1
|
Baird T, Sansom SN. A Unified Metric of Human Immune Health? Transplantation 2025:00007890-990000000-01074. [PMID: 40334043 DOI: 10.1097/tp.0000000000005378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Affiliation(s)
- Tarrion Baird
- Nuffield Department of Orthopaedics, Kennedy Institute of Rheumatology, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
2
|
Wang H, Li Y, Qiu D, Pan Q, Xu Y, Liu Y, Wu Y. Personalized Nanomedicine-Mediated immune regulation for Anti-Rejection in organ transplantation. Int J Pharm 2025; 674:125450. [PMID: 40122222 DOI: 10.1016/j.ijpharm.2025.125450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/20/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
The advent of personalized medicine and nanomedicine has led to significant advancements in organ transplantation. Personalized medicine leverages individual patient profiles, including genetic, epigenetic, and immune characteristics, to tailor treatment regimens. Nanomedicine, involving the use of nanoparticles and nanotechnology, offers precise drug delivery and innovative diagnostic tools. The integration of personalized nanomedicine into these fields has the potential to revolutionize transplantation by enhancing graft survival, minimizing adverse effects, and achieving immune tolerance. This review explores the current landscape of personalized nanomedicine for organ transplantation, focusing on immune modulation and therapeutic strategies tailored to individual patient profiles. We also discuss future research directions, including large-scale clinical trials, and regulatory considerations. This review concludes by examining the potential of personalized nanomedicine in improving long-term transplant outcomes and enhancing patient quality of life.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yutong Li
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Dan Qiu
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qinyu Pan
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Xu
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Department of Endocrinology and Metabolism, The Affiliated Hospital, Southwest Medical University, Luzhou 646000 Sichuan, China.
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
3
|
Ai C, Song J, Yuan C, Xu G, Yang J, Lv T, Jin S, Wu H, Xiang B, Yang J. Prediction model of the T cell-mediated rejection after liver transplantation in children and adults: A case-controlled study. Int J Surg 2025; 111:2827-2837. [PMID: 39878165 DOI: 10.1097/js9.0000000000002279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/05/2025] [Indexed: 01/31/2025]
Abstract
OBJECTIVE T cell-mediated rejection (TCMR) is a major concern following liver transplantation (LT), and identifying its predictors could help improve post-transplant prognosis. This study aimed to develop a model to predict the risk of TCMR in children and adults after LT. METHOD Pre-transplant demographic characteristics, intraoperative parameters, and especially early post-transplant laboratory data for 1221 LT recipients (1096 adults and 125 children) were obtained from the Hospital, University, between 1 January 2015, and 1 January 2022. These data were analyzed to develop the prediction model. RESULT The incidence of TCMR was higher in pediatric LT recipients than in adults (17.6% vs. 6.4%, P < 0.001). In adult recipients, seven predictors were identified: donor sex, recipient age, recipient height, and post-transplant levels of serum direct bilirubin, urea, platelets, and neutrophil-to-lymphocyte ratio. In pediatric recipients, four predictors were identified: post-transplant levels of serum monocyte percentage, direct bilirubin, albumin, and gamma-glutamyl transferase. The area under the model's curve incorporating these variables for predicting TCMR after LT was 0.713 (95% confidence interval, CI: 0.655-0.770) in adults and 0.786 (95% CI: 0.675-0.896) in children. Decision curve analyses demonstrated the clinical significance of the model. CONCLUSION This study developed a prediction model that may be useful in identifying high-TCMR-risk populations in both adult and pediatric LT recipients.
