEW scaffolds constructed using FDM cPLA molds. The significant potential of our hybrid additive manufacturing approach to fabricate complex MEW scaffolds could be applied to a variety of tissue engineering applications, particularly in the field of vascularization.
Collapse
Affiliation(s)
- Quinn S. Thorsnes
- Department of Oral Rehabilitation, School of Dentistry, University of Otago, Dunedin 9054, New Zealand; (Q.S.T.); (M.A.A.)
| | - Paul R. Turner
- Department of Microbiology & Immunology, University of Otago, Dunedin 9054, New Zealand;
| | - Mohammed Azam Ali
- Department of Oral Rehabilitation, School of Dentistry, University of Otago, Dunedin 9054, New Zealand; (Q.S.T.); (M.A.A.)
| | - Jaydee D. Cabral
- Department of Microbiology & Immunology, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
6
|
Wang L, Wei X, Wang Y. Promoting Angiogenesis Using Immune Cells for Tissue-Engineered Vascular Grafts. Ann Biomed Eng 2023; 51:660-678. [PMID: 36774426 DOI: 10.1007/s10439-023-03158-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/29/2023] [Indexed: 02/13/2023]
Abstract
Implantable tissue-engineered vascular grafts (TEVGs) usually trigger the host reaction which is inextricably linked with the immune system, including blood-material interaction, protein absorption, inflammation, foreign body reaction, and so on. With remarkable progress, the immune response is no longer considered to be entirely harmful to TEVGs, but its therapeutic and impaired effects on angiogenesis and tissue regeneration are parallel. Although the implicated immune mechanisms remain elusive, it is certainly worthwhile to gain detailed knowledge about the function of the individual immune components during angiogenesis and vascular remodeling. This review provides a general overview of immune cells with an emphasis on macrophages in light of the current literature. To the extent possible, we summarize state-of-the-art approaches to immune cell regulation of the vasculature and suggest that future studies are needed to better define the timing of the activity of each cell subpopulation and to further reveal key regulatory switches.
Collapse
Affiliation(s)
- Li Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuqing Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
7
|
Breuer T, Jimenez M, Humphrey JD, Shinoka T, Breuer CK. Tissue Engineering of Vascular Grafts: A Case Report From Bench to Bedside and Back. Arterioscler Thromb Vasc Biol 2023; 43:399-409. [PMID: 36633008 PMCID: PMC9974789 DOI: 10.1161/atvbaha.122.318236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023]
Abstract
For over 25 years, our group has used regenerative medicine strategies to develop improved biomaterials for use in congenital heart surgery. Among other applications, we developed a tissue-engineered vascular graft (TEVG) by seeding tubular biodegradable polymeric scaffolds with autologous bone marrow-derived mononuclear cells. Results of our first-in-human study demonstrated feasibility as the TEVG transformed into a living vascular graft having an ability to grow, making it the first engineered graft with growth potential. Yet, outcomes of this first Food and Drug Administration-approved clinical trial evaluating safety revealed a prohibitively high incidence of early TEVG stenosis, preventing the widespread use of this promising technology. Mechanistic studies in mouse models provided important insight into the development of stenosis and enabled advanced computational models. Computational simulations suggested both a novel inflammation-driven, mechano-mediated process of in vivo TEVG development and an unexpected natural history, including spontaneous reversal of the stenosis. Based on these in vivo and in silico discoveries, we have been able to rationally design strategies for inhibiting TEVG stenosis that have been validated in preclinical large animal studies and translated to the clinic via a new Food and Drug Administration-approved clinical trial. This progress would not have been possible without the multidisciplinary approach, ranging from small to large animal models and computational simulations. This same process is expected to lead to further advances in scaffold design, and thus next generation TEVGs.
Collapse
Affiliation(s)
- Thomas Breuer
- Nationwide Children's Hospital, Columbus, OH (T.B., M.J., T.S., C.K.B.)
| | - Michael Jimenez
- Nationwide Children's Hospital, Columbus, OH (T.B., M.J., T.S., C.K.B.)
| | - Jay D Humphrey
- Yale University, School of Engineering and Applied Science, New Haven, CT (J.D.H.)
| | - Toshiharu Shinoka
- Nationwide Children's Hospital, Columbus, OH (T.B., M.J., T.S., C.K.B.)
| | | |
Collapse
|
8
|
Potential of Biodegradable Synthetic Polymers for Use in Small-diameter Vascular Engineering. Macromol Res 2022. [DOI: 10.1007/s13233-022-0056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Van Hoof L, Verbrugghe P, Jones EAV, Humphrey JD, Janssens S, Famaey N, Rega F. Understanding Pulmonary Autograft Remodeling After the Ross Procedure: Stick to the Facts. Front Cardiovasc Med 2022; 9:829120. [PMID: 35224059 PMCID: PMC8865563 DOI: 10.3389/fcvm.2022.829120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The Ross, or pulmonary autograft, procedure presents a fascinating mechanobiological scenario. Due to the common embryological origin of the aortic and pulmonary root, the conotruncus, several authors have hypothesized that a pulmonary autograft has the innate potential to remodel into an aortic phenotype once exposed to systemic conditions. Most of our understanding of pulmonary autograft mechanobiology stems from the remodeling observed in the arterial wall, rather than the valve, simply because there have been many opportunities to study the walls of dilated autografts explanted at reoperation. While previous histological studies provided important clues on autograft adaptation, a comprehensive understanding of its determinants and underlying mechanisms is needed so that the Ross procedure can become a widely accepted aortic valve substitute in select patients. It is clear that protecting the autograft during the early adaptation phase is crucial to avoid initiating a sequence of pathological remodeling. External support in the freestanding Ross procedure should aim to prevent dilatation while simultaneously promoting remodeling, rather than preventing dilatation at the cost of vascular atrophy. To define the optimal mechanical properties and geometry for external support, the ideal conditions for autograft remodeling and the timeline of mechanical adaptation must be determined. We aimed to rigorously review pulmonary autograft remodeling after the Ross procedure. Starting from the developmental, microstructural and biomechanical differences between the pulmonary artery and aorta, we review autograft mechanobiology in relation to distinct clinical failure mechanisms while aiming to identify unmet clinical needs, gaps in current knowledge and areas for further research. By correlating clinical and experimental observations of autograft remodeling with established principles in cardiovascular mechanobiology, we aim to present an up-to-date overview of all factors involved in extracellular matrix remodeling, their interactions and potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lucas Van Hoof
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Peter Verbrugghe
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | | | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Stefan Janssens
- Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Nele Famaey
- Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Filip Rega
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Blum KM, Mirhaidari G, Breuer CK. Tissue engineering: Relevance to neonatal congenital heart disease. Semin Fetal Neonatal Med 2022; 27:101225. [PMID: 33674254 PMCID: PMC8390581 DOI: 10.1016/j.siny.2021.101225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Congenital heart disease (CHD) represents a large clinical burden, representing the most common cause of birth defect-related death in the newborn. The mainstay of treatment for CHD remains palliative surgery using prosthetic vascular grafts and valves. These devices have limited effectiveness in pediatric patients due to thrombosis, infection, limited endothelialization, and a lack of growth potential. Tissue engineering has shown promise in providing new solutions for pediatric CHD patients through the development of tissue engineered vascular grafts, heart patches, and heart valves. In this review, we examine the current surgical treatments for congenital heart disease and the research being conducted to create tissue engineered products for these patients. While much research remains to be done before tissue engineering becomes a mainstay of clinical treatment for CHD patients, developments have been progressing rapidly towards translation of tissue engineering devices to the clinic.
Collapse
Affiliation(s)
- Kevin M Blum
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Childrens Hospital, Columbus, OH, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| | - Gabriel Mirhaidari
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Childrens Hospital, Columbus OH, USA,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus OH, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Childrens Hospital, Columbus, OH, USA.
| |
Collapse
|
11
|
Weekes A, Bartnikowski N, Pinto N, Jenkins J, Meinert C, Klein TJ. Biofabrication of small diameter tissue-engineered vascular grafts. Acta Biomater 2022; 138:92-111. [PMID: 34781026 DOI: 10.1016/j.actbio.2021.11.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022]
Abstract
Current clinical treatment strategies for the bypassing of small diameter (<6 mm) blood vessels in the management of cardiovascular disease frequently fail due to a lack of suitable autologous grafts, as well as infection, thrombosis, and intimal hyperplasia associated with synthetic grafts. The rapid advancement of 3D printing and regenerative medicine technologies enabling the manufacture of biological, tissue-engineered vascular grafts (TEVGs) with the ability to integrate, remodel, and repair in vivo, promises a paradigm shift in cardiovascular disease management. This review comprehensively covers current state-of-the-art biofabrication technologies for the development of biomimetic TEVGs. Various scaffold based additive manufacturing methods used in vascular tissue engineering, including 3D printing, bioprinting, electrospinning and melt electrowriting, are discussed and assessed against the biomechanical and functional requirements of human vasculature, while the efficacy of decellularization protocols currently applied to engineered and native vessels are evaluated. Further, we provide interdisciplinary insight into the outlook of regenerative medicine for the development of vascular grafts, exploring key considerations and perspectives for the successful clinical integration of evolving technologies. It is expected that continued advancements in microscale additive manufacturing, biofabrication, tissue engineering and decellularization will culminate in the development of clinically viable, off-the-shelf TEVGs for small diameter applications in the near future. STATEMENT OF SIGNIFICANCE: Current clinical strategies for the management of cardiovascular disease using small diameter vessel bypassing procedures are inadequate, with up to 75% of synthetic grafts failing within 3 years of implantation. It is this critically important clinical problem that researchers in the field of vascular tissue engineering and regenerative medicine aim to alleviate using biofabrication methods combining additive manufacturing, biomaterials science and advanced cellular biology. While many approaches facilitate the development of bioengineered constructs which mimic the structure and function of native blood vessels, several challenges must still be overcome for clinical translation of the next generation of tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Angus Weekes
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia.
| | - Nicole Bartnikowski
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, 4035, Australia.
| | - Nigel Pinto
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia; Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia.
| | - Jason Jenkins
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia; Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia.
| | - Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia.
| | - Travis J Klein
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia.
