1
|
MacDonald L, Smith M, Bree KK. New Paradigms for Bladder Cancer Management in Geriatrics. Clin Geriatr Med 2025; 41:175-185. [PMID: 40345772 DOI: 10.1016/j.cger.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Bladder cancer exhibits significant heterogeneity, requiring a diverse range of treatment modalities tailored to the specific tumor stage. The risk of bladder cancer increases with age, as does the risk of more aggressive disease. In this narrative review, we will discuss the epidemiology and follow-up burden of bladder cancer in the elderly. We will also explore treatment regimens based on disease stage in the context of patient age.
Collapse
Affiliation(s)
- Landan MacDonald
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew Smith
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly K Bree
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Thanh HD, Lee S, Nguyen TT, Huu TN, Ahn EJ, Cho SH, Kim MS, Moon KS, Jung C. Temozolomide promotes matrix metalloproteinase 9 expression through p38 MAPK and JNK pathways in glioblastoma cells. Sci Rep 2024; 14:14341. [PMID: 38906916 PMCID: PMC11192740 DOI: 10.1038/s41598-024-65398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/19/2024] [Indexed: 06/23/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and deadly brain cancer. Temozolomide (TMZ) is the standard chemotherapeutic agent for GBM, but the majority of patients experience recurrence and invasion of tumor cells. We investigated whether TMZ treatment of GBM cells regulates matrix metalloproteinases (MMPs), which have the main function to promote tumor cell invasion. TMZ effectively killed GL261, U343, and U87MG cells at a concentration of 500 µM, and surviving cells upregulated MMP9 expression and its activity but not those of MMP2. TMZ also elevated levels of MMP9 mRNA and MMP9 promoter activity. Subcutaneous graft tumors survived from TMZ treatment also exhibited increased expression of MMP9 and enhanced gelatinolytic activity. TMZ-mediated MMP9 upregulation was specifically mediated through the phosphorylation of p38 and JNK. This then stimulates AP-1 activity through the upregulation of c-Fos and c-Jun. Inhibition of the p38, JNK, or both pathways counteracted the TMZ-induced upregulation of MMP9 and AP-1. This study proposes a potential adverse effect of TMZ treatment for GBM: upregulation of MMP9 expression potentially associated with increased invasion and poor prognosis. This study also provides valuable insights into the molecular mechanisms by which TMZ treatment leads to increased MMP9 expression in GBM cells.
Collapse
Affiliation(s)
- Hien Duong Thanh
- Department of Anatomy, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Sueun Lee
- Department of Anatomy, Chonnam National University Medical School, Gwangju, 61469, Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-Si, 58245, Jeollanam-Do, Korea
| | - Thuy Thi Nguyen
- Department of Anatomy, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Thang Nguyen Huu
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Eun-Jung Ahn
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun, 58128, Jeollanam-Do, Korea
| | - Sang-Hee Cho
- Department of Hemato-Oncology, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Min Soo Kim
- Department of Statistics, College of Natural Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun, 58128, Jeollanam-Do, Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju, 61469, Korea.
| |
Collapse
|
3
|
Qureshi TA, Chen X, Xie Y, Murakami K, Sakatani T, Kita Y, Kobayashi T, Miyake M, Knott SRV, Li D, Rosser CJ, Furuya H. MRI/RNA-Seq-Based Radiogenomics and Artificial Intelligence for More Accurate Staging of Muscle-Invasive Bladder Cancer. Int J Mol Sci 2023; 25:88. [PMID: 38203254 PMCID: PMC10778815 DOI: 10.3390/ijms25010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Accurate staging of bladder cancer assists in identifying optimal treatment (e.g., transurethral resection vs. radical cystectomy vs. bladder preservation). However, currently, about one-third of patients are over-staged and one-third are under-staged. There is a pressing need for a more accurate staging modality to evaluate patients with bladder cancer to assist clinical decision-making. We hypothesize that MRI/RNA-seq-based radiogenomics and artificial intelligence can more accurately stage bladder cancer. A total of 40 magnetic resonance imaging (MRI) and matched formalin-fixed paraffin-embedded (FFPE) tissues were available for analysis. Twenty-eight (28) MRI and their matched FFPE tissues were available for training analysis, and 12 matched MRI and FFPE tissues were used for validation. FFPE samples were subjected to bulk RNA-seq, followed by bioinformatics analysis. In the radiomics, several hundred image-based features from bladder tumors in MRI were extracted and analyzed. Overall, the model obtained mean sensitivity, specificity, and accuracy of 94%, 88%, and 92%, respectively, in differentiating intra- vs. extra-bladder cancer. The proposed model demonstrated improvement in the three matrices by 17%, 33%, and 25% and 17%, 16%, and 17% as compared to the genetic- and radiomic-based models alone, respectively. The radiogenomics of bladder cancer provides insight into discriminative features capable of more accurately staging bladder cancer. Additional studies are underway.
