1
|
Dong X, Xu H, He B, Zhang M, Miu W, Huang Z, Chen C. FIBRINOGEN-LIKE PROTEIN 2 PROTECTS THE AGGRAVATION OF HYPERTRIGLYCERIDEMIA ON THE SEVERITY OF HYPERTRIGLYCERIDEMIA ACUTE PANCREATITIS BY REGULATING MACROPHAGES. Shock 2025; 63:327-337. [PMID: 39527492 DOI: 10.1097/shk.0000000000002503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
ABSTRACT Objective: The mechanisms underlying the increased severity of hypertriglyceridemia acute pancreatitis (HTG-AP) remain poorly understood. Fibrinogen-like protein 2 (FGL2) has been identified as a regulator of macrophage activity, mediating immune suppression. This study aims to examine the role of FGL2 in the susceptibility to severe conditions of HTG-AP. Methods: Both wild-type and FGL2 gene knockout C57BL/6 mice were utilized to establish HTG, AP, and HTG-AP models using P-407 and/or caerulein. Serum levels of triglycerides, total cholesterol, amylase, and lipase were assessed via biochemical analysis. Pancreatic and lung tissue injuries were evaluated using hematoxylin and eosin staining. TNF-α, IL-1β, and IL-6 levels in serum and pancreatic tissues were quantified using enzyme-linked immunosorbent assay. Immunohistochemistry was used to assess the expression of FGL2, the macrophage marker CD68, and M1/M2 macrophage markers iNOS/CD163. Results: The animal models were successfully established. Compared to wild-type mice, FGL2 knockout resulted in increased pathological injury scores in the pancreas and lungs, as well as elevated TNF-α, IL-1β, and IL-6 levels in serum and pancreatic tissue in the HTG group, with more pronounced effects observed in the HTG-AP group. The AP group alone did not exhibit significant changes due to FGL2 knockout. Further analysis revealed that FGL2 knockout increased CD68 expression but reduced CD163 expression in the pancreatic tissues in the HTG group. In the HTG-AP group, there was a marked increase in CD68 and iNOS expressions, coupled with a reduction in CD163 expression. Conclusion: FGL2 knockout in HTG and HTG-AP mice resulted in increased inflammatory responses and a significant imbalance in M2 macrophages. These findings suggest that FGL2 plays a crucial role in mitigating the aggravation of HTG on the severity of HTG-AP by modulating macrophage activity.
Collapse
Affiliation(s)
- Xiuli Dong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haibo Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Baiqi He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Meijuan Zhang
- Department of Medical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wanqi Miu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhiming Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chengshui Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Xie X, Liu Y, Yang Q, Ma X, Lu Y, Hu Y, Zhang G, Ke L, Tong Z, Liu Y, Xue J, Lu G, Li W. Adipose Triglyceride Lipase-Mediated Adipocyte Lipolysis Exacerbates Acute Pancreatitis Severity in Mouse Models and Patients. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1494-1510. [PMID: 38705384 DOI: 10.1016/j.ajpath.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/03/2024] [Accepted: 03/22/2024] [Indexed: 05/07/2024]
Abstract
Dyslipolysis of adipocytes plays a critical role in various diseases. Adipose triglyceride lipase (ATGL) is a rate-limiting enzyme in adipocyte autonomous lipolysis. However, the degree of adipocyte lipolysis related to the prognoses in acute pancreatitis (AP) and the role of ATGL-mediated lipolysis in the pathogenesis of AP remain elusive. Herein, the visceral adipose tissue consumption rate in the acute stage was measured in both patients with AP and mouse models. Lipolysis levels and ATGL expression were detected in cerulein-induced AP models. CL316,243, a lipolysis stimulator, and adipose tissue-specific ATGL knockout mice were used to further investigate the role of lipolysis in AP. The ATGL-specific inhibitor, atglistatin, was used in C57Bl/6N and ob/ob AP models. This study indicated that increased visceral adipose tissue consumption rate in the acute phase was independently associated with adverse prognoses in patients with AP, which was validated in mouse AP models. Lipolysis of adipocytes was elevated in AP mice. Stimulation of lipolysis aggravated AP. Genetic blockage of ATGL specifically in adipocytes alleviated the damage to AP. The application of atglistatin effectively protected against AP in both lean and obese mice. These findings demonstrated that ATGL-mediated adipocyte lipolysis exacerbates AP and highlighted the therapeutic potential of ATGL as a drug target for AP.
