1
|
Zondervan RL, Capobianco CA, Jenkins DC, Reicha JD, Fredrick L, Lam C, Schmanski JT, Isenberg JS, Ahn J, Marcucio RS, Hankenson KD. CD47 is required for mesenchymal progenitor proliferation and fracture repair. Bone Res 2025; 13:29. [PMID: 40025005 PMCID: PMC11873311 DOI: 10.1038/s41413-025-00409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 03/04/2025] Open
Abstract
CD47 is a ubiquitous and pleiotropic cell-surface receptor. Disrupting CD47 enhances injury repair in various tissues but the role of CD47 has not been studied in bone injuries. In a murine closed-fracture model, CD47-null mice showed decreased callus bone formation as assessed by microcomputed tomography 10 days post-fracture and increased fibrous volume as determined by histology. To understand the cellular basis for this phenotype, mesenchymal progenitors (MSC) were harvested from bone marrow. CD47-null MSC showed decreased large fibroblast colony formation (CFU-F), significantly less proliferation, and fewer cells in S-phase, although osteoblast differentiation was unaffected. However, consistent with prior research, CD47-null endothelial cells showed increased proliferation relative to WT cells. Similarly, in a murine ischemic fracture model, CD47-null mice showed reduced fracture callus size due to a reduction in bone relative to WT 15 days-post fracture. Consistent with our in vitro results, in vivo EdU labeling showed decreased cell proliferation in the callus of CD47-null mice, while staining for CD31 and endomucin demonstrated increased endothelial cell density. Finally, WT mice with ischemic fracture that were administered a CD47 morpholino, which blocks CD47 protein production, showed a callus phenotype similar to that of ischemic fractures in CD47-null mice, suggesting the phenotype was not due to developmental changes in the knockout mice. Thus, inhibition of CD47 during bone healing reduces both non-ischemic and ischemic fracture healing, in part, by decreasing MSC proliferation. Furthermore, the increase in endothelial cell proliferation and early blood vessel density caused by CD47 disruption is not sufficient to overcome MSC dysfunction.
Collapse
Affiliation(s)
- Robert L Zondervan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Christina A Capobianco
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Daniel C Jenkins
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - John D Reicha
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Livia Fredrick
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Charles Lam
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Jeanna T Schmanski
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jeffery S Isenberg
- Department of Diabetes Complications and Metabolism and Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Jaimo Ahn
- Department of Orthopaedics, Grady Memorial Hospital and Emory School of Medicine, Atlanta, GA, USA
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Zondervan RL, Capobianco CA, Jenkins DC, Reicha JD, Fredrick LM, Lam C, Isenberg JS, Ahn J, Marcucio RS, Hankenson KD. CD47 is Required for Mesenchymal Progenitor Proliferation and Fracture Repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583756. [PMID: 38496546 PMCID: PMC10942414 DOI: 10.1101/2024.03.06.583756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
CD47 is a ubiquitous and pleiotropic cell-surface receptor. Disrupting CD47 enhances injury repair in various tissues but the role of CD47 has not been studied in bone injuries. In a murine closed-fracture model, CD47-null mice showed decreased callus bone volume, bone mineral content, and tissue mineral content as assessed by microcomputed tomography 10 days post-fracture, and increased fibrous volume as determined by histology. To understand the cellular basis for this phenotype, mesenchymal progenitors (MSC) were harvested from bone marrow. CD47-null MSC showed decreased large fibroblast colony formation (CFU-F), significantly less proliferation, and fewer cells in S-phase, although osteoblast differentiation was unaffected. However, consistent with prior research, CD47-null endothelial cells showed increased proliferation relative to WT cells. Similarly, in a murine ischemic fracture model, CD47-null mice showed reduced fracture callus bone volume and bone mineral content relative to WT. Consistent with our in vitro results, in vivo EdU labeling showed decreased cell proliferation in the callus of CD47-null mice, while staining for CD31 and endomucin demonstrated increased endothelial cell mass. Finally, WT mice administered a CD47 morpholino, which blocks CD47 protein production, showed a callus phenotype similar to that of non-ischemic and ischemic fractures in CD47-null mice, suggesting the phenotype was not due to developmental changes in the knockout mice. Thus, inhibition of CD47 during bone healing reduces both non-ischemic and ischemic fracture healing, in part, by decreasing MSC proliferation. Furthermore, the increase in endothelial cell proliferation and early blood vessel density caused by CD47 disruption is not sufficient to overcome MSC dysfunction.
