1
|
Pócs L, Janovszky Á, Garab D, Terhes G, Ocsovszki I, Kaszaki J, Boros M, Piffkó J, Szabó A. Estrogen-dependent efficacy of limb ischemic preconditioning in female rats. J Orthop Res 2018; 36:97-105. [PMID: 28561381 DOI: 10.1002/jor.23621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/19/2017] [Indexed: 02/04/2023]
Abstract
Our aim was to examine the effects of ischemic preconditioning (IPC) on the local periosteal and systemic inflammatory consequences of hindlimb ischemia-reperfusion (IR) in Sprague-Dawley rats with chronic estrogen deficiency (13 weeks after ovariectomy, OVX) in the presence and absence of chronic 17beta-estradiol supplementation (E2, 20 µg kg-1 , 5 days/week for 5 weeks); sham-operated (non-OVX) animals served as controls. As assessed by intravital fluorescence microscopy, rolling and the firm adhesion of polymorphonuclear neutrophil leukocytes (PMNs) gave similar results in the Sham + IR and OVX + IR groups in the tibial periosteal microcirculation during the 3-h reperfusion period after a 60-min tourniquet ischemia. Postischemic increases in periosteal PMN adhesion and PMN-derived adhesion molecule CD11b expressions, however, were significantly reduced by IPC (two cycles of 10'/10') in Sham animals, but not in OVX animals; neither plasma free radical levels (as measured by chemiluminescence), nor TNF-alpha release was affected by IPC. E2 supplementation in OVX animals restored the IPC-related microcirculatory integrity and PMN-derived CD11b levels, and TNF-alpha and free radical levels were reduced by IPC only with E2. An enhanced estrogen receptor beta expression could also be demonstrated after E2 in the periosteum. Overall, the beneficial periosteal microcirculatory effects of limb IPC are lost in chronic estrogen deficiency, but they can be restored by E2 supplementation. This suggests that the presence of endogenous estrogen is a necessary facilitating factor of the anti-inflammatory protection provided by limb IPC in females. The IPC-independent effects of E2 on inflammatory reactions should also be taken into account in this model. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:97-105, 2018.
Collapse
Affiliation(s)
- Levente Pócs
- Department of Traumatology and Hand Surgery, Bács-Kiskun County Teaching Hospital, Kecskemét, Hungary
| | - Ágnes Janovszky
- Department of Oral and Maxillofacial Surgery, University of Szeged, Szeged, Hungary
| | - Dénes Garab
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Gabriella Terhes
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - Imre Ocsovszki
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - József Kaszaki
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Mihály Boros
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - József Piffkó
- Department of Oral and Maxillofacial Surgery, University of Szeged, Szeged, Hungary
| | - Andrea Szabó
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Haffner-Luntzer M, Fischer V, Prystaz K, Liedert A, Ignatius A. The inflammatory phase of fracture healing is influenced by oestrogen status in mice. Eur J Med Res 2017; 22:23. [PMID: 28683813 PMCID: PMC5501454 DOI: 10.1186/s40001-017-0264-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/22/2017] [Indexed: 12/20/2022] Open
Abstract
Background Fracture healing is known to be delayed in postmenopausal, osteoporotic females under oestrogen-deficient conditions. Confirming this, experimental studies demonstrated impaired callus formation in ovariectomised animals. Oestrogen-deficiency is known to affect the immune system and the inflammatory response during wound healing. Because a balanced immune response is required for proper bone healing, we were interested to ascertain whether the early immune response after facture is affected by oestrogen depletion. Methods To address the above question, female mice received either a bilateral ovariectomy (OVX) or were sham-operated, and femur osteotomy was performed 8 weeks after OVX/sham operation. The effects of OVX on the presence of immune cells and pro-inflammatory cytokines were evaluated by flow cytometry and immunohistochemistry of the fracture calli on days 1 and 3 after fracture. Results One day after fracture, immune cell numbers and populations in the fracture haematoma did not differ between OVX- and sham-mice. However, on day 3 after fracture, OVX-mice displayed significantly greater numbers of neutrophils. Local expression of the oestrogen-responsive and pro-inflammatory cytokine midkine (Mdk) and interleukin-6 (IL-6) expression in the fracture callus were increased in OVX-mice on day 3 after fracture compared with sham-mice, indicating that both factors might be involved in the increased presence of neutrophils. Confirming this, Mdk-antibody treatment decreased the number of neutrophils in the fracture callus and reduced local IL-6 expression in OVX-mice. Conclusions These data indicate that oestrogen-deficiency influences the early inflammatory phase after fracture. This may contribute to delayed fracture healing after oestrogen depletion.