Collapse
Affiliation(s)
- Xiaochun Xie
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Medical School of Southeast University, Nanjing, China; Medical School of Southeast University, Nanjing, China
| | - Yang Liu
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Medical School of Southeast University, Nanjing, China; Medical School of Southeast University, Nanjing, China
| | - Qi Yang
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaojie Ma
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yingying Lu
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Medical School of Southeast University, Nanjing, China; Medical School of Southeast University, Nanjing, China
| | - Yuepeng Hu
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guofu Zhang
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lu Ke
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhihui Tong
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuxiu Liu
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| | - Weiqin Li
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Medical School of Southeast University, Nanjing, China; Medical School of Southeast University, Nanjing, China; Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Liu Q, Gu X, Liu X, Gu Y, Zhang H, Yang J, Huang Z. Long-chain fatty acids - The turning point between 'mild' and 'severe' acute pancreatitis. Heliyon 2024; 10:e31296. [PMID: 38828311 PMCID: PMC11140623 DOI: 10.1016/j.heliyon.2024.e31296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease characterized by localized pancreatic injury and a systemic inflammatory response. Fatty acids (FAs), produced during the breakdown of triglycerides (TGs) in blood and peripancreatic fat, escalate local pancreatic inflammation to a systemic level by damaging pancreatic acinar cells (PACs) and triggering M1 macrophage polarization. This paper provides a comprehensive analysis of lipases' roles in the onset and progression of AP, as well as the effects of long-chain fatty acids (LCFAs) on the function of pancreatic acinar cells (PACs). Abnormalities in the function of PACs include Ca2+ overload, premature trypsinogen activation, protein kinase C (PKC) expression, endoplasmic reticulum (ER) stress, and mitochondrial and autophagic dysfunction. The study highlights the contribution of long-chain saturated fatty acids (LC-SFAs), especially palmitic acid (PA), to M1 macrophage polarization through the activation of the NLRP3 inflammasome and the NF-κB pathway. Furthermore, we investigated lipid lowering therapy for AP. This review establishes a theoretical foundation for pro-inflammatory mechanisms associated with FAs in AP and facilitating drug development.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Xiaodie Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Zhicheng Huang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| |
Collapse
|
4
|
Leopold J, Prabutzki P, Engel KM, Schiller J. From Oxidized Fatty Acids to Dimeric Species: In Vivo Relevance, Generation and Methods of Analysis. Molecules 2023; 28:7850. [PMID: 38067577 PMCID: PMC10708296 DOI: 10.3390/molecules28237850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The occurrence of free fatty acids (FFAs) and the generation of reactive oxygen species (ROS) such as hydroxyl radicals (HO●) or hypochlorous acid (HOCl) is characteristic of inflammatory diseases, for instance, rheumatoid arthritis. Unsaturated fatty acids react with ROS yielding a variety of important products such as peroxides and chlorohydrins as primary and chain-shortened compounds (e.g., aldehydes and carboxylic acids) as secondary products. These modified fatty acids are either released from phospholipids by phospholipases or oxidatively modified subsequent to their release. There is increasing evidence that oligomeric products are also generated upon these processes. Fatty acid esters of hydroxy fatty acids (FAHFAs) are considered as very important products, but chlorinated compounds may be converted into dimeric and (with smaller yields) oligomeric products, as well. Our review is structured as follows: first, the different types of FFA oligomers known so far and the mechanisms of their putative generation are explained. Industrially relevant products as well as compounds generated from the frying of vegetable oils are also discussed. Second, the different opinions on whether dimeric fatty acids are considered as "friends" or "foes" are discussed.
Collapse
Affiliation(s)
- Jenny Leopold
- Institute for Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany; (P.P.); (K.M.E.); (J.S.)
| | | | | | | |
Collapse
|
5
|
Macrophages in pancreatitis: Mechanisms and therapeutic potential. Biomed Pharmacother 2020; 131:110693. [PMID: 32882586 DOI: 10.1016/j.biopha.2020.110693] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages play a crucial role in the pathogenesis of pancreatitis that is a common gastrointestinal disease. Particularly, macrophages differentiate into different phenotypes and exert diverse functions in acute pancreatitis (AP) and chronic pancreatitis (CP), respectively. In AP, macrophages in the pancreas and other related organs are mainly activated and differentiated into a pro-inflammatory M1 phenotype, and furthermore secrete inflammatory cytokines and mediators, causing local inflammation of the pancreas, and even intractable systemic inflammatory response or multiple organ failure. In CP, macrophages often exhibit a M2 polarisation and interact with pancreatic stellate cells (PSCs) in an autocrine and paracrine cytokine-dependent manner to promote the progression of pancreatic fibrosis. As the severity of pancreatic fibrosis aggravates, the proportion of M2/M1 macrophage cytokines in the pancreas increases. The discovery of macrophages in the pathogenesis of pancreatitis has promoted the research of targeted drugs, which provides great potential for the effective treatment of pancreatitis. This paper provides an overview of the roles of various macrophages in the pathogenesis of pancreatitis and the current research status of pancreatitis immunotherapy targeting macrophages. The findings addressed in this review are of considerable significance for understanding the pivotal role of macrophages in pancreatitis.