Collapse
Affiliation(s)
- Robert L. Zondervan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States, 48824
| | - Christina A. Capobianco
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor Michigan, United States, 48109
| | - Daniel C. Jenkins
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
| | - John D. Reicha
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
| | - Livia M. Fredrick
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
| | - Charles Lam
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, United States, 94142
| | - Jeffery S. Isenberg
- Department of Diabetes Complications and Metabolism and Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States, 91010
| | - Jaimo Ahn
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, United States, 94142
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States, 48109
| |
Collapse
|
3
|
Isenberg JS, Montero E. Tolerating CD47. Clin Transl Med 2024; 14:e1584. [PMID: 38362603 PMCID: PMC10870051 DOI: 10.1002/ctm2.1584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Cluster of differentiation 47 (CD47) occupies the outer membrane of human cells, where it binds to soluble and cell surface receptors on the same and other cells, sculpting their topography and resulting in a pleiotropic receptor-multiligand interaction network. It is a focus of drug development to temper and accentuate CD47-driven immune cell liaisons, although consideration of on-target CD47 effects remain neglected. And yet, a late clinical trial of a CD47-blocking antibody was discontinued, existent trials were restrained, and development of CD47-targeting agents halted by some pharmaceutical companies. At this point, if CD47 can be exploited for clinical advantage remains to be determined. Herein an airing is made of the seemingly conflicting actions of CD47 that reflect its position as a junction connecting receptors and signalling pathways that impact numerous human cell types. Prospects of CD47 boosting and blocking are considered along with potential therapeutic implications for autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Jeffrey S. Isenberg
- Department of Diabetes Complications & MetabolismArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Enrique Montero
- Department of Molecular & Cellular EndocrinologyArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| |
Collapse
|
4
|
Improving Liver Graft Function Using CD47 Blockade in the Setting of Normothermic Machine Perfusion. Transplantation 2021; 106:37-47. [PMID: 33577253 DOI: 10.1097/tp.0000000000003688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Towards the goal of utilizing more livers for transplantation, transplant centers are looking to increase the use of organs from "marginal" donors. Livers from these donors, however, have been shown to be more susceptible to preservation and reperfusion injury. METHODS Using a porcine model of donation after circulatory death (DCD), we studied the use of antibody-mediated CD47 blockade to further improve liver graft function undergoing normothermic machine perfusion. Livers from 20 pigs (5 per group) were brought under either 30 or 60 minutes of warm ischemia time (WIT) followed by the administration of CD47mAb treatment or IgG control antibodies and 6 hours of normothermic extracorporeal liver perfusion (NELP). RESULTS After 6 hours of NELP, CD47mAb-treated livers with 30 or 60 minutes WIT had significantly lower ALT levels and higher bile production compared to their respective control groups. Blockade of the CD47 signaling pathway resulted in significantly lower TSP-1 protein levels, lower expression of Caspase-3, and higher expression of pERK. CONCLUSIONS These findings suggested that CD47mAb treatment decreases ischemia/reperfusion injury through CD47/TSP-1 signaling downregulation and the presence of necrosis/apoptosis after reperfusion, and could increase liver regeneration during normothermic perfusion of the liver.Supplemental Visual Abstract; http://links.lww.com/TP/C146.