Collapse
Affiliation(s)
- Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Centre Ulm, Helmholtzstraße 9, 89081, Ulm, Germany.
| | - Verena Fischer
- Institute of Orthopaedic Research and Biomechanics, University Medical Centre Ulm, Helmholtzstraße 9, 89081, Ulm, Germany
| | - Katja Prystaz
- Institute of Orthopaedic Research and Biomechanics, University Medical Centre Ulm, Helmholtzstraße 9, 89081, Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopaedic Research and Biomechanics, University Medical Centre Ulm, Helmholtzstraße 9, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Centre Ulm, Helmholtzstraße 9, 89081, Ulm, Germany
| |
Collapse
|
3
|
Swanepoel AC, Emmerson O, Pretorius E. The Effect of Endogenous and Synthetic Estrogens on Whole Blood Clot Formation and Erythrocyte Structure. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:599-606. [PMID: 28478790 DOI: 10.1017/s1431927617000472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As erythrocyte and estrogens interact so closely and erythrocytes can indicate the healthiness of an individual, it is essential to investigate the effects of natural estrogens as well as synthetic estrogens on these cells. Whole blood samples were used for thromboelastography (TEG), light microscopy (LM), and scanning electron microscopy (SEM) investigation. Viscoelastic investigation with TEG revealed that estrogens affected the rate of clot formation without any significant effect on the strength or stability of the clot. Axial ratio analysis with LM showed a statistically significant increase in number of erythrocytes with decreased roundness. Morphological analysis with SEM confirmed the change in erythrocyte shape and revealed both ultrastructural membrane changes and erythrocyte interactions. As erythrocyte shape and membrane flexibility correlates to physiological functioning of these cells in circulation, these changes, indicative of possible eryptosis brought on by estrogens, when experienced by individuals with an underlying inflammatory or hematological illness, could impair erythrocyte functioning and even result in obstructions in circulation. In conclusion, we suggest that whole blood analysis with viscoelastic and morphological techniques could be used as assessment of the hematological healthiness of individuals using estrogens.
Collapse
Affiliation(s)
- Albe C Swanepoel
- Department of Physiology, Faculty of Health Sciences,University of Pretoria,Pretoria 0002,South Africa
| | - Odette Emmerson
- Department of Physiology, Faculty of Health Sciences,University of Pretoria,Pretoria 0002,South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences,University of Pretoria,Pretoria 0002,South Africa
| |
Collapse
|
4
|
Maslov MY, Plotnikova TM, Anishchenko AM, Aliev OI, Nifantiev NE, Plotnikov MB. Hemorheological effects of secoisolariciresinol in ovariectomized rats. Biorheology 2017; 53:23-31. [PMID: 26756280 DOI: 10.3233/bir-15066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Postmenopausal women often develop hemorheological disorders which may affect the systemic blood circulation and present a cardiovascular risk factor. OBJECTIVE We evaluated effects of secoisolariciresinol (SECO), a phytoestrogen, on hemorheological parameters and lipid peroxidation in a model of the age-related and/or surgical menopause induced by ovariectomy in rats. METHODS Arterial blood was sampled from sham-operated female rats, ovariectomized rats (OVX), and OVX treated with SECO (OVXSECO) (20 mg/kg/day intragastrically for two weeks). Plasma estrogen concentration and the following hemorheological parameters were measured: RBC aggregation (half-time of aggregation, T1/2; amplitude of aggregation, AMP; aggregation index, AI), RBC deformability (elongation index, EI), whole blood viscosity at the shear rate of 3-300 s-1, plasma viscosity, hematocrit, plasma fibrinogen. Lipid