1
|
Daniel Y, Dufour-Gaume F, Vergnaud A, Denis M, Giaume L, Rozec B, Prat N, Lauzier B. Adjuvant therapies for management of hemorrhagic shock: a narrative review. Crit Care 2025; 29:138. [PMID: 40158128 PMCID: PMC11955146 DOI: 10.1186/s13054-025-05368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Severe bleeding remains a leading cause of death in patients with major trauma, despite improvements in care during the acute phase, especially the application of damage control concepts. Death from hemorrhage occurs rapidly after the initial trauma, in most cases before the patient has had a chance to reach a hospital. Thus, the development of adjuvant drugs that would increase the survival of injured patients is necessary. Among the many avenues of research in this area, one is to improve cell survival during tissue hypoxia. During hemorrhagic shock, oxygen delivery to cells decreases and, despite increased oxygen extraction, anaerobic metabolism occurs, leading to acidosis, coagulopathy, apoptosis, and organ dysfunction. METHODS We selected six treatments that may help cells cope with this situation and could be used as adjuvant therapies during the initial resuscitation of severe trauma patients, including out-of-hospital settings: niacin, thiazolidinediones, prolyl hydroxylase domain inhibitors, O-GlcNAcylation stimulation, histone deacetylase inhibitors, and adenosine-lidocaine-magnesium solution. For each treatment, the biological mechanism involved and a systematic review of its interest in hemorrhagic shock (preclinical data and human clinical trials) are presented. CONCLUSION Promising molecules, some of which are already used in humans for other indications, give us hope for human clinical trials in the field of hemorrhagic shock in the near future.
Collapse
Affiliation(s)
- Yann Daniel
- French Military Health Service, 60, Bd du Général Martial Valin, 75509, Paris Cedex 15, France.
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France.
| | - Frédérique Dufour-Gaume
- French Military Health Service, 60, Bd du Général Martial Valin, 75509, Paris Cedex 15, France
| | - Amandine Vergnaud
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Manon Denis
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Louise Giaume
- Institut de Recherche Biomédicale des Armées (IRBA), 91220, Bretigny-sur-Orge, France
| | - Bertrand Rozec
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Nicolas Prat
- French Military Health Service, 60, Bd du Général Martial Valin, 75509, Paris Cedex 15, France
- Institut de Recherche Biomédicale des Armées (IRBA), 91220, Bretigny-sur-Orge, France
| | - Benjamin Lauzier
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| |
Collapse
|
2
|
Sánchez-Badajos S, Ortega-Vázquez A, López-López M, Monroy-Jaramillo N. Valproic Acid and Lamotrigine Differentially Modulate the Telomere Length in Epilepsy Patients. J Clin Med 2025; 14:255. [PMID: 39797337 PMCID: PMC11720991 DOI: 10.3390/jcm14010255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Antiseizure drugs (ASDs) are the primary therapy for epilepsy, and the choice varies according to seizure type. Epilepsy patients experience chronic mitochondrial oxidative stress and increased levels of pro-inflammatory mediators, recognizable hallmarks of biological aging; however, few studies have explored aging markers in epilepsy. Herein, we addressed for the first time the impact of ASDs on molecular aging by measuring the telomere length (TL) and mtDNA copy number (mtDNA-CN). Methods: We used real-time quantitative PCR (QPCR) in epilepsy patients compared to matched healthy controls (CTs) and assessed the association with plasma levels of ASDs and other clinical variables. The sample comprised 64 epilepsy patients and 64 CTs. Patients were grouped based on monotherapy with lamotrigine (LTG) or valproic acid (VPA), and those treated with a combination therapy (LTG + VPA). Multivariable logistic regression was applied to analyze the obtained data. Results: mtDNA-CN was similar between patients and controls, and none of the comparisons were significant for this marker. TL was shorter in not seizure-free patients than in CTs (1.50 ± 0.35 vs. 1.68 ± 0.34; p < 0.05), regardless of the ASD therapy. These patients exhibited the highest proportion of adverse drug reactions. TL was longer in patients on VPA monotherapy, followed by patients on LTG monotherapy and patients on an LTG + VPA combined scheme (1.77 ± 0.24; 1.50 ± 0.32; 1.36 ± 0.37, respectively; p < 0.05), suggesting that ASD treatment differentially modulates TL. Conclusions: Our findings suggest that clinicians could consider TL measurements to decide the best ASD treatment option (VPA and/or LTG) to help predict ASD responses in epilepsy patients.