Collapse
|
5
|
Masuda Y, Yoshizawa K, Ohno Y, Mita A, Shimizu A, Soejima Y. Small-for-size syndrome in liver transplantation: Definition, pathophysiology and management. Hepatobiliary Pancreat Dis Int 2020; 19:334-341. [PMID: 32646775 DOI: 10.1016/j.hbpd.2020.06.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/20/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Since the first success in an adult patient, living donor liver transplantation (LDLT) has become an universally used procedure. Small-for-size syndrome (SFSS) is a well-known complication after partial LT, especially in cases of adult-to-adult LDLT. The definition of SFSS slightly varies among transplant physicians. The use of a partial liver graft has risks of SFSS development. Persistent portal vein (PV) hypertension and PV hyper-perfusion after LT were identified as the main factors. Hence, various approaches were explored to modulate PV flow and decrease PV pressure in order to alleviate this syndrome. Herein, the definition, clinical symptoms, pathophysiology, basic research, as well as preventive and treatment strategies for SFSS are reviewed based on an extensive review of the literature and on our own experiences. DATA SOURCES The articles were collected through PubMed using search terms "liver transplantation", "living donor liver transplantation", "living liver donation", "partial graft", "small-for-size graft", "small-for-size syndrome", "graft volume", "remnant liver", "standard liver volume", "graft to recipient body weight ratio", "sarcopenia", "porcine", "swine", and "rat". English publications published before March 31, 2020 were included in this review. RESULTS Many transplant surgeons performed PV flow modulation, including portocaval shunt, splenic artery ligation and splenectomy. With these techniques, patient outcome has been improved even when using a "small" graft. Other factors, such as preoperative recipients' nutritional and skeletal muscle status, graft congestion, and donor factors, were also identified as risk factors which all have been addressed using various strategies. CONCLUSIONS The surgical approach controlling PV flow and pressure could help to prevent SFSS especially in severely ill recipients. In the absence of efficacious medications to resolve SFSS, conservative treatments, including aggressive fluid balance correction for massive ascites, anti-microbiological therapy to prevent or control sepsis and intensive nutritional therapy, are all required if SFSS could not be prevented.
Collapse
Affiliation(s)
- Yuichi Masuda
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan.
| | - Kazuki Yoshizawa
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Yasunari Ohno
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Atsuyoshi Mita
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Akira Shimizu
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| | - Yuji Soejima
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, Japan
| |
Collapse
|
6
|
Li X, Wang L, Yang X, Huang C. Metformin Attenuates Ischemia-reperfusion Injury of Fatty Liver in Rats Through Inhibition of the TLR4/NF-κB Axis. Balkan Med J 2020; 37:196-202. [PMID: 32270948 PMCID: PMC7285667 DOI: 10.4274/balkanmedj.galenos.2020.2019.9.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Donor organs for liver transplantation may often have fatty liver disease, which confers a higher sensitivity to ischemia/reperfusion injury. At present, there is no effective treatment for the condition. Evidence has suggested that metformin, the first-line medication for diabetes, has protective effects against many disorders. However, the potential role of metformin in ischemia/reperfusion injury in fatty liver disease remains unclear. Aims To examine the effect of metformin treatment during ischemia/reperfusion injury in fatty liver and determine the possible mechanisms. Study Design Animal experimentation. Methods Sprague-Dawley male rats were fed a high-fat diet (520 kcal/100 g) for 14 weeks and then were subjected to the orthotopic autologous liver transplantation model. Sections of liver tissue were stained with hematoxylin and eosin to visualize the damage. Blood and liver samples were used to analyze the related proteins and components involved in the inflammatory signaling pathway. Results We found that metformin significantly ameliorated the ischemia/reperfusion injury of the fatty liver through a reduction in alanine aminotransferase/aspartate aminotransferase concentrations in the serum and a decrease in dead cells, as shown by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay (p<0.05). In addition, metformin significantly attenuated interleukin (IL)-6, IL-1β, and tumor necrosis factor-α production and increased the expression of active caspase-3 and Bax in the liver (p<0.05). Mechanistically, metformin suppressed the activation of toll-like receptor 4 (TLR4)/NF-κB signaling (p<0.05), resulting in a decreased inflammatory response and apoptosis. Conclusion Our findings demonstrated that metformin attenuated ischemia/reperfusion injury in fatty liver disease via the TLR4/NF-κB axis, suggesting that metformin could have potential therapeutic applications in ischemia/reperfusion injury associated with liver transplantation.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of General Surgery, Affiliated Hospital of Jiujiang University Jiangxi, China
| | - Liangliang Wang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiangxi, China
| | - Xiaoguang Yang
- Department of Ultrasonic, Affiliated Hospital of Jiujiang University, Jiangxi, China
| | - Chunyan Huang
- Department of Hospitality, Affiliated Hospital of Jiujiang University, Jiangxi, China
| |
Collapse
|
7
|