peroxidation was evaluated by measuring conjugated dienes (CD) and thiobarbituric acid reactive substances (TBARS) in plasma. RESULTS Ovariectomy in rats caused a 60% decrease in plasma estrogen level and triggered the development of macro- and microhemorheological abnormalities. Blood viscosity increased by 12-31%, RBC elongation index reduced by 16-28%, and T1/2 and AI increased by 35% and 29% respectively. The increase in blood viscosity correlated predominantly with reduced RBC deformability. Plasma CD and TBARS were elevated by 47% and 104% respectively. SECO therapy for OVX rats reduced blood viscosity by 9-18% and T1/2 by 32%, and increased EI by 4-17%. SECO therapy disrupted the correlation between blood viscosity and RBC deformability. Lipid peroxidation was significantly inhibited, as shown by the reduction in CD and TBARS plasma concentrations by 89% and 70% respectively. SECO did not affect plasma viscosity, estrogen or fibrinogen levels. CONCLUSIONS SECO treatment for OVX rats improves blood macro- and microrheological parameters, possibly through antioxidant protection of RBC.
Collapse
Affiliation(s)
- Mikhail Y Maslov
- Steward St. Elizabeth's Medical Center/Department of Anesthesiology, Critical Care and Pain Medicine, Tufts University School of Medicine, Boston, MA, USA. E-mail:
| | | | - Anna M Anishchenko
- E.D. Goldberg Institute of Pharmacology and Regenerative Medicine, Russian Academy of Sciences, Tomsk, Russia
| | - Oleg I Aliev
- E.D. Goldberg Institute of Pharmacology and Regenerative Medicine, Russian Academy of Sciences, Tomsk, Russia
| | - Nikolay E Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mark B Plotnikov
- E.D. Goldberg Institute of Pharmacology and Regenerative Medicine, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
5
|
Matthews K, Myrand-Lapierre ME, Ang RR, Duffy SP, Scott MD, Ma H. Microfluidic deformability analysis of the red cell storage lesion. J Biomech 2015; 48:4065-4072. [DOI: 10.1016/j.jbiomech.2015.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 01/02/2023]
|
6
|
Kilic-Toprak E, Yapici A, Kilic-Erkek O, Koklu Y, Tekin V, Alemdaroglu U, Bor-Kucukatay M. Acute effects of Yo-Yo intermittent recovery test level 1 (Yo-YoIR1) on hemorheological parameters in female volleyball players. Clin Hemorheol Microcirc 2015; 60:191-9. [DOI: 10.3233/ch-141844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Emine Kilic-Toprak
- Pamukkale University, Faculty of Medicine, Department of Physiology, Kinikli, Denizli, Turkey
| | - Ayşegül Yapici
- Pamukkale University, School of Sport Science and Technology, Kinikli, Denizli, Turkey
| | - Ozgen Kilic-Erkek
- Pamukkale University, Faculty of Medicine, Department of Physiology, Kinikli, Denizli, Turkey
| | - Yusuf Koklu
- Pamukkale University, School of Sport Science and Technology, Kinikli, Denizli, Turkey
| | - Volkan Tekin
- Pamukkale University, Faculty of Medicine, Department of Physiology, Kinikli, Denizli, Turkey
| | - Utku Alemdaroglu
- Pamukkale University, School of Sport Science and Technology, Kinikli, Denizli, Turkey
| | - Melek Bor-Kucukatay
- Pamukkale University, Faculty of Medicine, Department of Physiology, Kinikli, Denizli, Turkey
| |
Collapse
|
7
|
Hwang TL, Shen HI, Liu FC, Tsai HI, Wu YC, Chang FR, Yu HP. Ursolic acid inhibits superoxide production in activated neutrophils and attenuates trauma-hemorrhage shock-induced organ injury in rats. PLoS One 2014; 9:e111365. [PMID: 25360589 PMCID: PMC4216084 DOI: 10.1371/journal.pone.0111365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022] Open
Abstract
Neutrophil activation is associated with the development of organ injury after trauma-hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma-hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma-hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma-hemorrhagic shock-induced organ injury in rats.