| |
Collapse
|
12
|
Blum KM, Zbinden JC, Ramachandra AB, Lindsey SE, Szafron JM, Reinhardt JW, Heitkemper M, Best CA, Mirhaidari GJM, Chang YC, Ulziibayar A, Kelly J, Shah KV, Drews JD, Zakko J, Miyamoto S, Matsuzaki Y, Iwaki R, Ahmad H, Daulton R, Musgrave D, Wiet MG, Heuer E, Lawson E, Schwarz E, McDermott MR, Krishnamurthy R, Krishnamurthy R, Hor K, Armstrong AK, Boe BA, Berman DP, Trask AJ, Humphrey JD, Marsden AL, Shinoka T, Breuer CK. Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth. COMMUNICATIONS MEDICINE 2022; 2:3. [PMID: 35603301 PMCID: PMC9053249 DOI: 10.1038/s43856-021-00063-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022] Open
Abstract
Background Tissue-engineered vascular grafts (TEVGs) have the potential to advance the surgical management of infants and children requiring congenital heart surgery by creating functional vascular conduits with growth capacity. Methods Herein, we used an integrative computational-experimental approach to elucidate the natural history of neovessel formation in a large animal preclinical model; combining an in vitro accelerated degradation study with mechanical testing, large animal implantation studies with in vivo imaging and histology, and data-informed computational growth and remodeling models. Results Our findings demonstrate that the structural integrity of the polymeric scaffold is lost over the first 26 weeks in vivo, while polymeric fragments persist for up to 52 weeks. Our models predict that early neotissue accumulation is driven primarily by inflammatory processes in response to the implanted polymeric scaffold, but that turnover becomes progressively mechano-mediated as the scaffold degrades. Using a lamb model, we confirm that early neotissue formation results primarily from the foreign body reaction induced by the scaffold, resulting in an early period of dynamic remodeling characterized by transient TEVG narrowing. As the scaffold degrades, mechano-mediated neotissue remodeling becomes dominant around 26 weeks. After the scaffold degrades completely, the resulting neovessel undergoes growth and remodeling that mimicks native vessel behavior, including biological growth capacity, further supported by fluid-structure interaction simulations providing detailed hemodynamic and wall stress information. Conclusions These findings provide insights into TEVG remodeling, and have important implications for clinical use and future development of TEVGs for children with congenital heart disease.
Collapse
Affiliation(s)
- Kevin M. Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Jacob C. Zbinden
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 USA
| | | | - Stephanie E. Lindsey
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA 94305 USA
- Institute for Computational and Mathematical Engineering (ICME), Stanford University, Stanford, CA 94305 USA
| | - Jason M. Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520 USA
| | - James W. Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Megan Heitkemper
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Cameron A. Best
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Gabriel J. M. Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Yu-Chun Chang
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Anudari Ulziibayar
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - John Kelly
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Kejal V. Shah
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Joseph D. Drews
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Jason Zakko
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Shinka Miyamoto
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Cardiovascular Surgery at Tokyo Women’s Medical University, Tokyo, Japan
| | - Yuichi Matsuzaki
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Ryuma Iwaki
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Hira Ahmad
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Pediatric Colorectal and Pelvic Reconstructive Surgery, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Robbie Daulton
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- University of Cincinnati College of Medicine 3230 Eden Ave, Cincinnati, OH 45267 USA
| | - Drew Musgrave
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Matthew G. Wiet
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Eric Heuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Emily Lawson
- The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Erica Schwarz
- Department of Bioengineering, Stanford University, Stanford, CA 94304 USA
| | - Michael R. McDermott
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Rajesh Krishnamurthy
- Department of Radiology, Nationwide Children’s Hospital, Columbus, Ohio 43205 USA
| | | | - Kan Hor
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Aimee K. Armstrong
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Brian A. Boe
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Darren P. Berman
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - Aaron J. Trask
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520 USA
| | - Alison L. Marsden
- Institute for Computational and Mathematical Engineering (ICME), Stanford University, Stanford, CA 94305 USA
- Department of Bioengineering, Stanford University, Stanford, CA 94304 USA
| | - Toshiharu Shinoka
- The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Cardiothoracic Surgery, The Ohio State University College of Medicine, Columbus, OH 43205 USA
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| |
Collapse
|
13
|
Tissue-Engineered Vascular Graft with Co-Culture of Smooth Muscle Cells and Human Endothelial Vein Cells on an Electrospun Poly(lactic-co-glycolic acid) Microtube Array Membrane. MEMBRANES 2021; 11:membranes11100732. [PMID: 34677499 PMCID: PMC8539722 DOI: 10.3390/membranes11100732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022]
Abstract
Coronary artery disease is one of the major diseases that plagues today’s modern society. Conventional treatments utilize synthetic vascular grafts such as Dacron® and Teflon® in bypass graft surgery. Despite the wide adaptation, these synthetic grafts are often plagued with weaknesses such as low hemocompatibility, thrombosis, intimal hyperplasia, and risks of graft infection. More importantly, these synthetic grafts are not available at diameters of less than 6 mm. In view of these challenges, we strived to develop and adapt the electrospun Poly Lactic-co-Glycolic Acid (PLGA) Microtube Array Membrane (MTAM) vascular graft for applications smaller than 6 mm in diameter. Homogenously porous PLGA MTAMs were successfully electrospun at 5.5–8.5 kV under ambient conditions. Mechanically, the PLGA MTAMs registered a maximum tensile strength of 5.57 ± 0.85 MPa and Young’s modulus value of 1.134 ± 0.01 MPa; while MTT assay revealed that seven-day Smooth Muscle Cells (SMCs) and Human Umbilical Vein Endothelial Cells (HUVECs) registered a 6 times and 2.4 times higher cell viability when cultured in a co-culture setting in medium containing α-1 haptaglobulin. When rolled into a vascular graft, the PLGA MTAMs registered an overall degradation of 82% after 60 days of cell co-culture. After eight weeks of culturing, immunohistochemistry staining revealed the formation of a monolayer of HUVECs with tight junctions on the surface of the PLGA MTAM, and as for the SMCs housed within the lumens of the PLGA MTAMs, a monolayer with high degree of orientation was observed. The PLGA MTAM registered a burst pressure of 1092.2 ± 175.3 mmHg, which was sufficient for applications such as small diameter blood vessels. Potentially, the PLGA MTAM could be used as a suitable substrate for vascular engineering.
Collapse
|
14
|
Drews JD, Pepper VK, Best CA, Szafron JM, Cheatham JP, Yates AR, Hor KN, Zbinden JC, Chang YC, Mirhaidari GJM, Ramachandra AB, Miyamoto S, Blum KM, Onwuka EA, Zakko J, Kelly J, Cheatham SL, King N, Reinhardt JW, Sugiura T, Miyachi H, Matsuzaki Y, Breuer J, Heuer ED, West TA, Shoji T, Berman D, Boe BA, Asnes J, Galantowicz M, Matsumura G, Hibino N, Marsden AL, Pober JS, Humphrey JD, Shinoka T, Breuer CK. Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Sci Transl Med 2021; 12:12/537/eaax6919. [PMID: 32238576 DOI: 10.1126/scitranslmed.aax6919] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/27/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
We developed a tissue-engineered vascular graft (TEVG) for use in children and present results of a U.S. Food and Drug Administration (FDA)-approved clinical trial evaluating this graft in patients with single-ventricle cardiac anomalies. The TEVG was used as a Fontan conduit to connect the inferior vena cava and pulmonary artery, but a high incidence of graft narrowing manifested within the first 6 months, which was treated successfully with angioplasty. To elucidate mechanisms underlying this early stenosis, we used a data-informed, computational model to perform in silico parametric studies of TEVG development. The simulations predicted early stenosis as observed in our clinical trial but suggested further that such narrowing could reverse spontaneously through an inflammation-driven, mechano-mediated mechanism. We tested this unexpected, model-generated hypothesis by implanting TEVGs in an ovine inferior vena cava interposition graft model, which confirmed the prediction that TEVG stenosis resolved spontaneously and was typically well tolerated. These findings have important implications for our translational research because they suggest that angioplasty may be safely avoided in patients with asymptomatic early stenosis, although there will remain a need for appropriate medical monitoring. The simulations further predicted that the degree of reversible narrowing can be mitigated by altering the scaffold design to attenuate early inflammation and increase mechano-sensing by the synthetic cells, thus suggesting a new paradigm for optimizing next-generation TEVGs. We submit that there is considerable translational advantage to combined computational-experimental studies when designing cutting-edge technologies and their clinical management.
Collapse
Affiliation(s)
- Joseph D Drews
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Victoria K Pepper
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Cameron A Best
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - John P Cheatham
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Andrew R Yates
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Kan N Hor
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jacob C Zbinden
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yu-Chun Chang
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Gabriel J M Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Abhay B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Shinka Miyamoto
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kevin M Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ekene A Onwuka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jason Zakko
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - John Kelly
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sharon L Cheatham
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Nakesha King
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - James W Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Tadahisa Sugiura
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Hideki Miyachi
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Yuichi Matsuzaki
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Julie Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Eric D Heuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - T Aaron West
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Toshihiro Shoji
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Darren Berman
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Brian A Boe
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jeremy Asnes
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mark Galantowicz
- The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Goki Matsumura
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Narutoshi Hibino
- Department of Surgery, University of Chicago/Advocate Children's Hospital, Chicago, IL 60453, USA
| | - Alison L Marsden
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, CA 94304, USA
| | - Jordan S Pober
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA. .,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.,Department of Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
15
|
Nemoto S, Konishi H, Suzuki T, Shimada R, Katsumata T, Osawa S, Yamaguchi A. Long-term viability and extensibility of an in situ regenerated canine aortic wall using hybrid warp-knitted fabric. Interact Cardiovasc Thorac Surg 2021; 33:165-172. [PMID: 33880514 DOI: 10.1093/icvts/ivab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Many surgical materials promoting tissue regeneration have been explored for use in paediatric cardiac surgery. The aim of this study is to evaluate the long-term viability and extensibility of the canine aortic wall regenerated using a novel synthetic hybrid fabric. METHODS The sheet is a warp-knitted fabric of biodegradable (poly-l-lactic acid) and non-biodegradable (polyethylene terephthalate) yarns coated with cross-linked gelatine. This material was implanted as a patch to fill an oval-shaped defect created in the canine descending aorta. The tissue samples were explanted after 12, 24 or 36 months (N = 3, 2, 2, respectively) for histological examination and biomechanical testing. RESULTS There was no shrinkage, rupture or aneurysmal change after 24 months. The regenerated wall showed prototypical vascular healing without material degeneration, chronic inflammation, calcification or abnormal intimal overgrowth. Bridging tissue across the patch was well-formed and had expanded over time. The biodegradable yarns had completely degraded at 24 months after implantation, as scheduled, but the regenerated aortic wall demonstrated satisfactory levels of mechanical strength and extensibility in tensile strength tests. CONCLUSIONS The sheet achieved good long-term viability and extensibility in the regenerated aortic wall. These findings suggest that it is a promising surgical material for repairing congenital heart defects. Further developments of the sheet are required, including clinical studies.