Chen S, Fang H, Li J, Shi JH, Zhang J, Wen P, Wang Z, Cao S, Yang H, Pan J, Tang H, Zhang H, Guo W, Zhang S. Donor Brain Death Leads to a Worse Ischemia-Reperfusion Injury and Biliary Injury After Liver Transplantation in Rats. Transplant Proc 2020; 52:373-382. [PMID: 31955852 DOI: 10.1016/j.transproceed.2019.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/13/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Brain-dead (BD) donor is the main source for liver transplantation (LT). We aim to investigate the effect of brain death on donor liver inflammatory activity and its association with ischemia-reperfusion (I/R) injury and biliary tract injury after LT. MATERIAL AND METHOD A brain death model using male Lewis rats was established, in both BD and non-BD groups; livers were harvested for transplantation using a 2-cuff technique. The rats were sacrificed 12 hours (n = 10) or 4 weeks (n = 10) after transplantation. I/R injury and long-term biliary tract injury were observed after transplantation. RESULTS All rats survived for 4 weeks after transplantation. At 12 hours after BD-donor LT (BDDLT), liver injury worsened; serum transaminases, bilirubin, oxidative stress, inflammatory responses and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining level substantially increased (P < .05). At 4 weeks after BDDLT, serum bilirubin and bile lactate dehydrogenase and γ-glutamyl transpeptidase levels were elevated (P < .05). Biliary fibrosis and epithelial-mesenchymal transition (EMT) were detectable and NDRG1 gene expression was decreased. CONCLUSIONS These results suggested that brain death-induced inflammatory response in donor organs and resulted in a worse I/R injury and biliary tract injury after LT in rats. The brain death-related biliary tract injury may be associated with the regulation of EMT through NDRG1.
Collapse
Affiliation(s)
- Sanyang Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Henen Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery Digestive Organ Transplantation at Henan University, Zhengzhou, Henan Province, China; Zheng Zhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan Province, China
| | - Hongbo Fang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ji-Hua Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Henen Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery Digestive Organ Transplantation at Henan University, Zhengzhou, Henan Province, China; Zheng Zhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan Province, China
| | - Jiakai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Peihao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhihui Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shengli Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Han Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jie Pan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hongwei Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Henen Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery Digestive Organ Transplantation at Henan University, Zhengzhou, Henan Province, China; Zheng Zhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan Province, China
| | - Huapeng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Henen Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery Digestive Organ Transplantation at Henan University, Zhengzhou, Henan Province, China; Zheng Zhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan Province, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Henen Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery Digestive Organ Transplantation at Henan University, Zhengzhou, Henan Province, China; Zheng Zhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan Province, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Henen Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery Digestive Organ Transplantation at Henan University, Zhengzhou, Henan Province, China; Zheng Zhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan Province, China.
| |
Collapse
|
8
|
Li DY, Xie SL, Wang GY, Dang XW. CD47 blockade alleviates acute rejection of allogeneic mouse liver transplantation by reducing ischemia/reperfusion injury. Biomed Pharmacother 2019; 123:109793. [PMID: 31884341 DOI: 10.1016/j.biopha.2019.109793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Despite advances in immunosuppressive therapies, acute rejection response is still a serious concern especially in the early phase after liver transplantation. This study aimed to evaluate whether blocking the TSP1-CD47 signaling pathway could attenuate the acute rejection after liver transplantation. An allogeneic mouse orthotopic liver transplantation model (Balb/c→C3H) with prolonged cold ischemic phase was used to induce severe IRI and lethal acute rejection. CD47mAb or isotype matched-control IgG2a was administered to donor liver during graft perfusion. Recipients were sacrificed at 1d, 3d, 5d and 7d after reperfusion. Blood samples were collected to evaluate serum alanine aminotransferase, total bilirubin, HMGB-1,TNF-α, IL-2 and INF-γ level. Flow cytometric analysis was used to detect the strength of innate and adaptive immune response. Liver tissue was obtained for HE, TUNEL staining and F4/80 immumohistochemical staining. Moreover, we conducted a mixed lymphocyte reaction treated with IgG2a or CD47mAb. Mice in CD47mAb-treated group demonstrated improved survival and significantly lower increase in Suzuki score, apoptosis index, acute rejection index, serum alanine aminotransferase, total bilirubin, HMGB-1, TNF-α, IL-2, INF-γ level and the degree of Kupffer cells' activation especially in the early phase of acute rejection. In addition, Pearson's correlation analysis confirmed significant correlation between Suzuki score/ALT and acute rejection index. The in vitro inhibition assay showed that CD47 blockade couldn't directly inhibit recipient lymphocyte proliferation. Based on the evidence that TSP1-CD47 signaling blockade with CD47mAb could alleviate acute rejection by reducing the extent of IRI after liver transplantation indirectly, this study provided a basis for new interventions and management methods to support better transplant outcomes.