Collapse
|
6
|
García-Rayado G, Varela-Moreiras G, Lanas Á, Ferrández Á, Balza-Lareu N, Cervera JI, Bodenlle-Bello MP, Argüelles-Arias AM, Latorre P, Udaondo-Cascante MA, Soria-de-la-Cruz MJ, Lariño-Noia J, García-Figueiras R, Gil-García-Ollauri C, Ituarte-Uriarte R, Rosales-Alexander CL, Soriano J, Rodríguez-Peláez M, Mesa-Álvarez A, Oblitas E, Menso MM, Bertoletti F, Rodríguez-Prada JI, Guzmán-Suárez S, Closa D, de-Madaria E. Dietary Fat Patterns and Outcomes in Acute Pancreatitis in Spain. Front Med (Lausanne) 2020; 7:126. [PMID: 32328495 PMCID: PMC7160296 DOI: 10.3389/fmed.2020.00126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/20/2020] [Indexed: 12/25/2022] Open
Abstract
Background/Objective: Evidence from basic and clinical studies suggests that unsaturated fatty acids (UFAs) might be relevant mediators of the development of complications in acute pancreatitis (AP). Objective: The aim of this study was to analyze outcomes in patients with AP from regions in Spain with different patterns of dietary fat intake. Materials and Methods: A retrospective analysis was performed with data from 1,655 patients with AP from a Spanish prospective cohort study and regional nutritional data from a Spanish cross-sectional study. Nutritional data considered in the study concern the total lipid consumption, detailing total saturated fatty acids, UFAs and monounsaturated fatty acids (MUFAs) consumption derived from regional data and not from the patient prospective cohort. Two multivariable analysis models were used: (1) a model with the Charlson comorbidity index, sex, alcoholic etiology, and recurrent AP; (2) a model that included these variables plus obesity. Results: In multivariable analysis, patients from regions with high UFA intake had a significantly increased frequency of local complications, persistent organ failure (POF), mortality, and moderate-to-severe disease in the model without obesity and a higher frequency of POF in the model with obesity. Patients from regions with high MUFA intake had significantly more local complications and moderate-to-severe disease; this significance remained for moderate-to-severe disease when obesity was added to the model. Conclusions: Differences in dietary fat patterns could be associated with different outcomes in AP, and dietary fat patterns may be a pre-morbid factor that determines the severity of AP. UFAs, and particulary MUFAs, may influence the pathogenesis of the severity of AP.
Collapse
Affiliation(s)
- Guillermo García-Rayado
- Service of Digestive Diseases, University Clinic Hospital Lozano Blesa, Aragón Health Research Institute (IIS Aragón), CIBERehd, Zaragoza, Spain
| | | | - Ángel Lanas
- Service of Digestive Diseases, University Clinic Hospital Lozano Blesa, Aragón Health Research Institute (IIS Aragón), CIBERehd, Zaragoza, Spain
| | - Ángel Ferrández
- Service of Digestive Diseases, University Clinic Hospital Lozano Blesa, Aragón Health Research Institute (IIS Aragón), CIBERehd, Zaragoza, Spain
| | | | - Juan I Cervera
- Department of Radiology, Hospital Clínico Universitario, Valencia, Spain
| | | | | | - Patricia Latorre
- Department of Gastroenterology, Hospital Universitario Doctor Peset, Valencia, Spain
| | | | | | - José Lariño-Noia
- Department of Gastroenterology and Hepatology, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Roberto García-Figueiras
- Department of Radiology, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | - Jordi Soriano
- Department of Gastroenterology, Hospital Universitari Doctor Josep Trueta, Girona, Spain
| | - María Rodríguez-Peláez
- Department of Gastroenterology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Alicia Mesa-Álvarez
- Department of Radiology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Elida Oblitas
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - María M Menso
- Department of Radiology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Federico Bertoletti
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | - Daniel Closa
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC-IDIBAPS), Barcelona, Spain
| | - Enrique de-Madaria
- Department of Gastroenterology, Alicante University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
| |
Collapse
|
7
|
Silva-Vaz P, Abrantes AM, Castelo-Branco M, Gouveia A, Botelho MF, Tralhão JG. Multifactorial Scores and Biomarkers of Prognosis of Acute Pancreatitis: Applications to Research and Practice. Int J Mol Sci 2020; 21:E338. [PMID: 31947993 PMCID: PMC6982212 DOI: 10.3390/ijms21010338] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Acute pancreatitis (AP) is a severe inflammation of the pancreas presented with sudden onset and severe abdominal pain with a high morbidity and mortality rate, if accompanied by severe local and systemic complications. Numerous studies have been published about the pathogenesis of AP; however, the precise mechanism behind this pathology remains unclear. Extensive research conducted over the last decades has demonstrated that the first 24 h after symptom onset are critical for the identification of patients who are at risk of developing complications or death. The identification of these subgroups of patients is crucial in order to start an aggressive approach to prevent mortality. In this sense and to avoid unnecessary overtreatment, thereby reducing the financial implications, the proper identification of mild disease is also important and necessary. A large number of multifactorial scoring systems and biochemical markers are described to predict the severity. Despite recent progress in understanding the pathophysiology of AP, more research is needed to enable a faster and more accurate prediction of severe AP. This review provides an overview of the available multifactorial scoring systems and biochemical markers for predicting severe AP with a special focus on their advantages and limitations.