Collapse
Affiliation(s)
- Shintaro Nemoto
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Osaka, Japan
| | - Hayato Konishi
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Osaka, Japan
| | - Tatsuya Suzuki
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Osaka, Japan
| | - Ryo Shimada
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Osaka, Japan
| | - Takahiro Katsumata
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College, Osaka, Japan
| | - Satomi Osawa
- Toxicology Research Department, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Tokyo, Japan
| | - Ayuko Yamaguchi
- Healthcare Business Development-Medical Device, Teijin Limited, Tokyo, Japan
| |
Collapse
|
16
|
Matsuzaki Y, Miyamoto S, Miyachi H, Iwaki R, Shoji T, Blum K, Chang YC, Kelly J, Reinhardt JW, Nakayama H, Breuer CK, Shinoka T. Improvement of a Novel Small-diameter Tissue-engineered Arterial Graft With Heparin Conjugation. Ann Thorac Surg 2021; 111:1234-1241. [DOI: 10.1016/j.athoracsur.2020.06.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/15/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
|
17
|
Chen H, Zhang Y, Ni T, Ding P, Zan Y, Cai X, Zhang Y, Liu M, Pei R. Construction of a Silk Fibroin/Polyethylene Glycol Double Network Hydrogel with Co-Culture of HUVECs and UCMSCs for a Functional Vascular Network. ACS APPLIED BIO MATERIALS 2021; 4:406-419. [PMID: 35014292 DOI: 10.1021/acsabm.0c00353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The success of complex tissue and internal organ reconstruction relies principally on the fabrication of a 3D vascular network, which guarantees the delivery of oxygen and nutrients in addition to the disposal of waste. In this study, a rapidly forming cell-encapsulated double network (DN) hydrogel is constructed by an ultrasonically activated silk fibroin network and bioorthogonal-mediated polyethylene glycol network. This DN hydrogel can be solidified within 10 s, and its mechanical property gradually increases to ∼20 kPa after 30 min. This work also demonstrates that coencapsulation of human umbilical vein endothelial cells (HUVECs) and umbilical cord-derived mesenchymal stem cells (UCMSCs) into the DN hydrogel can facilitate the formation of more mature vessels and complete the capillary network in comparison with the hydrogels encapsulated with a single cell type both in vitro and in vivo. Taking together, the DN hydrogel, combined with coencapsulation of HUVECs and UCMSCs, represents a strategy for the construction of a functional vascular network.
Collapse
Affiliation(s)
- Hong Chen
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.,Institut de Science des Matériaux de Mulhouse, IS2M-UMR CNRS 7361, UHA, 15, Rue Jean Starcky, Cedex 68057 Mulhouse, France
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tianyu Ni
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Pi Ding
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yue Zan
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xue Cai
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China
| | - Yiwei Zhang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Min Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
18
|
Nasiri B, Row S, Smith RJ, Swartz DD, Andreadis ST. Cell-free vascular grafts that grow with the host. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005769. [PMID: 33551712 PMCID: PMC7857470 DOI: 10.1002/adfm.202005769] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cell-free small diameter vascular grafts, based on small intestinal submucosa (SIS) functionalized with heparin and vascular endothelial growth factor (VEGF) manufactured and implanted successfully into the arterial system of neonatal lambs, where they remained patent and grew in size with the host to a similar extent and with similar rate as native arteries. Acellular tissue engineered vessels (A-TEV) integrated seamlessly into the native vasculature and developed confluent, functional endothelium that afforded patency. The medial layer was infiltrated by smooth muscle cells, showed no signs of calcification and developed contractile function. The vascular wall underwent remarkable extracellular matrix remodeling exhibiting elastin fibers and even inner elastic lamina within six months. Taken together, our results suggest that VEGF-based A-TEVs may be suitable for treatment of congenital heart disorders to alleviate the need for repeated surgeries, which are currently standard practice.
Collapse
Affiliation(s)
- Bita Nasiri
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Sindhu Row
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
- Angiograft LLC, Amherst NY
| | - Randall J. Smith
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Daniel D. Swartz
- Angiograft LLC, Amherst NY
- Address for correspondence: Stelios Andreadis, Ph.D., SUNY Distinguished Professor, Bioengineering Laboratory, 908 Furnas Hall, Department of Chemical and Biological Engineering, Department of Biomedical Engineering, and Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA, Tel: (716) 645-1202, Fax: (716) 645-3822, , Daniel D. Swartz, Ph.D., Angiograft, LLC, Amherst, NY,
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY
- Angiograft LLC, Amherst NY
- Address for correspondence: Stelios Andreadis, Ph.D., SUNY Distinguished Professor, Bioengineering Laboratory, 908 Furnas Hall, Department of Chemical and Biological Engineering, Department of Biomedical Engineering, and Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA, Tel: (716) 645-1202, Fax: (716) 645-3822, , Daniel D. Swartz, Ph.D., Angiograft, LLC, Amherst, NY,
| |
Collapse
|
19
|
Poulis N, Zaytseva P, Gähwiler EKN, Motta SE, Fioretta ES, Cesarovic N, Falk V, Hoerstrup SP, Emmert MY. Tissue engineered heart valves for transcatheter aortic valve implantation: current state, challenges, and future developments. Expert Rev Cardiovasc Ther 2020; 18:681-696. [DOI: 10.1080/14779072.2020.1792777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nikolaos Poulis
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Polina Zaytseva
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Eric K. N. Gähwiler
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Sarah E. Motta
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | | | - Nikola Cesarovic
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland
| | - Volkmar Falk
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- German Center of Cardiovascular Research, Partner Site Berlin, Berlin, Germany
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| |
Collapse
|
20
|
Optimizing the Use of iPSC-CMs for Cardiac Regeneration in Animal Models. Animals (Basel) 2020; 10:ani10091561. [PMID: 32887495 PMCID: PMC7552322 DOI: 10.3390/ani10091561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary In 2006, the first induced pluripotent stem cells were generated by reprogramming skin cells. Induced pluripotent stem cells undergo fast cell division, can differentiate into many different cell types, can be patient-specific, and do not raise ethical issues. Thus, they offer great promise as in vitro disease models, drug toxicity testing platforms, and for autologous tissue regeneration. Heart failure is one of the major causes of death worldwide. It occurs when the heart cannot meet the body’s metabolic demands. Induced pluripotent stem cells can be differentiated into cardiac myocytes, can form patches resembling native cardiac tissue, and can engraft to the damaged heart. However, despite correct host/graft coupling, most animal studies demonstrate an arrhythmogenicity of the engrafted tissue and variable survival. This is partially because of the heterogeneity and immaturity of the cells. New evidence suggests that by modulating induced pluripotent stem cells-cardiac myocytes (iPSC-CM) metabolism by switching substrates and changing metabolic pathways, you can decrease iPSC-CM heterogeneity and arrhythmogenicity. Novel culture methods and tissue engineering along with animal models of heart failure are needed to fully unlock the potential of cardiac myocytes derived from induced pluripotent stem cells for cardiac regeneration. Abstract Heart failure (HF) is a common disease in which the heart cannot meet the metabolic demands of the body. It mostly occurs in individuals 65 years or older. Cardiac transplantation is the best option for patients with advanced HF. High numbers of patient-specific cardiac myocytes (CMs) can be generated from induced pluripotent stem cells (iPSCs) and can possibly be used to treat HF. While some studies found iPSC-CMS can couple efficiently to the damaged heart and restore cardiac contractility, almost all found iPSC-CM transplantation is arrhythmogenic, thus hampering the use of iPSC-CMs for cardiac regeneration. Studies show that iPSC-CM cultures are highly heterogeneous containing atrial-, ventricular- and nodal-like CMs. Furthermore, they have an immature phenotype, resembling more fetal than adult CMs. There is an urgent need to overcome these issues. To this end, a novel and interesting avenue to increase CM maturation consists of modulating their metabolism. Combined with careful engineering and animal models of HF, iPSC-CMs can be assessed for their potential for cardiac regeneration and a cure for HF.
Collapse
|
21
|
Baganha F, de Jong A, Jukema JW, Quax PHA, de Vries MR. The Role of Immunomodulation in Vein Graft Remodeling and Failure. J Cardiovasc Transl Res 2020; 14:100-109. [PMID: 32542547 PMCID: PMC7892738 DOI: 10.1007/s12265-020-10001-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Obstructive arterial disease is a major cause of morbidity and mortality in the developed world. Venous bypass graft surgery is one of the most frequently used revascularization strategies despite its considerable short and long time failure rate. Due to vessel wall remodeling, inflammation, intimal hyperplasia, and accelerated atherosclerosis, vein grafts may (ultimately) fail to revascularize tissues downstream to occlusive atherosclerotic lesions. In the past decades, little has changed in the prevention of vein graft failure (VGF) although new insights in the role of innate and adaptive immunity in VGF have emerged. In this review, we discuss the pathophysiological mechanisms underlying the development of VGF, emphasizing the role of immune response and associated factors related to VG remodeling and failure. Moreover, we discuss potential therapeutic options that can improve patency based on data from both preclinical studies and the latest clinical trials. This review contributes to the insights in the role of immunomodulation in vein graft failure in humans. We describe the effects of immune cells and related factors in early (thrombosis), intermediate (inward remodeling and intimal hyperplasia), and late (intimal hyperplasia and accelerated atherosclerosis) failure based on both preclinical (mouse) models and clinical data.