Collapse
Affiliation(s)
- Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-I Shen
- Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-I Tsai
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yang-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
8
|
Kosyreva AM, Simonova EY. Histophysiology of the immune system of Wistar rats at delayed terms after ovariectomy. Bull Exp Biol Med 2013; 155:697-700. [PMID: 24288743 DOI: 10.1007/s10517-013-2229-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We studied histophysiological changes in organs of the immune system, liver, and lungs of Wistar rats at delayed terms after ovariectomy. On day 52 after surgical castration leading to a decrease in estradiol, progesterone, and testosterone levels, activation of the immune system was revealed characterized by stage I accidental thymus involution, while pulp depletion in the spleen, and enhanced IL-2 and IFN-γ production. We also observed small-droplet degeneration of hepatocytes and reactive changes in the lungs manifested in increased number of neutrophils in the interalveolar septa.
Collapse
Affiliation(s)
- A M Kosyreva
- Laboratory of Immunomorphology of Inflammation, Institute Human Morphology, Russian Academy of Medical Sciences, Moscow, Russia.
| | | |
Collapse
|
9
|
Hsu JT, Yeh HC, Chen TH, Kuo CJ, Lin CJ, Chiang KC, Yeh TS, Hwang TL, Chaudry II. Role of Akt/HO-1 pathway in estrogen-mediated attenuation of trauma-hemorrhage-induced lung injury. J Surg Res 2013; 182:319-325. [PMID: 23183055 DOI: 10.1016/j.jss.2012.10.926] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/15/2012] [Accepted: 10/31/2012] [Indexed: 12/26/2022]
Abstract
BACKGROUND Despite advances in intensive care medicines, hemorrhagic shock leading to multiple organ failure remains the major causes of death in the injured host. Although studies have shown that 17β-estradiol (E2) prevents trauma-hemorrhage-induced lung damage, it remains unknown whether protein kinase B (Akt)/heme oxygenase (HO)-1 plays any role in E2-mediated lung protection after trauma-hemorrhage. MATERIALS AND METHODS After a 5-cm midline laparotomy, male rats underwent hemorrhagic shock (mean blood pressure ∼40 mm Hg for 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, E2 (1 kg/mg), E2 plus phosphoinositide 3-kinase inhibitor LY294002 (5 mg/kg), or LY294002. At 2 h after trauma-hemorrhage or sham operation, lung tissue myeloperoxidase activity, wet-to-dry-weight ratio, inflammatory mediators, and apoptosis were measured. Lung Akt, HO-1, and cleaved caspase-3 protein levels were also determined. RESULTS E2 attenuated the trauma-hemorrhage-induced increase in lung myeloperoxidase activity, edema formation, inflammatory mediator levels, and apoptosis, which was blocked by co-administration of LY294002. Administration of E2 normalized lung Akt phosphorylation and further increased HO-1 expression and decreased cleaved caspase-3 levels after trauma-hemorrhage. Co-administration of LY294002 prevented the E2-mediated attenuation of shock-induced lung injury. CONCLUSIONS Our results collectively suggest that Akt-dependent HO-1 upregulation may play a critical role in E2-meditated lung protection after trauma-hemorrhage.