Collapse
Affiliation(s)
- Pedro Silva-Vaz
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- General Surgery Department, Hospital Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal;
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Ana Margarida Abrantes
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.M.A.); (M.F.B.); (J.G.T.)
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-348 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - António Gouveia
- General Surgery Department, Hospital Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal;
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Maria Filomena Botelho
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.M.A.); (M.F.B.); (J.G.T.)
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-348 Coimbra, Portugal
| | - José Guilherme Tralhão
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.M.A.); (M.F.B.); (J.G.T.)
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-348 Coimbra, Portugal
- Surgery Department, Centro Hospitalar e Universitário de Coimbra (CHUC), University Hospital, Faculty of Medicine, 3000-075 Coimbra, Portugal
| |
Collapse
|
8
|
Spickett CM. Formation of Oxidatively Modified Lipids as the Basis for a Cellular Epilipidome. Front Endocrinol (Lausanne) 2020; 11:602771. [PMID: 33408694 PMCID: PMC7779974 DOI: 10.3389/fendo.2020.602771] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
While often regarded as a subset of metabolomics, lipidomics can better be considered as a field in its own right. While the total number of lipid species in biology may not exceed the number of metabolites, they can be modified chemically and biochemically leading to an enormous diversity of derivatives, many of which retain the lipophilic properties of lipids and thus expand the lipidome greatly. Oxidative modification by radical oxygen species, either enzymatically or chemically, is one of the major mechanisms involved, although attack by non-radical oxidants also occurs. The modified lipids typically contain more oxygens in the form of hydroxyl, epoxide, carbonyl and carboxylic acid groups, and nitration, nitrosylation, halogenation or sulfation can also occur. This article provides a succinct overview of the types of species formed, the reactive compounds involved and the specific molecular sites that they react with, and the biochemical or chemical mechanisms involved. In many cases, these modifications reduce the stability of the lipid, and breakdown products are formed, which themselves have interesting properties such as the ability to react with other biomolecules. Publications on the biological effects of modified lipids are growing rapidly, supporting the concept that some of these biomolecules have potential signaling and regulatory effects. The question therefore arises whether modified lipids represent an "epilipidome", analogous to the epigenetic modifications that can control gene expression.
Collapse
|
9
|
Huang HL, Tang GD, Liang ZH, Qin MB, Wang XM, Chang RJ, Qin HP. Role of Wnt/β-catenin pathway agonist SKL2001 in Caerulein-induced acute pancreatitis. Can J Physiol Pharmacol 2018; 97:15-22. [PMID: 30326193 DOI: 10.1139/cjpp-2018-0226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The goal of this study was to clarify the protective role of the Wnt/β-catenin pathway agonist SKL2001 in a rat model of Caerulein-induced acute pancreatitis. AR42J cells and rats were divided into 4 groups: control, Caerulein, SKL2001 + Caerulein, and SKL2001 + control. Cell apoptosis was examined using flow cytometry. Hematoxylin-eosin staining was performed to observe pathological changes in pancreatic and small intestinal tissues. Inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA), while genes related to the Wnt/β-catenin pathway were quantified using quantitative real-time PCR. In vitro results showed that Caerulein promoted cell necrosis, inhibited the Wnt/β-catenin pathway, and increased the level of inflammatory cytokines. However, SKL2001 reduced cell necrosis and inflammatory cytokines and activated the Wnt/β-catenin pathway. Additionally, in vivo results demonstrated the accumulation of fluid (i.e., edema), hemorrhage, inflammation and necrosis of the pancreatic acini occurred 6 h after the final Caerulein induction, with the damage reaching a maximal level 12 h after the final Caerulein induction; meanwhile, the Wnt/β-catenin pathway was evidently inhibited with an enhanced level of inflammatory cytokines. The aforementioned damage was further aggravated 12 h later. Nevertheless, the pancreatic and small intestinal tissue damages were alleviated in Caerulein-induced rats treated with SKL2001. In conclusion, activation of the Wnt/β-catenin pathway could inhibit Caerulein-induced cell apoptosis and inflammatory cytokine release, thus improving pancreatic and intestinal damage in rats with acute pancreatitis.