Collapse
Affiliation(s)
- Fabiana Baganha
- Department of Vascular Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, Aberdeen University, Aberdeen, UK
| | - Alwin de Jong
- Department of Vascular Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Margreet R de Vries
- Department of Vascular Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
22
|
Narancic T, Cerrone F, Beagan N, O’Connor KE. Recent Advances in Bioplastics: Application and Biodegradation. Polymers (Basel) 2020; 12:E920. [PMID: 32326661 PMCID: PMC7240402 DOI: 10.3390/polym12040920] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
The success of oil-based plastics and the continued growth of production and utilisation can be attributed to their cost, durability, strength to weight ratio, and eight contributions to the ease of everyday life. However, their mainly single use, durability and recalcitrant nature have led to a substantial increase of plastics as a fraction of municipal solid waste. The need to substitute single use products that are not easy to collect has inspired a lot of research towards finding sustainable replacements for oil-based plastics. In addition, specific physicochemical, biological, and degradation properties of biodegradable polymers have made them attractive materials for biomedical applications. This review summarises the advances in drug delivery systems, specifically design of nanoparticles based on the biodegradable polymers. We also discuss the research performed in the area of biophotonics and challenges and opportunities brought by the design and application of biodegradable polymers in tissue engineering. We then discuss state-of-the-art research in the design and application of biodegradable polymers in packaging and emphasise the advances in smart packaging development. Finally, we provide an overview of the biodegradation of these polymers and composites in managed and unmanaged environments.
Collapse
Affiliation(s)
- Tanja Narancic
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| | - Federico Cerrone
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| | - Niall Beagan
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
| | - Kevin E. O’Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland; (T.N.); (F.C.); (N.B.)
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
- School of Biomolecular and Biomedical Sciences, Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, 4, D04 N2E5 Dublin, Ireland
| |
Collapse
|
23
|
Matsushita H, Inoue T, Abdollahi S, Yeung E, Ong CS, Lui C, Pitaktong I, Nelson K, Johnson J, Hibino N. Corrugated nanofiber tissue-engineered vascular graft to prevent kinking for arteriovenous shunts in an ovine model. JVS Vasc Sci 2020; 1:100-108. [PMID: 34617042 PMCID: PMC8489245 DOI: 10.1016/j.jvssci.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/25/2020] [Indexed: 01/14/2023] Open
Abstract
Objective Prosthetic grafts are often needed in open vascular procedures. However, the smaller diameter prosthetic grafts (<6 mm) have low patency and often result in complications from infection. Tissue-engineered vascular grafts (TEVGs) are a promising replacement for small diameter prosthetic grafts. TEVGs start as a biodegradable scaffold to promote autologous cell proliferation and functional neotissue regeneration. Owing to the limitations of graft materials; however, most TEVGs are rigid and easily kinked when implanted in limited spaces, which precludes clinical application. We have developed a novel corrugated nanofiber graft to prevent kinking. Methods TEVGs with corrugated walls (5-mm internal diameter by 10 cm length) were created by electrospinning a blend of poly-ε-caprolactone and poly(L-lactide-co-caprolactone). The biodegradable grafts were then implanted between the carotid artery and the external jugular vein in a U-shape using an ovine model. TEVGs were implanted on both the left and right side of a sheep (n = 4, grafts = 8). The grafts were explanted 1 month after implantation and inspected with mechanical and histologic analyses. Graft patency was confirmed by measuring graft diameter and blood flow velocity using ultrasound, which was performed on day 4 and every following week after implantation. Results All sheep survived postoperatively except for one sheep that died of acute heart failure 2 weeks after implantation. The graft patency rate was 87.5% (seven grafts out of eight) with one graft becoming occluded in the early phase after implantation. There was no significant kinking of the grafts. Overall, endothelial cells were observed in the grafts 1 month after the surgeries without graft rupture, calcification, or aneurysmal change. Conclusions Our novel corrugated nanofiber vascular graft displayed neotissue formation without kinking in large animal model. This basic science research article reported tissue-engineered vascular grafts for arteriovenous shunt procedures. Nanofibrous grafts were electrospun with polyglycolic acid and poly-ε-caprolactone with a corrugated wall design to prevent graft kinking. The tissue-engineered vascular grafts were then implanted in U-shape between the carotid artery and the external jugular vein of an ovine model. This graft had 87.5% patency rate and did not display significant kinking. Overall, re-endothelialization was observed in the grafts one month after the surgeries without graft rupture, calcification or aneurysmal change. This graft is a promising alternative to small diameter prosthetic grafts.
Collapse
Affiliation(s)
| | - Takahiro Inoue
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md
| | - Sara Abdollahi
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md
| | - Enoch Yeung
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md
| | - Chin Siang Ong
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md
| | - Cecillia Lui
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md
| | - Isaree Pitaktong
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md
| | | | | | - Narutoshi Hibino
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md
| |
Collapse
|
24
|
Fioretta ES, Lintas V, Mallone A, Motta SE, von Boehmer L, Dijkman PE, Cesarovic N, Caliskan E, Rodriguez Cetina Biefer H, Lipiski M, Sauer M, Putti M, Janssen HM, Söntjens SH, Smits AI, Bouten CV, Emmert MY, Hoerstrup SP. Differential Leaflet Remodeling of Bone Marrow Cell Pre-Seeded Versus Nonseeded Bioresorbable Transcatheter Pulmonary Valve Replacements. JACC Basic Transl Sci 2019; 5:15-31. [PMID: 32043018 PMCID: PMC7000873 DOI: 10.1016/j.jacbts.2019.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 01/01/2023]
Abstract
Bone marrow mononuclear cell pre-seeding of polycarbonate bisurea–based tissue-engineered heart valves has detrimental effects on long-term performance and in situ remodeling and, therefore, should be avoided. Leaflet-specific analysis revealed pronounced remodeling differences with regard to cell infiltration, scaffold resorption, and extracellular matrix deposition within the same valve explant. The heterogeneity in remodeling of polycarbonate bisurea–based tissue-engineered heart valves may have important safety implications in terms of clinical translation. An in-depth understanding of the mechanobiological mechanisms involved in the in situ remodeling is required to limit the risk of unpredictable (maladaptive) remodeling.
This study showed that bone marrow mononuclear cell pre-seeding had detrimental effects on functionality and in situ remodeling of bioresorbable bisurea-modified polycarbonate (PC-BU)-based tissue-engineered heart valves (TEHVs) used as transcatheter pulmonary valve replacement in sheep. We also showed heterogeneous valve and leaflet remodeling, which affects PC-BU TEHV safety, challenging their potential for clinical translation. We suggest that bone marrow mononuclear cell pre-seeding should not be used in combination with PC-BU TEHVs. A better understanding of cell–scaffold interaction and in situ remodeling processes is needed to improve transcatheter valve design and polymer absorption rates for a safe and clinically relevant translation of this approach.
Collapse
Key Words
- B-GLAP, bone gamma-carboxyglutamate
- BMMNC, bone marrow mononuclear cells
- BVG, bioresorbable vascular graft
- CXCL12, stromal cell-derived factor-1α (SDF1α)
- ECM, extracellular matrix
- IL, interleukin
- MCP, monocyte chemoattractant protein
- MMP, matrix metalloproteinase
- PC-BU, polycarbonate bisurea
- SMA, smooth muscle actin
- TEE, transesophageal echocardiography
- TEHV, tissue-engineered heart valve
- TGF, transforming growth factor
- TVR, transcatheter valve replacement
- cardiovascular regenerative medicine
- endogenous tissue regeneration
- in situ tissue engineering
- supramolecular polymer
- tissue-engineered heart valve
Collapse
Affiliation(s)
| | - Valentina Lintas
- Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland
- Wyss Translational Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Anna Mallone
- Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland
| | - Sarah E. Motta
- Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland
| | - Lisa von Boehmer
- Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland
| | - Petra E. Dijkman
- Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland
| | - Nikola Cesarovic
- Division of Surgical Research, University of Zürich, Zürich, Switzerland
- Department of Cardiovascular Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Etem Caliskan
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| | | | - Miriam Lipiski
- Division of Surgical Research, University of Zürich, Zürich, Switzerland
| | - Mareike Sauer
- Division of Surgical Research, University of Zürich, Zürich, Switzerland
| | - Matilde Putti
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | | | - Anthal I.P.M. Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Carlijn V.C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland
- Wyss Translational Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Address for correspondence: Dr. Maximilian Y. Emmert, Institute for Regenerative Medicine, Moussonstrasse 13, 8044 Zürich, Switzerland.
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland
- Wyss Translational Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Dr. Simon P. Hoerstrup, Institute for Regenerative Medicine, Moussonstrasse 13, 8044 Zürich, Switzerland.
| |
Collapse
|
25
|
Ellison EC. Time and Change: The Importance of Innovation and Leadership to the Future of Surgery. Ann Surg 2019; 270:391-399. [PMID: 31283564 DOI: 10.1097/sla.0000000000003457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Engineering blood vessels and vascularized tissues: technology trends and potential clinical applications. Clin Sci (Lond) 2019; 133:1115-1135. [DOI: 10.1042/cs20180155] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
Abstract
Vascular tissue engineering has the potential to make a significant impact on the treatment of a wide variety of medical conditions, including providing in vitro generated vascularized tissue and organ constructs for transplantation. Since the first report on the construction of a biological blood vessel, significant research and technological advances have led to the generation of clinically relevant large and small diameter tissue engineered vascular grafts (TEVGs). However, developing a biocompatible blood-contacting surface is still a major challenge. Researchers are using biomimicry to generate functional vascular grafts and vascular networks. A multi-disciplinary approach is being used that includes biomaterials, cells, pro-angiogenic factors and microfabrication technologies. Techniques to achieve spatiotemporal control of vascularization include use of topographical engineering and controlled-release of growth/pro-angiogenic factors. Use of decellularized natural scaffolds has gained popularity for engineering complex vascularized organs for potential clinical use. Pre-vascularization of constructs prior to implantation has also been shown to enhance its anastomosis after implantation. Host-implant anastomosis is a phenomenon that is still not fully understood. However, it will be a critical factor in determining the in vivo success of a TEVGs or bioengineered organ. Many clinical studies have been conducted using TEVGs, but vascularized tissue/organ constructs are still in the research & development stage. In addition to technical challenges, there are commercialization and regulatory challenges that need to be addressed. In this review we examine recent advances in the field of vascular tissue engineering, with a focus on technology trends, challenges and potential clinical applications.