Collapse
Affiliation(s)
- Ding-Yang Li
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Shu-Li Xie
- Department of Hepatobiliary& Pancreatic Surgery, The First Norman Bethune Hospital Affiliated to Jilin University, Changchun 130021, Jilin Province, China
| | - Guang-Yi Wang
- Department of Hepatobiliary& Pancreatic Surgery, The First Norman Bethune Hospital Affiliated to Jilin University, Changchun 130021, Jilin Province, China
| | - Xiao-Wei Dang
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China.
| |
Collapse
|
9
|
Jiménez-Castro MB, Casillas-Ramírez A, Negrete-Sánchez E, Avalos-de León CG, Gracia-Sancho J, Peralta C. Adipocytokines in Steatotic Liver Surgery/Transplantation. Transplantation 2019; 103:71-77. [PMID: 30586349 DOI: 10.1097/tp.0000000000002098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Because of the shortage of liver grafts available for transplantation, the restrictions on graft quality have been relaxed, and marginal grafts, such as steatotic livers, are now accepted. However, this policy change has not solved the problem, because steatotic liver grafts tolerate ischemia-reperfusion (I/R) injury poorly. Adipocytokines differentially modulate steatosis, inflammation, and fibrosis and are broadly present in hepatic resections and transplants. The potential use of adipocytokines as biomarkers of the severity of steatosis and liver damage to aid the identification of high-risk steatotic liver donors and to evaluate hepatic injury in the postoperative period are discussed. The hope of finding new therapeutic strategies aimed specifically at protecting steatotic livers undergoing surgery is a strong impetus for identifying the mechanisms responsible for hepatic failure after major surgical intervention. Hence, the most recently described roles of adipocytokines in steatotic livers subject to I/R injury are discussed, the conflicting results in the literature are summarized, and reasons are offered as to why strategic pharmacologic control of adipocytokines has yet to yield clinical benefits. After this, the next steps needed to transfer basic knowledge about adipocytokines into clinical practice to protect marginal livers subject to I/R injury are presented. Recent strategies based on adipocytokine regulation, which have shown efficacy in various pathologies, and hold promise for hepatic resection and transplantation are also outlined.
Collapse
Affiliation(s)
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria "Bicentenario 2010", Ciudad Victoria, México
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, México
| | - Elsa Negrete-Sánchez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
- Facultad de Medicina, Universidad International de Cataluña, Barcelona, Spain
| |
Collapse
|
10
|
Rogers NM, Ghimire K, Calzada MJ, Isenberg JS. Matricellular protein thrombospondin-1 in pulmonary hypertension: multiple pathways to disease. Cardiovasc Res 2018; 113:858-868. [PMID: 28472457 DOI: 10.1093/cvr/cvx094] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/03/2017] [Indexed: 12/24/2022] Open
Abstract
Matricellular proteins are secreted molecules that have affinities for both extracellular matrix and cell surface receptors. Through interaction with structural proteins and the cells that maintain the matrix these proteins can alter matrix strength. Matricellular proteins exert control on cell activity primarily through engagement of membrane receptors that mediate outside-in signaling. An example of this group is thrombospondin-1 (TSP1), first identified as a component of the secreted product of activated platelets. As a result, TSP1 was initially studied in relation to coagulation, growth factor signaling and angiogenesis. More recently, TSP1 has been found to alter the effects of the gaseous transmitter nitric oxide (NO). This latter capacity has provided motivation to study TSP1 in diseases associated with loss of NO signaling as observed in cardiovascular disease and pulmonary hypertension (PH). PH is characterized by progressive changes in the pulmonary vasculature leading to increased resistance to blood flow and subsequent right heart failure. Studies have linked TSP1 to pre-clinical animal models of PH and more recently to clinical PH. This review will provide analysis of the vascular and non-vascular effects of TSP1 that contribute to PH, the experimental and translational studies that support a role for TSP1 in disease promotion and frame the relevance of these findings to therapeutic strategies.