Collapse
Affiliation(s)
- Hua-Li Huang
- a Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Guo-Du Tang
- a Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Hai Liang
- a Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Meng-Bin Qin
- b Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Xian-Mo Wang
- c Department of Clinical Laboratory, The First People's Hospital of Jingzhou City, Jingzhou, Jingzhou 434000, Hubei, China
| | - Ren-Jie Chang
- a Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - He-Ping Qin
- a Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
10
|
Pérez S, Finamor I, Martí-Andrés P, Pereda J, Campos A, Domingues R, Haj F, Sabater L, de-Madaria E, Sastre J. Role of obesity in the release of extracellular nucleosomes in acute pancreatitis: a clinical and experimental study. Int J Obes (Lond) 2018; 43:158-168. [PMID: 29717278 DOI: 10.1038/s41366-018-0073-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/12/2018] [Accepted: 02/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES A high body mass index increases the risk of severe pancreatitis and associated mortality. Our aims were: (1) To determine whether obesity affects the release of extracellular nucleosomes in patients with pancreatitis; (2) To determine whether pancreatic ascites confers lipotoxicity and triggers the release of extracellular nucleosomes in lean and obese rats. METHODS DNA and nucleosomes were determined in plasma from patients with mild or moderately severe acute pancreatitis either with normal or high body mass index (BMI). Lipids from pancreatic ascites from lean and obese rats were analyzed and the associated toxicity measured in vitro in RAW 264.7 macrophages. The inflammatory response, extracellular DNA and nucleosomes were determined in lean or obese rats with pancreatitis after peritoneal lavage. RESULTS Nucleosome levels in plasma from obese patients with mild pancreatitis were higher than in normal BMI patients; these levels markedly increased in obese patients with moderately severe pancreatitis vs. those with normal BMI. Ascites from obese rats exhibited high levels of palmitic, oleic, stearic, and arachidonic acids. Necrosis and histone 4 citrullination-marker of extracellular traps-increased in macrophages incubated with ascites from obese rats but not with ascites from lean rats. Peritoneal lavage abrogated the increase in DNA and nucleosomes in plasma from lean or obese rats with pancreatitis. It prevented fat necrosis and induction of HIF-related genes in lung. CONCLUSIONS Extracellular nucleosomes are intensely released in obese patients with acute pancreatitis. Pancreatitis-associated ascitic fluid triggers the release of extracellular nucleosomes in rats with severe pancreatitis.
Collapse
Affiliation(s)
- Salvador Pérez
- Department of Physiology, School of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain
| | - Isabela Finamor
- Department of Physiology, School of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain.,Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), 1000, Santa Maria, Brazil
| | - Pablo Martí-Andrés
- Department of Physiology, School of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain
| | - Javier Pereda
- Department of Physiology, School of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain
| | - Ana Campos
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosário Domingues
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fawaz Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Luis Sabater
- Department of Surgery, University of Valencia, University Clinic Hospital, Av. Blasco Ibañez 15, 46010, Valencia, Spain
| | - Enrique de-Madaria
- Department of Gastroenterology, University General Hospital of Alicante, Institute of Sanitary and Biomedical Research of Alicante (ISABIAL), Alicante, Spain
| | - Juan Sastre
- Department of Physiology, School of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain.
| |
Collapse
|
11
|
de-Madaria E, Molero X, Bonjoch L, Casas J, Cárdenas-Jaén K, Montenegro A, Closa D. Oleic acid chlorohydrin, a new early biomarker for the prediction of acute pancreatitis severity in humans. Ann Intensive Care 2018; 8:1. [PMID: 29330618 PMCID: PMC5768584 DOI: 10.1186/s13613-017-0346-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The early prediction of the severity of acute pancreatitis still represents a challenge for clinicians. Experimental studies have revealed the generation of specific halogenated lipids, in particular oleic acid chlorohydrin, in the early stages of acute pancreatitis. We hypothesized that the levels of circulating oleic acid chlorohydrin might be a useful early prognostic biomarker in acute pancreatitis in humans. METHODS In a prospective, multicenter cohort study, plasma samples collected within 24 h after presentation in the emergency room from 59 patients with acute pancreatitis and from 9 healthy subjects were assessed for oleic acid chlorohydrin levels. RESULTS Pancreatitis was mild in 30 patients, moderately severe in 16 and severe in 13. Oleic acid chlorohydrin levels within 24 h after presentation were significantly higher in patients that later progressed to moderate and severe acute pancreatitis. Using 7.49 nM as the cutoff point, oleic acid chlorohydrin distinguished mild from moderately severe-to-severe pancreatitis with high sensitivity/specificity (96.6/90.0%) and positive/negative predictive values (90.3/96.4%). Using 32.40 nM as the cutoff value sensitivity, specificity, positive and negative predictive values were all 100% for severe acute pancreatitis. It was found to be a better prognostic marker than BISAP score, hematocrit at 48 h, SIRS at admission, persistent SIRS or C-reactive protein at 48 h. CONCLUSIONS Oleic acid chlorohydrin concentration in plasma is elevated in patients with acute pancreatitis on admission and correlates with a high degree with the final severity of the disease, indicating that it has potential to serve as an early prognostic marker for acute pancreatitis severity.