Collapse
|
27
|
Matsuzaki Y, John K, Shoji T, Shinoka T. The Evolution of Tissue Engineered Vascular Graft Technologies: From Preclinical Trials to Advancing Patient Care. APPLIED SCIENCES (BASEL, SWITZERLAND) 2019; 9:1274. [PMID: 31890320 PMCID: PMC6937136 DOI: 10.3390/app9071274] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Currently available synthetic grafts have contributed to improved outcomes in cardiovascular surgery. However, the implementation of these graft materials at small diameters have demonstrated poor patency, inhibiting their use for coronary artery bypass surgery in adults. Additionally, when applied to a pediatric patient population, they are handicapped by their lack of growth ability. Tissue engineered alternatives could possibly address these limitations by producing biocompatible implants with the ability to repair, remodel, grow, and regenerate. A tissue engineered vascular graft (TEVG) generally consists of a scaffold, seeded cells, and the appropriate environmental cues (i.e., growth factors, physical stimulation) to induce tissue formation. This review critically appraises current state-of-the-art techniques for vascular graft production. We additionally examine current graft shortcomings and future prospects, as they relate to cardiovascular surgery, from two major clinical trials.
Collapse
Affiliation(s)
- Yuichi Matsuzaki
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Kelly John
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Toshihiro Shoji
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Current Challenges and Emergent Technologies for Manufacturing Artificial Right Ventricle to Pulmonary Artery (RV-PA) Cardiac Conduits. Cardiovasc Eng Technol 2019; 10:205-215. [DOI: 10.1007/s13239-019-00406-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 02/05/2019] [Indexed: 01/12/2023]
|
29
|
Ghafarzadeh M, Namdari P, Tarhani M, Tarhani F. A review of application of stem cell therapy in the management of congenital heart disease. J Matern Fetal Neonatal Med 2018; 33:1607-1615. [PMID: 30185081 DOI: 10.1080/14767058.2018.1520829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Research on stem cells has been rapidly growing with impressive breakthroughs. Although merely a few of the laboratory researches have successfully transited to the clinical trial phase, the application of stem cells as a therapeutic option for some currently incapacitating diseases hold fascinating potentials. This review emphasis the various opportunities for the application of stem cell in the treatment of fetal diseases. First, we provide a brief commentary on the common stem cell strategy used in the treatment of congenital anomalies, thereafter we discuss how stem cell is being used in the management of some fetal disorders.
Collapse
Affiliation(s)
- Masoumeh Ghafarzadeh
- Faculty of Medicine, Department of Obstetrics and Genecology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parsa Namdari
- University of Debrecen Medical School, Debrecen, Hungary
| | - Mehrnoosh Tarhani
- Research Committee Student, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fariba Tarhani
- Faculty of Medicine, Department of Paediatrics, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
30
|
Radke D, Jia W, Sharma D, Fena K, Wang G, Goldman J, Zhao F. Tissue Engineering at the Blood-Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development. Adv Healthc Mater 2018; 7:e1701461. [PMID: 29732735 PMCID: PMC6105365 DOI: 10.1002/adhm.201701461] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/09/2018] [Indexed: 12/14/2022]
Abstract
Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small-diameter TEVGs that are mechanically stable and promote functional remodeling by regenerating host cells. However, developing a biocompatible blood-contacting surface remains a major challenge. The TEVG luminal surface must avoid negative inflammatory responses and thrombogenesis immediately upon implantation and promote endothelialization. The surface has therefore become a primary focus for research and development efforts. The current state of TEVGs is herein reviewed with an emphasis on the blood-contacting surface. General vascular physiology and developmental challenges and strategies are briefly described, followed by an overview of the materials currently employed in TEVGs. The use of biodegradable materials and stem cells requires careful control of graft composition, degradation behavior, and cell recruitment ability to ensure that a physiologically relevant vessel structure is ultimately achieved. The establishment of a stable monolayer of endothelial cells and the quiescence of smooth muscle cells are critical to the maintenance of patency. Several strategies to modify blood-contacting surfaces to resist thrombosis and control cellular recruitment are reviewed, including coatings of biomimetic peptides and heparin.
Collapse
Affiliation(s)
- Daniel Radke
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Wenkai Jia
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Dhavan Sharma
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Kemin Fena
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Guifang Wang
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Feng Zhao
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| |
Collapse
|
31
|
Stacy MR, Best CA, Maxfield MW, Qiu M, Naito Y, Kurobe H, Mahler N, Rocco KA, Sinusas AJ, Shinoka T, Sampath S, Breuer CK. Magnetic Resonance Imaging of Shear Stress and Wall Thickness in Tissue-Engineered Vascular Grafts. Tissue Eng Part C Methods 2018; 24:465-473. [PMID: 29978768 DOI: 10.1089/ten.tec.2018.0144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES Tissue-engineered vascular grafts (TEVGs) have demonstrated potential for treating congenital heart disease (CHD); however, quantitative imaging for tracking functional and structural remodeling of TEVGs has not been applied. Therefore, we evaluated the potential of magnetic resonance (MR) imaging for assessing TEVG wall shear stress (WSS) and wall thickness in a large animal model. METHODS Cell-seeded (n = 3) or unseeded (n = 3) TEVGs were implanted as inferior vena cava interposition grafts in juvenile lambs. Six months following implantation, two-dimensional phase-contrast MR imaging was performed at 3 slice locations (proximal, middle, and distal) to assess normalized WSS (i.e., WSS-to-cross sectional area). T2-weighted MR imaging was performed to assess TEVG wall thickness. Histology was qualitatively assessed, whereas immunohistochemistry was semiquantitatively assessed for smooth muscle cells (αSMA), macrophage lineage cells (CD11b), and matrix metalloproteinase activity (MMP-2 and MMP-9). Picrosirius Red staining was performed to quantify collagen content. RESULTS TEVG wall thickness was significantly higher for proximal, middle, and distal slices in unseeded versus cell-seeded grafts. Significantly higher WSS values existed for proximal versus distal slice locations for cell-seeded TEVGs, whereas no differences in WSS existed between slices for unseeded TEVGs. Additionally, no differences in WSS existed between cell-seeded and unseeded groups. Both groups demonstrated elastin formation, without vascular calcification. Unseeded TEVGs possessed greater content of smooth muscle cells when compared with cell-seeded TEVGs. No differences in macrophage, MMP activity, or collagen content existed between groups. CONCLUSION MR imaging allows for in vivo assessment of functional and anatomical characteristics of TEVGs and may provide a nonionizing approach that is clinically translatable to children undergoing treatment for CHD.
Collapse
Affiliation(s)
- Mitchel R Stacy
- 1 Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut.,2 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Cameron A Best
- 2 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Mark W Maxfield
- 3 Department of Surgery, Yale University School of Medicine , New Haven, Connecticut
| | - Maolin Qiu
- 4 Department of Radiology & Biomedical Imaging, Yale University School of Medicine , New Haven, Connecticut
| | - Yuji Naito
- 3 Department of Surgery, Yale University School of Medicine , New Haven, Connecticut
| | - Hirotsugu Kurobe
- 3 Department of Surgery, Yale University School of Medicine , New Haven, Connecticut
| | - Nathan Mahler
- 2 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Kevin A Rocco
- 5 Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| | - Albert J Sinusas
- 1 Department of Internal Medicine, Yale University School of Medicine , New Haven, Connecticut.,4 Department of Radiology & Biomedical Imaging, Yale University School of Medicine , New Haven, Connecticut
| | - Toshiharu Shinoka
- 2 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Smita Sampath
- 4 Department of Radiology & Biomedical Imaging, Yale University School of Medicine , New Haven, Connecticut
| | - Christopher K Breuer
- 2 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| |
Collapse
|
32
|
Cunnane EM, Weinbaum JS, O'Brien FJ, Vorp DA. Future Perspectives on the Role of Stem Cells and Extracellular Vesicles in Vascular Tissue Regeneration. Front Cardiovasc Med 2018; 5:86. [PMID: 30018970 PMCID: PMC6037696 DOI: 10.3389/fcvm.2018.00086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
Vascular tissue engineering is an area of regenerative medicine that attempts to create functional replacement tissue for defective segments of the vascular network. One approach to vascular tissue engineering utilizes seeding of biodegradable tubular scaffolds with stem (and/or progenitor) cells wherein the seeded cells initiate scaffold remodeling and prevent thrombosis through paracrine signaling to endogenous cells. Stem cells have received an abundance of attention in recent literature regarding the mechanism of their paracrine therapeutic effect. However, very little of this mechanistic research has been performed under the aegis of vascular tissue engineering. Therefore, the scope of this review includes the current state of TEVGs generated using the incorporation of stem cells in biodegradable scaffolds and potential cell-free directions for TEVGs based on stem cell secreted products. The current generation of stem cell-seeded vascular scaffolds are based on the premise that cells should be obtained from an autologous source. However, the reduced regenerative capacity of stem cells from certain patient groups limits the therapeutic potential of an autologous approach. This limitation prompts the need to investigate allogeneic stem cells or stem cell secreted products as therapeutic bases for TEVGs. The role of stem cell derived products, particularly extracellular vesicles (EVs), in vascular tissue engineering is exciting due to their potential use as a cell-free therapeutic base. EVs offer many benefits as a therapeutic base for functionalizing vascular scaffolds such as cell specific targeting, physiological delivery of cargo to target cells, reduced immunogenicity, and stability under physiological conditions. However, a number of points must be addressed prior to the effective translation of TEVG technologies that incorporate stem cell derived EVs such as standardizing stem cell culture conditions, EV isolation, scaffold functionalization with EVs, and establishing the therapeutic benefit of this combination treatment.
Collapse
Affiliation(s)
- Eoghan M Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
33
|
Iop L, Palmosi T, Dal Sasso E, Gerosa G. Bioengineered tissue solutions for repair, correction and reconstruction in cardiovascular surgery. J Thorac Dis 2018; 10:S2390-S2411. [PMID: 30123578 PMCID: PMC6081367 DOI: 10.21037/jtd.2018.04.27] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/02/2018] [Indexed: 01/06/2023]
Abstract
The treatment of cardiac alterations is still nowadays a dramatic issue in the cardiosurgical practice. Synthetic materials applied in this surgery have failed in their long-term therapeutic efficacy due to low biocompatibility and compliance, especially when used in contractile sites. In order to overcome these treatment pitfalls, novel solutions have been developed based on biological tissues. Patches in pericardium, small intestinal submucosa, as well as engineered tissues of myocardium, heart valves and blood vessels have undergone a large preclinical investigation in regenerative medicine studies. Clinical translation has been started or reached by several of these new bioengineered treatment alternatives. This review will describe the preclinical and clinical experiences realized so far with the application of biological tissues in cardiovascular surgery. It will depict the progressive steps realized in the evolution of this research, as well as it will point out the challenges yet to face in order to generate the ideal biomaterial for cardiovascular repair, corrective and reconstructive surgery.