Collapse
Affiliation(s)
- Natasha M Rogers
- Medicine, Westmead Clinical School, University of Sydney, Sydney, New South Wales 2145, Australia
| | - Kedar Ghimire
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Maria J Calzada
- Department of Medicine, Universidad Autónoma of Madrid, Diego de León, Hospital Universitario of the Princesa, 62?28006 Madrid, Spain
| | - Jeffrey S Isenberg
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
11
|
Alwahsh SM, Rashidi H, Hay DC. Liver cell therapy: is this the end of the beginning? Cell Mol Life Sci 2018; 75:1307-1324. [PMID: 29181772 PMCID: PMC5852182 DOI: 10.1007/s00018-017-2713-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
The prevalence of liver diseases is increasing globally. Orthotopic liver transplantation is widely used to treat liver disease upon organ failure. The complexity of this procedure and finite numbers of healthy organ donors have prompted research into alternative therapeutic options to treat liver disease. This includes the transplantation of liver cells to promote regeneration. While successful, the routine supply of good quality human liver cells is limited. Therefore, renewable and scalable sources of these cells are sought. Liver progenitor and pluripotent stem cells offer potential cell sources that could be used clinically. This review discusses recent approaches in liver cell transplantation and requirements to improve the process, with the ultimate goal being efficient organ regeneration. We also discuss the potential off-target effects of cell-based therapies, and the advantages and drawbacks of current pre-clinical animal models used to study organ senescence, repopulation and regeneration.
Collapse
Affiliation(s)
- Salamah M Alwahsh
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| | - Hassan Rashidi
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
12
|
Wang X, Xu M, Jia J, Zhang Z, Gaut JP, Upadhya GA, Manning PT, Lin Y, Chapman WC. CD47 blockade reduces ischemia/reperfusion injury in donation after cardiac death rat kidney transplantation. Am J Transplant 2018; 18:843-854. [PMID: 28975767 PMCID: PMC5878706 DOI: 10.1111/ajt.14523] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/20/2017] [Accepted: 09/16/2017] [Indexed: 01/25/2023]
Abstract
Modulation of nitric oxide activity through blockade of CD47 signaling has been shown to reduce ischemia-reperfusion injury (IRI) in various models of tissue ischemia. Here, we evaluate the potential effect of an antibody-mediated CD47 blockade in a syngeneic and an allogeneic DCD rat kidney transplant model. The donor organ was subjected to 1 hour of warm ischemia time after circulatory cessation, then flushed with a CD47 monoclonal antibody (CD47mAb) in the treatment group, or an isotype-matched immunoglobulin in the control group. We found that CD47mAb treatment improved survival rates in both models. Serum markers of renal injury were significantly decreased in the CD47mAb-treated group compared with the control group. Histologically the CD47mAb-treated group had significantly reduced scores of acute tubular injury and acute tubular necrosis. The expression of biomarkers related to mitochondrial stress and apoptosis also were significantly lower in the CD47mAb-treated groups. Overall, the protective effects of CD47 blockade were greater in the syngeneic model. Our data show that CD47mAb blockade decreased the IRI of DCD kidneys in rat transplant models. This therapy has the potential to improve DCD kidney transplant outcomes in the human setting.