Collapse
Affiliation(s)
- Salvador Sánchez-Badajos
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico;
| | - Alberto Ortega-Vázquez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City 04960, Mexico; (A.O.-V.); (M.L.-L.)
| | - Marisol López-López
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City 04960, Mexico; (A.O.-V.); (M.L.-L.)
| | - Nancy Monroy-Jaramillo
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| |
Collapse
|
3
|
Bhatti UF, Dawood ZS, Shang Z, Jin G, Liggett MR, Chtraklin K, Liu B, Redondo RL, Wang B, Alam HB. Testing Neuroprotective Strategies in Prolonged Field Care Model of Traumatic Brain Injury and Hemorrhagic Shock. J Am Coll Surg 2025; 240:60-72. [PMID: 39431609 DOI: 10.1097/xcs.0000000000001230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
BACKGROUND Prolonged field care is a military adaptation of tactical combat casualty care providing extended prehospital management during delayed extrication. Effects of addition of valproic acid (VPA) to fresh-frozen plasma (FFP) in a prolonged field care model of hemorrhagic shock and traumatic brain injury are not known. We hypothesized that VPA is associated with decreased neurological impairment, and its protective changes are detected at the transcriptomic level. STUDY DESIGN Swine underwent traumatic brain injury and 40% blood volume hemorrhage. After 2 hours of shock, they were randomized to (1) normal saline (NS), (2) NS + 250 mL FFP (NS + FFP), or (3) NS + FFP + 150 mg/kg VPA (NS + FFP + VPA). At 72 hours, they were transfused packed RBCs before being euthanized. Intraoperative variables and neurological outcomes were compared. Brain lesion size was measured, and gene expression profiles were analyzed using RNA sequencing. Pathway and network analyses were performed on differentially expressed genes. Real-time polymerase chain reaction was performed to validate key genes. RESULTS NS + FFP and NS + FFP + VPA required significantly less crystalloid resuscitation (974 mL: NS + FFP; 1,461 mL: NS + FFP + VPA vs 4,540 mL: NS, p < 0.001), had smaller brain lesion size (2,477 mm 3 : NS + FFP; 3,018.0 mm 3 : NS + FFP + VPA vs 4,517.0 mm 3 : NS, p < 0.01), and required less functional neurologic impairment compared with NS. Per pathway analysis of differentially expressed genes, VPA was associated with enrichment of numerous metabolic changes in injured brains, which were not observed with FFP. Network analysis showed enrichment of various gene networks. Mitochondrially encoded ATP synthase membrane subunit 8 gene was downregulated in VPA-treated animals. CONCLUSIONS The addition of FFP to the resuscitation protocol resulted in a significant reduction in crystalloid requirements. Both the NS + FFP and NS + FFP + VPA groups showed improved neurological recovery compared with NS alone and had distinctive transcriptomic profiles in injured brains at 72 hours. The mitochondrially encoded ATP synthase membrane subunit 8 gene, involved in worsening ischemia following brain injury, was downregulated in VPA-treated animals.
Collapse
Affiliation(s)
- Umar F Bhatti
- From the Department of Surgery (Bhatti, Dawood, Shang, Jin, Liggett, Chtraklin, Liu, Wang, Alam), Northwestern University, Feinberg School of Medicine, Chicago, IL
- Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA (Bhatti)
| | - Zaiba Shafik Dawood
- From the Department of Surgery (Bhatti, Dawood, Shang, Jin, Liggett, Chtraklin, Liu, Wang, Alam), Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Zhenhua Shang
- From the Department of Surgery (Bhatti, Dawood, Shang, Jin, Liggett, Chtraklin, Liu, Wang, Alam), Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Guang Jin
- From the Department of Surgery (Bhatti, Dawood, Shang, Jin, Liggett, Chtraklin, Liu, Wang, Alam), Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Marjorie R Liggett
- From the Department of Surgery (Bhatti, Dawood, Shang, Jin, Liggett, Chtraklin, Liu, Wang, Alam), Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Kiril Chtraklin
- From the Department of Surgery (Bhatti, Dawood, Shang, Jin, Liggett, Chtraklin, Liu, Wang, Alam), Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Baoling Liu
- From the Department of Surgery (Bhatti, Dawood, Shang, Jin, Liggett, Chtraklin, Liu, Wang, Alam), Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Ramon-Lorenzo Redondo
- Division of Infectious Diseases, Department of Medicine (Redondo), Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Bowen Wang
- From the Department of Surgery (Bhatti, Dawood, Shang, Jin, Liggett, Chtraklin, Liu, Wang, Alam), Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Hasan B Alam
- From the Department of Surgery (Bhatti, Dawood, Shang, Jin, Liggett, Chtraklin, Liu, Wang, Alam), Northwestern University, Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
4
|