Collapse
Affiliation(s)
- Enrique de-Madaria
- Pancreatic Unit, Department of Gastroenterology, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL - Fundación FISABIO), Alicante, Spain
| | - Xavier Molero
- Exocrine Pancreatic Diseases Research Group, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, CIBEREHD, Barcelona, Spain
| | - Laia Bonjoch
- Department of Experimental Pathology, IIBB-CSIC, IDIBAPS, c/Rosselló 161, 7°, 08036 Barcelona, Spain
| | - Josefina Casas
- RUBAM, Department of Biomedicinal Chemistry, IQAC-CSIC, Barcelona, Spain
| | - Karina Cárdenas-Jaén
- Pancreatic Unit, Department of Gastroenterology, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL - Fundación FISABIO), Alicante, Spain
| | - Andrea Montenegro
- Exocrine Pancreatic Diseases Research Group, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, CIBEREHD, Barcelona, Spain
| | - Daniel Closa
- Department of Experimental Pathology, IIBB-CSIC, IDIBAPS, c/Rosselló 161, 7°, 08036 Barcelona, Spain
| |
Collapse
|
12
|
Chlorinated Phospholipids and Fatty Acids: (Patho)physiological Relevance, Potential Toxicity, and Analysis of Lipid Chlorohydrins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8386362. [PMID: 28090245 PMCID: PMC5206476 DOI: 10.1155/2016/8386362] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/24/2016] [Accepted: 11/06/2016] [Indexed: 12/17/2022]
Abstract
Chlorinated phospholipids are formed by the reaction of hypochlorous acid (HOCl), generated by the enzyme myeloperoxidase under inflammatory conditions, and the unsaturated fatty acyl residues or the head group. In the first case the generated chlorohydrins are both proinflammatory and cytotoxic, thus having a significant impact on the structures of biomembranes. The latter case leads to chloramines, the properties of which are by far less well understood. Since HOCl is also widely used as a disinfecting and antibacterial agent in medicinal, industrial, and domestic applications, it may represent an additional source of danger in the case of abuse or mishandling. This review discusses the reaction behavior of in vivo generated HOCl and biomolecules like DNA, proteins, and carbohydrates but will focus on phospholipids. Not only the beneficial and pathological (toxic) effects of chlorinated lipids but also the importance of these chlorinated species is discussed. Some selected cleavage products of (chlorinated) phospholipids and plasmalogens such as lysophospholipids, (chlorinated) free fatty acids and α-chloro fatty aldehydes, which are all well known to massively contribute to inflammatory diseases associated with oxidative stress, will be also discussed. Finally, common analytical methods to study these compounds will be reviewed with focus on mass spectrometric techniques.
Collapse
|
13
|
Huang Z, Yu SH, Liang HY, Zhou J, Yan HT, Chen T, Cheng L, Ning L, Wang T, Luo ZL, Wang KY, Liu WH, Tang LJ. Outcome benefit of abdominal paracentesis drainage for severe acute pancreatitis patients with serum triglyceride elevation by decreasing serum lipid metabolites. Lipids Health Dis 2016; 15:110. [PMID: 27341816 PMCID: PMC4919836 DOI: 10.1186/s12944-016-0276-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Our previous reports demonstrated that abdominal paracentesis drainage (APD) exerts a beneficial effect on severe acute pancreatitis (SAP) patients. However, the underlying mechanisms for this effectiveness are not well understood. METHODS A retrospective cohort of 132 consecutive non-hypertriglyceridemia (HTG)-induced SAP patients with triglyceride (TG) elevation and pancreatitis-associated ascitic fluid (PAAF) was recruited from May 2010 to May 2015 and included in this study. The patients were divided into two groups: the APD group (n = 68) and the non-APD group (n = 64). The monitored parameters mainly included mortality, hospital stay, the incidence of further intervention, levels of serum lipid metabolites and inflammatory factors, parameters related to organ failure and infections, and severity scores. RESULTS The demographic data and severity scores were comparable between the two groups. Compared with the non-APD group, the primary outcomes (including mortality, hospital stay and the incidence of percutaneous catheter drainage) in the APD group were improved. The serum levels of lipid metabolites were significantly lower in the APD group after 2 weeks of treatment than in the non-APD group. Logistic regression analysis indicated that the decreased extent of free fatty acid (FFA)(odds ratio, 1.435; P = 0.015) was a predictor of clinical improvement after 2 weeks of treatment. CONCLUSION Treatment with APD benefits non-HTG-induced SAP patients with serum TG elevation by decreasing serum levels of FFA.