Collapse
Affiliation(s)
- Touseef Ahmad Qureshi
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (T.A.Q.); (Y.X.); (D.L.)
- Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (X.C.); (S.R.V.K.)
| | - Xingyu Chen
- Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (X.C.); (S.R.V.K.)
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (T.A.Q.); (Y.X.); (D.L.)
| | - Kaoru Murakami
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (K.M.); (T.S.)
- Department of Urology, Kyoto University, Kyoto 606-8507, Japan; (Y.K.); (T.K.)
| | - Toru Sakatani
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (K.M.); (T.S.)
| | - Yuki Kita
- Department of Urology, Kyoto University, Kyoto 606-8507, Japan; (Y.K.); (T.K.)
| | - Takashi Kobayashi
- Department of Urology, Kyoto University, Kyoto 606-8507, Japan; (Y.K.); (T.K.)
| | - Makito Miyake
- Department of Urology, Nara Medical University, Kashihara 634-8522, Japan;
| | - Simon R. V. Knott
- Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (X.C.); (S.R.V.K.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (K.M.); (T.S.)
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (T.A.Q.); (Y.X.); (D.L.)
| | - Charles J. Rosser
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (K.M.); (T.S.)
| | - Hideki Furuya
- Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (X.C.); (S.R.V.K.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (K.M.); (T.S.)
| |
Collapse
|
4
|
CD46 protects the bladder cancer cells from cetuximab-mediated cytotoxicity. Sci Rep 2022; 12:22420. [PMID: 36575233 PMCID: PMC9794803 DOI: 10.1038/s41598-022-27107-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is an effective target for those patients with metastatic colorectal cancers that retain the wild-type RAS gene. However, its efficacy in many cancers, including bladder cancer, is unclear. Here, we studied the in vitro effects of cetuximab monoclonal antibodies (mAbs) targeting EGFR on the bladder cancer cells and role of CD46. Cetuximab was found to inhibit the growth of both colon and bladder cancer cell lines. Furthermore, cetuximab treatment inhibited AKT and ERK phosphorylation in the bladder cancer cells and reduced the expression of CD46 membrane-bound proteins. Restoration of CD46 expression protected the bladder cancer cells from cetuximab-mediated inhibition of AKT and ERK phosphorylation. We hypothesized that CD46 provides protection to the bladder cancer cells against mAb therapies. Bladder cancer cells were also susceptible to cetuximab-mediated immunologic anti-tumor effects. Further, cetuximab enhanced the cell killing by activating both antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in bladder cancer cells. Restoration of CD46 expression protected the cells from both CDC and ADCC induced by cetuximab. Together, CD46 exhibited a cancer-protective effect against both direct (by involvement of PBMC or complement) and indirect cytotoxic activity by cetuximab in bladder cancer cells. Considering its clinical importance, CD46 could be an important link in the action mechanism of ADCC and CDC intercommunication and may be used for the development of novel therapeutic strategies.
Collapse
|
5
|
Lee YC, Kurtova AV, Xiao J, Nikolos F, Hayashi K, Tramel Z, Jain A, Chen F, Chokshi M, Lee C, Bao G, Zhang X, Shen J, Mo Q, Jung SY, Rowley D, Chan KS. Collagen-rich airway smooth muscle cells are a metastatic niche for tumor colonization in the lung. Nat Commun 2019; 10:2131. [PMID: 31086186 PMCID: PMC6513865 DOI: 10.1038/s41467-019-09878-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/27/2019] [Indexed: 01/04/2023] Open
Abstract
Metastases account for the majority of cancer deaths. While certain steps of the metastatic cascade are well characterized, identification of targets to block this process remains a challenge. Host factors determining metastatic colonization to secondary organs are particularly important for exploration, as those might be shared among different cancer types. Here, we showed that bladder tumor cells expressing the collagen receptor, CD167a, responded to collagen I stimulation at the primary tumor to promote local invasion and utilized the same receptor to preferentially colonize at airway smooth muscle cells (ASMCs)—a rich source of collagen III in lung. Morphologically, COL3-CD167a-driven metastatic foci are uniquely distinct from typical lung alveolar metastatic lesions and exhibited activation of the CD167a-HSP90-Stat3 axis. Importantly, metastatic lung colonization could be abrogated using an investigational drug that attenuates Stat3 activity, implicating this seed-and-soil interaction as a therapeutic target for eliminating lung metastasis. Collagen is a dynamic component of both the tumor and metastatic niche. Here, the authors show that airway smooth muscle cells are a collagen III rich niche bladder cancer cells expressing CD167a, and Stat3 is a downstream target for abrogating these collagen III/CD167a-driven metastatic foci.