Li H, Yin Z, Yue S, An Y, Wang X, Zhou S, Meng L, Jin B. Effect of valproic acid combined with transplantation of olfactory ensheathing cells modified by neurotrophic 3 gene on nerve protection and repair after traumatic brain injury. Neuropeptides 2024; 103:102389. [PMID: 37945445 DOI: 10.1016/j.npep.2023.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) often leads to cognitive and neurological dysfunction. Valproic acid (VPA) has a neuroprotective effect in acute central nervous system diseases; the neurotrophin 3 gene (NT-3) can maintain the survival of neurons, and olfactory ensheathing cells (OECs) can promote the growth of nerve axons. This study aimed to evaluate the restorative effect of VPA combined with NT-3 modified OECs (NT-3-OECs) on neurological function after TBI. METHODS The neurological severity score (NSS) of rats was evaluated on the 1st, 7th, 14th, and 28th day after TBI modeling and corresponding intervention. Hematoxylin-eosin (HE) staining, p75 nerve growth factor receptor (P75), glial fibrillary acidic protein (GFAP), and neurofilament protein (NF)staining, and argyrophilic staining were used to observe the morphology of brain tissue 28 days after modeling. Moreover, TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect the apoptosis rate of neurons. The changes in synapses and mitochondria in the injured area were observed by electron microscope. RESULTS NT-3-OECs transplantation can increase the content of NT-3 in brain tissue, and NT-3-OECs can survive for >28 days. The NSS score of the TBI-VPA-NT-3-OECs group 28 days after cell transplantation was significantly lower than that of the other model treatment groups (P < 0.05). The morphological structure of the brain tissue was more complete, and the neurofilament fibers were neatly arranged, achieving better results than those of the other groups. The apoptosis rate of nerve cells in the TBI-VPA-NT-3-OECs group was significantly lower than in the other treatment groups (P < 0.05). Furthermore, the number of synapses in the combined intervention group was significantly higher than in the other treatment groups, and the mitochondrial structure was more complete. CONCLUSION NT-3-OECs have good biological function, and VPA combined with NT-3-OECs transplantation can effectively improve the prognosis of TBI rats.
Collapse
Affiliation(s)
- Haiming Li
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Zhijie Yin
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Shuangzhu Yue
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Yunying An
- Department of Clinical Laboratory, Xinxiang Central Hospital, Xinxiang 453000, Henan, China
| | - Xiaoyin Wang
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Shifang Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Lei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Baozhe Jin
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China.
| |
Collapse
|
5
|
Shao L, Wu B, Liu C, Chong W. VALPROIC ACID INHIBITS CLASSICAL MONOCYTE-DERIVED TISSUE FACTOR AND ALLEVIATES HEMORRHAGIC SHOCK-INDUCED ACUTE LUNG INJURY IN RATS. Shock 2023; 59:449-459. [PMID: 36443067 PMCID: PMC9997640 DOI: 10.1097/shk.0000000000002064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
ABSTRACT Background: Monocytes and monocyte-derived tissue factor (TF) promote the development of sepsis-induced acute lung injury (ALI). Classical monocytes (C-Mcs) can be induced to express TF. Valproic acid (VPA) alleviates hemorrhagic shock (HS)-induced ALI (HS/ALI) and inhibits TF expression in monocytes. We hypothesized that C-Mcs and C-Mc-derived TF promoted HS/ALI and that VPA could inhibit C-Mc-derived TF expression and attenuate HS/ALI. Methods: Wistar rats and THP-1 cells were used to evaluate our hypothesis. Monocyte subtypes were analyzed by flow cytometry; mRNA expression was measured by fluorescence quantitative polymerase chain reaction; protein expression was measured by Western blotting, immunofluorescence, or immunohistology; inflammatory cytokines levels were measured by enzyme-linked immunosorbent assay; and ALI scores were used to determine the degree of ALI. Results: The blood %C-Mcs and C-Mcs/non-C-Mcs ratios, monocyte TF levels, serum and/or lung inflammatory cytokine levels, and ALI scores of HS rats were significantly increased ( P < 0.05). After monocyte depletion and thrombin inhibition, the inflammatory cytokine levels and ALI scores were significantly decreased ( P < 0.05). VPA reduced the %C-Mcs and C-Mc/non-C-Mc ratios, TF expression, inflammatory cytokine levels, and ALI scores during HS ( P < 0.05) and inhibited HS-induced monocyte Egr-1 and p-ERK1/2 expression ( P < 0.05). VPA inhibited hypoxia-induced TF expression in THP-1 cells by regulating the p-ERK1/2-Egr-1 axis. Conclusion: C-Mcs and C-Mc-derived TF accelerate the development of HS/ALI by increasing thrombin production. VPA inhibits HS-induced C-Mc production of TF by regulating the p-ERK1/2-Egr-1 axis and alleviates HS/ALI.