Collapse
Affiliation(s)
- Zhu Huang
- />Postgraduate Department, Third Military Medical University, Chongqing, China
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Sun-Hong Yu
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Hong-Yin Liang
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Jing Zhou
- />Postgraduate Department, Third Military Medical University, Chongqing, China
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Hong-Tao Yan
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Tao Chen
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Long Cheng
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Lin Ning
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Tao Wang
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Zhu-Lin Luo
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Kui-Ying Wang
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Wei-Hui Liu
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| | - Li-Jun Tang
- />General Surgery Center of PLA, Chengdu Military General Hospital, Chengdu, Sichuan Province 610083 China
| |
Collapse
|
14
|
Contreras G, Kabara E, Brester J, Neuder L, Kiupel M. Macrophage infiltration in the omental and subcutaneous adipose tissues of dairy cows with displaced abomasum. J Dairy Sci 2015; 98:6176-87. [DOI: 10.3168/jds.2015-9370] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/11/2015] [Indexed: 01/14/2023]
|
15
|
Tissue Pharmacology of Da-Cheng-Qi Decoction in Experimental Acute Pancreatitis in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015. [PMID: 26199633 PMCID: PMC4493295 DOI: 10.1155/2015/283175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objectives. The Chinese herbal medicine Da-Cheng-Qi Decoction (DCQD) can ameliorate the severity of acute pancreatitis (AP). However, the potential pharmacological mechanism remains unclear. This study explored the potential effective components and the pharmacokinetic characteristics of DCQD in target tissue in experimental acute pancreatitis in rats. Methods. Acute pancreatitis-like symptoms were first induced in rats and then they were given different doses of DCQD (6 g/kg, 12 g/kg, and 24 g/kg body weight) orally. Tissue drug concentration, tissue pathological score, and inflammatory mediators in pancreas, intestine, and lung tissues of rats were examined after 24 hours, respectively. Results. Major components of DCQD could be found in target tissues and their concentrations increased in conjunction with the intake dose of DCQD. The high-dose compounds showed maximal effect on altering levels of anti-inflammatory (interleukin-4 and interleukin-10) and proinflammatory markers (tumor necrosis factor α and interleukin-6) and ameliorating the pathological damage in target tissues (P < 0.05). Conclusions. DCQD could alleviate pancreatic, intestinal, and lung injury by altering levels of inflammatory cytokines in AP rats with tissue distribution of its components.
Collapse
|
16
|
Bonjoch L, Gea-Sorlí S, Closa D. Lipids generated during acute pancreatitis increase inflammatory status of macrophages by interfering with their M2 polarization. Pancreatology 2015; 15:352-9. [PMID: 26003852 DOI: 10.1016/j.pan.2015.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Necrosis of adipose tissue is a common complication of acute pancreatitis. The areas of steatonecrosis become a source of inflammatory mediators, including chemically modified fatty acids which could influence the progression of the systemic inflammation. In an experimental model of acute pancreatitis we analyzed the effects of lipids generated by two representative areas of adipose tissue on the switch to the M1 phenotype in macrophages. METHODS Pancreatitis was induced in rats by intraductal administration of 5% taurocholate and after 6 h, lipids from retroperitoneal, mesenteric or epididymal adipose tissues were collected. Lipid uptake, phenotype polarization and the activation of PPARγ and NFκB were evaluated in macrophages treated with these lipids. RESULTS After induction of pancreatitis, lipids from visceral adipose tissue promote the switch to an increased pro-inflammatory phenotype in macrophages. This effect is not related with a higher activation of NFκB but with an interfering effect on the activation of M2 phenotype. CONCLUSIONS During acute pancreatitis, lipids generated by some areas of adipose tissue interfere on the M2 polarization of macrophages, thus resulting in a more intense pro-inflammatory M1 response.
Collapse
Affiliation(s)
- Laia Bonjoch
- Dept. Experimental Pathology, IIBB-CSIC, IDIBAPS, Barcelona, Spain
| | | | - Daniel Closa
- Dept. Experimental Pathology, IIBB-CSIC, IDIBAPS, Barcelona, Spain.