Collapse
Affiliation(s)
- Jun-Te Hsu
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ritzel RM, Capozzi LA, McCullough LD. Sex, stroke, and inflammation: the potential for estrogen-mediated immunoprotection in stroke. Horm Behav 2013; 63:238-53. [PMID: 22561337 PMCID: PMC3426619 DOI: 10.1016/j.yhbeh.2012.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/13/2012] [Accepted: 04/14/2012] [Indexed: 01/05/2023]
Abstract
Stroke is the third leading cause of death and the primary cause of disability in the developed world. Experimental and clinical data indicate that stroke is a sexually dimorphic disease, with males demonstrating an enhanced intrinsic sensitivity to ischemic damage throughout most of their lifespan. The neuroprotective role of estrogen in the female brain is well established, however, estrogen exposure can also be deleterious, especially in older women. The mechanisms for this remain unclear. Our current understanding is based on studies examining estrogen as it relates to neuronal injury, yet cerebral ischemia also induces a robust sterile inflammatory response involving local and systemic immune cells. Despite the potent anti-inflammatory effects of estrogen, few studies have investigated the contribution of estrogen to sex differences in the inflammatory response to stroke. This review examines the potential role for estrogen-mediated immunoprotection in ischemic injury.
Collapse
Affiliation(s)
- Rodney M Ritzel
- University of Connecticut Health Center, Department of Neuroscience, Farmington, CT 06030, USA
| | | | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Asthma prevalence and severity are greater in women than in men, and mounting evidence suggests this is in part related to female steroid sex hormones. Of these, estrogen has been the subject of much study. This review highlights recent research exploring the effects of estrogen in allergic disease. RECENT FINDINGS Estrogen receptors are found on numerous immunoregulatory cells and estrogen's actions skew immune responses toward allergy. It may act directly to create deleterious effects in asthma, or indirectly via modulation of various pathways including secretory leukoprotease inhibitor, transient receptor potential vanilloid type 1 ion channel and nitric oxide production to exert effects on lung mechanics and inflammation. Not only do endogenous estrogens appear to play a role, but environmental estrogens have also been implicated. Environmental estrogens (xenoestrogens) including bisphenol A and phthalates enhance allergic sensitization in animal models and may enhance development of atopic disorders like asthma in humans. SUMMARY Estrogen's role in allergic disease remains complex. As allergic diseases continue to increase in prevalence and affect women disproportionately, gaining a fuller understanding of its effects in these disorders will be essential. Of particular importance may be effects of xenoestrogens on allergic disease.
Collapse
Affiliation(s)
- Rana S Bonds
- Division of Allergy/Immunology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | |
Collapse
|
12
|
Estradiol receptors agonists induced effects in rat intestinal microcirculation during sepsis. Microvasc Res 2012; 85:118-27. [PMID: 23063870 DOI: 10.1016/j.mvr.2012.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 01/26/2023]
Abstract
The steroid hormone estradiol is suggested to play a protective role in intestinal injury during systemic inflammation (sepsis). Our aim was to determine the effects of specific estradiol receptor (ER-α and ER-ß) agonists on the intestinal microcirculation during experimental sepsis. Male and sham ovariectomized female rats were subjected to sham colon ascendens stent peritonitis (CASP), and they were compared to male and ovariectomized female rats underwent CASP and either estradiol receptor α (ER-α) agonist propyl pyrazole triol (PPT), estradiol receptor ß (ER-ß) agonist diarylpropiolnitrile (DPN), or vehicle treatment. Intravital microscopy was performed, which is sufficiently sensitive to measure changes in the functional capillary density (FCD) as well as the major steps in leukocyte recruitment (rolling and adhesion). The leukocyte extravasations were also quantified by using histological paraffin sections of formalin fixed intestine. We found that either DPN (ER-β) or PPT (ER-α) significantly reduced (P<0.05) sepsis-induced leukocyte-endothelial interaction (rolling, adherent leukocytes and neutrophil extravasations) and improved the intestinal muscular FCD. [PPT: Female; Leukocyte rolling (n/min): V(3) 3.7±0.7 vs 0.8±0.2, Leukocyte adhesion(n/mm(2)): V(3) 131.3±22.6 vs 57.2±13.5, Neutrophil extravasations (n/10000 μm(2)): 3.1±0.7 vs 6 ±1. Male; Leukocyte adhesion (n/mm(2)): V(1) 154.8±19.2 vs 81.3±11.2, V(3) 115.5±23.1 vs 37.8±12]. [DPN: Female; neutrophil extravasations (n/10000 μm(2)) 3.8±0.6 vs 6 ±1. Male; Leukocyte adhesion (n/mm(2)) V(1) 154.8±19.2 vs 70±10.5, V(3) 115.5±23.1 vs 52.8±9.6].Those results suggest that the observed effects of estradiol receptors on different phases of leukocytes recruitment with the improvement of the functional capillary density could partially explain the previous demonstrated salutary effects of estradiol on the intestinal microcirculation during sepsis. The observed activity of this class of compounds could open up a new avenue of research into the potential treatment of sepsis.