Collapse
Affiliation(s)
- Xuanchuan Wang
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Xu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Jianluo Jia
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Zhengyan Zhang
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Joseph P. Gaut
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Gundumi A. Upadhya
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | | | - Yiing Lin
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - William C. Chapman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
13
|
Xu M, Wang X, Banan B, Chirumbole DL, Garcia-Aroz S, Balakrishnan A, Nayak DK, Zhang Z, Jia J, Upadhya GA, Gaut JP, Hiebsch R, Manning PT, Wu N, Lin Y, Chapman WC. Anti-CD47 monoclonal antibody therapy reduces ischemia-reperfusion injury of renal allografts in a porcine model of donation after cardiac death. Am J Transplant 2018; 18:855-867. [PMID: 29087049 PMCID: PMC5878700 DOI: 10.1111/ajt.14567] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/08/2017] [Accepted: 10/18/2017] [Indexed: 01/25/2023]
Abstract
We investigated whether blockade of the CD47 signaling pathway could reduce ischemia-reperfusion injury (IRI) of renal allografts donated after cardiac death (DCD) in a porcine animal model of transplantation. Renal allografts were subjected to 30 minutes of warm ischemia, 3.5 hours of cold ischemia, and then perfused with a humanized anti-CD47 monoclonal antibody (CD47mAb) in the treatment group or HTK solution in the control group (n = 4/group). The animals were euthanized five days after transplantation. At the time of reperfusion, indocyanine green-based in vivo imaging showed that CD47mAb-treated organs had greater and more uniform reperfusion. On post-transplant days 3-5, the treatment group had lower values compared to the control for creatinine and blood urea nitrogen. Histological examination of allograft tissues showed a significant decrease of acute tubular injury in the CD47mAb-treated group compared to control. Compared to the control group, CD47mAb treatment significantly decreased genes expression related to oxidative stress (sod-1, gpx-1, and txn), the inflammatory response (il-2, il-6, inf-g, and tgf-b), as well as reduced protein levels of BAX, Caspase-3, MMP2, and MMP9. These data demonstrate that CD47mAb blockade decreases IRI and subsequent tissue injury in DCD renal allografts in a large animal transplant model.
Collapse
Affiliation(s)
- Min Xu
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO
| | - Xuanchuan Wang
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO
| | - Babak Banan
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO
| | - Danielle L. Chirumbole
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO
| | - Sandra Garcia-Aroz
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO
| | - Aparna Balakrishnan
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO
| | - Deepak K. Nayak
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO
| | - Zhengyan Zhang
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO
| | - Jianluo Jia
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO
| | - Gundumi A. Upadhya
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO
| | - Joseph P. Gaut
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | | | | | - Ningying Wu
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO
| | - Yiing Lin
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO
- Correspondence to: William C. Chapman, ; or Yiing Lin,
| | - William C. Chapman
- Department of Surgery, Section of Abdominal Transplantation, Washington University School of Medicine, St. Louis, MO
- Correspondence to: William C. Chapman, ; or Yiing Lin,
| |
Collapse
|
14
|
Roberts DD, Kaur S, Isenberg JS. Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer. Antioxid Redox Signal 2017; 27:874-911. [PMID: 28712304 PMCID: PMC5653149 DOI: 10.1089/ars.2017.7140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE In contrast to structural elements of the extracellular matrix, matricellular proteins appear transiently during development and injury responses, but their sustained expression can contribute to chronic disease. Through interactions with other matrix components and specific cell surface receptors, matricellular proteins regulate multiple signaling pathways, including those mediated by reactive oxygen and nitrogen species and H2S. Dysregulation of matricellular proteins contributes to the pathogenesis of vascular diseases and cancer. Defining the molecular mechanisms and receptors involved is revealing new therapeutic opportunities. Recent Advances: Thrombospondin-1 (TSP1) regulates NO, H2S, and superoxide production and signaling in several cell types. The TSP1 receptor CD47 plays a central role in inhibition of NO signaling, but other TSP1 receptors also modulate redox signaling. The matricellular protein CCN1 engages some of the same receptors to regulate redox signaling, and ADAMTS1 regulates NO signaling in Marfan syndrome. In addition to mediating matricellular protein signaling, redox signaling is emerging as an important pathway that controls the expression of several matricellular proteins. CRITICAL ISSUES Redox signaling remains unexplored for many matricellular proteins. Their interactions with multiple cellular receptors remains an obstacle to defining signaling mechanisms, but improved transgenic models could overcome this barrier. FUTURE DIRECTIONS Therapeutics targeting the TSP1 receptor CD47 may have beneficial effects for treating cardiovascular disease and cancer and have recently entered clinical trials. Biomarkers are needed to assess their effects on redox signaling in patients and to evaluate how these contribute to their therapeutic efficacy and potential side effects. Antioxid. Redox Signal. 27, 874-911.
Collapse
Affiliation(s)
- David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical Care, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|