Collapse
Affiliation(s)
- Lina Shao
- Emergency Department, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Intensive Care Unit, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
- Intensive Care Unit, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning Province, China
- Intensive Care Unit, Cancer Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Bing Wu
- Emergency Department, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chang Liu
- Emergency Department, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wei Chong
- Emergency Department, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
6
|
Hinojosa-Laborde C, Hudson IL, Ross E, Xiang L, Ryan KL. Pathophysiology of Hemorrhage as It Relates to the Warfighter. Physiology (Bethesda) 2022; 37:141-153. [PMID: 35001653 PMCID: PMC8977138 DOI: 10.1152/physiol.00028.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Saving lives of wounded military Warfighters often depends on the ability to resolve or mitigate the pathophysiology of hemorrhage, specifically diminished oxygen delivery to vital organs that leads to multi-organ failure and death. However, caring for hemorrhaging patients on the battlefield presents unique challenges that extend beyond applying a tourniquet and giving a blood transfusion, especially when battlefield care must be provided for a prolonged period. This review will describe these challenges and potential strategies for treating hemorrhage on the battlefield in a prolonged casualty care situation.
Collapse
Affiliation(s)
| | - Ian L Hudson
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States
| | - Evan Ross
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States
| | - Lusha Xiang
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States
| | - Kathy L Ryan
- U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States
| |
Collapse
|
7
|
Kim YJ, Venturini V, de la Torre JC. Progress in Anti-Mammarenavirus Drug Development. Viruses 2021; 13:v13071187. [PMID: 34206216 PMCID: PMC8310104 DOI: 10.3390/v13071187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/12/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022] Open
Abstract
Mammarenaviruses are prevalent pathogens distributed worldwide, and several strains cause severe cases of human infections with high morbidity and significant mortality. Currently, there is no FDA-approved antiviral drugs and vaccines against mammarenavirus and the potential treatment option is limited to an off-label use of ribavirin that shows only partial protective effect and associates with side effects. For the past few decades, extensive research has reported potential anti-mammarenaviral drugs and their mechanisms of action in host as well as vaccine candidates. This review describes current knowledge about mammarenavirus virology, progress of antiviral drug development, and technical strategies of drug screening.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-J.K.); (V.V.)
| | - Victor Venturini
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-J.K.); (V.V.)
- Department of Biotechnology, Faculty of Experimental Sciences, Francisco de Vitoria University (UFV), Carretera Pozuelo-Majadahonda, Km 1,800, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Juan C. de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (Y.-J.K.); (V.V.)
- Correspondence:
| |
Collapse
|
8
|
Zhang ZY, Zhang HY, Talmy T, Guo Y, Zhou SR, Zhang LY, Li Y. Management of non-compressible torso hemorrhage: An update. Chin J Traumatol 2021; 24:125-131. [PMID: 33840582 PMCID: PMC8173581 DOI: 10.1016/j.cjtee.2021.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 02/04/2023] Open
Abstract
With the widespread adoption of advanced tourniquets, the mortality rate of limb wound hemorrhage has decreased significantly, and non-compressible torso hemorrhage has gradually occupied the leading position of potentially preventable death, both in military and civilian circumstances. With the emergence of novel hemostatic devices and materials, strategies for the management of non-compressible torso hemorrhage have changed significantly. This review summarizes the current treatment strategies and types of equipment for non-compressible torso hemorrhage and suggests future research directions, hoping to provide a comprehensive review for the medical personnel and researchers engaging in this field.
Collapse
Affiliation(s)
- Zhi-Yang Zhang
- Medical Center of Trauma and War Injury, Daping Hospital, Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China
| | - Hua-Yu Zhang
- Medical Center of Trauma and War Injury, Daping Hospital, Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China
| | - Tomer Talmy
- The Institute of Research in Military Medicine, The Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Yong Guo
- Medical Center of Trauma and War Injury, Daping Hospital, Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China
| | - Si-Ru Zhou
- Medical Center of Trauma and War Injury, Daping Hospital, Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China
| | - Lian-Yang Zhang
- Medical Center of Trauma and War Injury, Daping Hospital, Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China
| | - Yang Li
- Medical Center of Trauma and War Injury, Daping Hospital, Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China,Corresponding author.
| |
Collapse
|