Collapse
|
13
|
Activation of toll-like receptor 4 is necessary for trauma hemorrhagic shock-induced gut injury and polymorphonuclear neutrophil priming. Shock 2012; 38:107-14. [PMID: 22575992 DOI: 10.1097/shk.0b013e318257123a] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Interactions of toll-like receptors (TLRs) with nonmicrobial factors play a major role in the pathogenesis of early trauma-hemorrhagic shock (T/HS)-induced organ injury and inflammation. Thus, we tested the hypothesis that TLR4 mutant (TLR4 mut) mice would be more resistant to T/HS-induced gut injury and polymorphonuclear neutrophil (PMN) priming than their wild-type littermates and found that both were significantly reduced in the TLR4 mut mice. In addition, the in vivo and ex vivo PMN priming effect of T/HS intestinal lymph observed in the wild-type mice was abrogated in TLR4 mut mice as well the TRIF mut-deficient mice and partially attenuated in Myd88 mice, suggesting that TRIF activation played a more predominant role than MyD88 in T/HS lymph-induced PMN priming. Polymorphonuclear neutrophil depletion studies showed that T/HS lymph-induced acute lung injury was PMN dependent, because lung injury was totally abrogated in PMN-depleted animals. Because the lymph samples were sterile and devoid of endotoxin or bacterial DNA, we investigated whether the effects of T/HS lymph was related to endogenous nonmicrobial TLR4 ligands. High-mobility group box 1 protein 1, heat shock protein 70, heat shock protein 27, and hyaluronic acid all have been implicated in ischemia-reperfusion-induced tissue injury. None of these "danger" proteins appeared to be involved, because their levels were similar between the sham and shock lymph samples. In conclusion, TLR4 activation is important in T/HS-induced gut injury and in T/HS lymph-induced PMN priming and lung injury. However, the T/HS-associated effects of TLR4 on gut barrier dysfunction can be uncoupled from the T/HS lymph-associated effects of TLR4 on PMN priming.
Collapse
|
14
|
Effect of sex and prior exposure to a cafeteria diet on the distribution of sex hormones between plasma and blood cells. PLoS One 2012; 7:e34381. [PMID: 22479617 PMCID: PMC3313971 DOI: 10.1371/journal.pone.0034381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/28/2012] [Indexed: 01/01/2023] Open
Abstract
It is generally assumed that steroid hormones are carried in the blood free and/or bound to plasma proteins. We investigated whether blood cells were also able to bind/carry sex-related hormones: estrone, estradiol, DHEA and testosterone. Wistar male and female rats were fed a cafeteria diet for 30 days, which induced overweight. The rats were fed the standard rat diet for 15 additional days to minimize the immediate effects of excess ingested energy. Controls were always kept on standard diet. After the rats were killed, their blood was used for 1) measuring plasma hormone levels, 2) determining the binding of labeled hormones to washed red blood cells (RBC), 3) incubating whole blood with labeled hormones and determining the distribution of label between plasma and packed cells, discounting the trapped plasma volume, 4) determining free plasma hormone using labeled hormones, both through membrane ultrafiltration and dextran-charcoal removal. The results were computed individually for each rat. Cells retained up to 32% estrone, and down to 10% of testosterone, with marked differences due to sex and diet (the latter only for estrogens, not for DHEA and testosterone). Sex and diet also affected the concentrations of all hormones, with no significant diet effects for estradiol and DHEA, but with considerable interaction between both factors. Binding to RBC was non-specific for all hormones. Estrogen distribution in plasma compartments was affected by sex and diet. In conclusion: a) there is a large non-specific RBC-carried compartment for estrone, estradiol, DHEA and testosterone deeply affected by sex; b) Prior exposure to a cafeteria (hyperlipidic) diet induced hormone distribution changes, affected by sex, which hint at sex-related structural differences in RBC membranes; c) We postulate that the RBC compartment may contribute to maintain free (i.e., fully active) sex hormone levels in a way similar to plasma proteins non-specific binding.