Collapse
Affiliation(s)
- Yu-Cheng Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Antonina V Kurtova
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jing Xiao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fotis Nikolos
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kazukuni Hayashi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zoe Tramel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Antrix Jain
- Department of Biochemistry and Molecular Biology, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fengju Chen
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mithil Chokshi
- Department of Bioengineering, Rice University Houston, Houston, TX, 77030, USA
| | - Ciaran Lee
- Department of Bioengineering, Rice University Houston, Houston, TX, 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University Houston, Houston, TX, 77030, USA
| | - Xiang Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianjun Shen
- University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qianxing Mo
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Rowley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Keith Syson Chan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Masuda N, Ogawa O, Park M, Liu AY, Goodison S, Dai Y, Kozai L, Furuya H, Lotan Y, Rosser CJ, Kobayashi T. Meta-analysis of a 10-plex urine-based biomarker assay for the detection of bladder cancer. Oncotarget 2018; 9:7101-7111. [PMID: 29467953 PMCID: PMC5805539 DOI: 10.18632/oncotarget.23872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/27/2017] [Indexed: 01/11/2023] Open
Abstract
A 10-plex urine-based bladder cancer (BCa) diagnostic signature has the potential to non-invasively predict the presence of BCa in at-risk patients, as reported in various case-control studies. The present meta-analysis was performed to re-evaluate and demonstrate the robustness and consistency of the diagnostic utility of the 10-plex urine-based diagnostic assay. We re-analyzed primary data collected in five previously published case-control studies on the 10-plex diagnostic assay. Studies reported the sensitivity and specificity of ten urinary protein biomarkers for the detection of BCa, including interleukin 8, matrix metalloproteinases 9 and 10, angiogenin, apolipoprotein E, syndecan 1, alpha-1 antitrypsin, plasminogen activator inhibitor-1, carbonic anhydrase 9, and vascular endothelial growth factor A. Data were extracted and reviewed independently by two investigators. Log odds ratios (ORs) were calculated to determine how strongly the 10-plex biomarker panel and individual biomarkers are associated with the presence of BCa. Data pooled from 1,173 patients were analyzed. The log OR for each biomarker was improved by 1.5 or greater with smaller 95% CI in our meta-analysis of the overall cohort compared with each analysis of an individual cohort. The combination of the ten biomarkers showed a higher log OR (log OR: 3.46, 95% CI: 2.60–4.31) than did any single biomarker irrespective of histological grade or disease stage of tumors. We concluded that the 10-plex BCa-associated diagnostic signature demonstrated a higher potential to identify BCa when compared to any single biomarker. Our results justify further advancement of the 10-plex protein-based diagnostic signature toward clinical application.
Collapse
Affiliation(s)
- Norihiko Masuda
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Meyeon Park
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Alvin Y Liu
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Steve Goodison
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA.,Nonagen Bioscience Corporation, Jacksonville, FL 32216, USA
| | - Yunfeng Dai
- Department of Biostatistics, The University of Florida, Gainesville, FL 32611, USA
| | - Landon Kozai
- Clinical & Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Hideki Furuya
- Clinical & Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Yair Lotan
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Charles J Rosser
- Clinical & Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
7
|
EGFR-expression in primary urinary bladder cancer and corresponding metastases and the relation to HER2-expression. On the possibility to target these receptors with radionuclides. Radiol Oncol 2015; 49:50-8. [PMID: 25810701 PMCID: PMC4362606 DOI: 10.2478/raon-2014-0015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/24/2014] [Indexed: 12/31/2022] Open
Abstract
Background There is limited effect of tyrosine kinase inhibitors or “naked” antibodies binding EGFR or HER2 for therapy of metastasized urinary bladder cancer and these methods are therefore not routinely used. Targeting radio-nuclides to the extracellular domain of the receptors is potentially a better possibility. Methods EGFR- and HER2-expression was analyzed for primary tumors and corresponding metastases from 72 patients using immunohistochemistry and the internationally recommended HercepTest. Intracellular mutations were not analyzed since only the receptors were considered as targets and intracellular abnormalities should have minor effect on radiation dose. Results EGFR was positive in 71% of the primary tumors and 69% of corresponding metastases. Local and distant metastases were EGFR-positive in 75% and 66% of the cases, respectively. The expression frequency of HER2 in related lesions was slightly higher (data from previous study). The EGFR-positive tumors expressed EGFR in metastases in 86% of the cases. The co-expression of EGFR and HER2 was 57% for tumors and 53% for metastases. Only 3% and 10% of the lesions were negative for both receptors in tumors and metastases, respectively. Thus, targeting these receptors with radionuclides might be applied for most patients. Conclusions At least one of the EGFR- or HER2-receptors was present in most cases and co-expressed in more than half the cases. It is therefore interesting to deliver radionuclides for whole-body receptor-analysis, dosimetry and therapy. This can hopefully compensate for resistance to other therapies and more patients can hopefully be treated with curative instead of palliative intention.