Collapse
Affiliation(s)
- Laura Iop
- Cardiovascular Regenerative Medicine, Department of Cardiac, Thoracic and Vascular Surgery, University of Padua and Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Tiziana Palmosi
- Cardiovascular Regenerative Medicine, Department of Cardiac, Thoracic and Vascular Surgery, University of Padua and Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Eleonora Dal Sasso
- Cardiovascular Regenerative Medicine, Department of Cardiac, Thoracic and Vascular Surgery, University of Padua and Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Gino Gerosa
- Cardiovascular Regenerative Medicine, Department of Cardiac, Thoracic and Vascular Surgery, University of Padua and Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| |
Collapse
|
34
|
Abstract
Congenital heart disease (CHD) is the most common birth defect, affecting 1 in 100 babies. Among CHDs, single ventricle (SV) physiologies, such as hypoplastic left heart syndrome and tricuspid atresia, are particularly severe conditions that require multiple palliative surgeries, including the Fontan procedure. Although the management strategies for SV patients have markedly improved, the prevalence of ventricular dysfunction continues to increase over time, especially after the Fontan procedure. At present, the final treatment for SV patients who develop heart failure is heart transplantation; however, transplantation is difficult to achieve because of severe donor shortages. Recently, various regenerative therapies for heart failure have been developed that increase cardiomyocytes and restore cardiac function, with promising results in adults. The clinical application of various forms of regenerative medicine for CHD patients with heart failure is highly anticipated, and the latest research in this field is reviewed here. In addition, regenerative therapy is important for children with CHD because of their natural growth. The ideal pediatric cardiovascular device would have the potential to adapt to a child's growth. Therefore, if a device that increases in size in accordance with the patient's growth could be developed using regenerative medicine, it would be highly beneficial. This review provides an overview of the available regenerative technologies for CHD patients.
Collapse
|
35
|
Carrabba M, Madeddu P. Current Strategies for the Manufacture of Small Size Tissue Engineering Vascular Grafts. Front Bioeng Biotechnol 2018; 6:41. [PMID: 29721495 PMCID: PMC5916236 DOI: 10.3389/fbioe.2018.00041] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/23/2018] [Indexed: 01/12/2023] Open
Abstract
Occlusive arterial disease, including coronary heart disease (CHD) and peripheral arterial disease (PAD), is the main cause of death, with an annual mortality incidence predicted to rise to 23.3 million worldwide by 2030. Current revascularization techniques consist of angioplasty, placement of a stent, or surgical bypass grafting. Autologous vessels, such as the saphenous vein and internal thoracic artery, represent the gold standard grafts for small-diameter vessels. However, they require invasive harvesting and are often unavailable. Synthetic vascular grafts represent an alternative to autologous vessels. These grafts have shown satisfactory long-term results for replacement of large- and medium-diameter arteries, such as the carotid or common femoral artery, but have poor patency rates when applied to small-diameter vessels, such as coronary arteries and arteries below the knee. Considering the limitations of current vascular bypass conduits, a tissue-engineered vascular graft (TEVG) with the ability to grow, remodel, and repair in vivo presents a potential solution for the future of vascular surgery. Here, we review the different methods that research groups have been investigating to create TEVGs in the last decades. We focus on the techniques employed in the manufacturing process of the grafts and categorize the approaches as scaffold-based (synthetic, natural, or hybrid) or self-assembled (cell-sheet, microtissue aggregation and bioprinting). Moreover, we highlight the attempts made so far to translate this new strategy from the bench to the bedside.
Collapse
Affiliation(s)
- Michele Carrabba
- School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
36
|
Best C, Strouse R, Hor K, Pepper V, Tipton A, Kelly J, Shinoka T, Breuer C. Toward a patient-specific tissue engineered vascular graft. J Tissue Eng 2018; 9:2041731418764709. [PMID: 29568478 PMCID: PMC5858675 DOI: 10.1177/2041731418764709] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/20/2018] [Indexed: 12/15/2022] Open
Abstract
Integrating three-dimensional printing with the creation of tissue-engineered vascular grafts could provide a readily available, patient-specific, autologous tissue source that could significantly improve outcomes in newborns with congenital heart disease. Here, we present the recent case of a candidate for our tissue-engineered vascular graft clinical trial deemed ineligible due to complex anatomical requirements and consider the application of three-dimensional printing technologies for a patient-specific graft. We 3D-printed a closed-disposable seeding device and validated that it performed equivalently to the traditional open seeding technique using ovine bone marrow–derived mononuclear cells. Next, our candidate’s preoperative imaging was reviewed to propose a patient-specific graft. A seeding apparatus was then designed to accommodate the custom graft and 3D-printed on a commodity fused deposition modeler. This exploratory feasibility study represents an important proof of concept advancing progress toward a rationally designed patient-specific tissue-engineered vascular graft for clinical application.
Collapse
Affiliation(s)
- Cameron Best
- Center for Regenerative Medicine, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Robert Strouse
- Research Innovation and Solutions, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kan Hor
- Department of Cardiology, The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Victoria Pepper
- Center for Regenerative Medicine, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy Tipton
- Advanced Cardiac Imaging Laboratory, The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - John Kelly
- Center for Regenerative Medicine, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Cardiology, The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Christopher Breuer
- Center for Regenerative Medicine, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
37
|
Maxfield MW, Stacy MR, Kurobe H, Tara S, Yi T, Cleary MA, Zhuang ZW, Rodriguez-Davalos MI, Emre SH, Iwakiri Y, Shinoka T, Breuer CK. Novel application and serial evaluation of tissue-engineered portal vein grafts in a murine model. Regen Med 2017; 12:929-938. [PMID: 29215317 PMCID: PMC5827823 DOI: 10.2217/rme-2017-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/10/2017] [Indexed: 01/22/2023] Open
Abstract
AIM Surgical management of pediatric extrahepatic portal vein obstruction requires meso-Rex bypass using autologous or synthetic grafts. Tissue-engineered vascular grafts (TEVGs) provide an alternative, but no validated animal models using portal TEVGs exist. Herein, we preclinically assess TEVGs as portal vein bypass grafts. MATERIALS & METHODS TEVGs were implanted as portal vein interposition conduits in SCID-beige mice, monitored by ultrasound and micro-computed tomography, and histologically assessed postmortem at 12 months. RESULTS TEVGs remained patent for 12 months. Histologic analysis demonstrated formation of neovessels that resembled native portal veins, with similar content of smooth muscle cells, collagen type III and elastin. CONCLUSION TEVGs are feasible portal vein conduits in a murine model. Further preclinical evaluation of TEVGs may facilitate pediatric clinical translation.
Collapse
Affiliation(s)
- Mark W Maxfield
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Mitchel R Stacy
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Hirotsugu Kurobe
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Shuhei Tara
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Tai Yi
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Muriel A Cleary
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Zhen W Zhuang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Manuel I Rodriguez-Davalos
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Sukru H Emre
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Yasuko Iwakiri
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Toshiharu Shinoka
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher K Breuer
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
38
|
Liu RH, Ong CS, Fukunishi T, Ong K, Hibino N. Review of Vascular Graft Studies in Large Animal Models. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:133-143. [PMID: 28978267 DOI: 10.1089/ten.teb.2017.0350] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As the incidence of cardiovascular disease continues to climb worldwide, there is a corresponding increase in demand for surgical interventions involving vascular grafts. The current gold standard for vascular grafts is autologous vessels, an option often excluded due to disease circumstances. As a result, many patients must resort to prosthetic options. While widely available, prosthetic grafts have been demonstrated to have inferior patency rates compared with autologous grafts due to inflammation and thrombosis. In an attempt to overcome these limitations, many different materials for constructing vascular grafts, from modified synthetic nondegradable polymers to biodegradable polymers, have been explored, many of which have entered the translational stage of research. This article reviews these materials in the context of large animal models, providing an outlook on the preclinical potential of novel biomaterials as well as the future direction of vascular graft research.
Collapse
Affiliation(s)
- Rui Han Liu
- 1 Division of Cardiac Surgery, The Johns Hopkins Hospital , Baltimore, Maryland
| | - Chin Siang Ong
- 1 Division of Cardiac Surgery, The Johns Hopkins Hospital , Baltimore, Maryland
| | - Takuma Fukunishi
- 1 Division of Cardiac Surgery, The Johns Hopkins Hospital , Baltimore, Maryland
| | - Kingsfield Ong
- 2 Department of Cardiac, Thoracic and Vascular Surgery, National University Health System , Singapore, Singapore
| | - Narutoshi Hibino
- 1 Division of Cardiac Surgery, The Johns Hopkins Hospital , Baltimore, Maryland
| |
Collapse
|
39
|
Drews JD, Miyachi H, Shinoka T. Tissue-engineered vascular grafts for congenital cardiac disease: Clinical experience and current status. Trends Cardiovasc Med 2017; 27:521-531. [PMID: 28754230 DOI: 10.1016/j.tcm.2017.06.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 01/22/2023]
Abstract
Congenital heart disease is a leading cause of death in the newborn period, and man-made grafts currently used for reconstruction are associated with multiple complications. Tissue engineering can provide an alternative source of vascular tissue in congenital cardiac surgery. Clinical trials have been successful overall, but the most frequent complication is graft stenosis. Recent studies in animal models have indicated the important role of the recipient׳s immune response in neotissue formation, and that modulating the immune response can reduce the incidence of stenosis.