Collapse
|
15
|
Sheth SU, Palange D, Xu DZ, Wei D, Feketeova E, Lu Q, Reino DC, Qin X, Deitch EA. Testosterone depletion or blockade in male rats protects against trauma hemorrhagic shock-induced distant organ injury by limiting gut injury and subsequent production of biologically active mesenteric lymph. THE JOURNAL OF TRAUMA 2011; 71:1652-1658. [PMID: 22182874 PMCID: PMC3269763 DOI: 10.1097/ta.0b013e31823a06ea] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND We tested the hypothesis that testosterone depletion or blockade in male rats protects against trauma hemorrhagic shock-induced distant organ injury by limiting gut injury and subsequent production of biologically active mesenteric lymph. METHODS Male, castrated male, or flutamide-treated rats (25 mg/kg subcutaneously after resuscitation) were subjected to a laparotomy (trauma), mesenteric lymph duct cannulation, and 90 minutes of shock (35 mm Hg) or trauma sham-shock. Mesenteric lymph was collected preshock, during shock, and postshock. Gut injury was determined at 6 hours postshock using ex vivo ileal permeability with fluorescein dextran. Postshock mesenteric lymph was assayed for biological activity in vivo by injection into mice and measuring lung permeability, neutrophil activation, and red blood cell deformability. In vitro neutrophil priming capacity of the lymph was also tested. RESULTS Castrated and flutamide-treated male rats were significantly protected against trauma hemorrhagic shock (T/HS)-induced gut injury when compared with hormonally intact males. Postshock mesenteric lymph from male rats had a higher capacity to induce lung injury, Neutrophil (PMN) activation, and loss of red blood cell deformability when injected into naïve mice when compared with castrated and flutamide-treated males. The increase in gut injury after T/HS in males directly correlated with the in vitro biological activity of mesenteric lymph to prime neutrophils for an increased respiratory burst. CONCLUSIONS After T/HS, gut protective effects can be observed in males after testosterone blockade or depletion. This reduced gut injury contributes to decreased biological activity of mesenteric lymph leading to attenuated systemic inflammation and distant organ injury.
Collapse
Affiliation(s)
- Sharvil U Sheth
- Department of Surgery, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yu HP, Hsieh PW, Chang YJ, Chung PJ, Kuo LM, Hwang TL. 2-(2-Fluorobenzamido)benzoate ethyl ester (EFB-1) inhibits superoxide production by human neutrophils and attenuates hemorrhagic shock-induced organ dysfunction in rats. Free Radic Biol Med 2011; 50:1737-48. [PMID: 21457779 DOI: 10.1016/j.freeradbiomed.2011.03.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 03/02/2011] [Accepted: 03/23/2011] [Indexed: 12/20/2022]
Abstract
Neutrophil activation after trauma-hemorrhagic shock (T/H) has been implicated in the development of multiple organ dysfunction (MOD). In this study, we report that a small chemical compound, 2-(2-fluorobenzamido)benzoic acid ethyl ester (EFB-1), exhibited a potent inhibitory effect on the formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-induced superoxide anion (O2•-) release and CD11b expression by human neutrophils. Additionally, administration of EFB-1 in rats subjected to T/H caused a significant improvement in MOD. EFB-1 treatment induced an increase in cAMP formation and protein kinase (PK) A activity in FMLP-activated neutrophils, which occurred through the selective inhibition of cAMP-specific phosphodiesterase (PDE) activity but not an increase in adenylate cyclase function or cGMP-specific PDE activity. FMLP-induced phosphorylation of protein kinase B (AKT), but not calcium mobilization, was reduced by EFB-1. The inhibitory effects of EFB-1 on O(2•-) production, CD11b expression, and AKT phosphorylation were reversed by PKA inhibitors (H89 and KT5720). Significantly, administration of EFB-1 (1 mg/kg body wt) attenuated the myeloperoxidase activity of the intestines, lungs, and liver and reduced the wet/dry weight ratio of the intestines and lungs and plasma alanine aminotransferase and aspartate aminotransferase levels in Sprague-Dawley rats after T/H. Therefore, EFB-1 is a new inhibitor of cAMP-specific PDE that potently suppresses O(2•-) release and CD11b expression by human neutrophils and attenuates T/H-induced MOD in rats.