Collapse
|
8
|
Ho JN, Byun SS, Lee S, Oh JJ, Hong SK, Lee SE, Yeon JS. Synergistic Antitumor Effect of Triptolide and Cisplatin in Cisplatin Resistant Human Bladder Cancer Cells. J Urol 2015; 193:1016-22. [DOI: 10.1016/j.juro.2014.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Jin-Nyoung Ho
- Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seok-Soo Byun
- Biomedical Research Institute and Department of Urology, School of Medicine, Seongnam, Republic of Korea
| | - Sangchul Lee
- Biomedical Research Institute and Department of Urology, School of Medicine, Seongnam, Republic of Korea
| | - Jong Jin Oh
- Biomedical Research Institute and Department of Urology, School of Medicine, Seongnam, Republic of Korea
| | - Sung Kyu Hong
- Biomedical Research Institute and Department of Urology, School of Medicine, Seongnam, Republic of Korea
| | - Sang Eun Lee
- Biomedical Research Institute and Department of Urology, School of Medicine, Seongnam, Republic of Korea
| | - Jae Seung Yeon
- Biomedical Research Institute and Department of Urology, School of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
9
|
Castellano DE, Bellmunt J, Maroto JP, Font-Pous A, Morales-Barrera R, Ghanem I, Suarez C, Martín Lorente C, Etxaniz O, Capdevila L, Coronado C, Alfaro V, Siguero M, Fernández-Teruel C, Carles J. Phase II clinical trial of PM00104 (Zalypsis®) in urothelial carcinoma patients progressing after first-line platinum-based regimen. Cancer Chemother Pharmacol 2014; 73:857-67. [DOI: 10.1007/s00280-014-2419-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/16/2014] [Indexed: 11/29/2022]
|
10
|
Gomes-Giacoia E, Miyake M, Goodison S, Rosser CJ. Targeting plasminogen activator inhibitor-1 inhibits angiogenesis and tumor growth in a human cancer xenograft model. Mol Cancer Ther 2013; 12:2697-708. [PMID: 24072883 DOI: 10.1158/1535-7163.mct-13-0500] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancers of the urinary bladder result in aggressive and highly angiogenic tumors for which standard treatments have only limited success. Patients with advanced disease have a 5-year survival rate of less than 20%, and no new anticancer agent has been successfully introduced into the clinic armamentarium for the treatment of bladder cancer in more than 20 years. Investigations have identified plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor, as being highly expressed in several malignancies, including bladder cancer, in which high expression is associated with a poor prognosis. In this study, we evaluated PAI-1 as a potential therapeutic target for bladder cancer. PAI-1 expression was manipulated in a panel of cell lines and functional inhibition was achieved using the small molecule tiplaxtinin. Reduction or inhibition of PAI-1 resulted in the reduction of cellular proliferation, cell adhesion, and colony formation, and the induction of apoptosis and anoikis in vitro. Treatment of T24 xenografts with tiplaxtinin resulted in inhibition of angiogenesis and induction of apoptosis, leading to a significant reduction in tumor growth. Similar results were obtained through evaluation of the human cervical cancer HeLa cell line, showing that PAI-1-mediated effects are not restricted to tumor cells of bladder origin. Collectively, these data show that targeting PAI-1 may be beneficial and support the notion that novel drugs such as tiplaxtinin could be investigated as anticancer agents.
Collapse
Affiliation(s)
- Evan Gomes-Giacoia
- Corresponding Author: Charles J. Rosser, Cancer Research Institute, MD Anderson Cancer Center, 6900 Lake Nona Boulevard, Orlando, FL 32827.
| | | | | | | |
Collapse
|