Collapse
Affiliation(s)
- Joseph D Drews
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH; Tissue Engineering Program, The Heart Center, Nationwide Children׳s Hospital, Columbus, OH
| | - Hideki Miyachi
- Tissue Engineering Program, The Heart Center, Nationwide Children׳s Hospital, Columbus, OH; Department of Cardiovascular Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Toshiharu Shinoka
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH; Tissue Engineering Program, The Heart Center, Nationwide Children׳s Hospital, Columbus, OH.
| |
Collapse
|
40
|
Fukunishi T, Best CA, Ong CS, Groehl T, Reinhardt J, Yi T, Miyachi H, Zhang H, Shinoka T, Breuer CK, Johnson J, Hibino N. Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts. Tissue Eng Part A 2017; 24:135-144. [PMID: 28486019 DOI: 10.1089/ten.tea.2017.0044] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Electrospinning is a promising technology that provides biodegradable nanofiber scaffolds for cardiovascular tissue engineering. However, success with these materials has been limited, and the optimal combination of scaffold parameters for a tissue-engineered vascular graft (TEVG) remains elusive. The purpose of the present study is to evaluate the effect of bone marrow mononuclear cell (BM-MNC) seeding in electrospun scaffolds to support the rational design of optimized TEVGs. METHODS Nanofiber scaffolds were fabricated from co-electrospinning a solution of polyglycolic acid and a solution of poly(ι-lactide-co-ɛ-caprolactone) and characterized with scanning electron microscopy. Platelet activation and cell seeding efficiency were assessed by ATP secretion and DNA assays, respectively. Cell-free and BM-MNC seeded scaffolds were implanted in C57BL/6 mice (n = 15/group) as infrarenal inferior vena cava (IVC) interposition conduits. Animals were followed with serial ultrasonography for 6 months, after which grafts were harvested for evaluation of patency and neotissue formation by histology and immunohistochemistry (n = 10/group) and PCR (n = 5/group) analyses. RESULTS BM-MNC seeding of electrospun scaffolds prevented stenosis compared with unseeded scaffolds (seeded: 9/10 patent vs. unseeded: 1/10 patent, p = 0.0003). Seeded vascular grafts demonstrated concentric laminated smooth muscle cells, a confluent endothelial monolayer, and a collagen-rich extracellular matrix. Platelet-derived ATP, a marker of platelet activation, was significantly reduced after incubating thrombin-activated platelets in the presence of seeded scaffolds compared with unseeded scaffolds (p < 0.0001). In addition, reduced macrophage infiltration and a higher M2 macrophage percentage were observed in seeded grafts. CONCLUSIONS The beneficial effects of BM-MNC seeding apply to electrospun TEVG scaffolds by attenuating stenosis through the regulation of platelet activation and inflammatory macrophage function, leading to well-organized neotissue formation. BM-MNC seeding is a valuable technique that can be used in the rational design of optimal TEVG scaffolds.
Collapse
Affiliation(s)
- Takuma Fukunishi
- 1 Department of Cardiac Surgery, Johns Hopkins University , Baltimore, Maryland
| | - Cameron A Best
- 2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Chin Siang Ong
- 1 Department of Cardiac Surgery, Johns Hopkins University , Baltimore, Maryland
| | | | - James Reinhardt
- 2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Tai Yi
- 2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Hideki Miyachi
- 2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Huaitao Zhang
- 1 Department of Cardiac Surgery, Johns Hopkins University , Baltimore, Maryland
| | - Toshiharu Shinoka
- 2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Christopher K Breuer
- 2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Jed Johnson
- 3 Nanofiber Solutions, Inc. , Columbus, Ohio
| | - Narutoshi Hibino
- 1 Department of Cardiac Surgery, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
41
|
Onwuka E, Best C, Sawyer A, Yi T, Heuer E, Sams M, Wiet M, Zheng H, Kyriakides T, Breuer C. The role of myeloid cell-derived PDGF-B in neotissue formation in a tissue-engineered vascular graft. Regen Med 2017; 12:249-261. [PMID: 28524773 DOI: 10.2217/rme-2016-0141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIM Inflammatory myeloid lineage cells mediate neotissue formation in tissue-engineered vascular grafts, but the molecular mechanism is not completely understood. We examined the role of vasculogenic PDGF-B in tissue-engineered vascular graft neotissue development. MATERIALS & METHODS Myeloid cell-specific PDGF-B knockout mice (PDGF-KO) were generated using bone marrow transplantation, and scaffolds were implanted as inferior vena cava interposition grafts in either PDGF-KO or wild-type mice. RESULTS After 2 weeks, grafts from PDGF-KO mice had more remaining scaffold polymer and less intimal neotissue development. Increased macrophage apoptosis, decreased smooth muscle cell proliferation and decreased collagen content was also observed. CONCLUSION Myeloid cell-derived PDGF contributes to vascular neotissue formation by regulating macrophage apoptosis, smooth muscle cell proliferation and extracellular matrix deposition.
Collapse
Affiliation(s)
- Ekene Onwuka
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Cameron Best
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Andrew Sawyer
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Tai Yi
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Eric Heuer
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Malik Sams
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Matthew Wiet
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Hong Zheng
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Themis Kyriakides
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Christopher Breuer
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
42
|
Abstract
Vascular tissue engineering has significant potential to make a major impact on a wide array of clinical problems. Continued progress in understanding basic vascular biology will be invaluable in making further advancements. Past and current achievements in tissue engineering of microvasculature to perfuse organ specific constructs, small vessels for dialysis grafts, and modified synthetic and pediatric large caliber-vessel grafts will be discussed. An emphasis will be placed on clinical trial results with small and large-caliber vessel grafts. Challenges to achieving engineered constructs that satisfy the physiologic, immunologic, and manufacturing demands of engineered vasculature will be explored.
Collapse
|
43
|
Fukunishi T, Best CA, Sugiura T, Opfermann J, Ong CS, Shinoka T, Breuer CK, Krieger A, Johnson J, Hibino N. Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model. J Thorac Cardiovasc Surg 2016; 153:924-932. [PMID: 27938900 DOI: 10.1016/j.jtcvs.2016.10.066] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Tissue-engineered vascular grafts (TEVGs) offer potential to overcome limitations of current approaches for reconstruction in congenital heart disease by providing biodegradable scaffolds on which autologous cells proliferate and provide physiologic functionality. However, current TEVGs do not address the diverse anatomic requirements of individual patients. This study explores the feasibility of creating patient-specific TEVGs by combining 3-dimensional (3D) printing and electrospinning technology. METHODS An electrospinning mandrel was 3D-printed after computer-aided design based on preoperative imaging of the ovine thoracic inferior vena cava (IVC). TEVG scaffolds were then electrospun around the 3D-printed mandrel. Six patient-specific TEVGs were implanted as cell-free IVC interposition conduits in a sheep model and explanted after 6 months for histologic, biochemical, and biomechanical evaluation. RESULTS All sheep survived without complications, and all grafts were patent without aneurysm formation or ectopic calcification. Serial angiography revealed significant decreases in TEVG pressure gradients between 3 and 6 months as the grafts remodeled. At explant, the nanofiber scaffold was nearly completely resorbed and the TEVG showed similar mechanical properties to that of native IVC. Histological analysis demonstrated an organized smooth muscle cell layer, extracellular matrix deposition, and endothelialization. No significant difference in elastin and collagen content between the TEVG and native IVC was identified. There was a significant positive correlation between wall thickness and CD68+ macrophage infiltration into the TEVG. CONCLUSIONS Creation of patient-specific nanofiber TEVGs by combining electrospinning and 3D printing is a feasible technology as future clinical option. Further preclinical studies involving more complex anatomical shapes are warranted.
Collapse
Affiliation(s)
- Takuma Fukunishi
- Department of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md
| | - Cameron A Best
- Tissue Engineering and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Tadahisa Sugiura
- Tissue Engineering and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Justin Opfermann
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC
| | - Chin Siang Ong
- Department of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md
| | - Toshiharu Shinoka
- Tissue Engineering and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Christopher K Breuer
- Tissue Engineering and Surgical Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Axel Krieger
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC
| | | | - Narutoshi Hibino
- Department of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Md.
| |
Collapse
|
44
|
Weber B, Hafner J, Willenberg T, Hoerstrup SP. Bioengineered valves for the venous circulation. Expert Rev Med Devices 2016; 13:1005-1011. [DOI: 10.1080/17434440.2016.1242408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
45
|
Syedain Z, Reimer J, Lahti M, Berry J, Johnson S, Tranquillo RT. Tissue engineering of acellular vascular grafts capable of somatic growth in young lambs. Nat Commun 2016; 7:12951. [PMID: 27676438 PMCID: PMC5052664 DOI: 10.1038/ncomms12951] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/18/2016] [Indexed: 01/17/2023] Open
Abstract
Treatment of congenital heart defects in children requiring right ventricular outflow tract reconstruction typically involves multiple open-heart surgeries because all existing graft materials have no growth potential. Here we present an ‘off-the-shelf' vascular graft grown from donor fibroblasts in a fibrin gel to address this critical unmet need. In a proof-of-concept study, the decellularized grafts are implanted as a pulmonary artery replacement in three young lambs and evaluated to adulthood. Longitudinal ultrasounds document dimensional growth of the grafts. The lambs show normal growth, increasing body weight by 366% and graft diameter and volume by 56% and 216%, respectively. Explanted grafts display physiological strength and stiffness, complete lumen endothelialization and extensive population by mature smooth muscle cells. The grafts also show substantial elastin deposition and a 465% increase in collagen content, without signs of calcification, aneurysm or stenosis. Collectively, our data support somatic growth of this completely biological graft. Current vessel grafts must be surgically replaced when the recipient outgrows them. Here, Syedain et al. bioengineer a tube of acellular matrix produced from sheep fibroblasts that is capable of cellularizaton and somatic growth when transplanted into growing lambs, eliminating the need for multiple graft surgeries.
Collapse
Affiliation(s)
- Zeeshan Syedain
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jay Reimer
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Matthew Lahti
- Experimental Surgical Services, Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - James Berry
- Experimental Surgical Services, Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Sandra Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Robert T Tranquillo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Chemical Engineering &Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
46
|
Gao Y, Yi T, Shinoka T, Lee YU, Reneker DH, Breuer CK, Becker ML. Pilot Mouse Study of 1 mm Inner Diameter (ID) Vascular Graft Using Electrospun Poly(ester urea) Nanofibers. Adv Healthc Mater 2016; 5:2427-36. [PMID: 27390286 PMCID: PMC5951289 DOI: 10.1002/adhm.201600400] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/30/2016] [Indexed: 12/13/2022]
Abstract
An off-the-shelf, small diameter tissue engineered vascular graft (TEVG) would be transformative to surgeons in multiple subspecialties. Herein, the results of a small diameter (ID ≈ 1 mm) vascular graft constructed from resorbable, amino acid-based poly(ester urea) (PEU) are reported. Electrospun PEU grafts of two different wall thicknesses (type A: 250 μm; type B: 350 μm) are implanted as abdominal infra-renal aortic grafts in a severe combined immune deficient/beige mouse model and evaluated for vessel remodeling over one year. Significantly, the small diameter TEVG does not rupture or lead to acute thrombogenic events during the intervals tested. The pilot TEVG in vivo shows long-term patency and extensive tissue remodeling with type A grafts. Extensive tissue remodeling in type A grafts leads to the development of well-circumscribed neovessels with an endothelial inner lining, a neointima containing smooth muscle cells. However, due to slow degradation of the PEU scaffold materials in vivo, the grafts remain after one year. The type B grafts, which have 350 μm thick walls, experience occlusion over the one year interval due to intimal hyperplasia. This study affords significant findings that will guide the design of future generations of small diameter vascular grafts.