Collapse
Affiliation(s)
- Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | | | | | | | | | | |
Collapse
|
17
|
Doucet D, Badami C, Palange D, Bonitz RP, Lu Q, Xu DZ, Kannan KB, Colorado I, Feinman R, Deitch EA. Estrogen receptor hormone agonists limit trauma hemorrhage shock-induced gut and lung injury in rats. PLoS One 2010; 5:e9421. [PMID: 20195535 PMCID: PMC2828476 DOI: 10.1371/journal.pone.0009421] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 02/01/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) and the development of the multiple organ dysfunction syndrome (MODS) is a major cause of death in trauma patients. Earlier studies in trauma hemorrhagic shock (T/HS) have documented that splanchnic ischemia leading to gut inflammation and loss of barrier function is an initial triggering event that leads to gut-induced ARDS and MODS. Since sex hormones have been shown to modulate the response to T/HS and proestrous (PE) females are more resistant to T/HS-induced gut and distant organ injury, the goal of our study was to determine the contribution of estrogen receptor (ER)alpha and ERbeta in modulating the protective response of female rats to T/HS-induced gut and lung injury. METHODS/PRINCIPAL FINDINGS The incidence of gut and lung injury was assessed in PE and ovariectomized (OVX) female rats subjected to T/HS or trauma sham shock (T/SS) as well as OVX rats that were administered estradiol (E2) or agonists for ERalpha or ERbeta immediately prior to resuscitation. Marked gut and lung injury was observed in OVX rats subjected to T/HS as compared to PE rats or E2-treated OVX rats subjected to T/HS. Both ERalpha and ERbeta agonists were equally effective in limiting T/HS-induced morphologic villous injury and bacterial translocation, whereas the ERbeta agonist was more effective than the ERalpha agonist in limiting T/HS-induced lung injury as determined by histology, Evan's blue lung permeability, bronchoalevolar fluid/plasma protein ratio and myeloperoxidase levels. Similarly, treatment with either E2 or the ERbeta agonist attenuated the induction of the intestinal iNOS response in OVX rats subjected to T/HS whereas the ERalpha agonist was only partially protective. CONCLUSIONS/SIGNIFICANCE Our study demonstrates that estrogen attenuates T/HS-induced gut and lung injury and that its protective effects are mediated by the activation of ERalpha, ERbeta or both receptors.
Collapse
Affiliation(s)
- Danielle Doucet
- Department of Surgery, University of Medicine & Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Chirag Badami
- Department of Surgery, University of Medicine & Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, Newark, New Jersey, United States of America
| | - David Palange
- Department of Surgery, University of Medicine & Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, Newark, New Jersey, United States of America
| | - R. Paul Bonitz
- Department of Surgery, University of Medicine & Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Qi Lu
- Department of Surgery, University of Medicine & Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Da-Zhong Xu
- Department of Surgery, University of Medicine & Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Kolenkode B. Kannan
- Department of Surgery, University of Medicine & Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Iriana Colorado
- Department of Surgery, University of Medicine & Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Rena Feinman
- Department of Surgery, University of Medicine & Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Edwin A. Deitch
- Department of Surgery, University of Medicine & Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, Newark, New Jersey, United States of America
| |
Collapse
|