| |
Collapse
|
17
|
Differential effects of chlorinated and oxidized phospholipids in vascular tissue: implications for neointima formation. Clin Sci (Lond) 2015; 128:579-92. [PMID: 25524654 DOI: 10.1042/cs20140578] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The presence of inflammatory cells and MPO (myeloperoxidase) in the arterial wall after vascular injury could increase neointima formation by modification of phospholipids. The present study investigates how these phospholipids, in particular oxidized and chlorinated species, are altered within injured vessels and how they affect VSMC (vascular smooth muscle cell) remodelling processes. Vascular injury was induced in C57BL/6 mice and high fat-fed ApoE-/- (apolipoprotein E) mice by wire denudation and ligation of the left carotid artery (LCA). Neointimal and medial composition was assessed using immunohistochemistry and ESI-MS. Primary rabbit aortic SMCs (smooth muscle cells) were utilized to examine the effects of modified lipids on VSMC proliferation, viability and migration at a cellular level. Neointimal area, measured as intima-to-media ratio, was significantly larger in wire-injured ApoE-/- mice (3.62±0.49 compared with 0.83±0.25 in C57BL/6 mice, n=3) and there was increased oxidized low-density lipoprotein (oxLDL) infiltration and elevated plasma MPO levels. Relative increases in lysophosphatidylcholines and unsaturated phosphatidylcholines (PCs) were also observed in wire-injured ApoE-/- carotid arteries. Chlorinated lipids had no effect on VSMC proliferation, viability or migration whereas chronic incubation with oxidized phospholipids stimulated proliferation in the presence of fetal calf serum [154.8±14.2% of viable cells at 1 μM PGPC (1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine) compared with control, n=6]. In conclusion, ApoE-/- mice with an inflammatory phenotype develop more neointima in wire-injured arteries and accumulation of oxidized lipids in the vessel wall may propagate this effect.
Collapse
|
18
|
Mateu A, Ramudo L, Manso M, Closa D, De Dios I. Acinar inflammatory response to lipid derivatives generated in necrotic fat during acute pancreatitis. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1879-86. [DOI: 10.1016/j.bbadis.2014.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|
19
|
HOCl-modified phosphatidylcholines induce apoptosis and redox imbalance in HUVEC-ST cells. Arch Biochem Biophys 2014; 548:1-10. [DOI: 10.1016/j.abb.2014.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 11/21/2022]
|
20
|
Abstract
There is a convincing body of evidence that oxidative stress is involved in the pathogenesis of acute pancreatitis. The effects of different radical scavengers suggested that reactive oxygen metabolites are generated at very early stage of disease and contribute to amplify the pancreatic damage. Oxidative stress is also involved in the progression of the disease from a local damage to a systemic organ failure. However, therapeutic use of antioxidants failed to clearly show a clinical benefit in different trials. Therefore, although antioxidants alone seem to be not enough for the treatment of severe acute pancreatitis, future combined therapeutic strategies should include antioxidants in its composition.
Collapse
Affiliation(s)
- Daniel Closa
- Department of Experimental Pathology, IIBB-CSIC-IDIBAPS, CIBEREHD , Barcelona , Spain
| |
Collapse
|
21
|
Stampalija T, Romero R, Korzeniewski SJ, Chaemsaithong P, Miranda J, Yeo L, Dong Z, Hassan SS, Chaiworapongsa T. Soluble ST2 in the fetal inflammatory response syndrome: in vivo evidence of activation of the anti-inflammatory limb of the immune response. J Matern Fetal Neonatal Med 2013; 26:1384-93. [PMID: 23488731 DOI: 10.3109/14767058.2013.784258] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Inflammation is a mechanism of host response to infection, which can be harmful when inappropriately modulated. Soluble ST2 (sST2) is a decoy receptor of interleukin (IL)-33, and this complex modulates the balance in the Th1/Th2 immune response. Moreover, sST2 inhibits the production of pro-inflammatory cytokines in cooperation with an anti-inflammatory cytokine, IL-10. The objectives of this study were to: (1) determine whether umbilical cord plasma sST2 concentration differs between preterm neonates with and without funisitis and between those with and without the fetal inflammatory response syndrome (FIRS); and (2) evaluate the relationship between sST2 and IL-10 among neonates with funisitis and/or FIRS. METHODS Umbilical cord plasma was collected from neonates delivered prematurely due to preterm labor or preterm prelabor rupture of membranes with (n = 36), and without funisitis (n = 30). FIRS (umbilical cord IL-6 concentration ≥ 17.5 pg/mL) was identified in 29 neonates. Plasma sST2 and IL-10 concentrations were determined by enzyme linked immune sorbent assay. RESULTS The median umbilical cord plasma sST2 concentration was 6.7-fold higher in neonates with FIRS than in those without FIRS (median 44.6 ng/mL, interquartile range (IQR) 13.8-80.3 ng/mL versus median 6.7 ng/mL, IQR 5.6-20.1 ng/mL; p < 0.0001). Similarly, the median umbilical cord plasma sST2 concentration was 2.7-fold higher in neonates with funisitis than in those without funisitis (median 19.1 ng/mL; IQR 7.1-75.0 ng/mL versus median 7.2 ng/mL; IQR 5.9-23.1 ng/mL; p = 0.008). There was a strong positive correlation between sST2 and IL-10 in neonates with funisitis and/or FIRS (Spearman's Rho = 0.7, p < 0.0001). CONCLUSION FIRS and funisitis are associated with an elevation of umbilical cord plasma concentrations of soluble ST2. This protein represents an important mediator of the immune response in neonates diagnosed with FIRS by promoting an anti-inflammatory effect in association with IL-10.
Collapse
Affiliation(s)
- Tamara Stampalija
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD and Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|