Collapse
Affiliation(s)
- Yaohua Gao
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Tai Yi
- Department of Surgery, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Toshiharu Shinoka
- Department of Surgery, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Yong Ung Lee
- Department of Surgery, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Darrell H Reneker
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | | | - Matthew L Becker
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA.
| |
Collapse
|
47
|
Best C, Tara S, Wiet M, Reinhardt J, Pepper V, Ball M, Yi T, Shinoka T, Breuer C. Deconstructing the Tissue Engineered Vascular Graft: Evaluating Scaffold Pre-Wetting, Conditioned Media Incubation, and Determining the Optimal Mononuclear Cell Source. ACS Biomater Sci Eng 2016; 3:1972-1979. [PMID: 29226239 DOI: 10.1021/acsbiomaterials.6b00123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stenosis limits widespread use of tissue-engineered vascular grafts (TEVGs), and bone marrow mononuclear cell (BM-MNC) seeding attenuates this complication. Yet seeding is a multistep process, and the singular effects of each component are unknown. We investigated which components of the clinical seeding protocol confer graft patency and sought to identify the optimal MNC source. Scaffolds composed of polyglycolic acid and ε-caprolactone/ι-lactic acid underwent conditioned media (CM) incubation (n = 25) and syngeneic BM-MNC (n = 9) or peripheral blood (PB)-MNC (n = 20) seeding. TEVGs were implanted for 2 weeks in the mouse IVC. CM incubation and PB-MNC seeding did not increase graft patency compared to control scaffolds prewet with PBS (n = 10), while BM-MNC seeding reduced stenosis by suppressing inflammation and smooth muscle cell, myofibroblast, and pericyte proliferation. IL-1β, IL-6, and TNFα were elevated in the seeded BM-MNC supernatant. Further, BM-MNC seeding reduced platelet activation in a dose-dependent manner, possibly contributing to TEVG patency.
Collapse
Affiliation(s)
- Cameron Best
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Shuhei Tara
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States.,Department of Cardiovascular Medicine, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, Japan
| | - Matthew Wiet
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
| | - James Reinhardt
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Victoria Pepper
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States.,Department of Surgery, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Matthew Ball
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Tai Yi
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Toshiharu Shinoka
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Christopher Breuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States.,Department of Surgery, Nationwide Children's Hospital, Columbus, Ohio, United States
| |
Collapse
|
48
|
Lee YU, Mahler N, Best CA, Tara S, Sugiura T, Lee AY, Yi T, Hibino N, Shinoka T, Breuer C. Rational design of an improved tissue-engineered vascular graft: determining the optimal cell dose and incubation time. Regen Med 2016; 11:159-67. [PMID: 26925512 DOI: 10.2217/rme.15.85] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM We investigated the effect of cell seeding dose and incubation time on tissue-engineered vascular graft (TEVG) patency. MATERIALS & METHODS Various doses of bone marrow-derived mononuclear cells (BM-MNCs) were seeded onto TEVGs, incubated for 0 or 12 h, and implanted in C57BL/6 mice. Different doses of human BM-MNCs were seeded onto TEVGs and measured for cell attachment. RESULTS The incubation time showed no significant effect on TEVG patency. However, TEVG patency was significantly increased in a dose-dependent manner. In the human graft, more bone marrow used for seeding resulted in increased cell attachment in a dose-dependent manner. CONCLUSION Increasing the BM-MNC dose and reducing incubation time is a viable strategy for improving the performance and utility of the graft.
Collapse
Affiliation(s)
- Yong-Ung Lee
- Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive - WB4151, Columbus, OH 43205-2664, USA
| | - Nathan Mahler
- Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive - WB4151, Columbus, OH 43205-2664, USA
| | - Cameron A Best
- Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive - WB4151, Columbus, OH 43205-2664, USA
| | - Shuhei Tara
- Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive - WB4151, Columbus, OH 43205-2664, USA
| | - Tadahisa Sugiura
- Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive - WB4151, Columbus, OH 43205-2664, USA
| | - Avione Y Lee
- Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive - WB4151, Columbus, OH 43205-2664, USA
| | - Tai Yi
- Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive - WB4151, Columbus, OH 43205-2664, USA
| | - Narutoshi Hibino
- Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive - WB4151, Columbus, OH 43205-2664, USA
| | - Toshiharu Shinoka
- Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive - WB4151, Columbus, OH 43205-2664, USA
| | - Christopher Breuer
- Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive - WB4151, Columbus, OH 43205-2664, USA
| |
Collapse
|
49
|
Shafiq M, Jung Y, Kim SH. Covalent immobilization of stem cell inducing/recruiting factor and heparin on cell-free small-diameter vascular graft for accelerated in situ tissue regeneration. J Biomed Mater Res A 2016; 104:1352-71. [PMID: 26822178 DOI: 10.1002/jbm.a.35666] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/17/2016] [Accepted: 01/25/2016] [Indexed: 12/12/2022]
Abstract
The development of cell-free vascular grafts has tremendous potential for tissue engineering. However, thrombus formation, less-than-ideal cell infiltration, and a lack of growth potential limit the application of electrospun scaffolds for in situ tissue-engineered vasculature. To overcome these challenges, here we present development of an acellular tissue-engineered vessel based on electrospun poly(L-lactide-co-ɛ-caprolactone) scaffolds. Heparin was conjugated to suppress thrombogenic responses, and substance P (SP) was immobilized to recruit host cells. SP was released in a sustained manner from scaffolds and recruited human bone marrow-derived mesenchymal stem cells. The biocompatibility and biological performance of the grafts were evaluated by in vivo experiments involving subcutaneous scaffold implantation in Sprague-Dawley rats (n = 12) for up to 4 weeks. Histological analysis revealed a higher extent of accumulative host cell infiltration, neotissue formation, collagen deposition, and elastin deposition in scaffolds containing either SP or heparin/SP than in the control groups. We also observed the presence of a large number of laminin-positive blood vessels, von Willebrand factor (vWF(+) ) cells, and alpha smooth muscle actin-positive cells in the explants containing SP and heparin/SP. Additionally, SP and heparin/SP grafts showed the existence of CD90(+) and CD105(+) MSCs and induced a large number of M2 macrophages to infiltrate the graft wall compared with that observed with the control group. Our cell-free grafts could enhance vascular regeneration by endogenous cell recruitment and by mediating macrophage polarization into the M2 phenotype, suggesting that these constructs may be a promising cell-free graft candidate and are worthy of further in vivo evaluation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1352-1371, 2016.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Department of Biomedical Engineering, Korea University of Science and Technology (UST) (305-350), Gajeong-Ro, Yuseong-Gu, Daejeon, Korea.,Center for Biomaterials 5, Hwarang-Ro 14-Gil, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seongbuk-Gu, Seoul, 136-791, Republic of Korea
| | - Youngmee Jung
- Department of Biomedical Engineering, Korea University of Science and Technology (UST) (305-350), Gajeong-Ro, Yuseong-Gu, Daejeon, Korea.,Center for Biomaterials 5, Hwarang-Ro 14-Gil, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seongbuk-Gu, Seoul, 136-791, Republic of Korea
| | - Soo Hyun Kim
- Department of Biomedical Engineering, Korea University of Science and Technology (UST) (305-350), Gajeong-Ro, Yuseong-Gu, Daejeon, Korea.,Center for Biomaterials 5, Hwarang-Ro 14-Gil, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seongbuk-Gu, Seoul, 136-791, Republic of Korea.,NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
| |
Collapse
|
50
|
Wang L, Hu J, Sorek CE, Chen EY, Ma PX, Yang B. Fabrication of tissue-engineered vascular grafts with stem cells and stem cell-derived vascular cells. Expert Opin Biol Ther 2015; 16:317-30. [PMID: 26560995 PMCID: PMC4928489 DOI: 10.1517/14712598.2016.1118460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cardiovascular disease is the leading cause of mortality worldwide. Current surgical treatments for cardiovascular disease include vascular bypass grafting and replacement with autologous blood vessels or synthetic vascular grafts. However, there is a call for better alternative biological grafts. AREAS COVERED Tissue-engineered vascular grafts (TEVGs) are promising novel alternatives to replace diseased vessels. However, obtaining enough functional and clinically usable vascular cells for fabrication of TEVGs remains a major challenge. New findings in adult stem cells and recent advances in pluripotent stem cells have opened a new avenue for stem cell-based vascular engineering. In this review, recent advances on stem cell sourcing for TEVGs including the use of adult stem cells and pluripotent stem cells and advantages, disadvantages, and possible future implementations of different types of stem cells will be discussed. In addition, current strategies used during the fabrication of TEVGs will be highlighted. EXPERT OPINION The application of patient-specific TEVGs constructed with vascular cells derived from immune-compatible stem cells possesses huge clinical potential. Advances in lineage-specific differentiation approaches and innovative vascular engineering strategies will promote the vascular regeneration field from bench to bedside.
Collapse
Affiliation(s)
- Lunchang Wang
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
- b Vascular Surgery, The Second Xiangya Hospital , Xiangya School of Medicine, Central South University , Hunan , China
| | - Jiang Hu
- c Biologic and Materials Sciences, University of Michigan , Ann Arbor , MI , USA
| | - Claire E Sorek
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
| | - Eugene Y Chen
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
| | - Peter X Ma
- c Biologic and Materials Sciences, University of Michigan , Ann Arbor , MI , USA
- d Biomedical Engineering, University of Michigan , Ann Arbor , MI , USA
- e Macromolecular Science and Engineering Center, University of Michigan , Ann Arbor , MI , USA
- f Materials Science and Engineering, University of Michigan , Ann Arbor , MI , USA
| | - Bo Yang
- a Cardiac Surgery, University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|