Collapse
Affiliation(s)
- Chengbo Ai
- Department of Pediatric Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Jiulin Song
- Department of Pediatric Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Chi Yuan
- Department of Pediatric Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Gang Xu
- Department of Liver Transplant Center, Organ Transplant Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Jian Yang
- Department of Liver Transplant Center, Organ Transplant Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Tao Lv
- Department of Liver Transplant Center, Organ Transplant Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Shuguang Jin
- Department of Pediatric Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Hong Wu
- Department of Liver Transplant Center, Organ Transplant Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Bo Xiang
- Department of Pediatric Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Jiayin Yang
- Department of Liver Transplant Center, Organ Transplant Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, PR China
| |
Collapse
|
4
|
Millán O, Julian J, Brunet M. miRNAs, dd-cf-DNA, and Chemokines as Potential Noninvasive Biomarkers for the Assessment of Clinical Graft Evolution and Personalized Immunosuppression Requirement in Solid Organ Transplantation. Ther Drug Monit 2025; 47:77-97. [PMID: 39503575 DOI: 10.1097/ftd.0000000000001276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 11/08/2024]
Abstract
ABSTRACT The use of noninvasive biomarkers may reduce the need for biopsy and guide immunosuppression adjustments during transplantation. The scientific community in solid organ transplantation currently considers that chemokines, T- and B-cell immunophenotypes, and gene expression, among other molecular biomarkers, have great potential as diagnostic and predictive biomarkers for graft evolution; however, in clinical practice, few valid early biomarkers have emerged. This review focuses on the most relevant scientific advances in this field in the last 5 years regarding the role of 3 biomarkers: miRNAs, chemokines, and ddcf-DNA, in both adult and pediatric populations. An update was provided on the scores based on the combination of these biomarkers. The most-featured articles were identified through a literature search of the PubMed database. This review provides a comprehensive analysis of the potential clinical applications of these biomarkers in the diagnosis and prediction of graft outcomes and discusses the reasons why none have been implemented in clinical practice to date. Translating these biomarkers into routine clinical practice and combining them with pharmacogenetics and pharmacokinetic monitoring is challenging; however, it is the key to present/future individualized immunosuppressive therapies. It is essential that they be shown to be applicable and robust in real-life patient conditions and properly evaluate their added value when combined with the standard-of-care factor monitoring for graft clinical assessment. Partnership strategies among scientists, academic institutions, consortia, including expert working groups and scientific societies, and pharmaceutical and/or biotechnology companies should promote the development of prospective, randomized, multicenter intervention studies for adequate clinical validation of these biomarkers and their monitoring frequency, and their commercialization to make them available to transplant physicians.
Collapse
Affiliation(s)
- Olga Millán
- Biomedical Research Center in Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III (ISCII), c/Sinesio Delgado, Madrid; and
- Pharmacology and Toxicology, Biochemistry and Molecular Genetics, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, c/Villarroel, Barcelona, Spain
| | - Judit Julian
- Pharmacology and Toxicology, Biochemistry and Molecular Genetics, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, c/Villarroel, Barcelona, Spain
| | - Mercè Brunet
- Biomedical Research Center in Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III (ISCII), c/Sinesio Delgado, Madrid; and
- Pharmacology and Toxicology, Biochemistry and Molecular Genetics, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, c/Villarroel, Barcelona, Spain
| |
Collapse
|
5
|
Chichelnitskiy E, Goldschmidt I, Ruhl L, Rübsamen N, Jaeger VK, Karch A, Beushausen K, Keil J, Götz JK, D'Antiga L, Debray D, Hierro L, Kelly D, McLin V, Pawlowska J, Mikolajczyk RT, Bravi M, Klaudel-Dreszler M, Demir Z, Lloyd C, Korff S, Baumann U, Falk CS. Plasma immune signatures can predict rejection-free survival in the first year after pediatric liver transplantation. J Hepatol 2024; 81:862-871. [PMID: 38821361 DOI: 10.1016/j.jhep.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND & AIMS After pediatric liver transplantation (pLT), children undergo life-long immunosuppression since reliable biomarkers for the assessment of rejection probability are scarce. In the multicenter (n = 7) prospective clinical cohort "ChilSFree" study, we aimed to characterize longitudinal dynamics of soluble and cellular immune mediators during the first year after pLT and identify early biomarkers associated with outcome. METHODS Using a Luminex-based multiplex technique paired with flow cytometry, we characterized longitudinal dynamics of soluble immune mediators (SIMs, n = 50) and immune cells in the blood of 244 patients at eight visits over 1 year: before, and 7/14/21/28 days and 3/6/12 months after pLT. RESULTS The unsupervised clustering of patients based on SIM profiles revealed six unique SIM signatures associated with clinical outcome. From three signatures linked to improved outcome, one was associated with 1-year-long rejection-free survival and stable graft function and was characterized by low levels of pro-inflammatory SIMs (CXCL8/9/10/12, CCL7, SCGF-β, sICAM-1), and high levels of regenerative (SCF, TNF-β) and pro-apoptotic (TRAIL) SIMs (all, p <0.001, fold change >100). Of note, this SIM signature appeared 2 weeks after pLT and remained stable over the entire year, pointing towards its potential as a novel early biomarker for minimizing or weaning immunosuppression. In the blood of these patients, a higher frequency of CD56bright natural killer cells (p <0.01), a known hallmark also associated with operationally tolerant pLT patients, was detected. The concordance of the model for prediction of rejection based on identified SIM signatures was 0.715, and 0.795, in combination with living-related transplantation as a covariate, respectively. CONCLUSIONS SIM blood signatures may enable the non-invasive and early assessment of rejection risks in the first year after pLT, paving the way for improved clinical management. IMPACT AND IMPLICATIONS ChilSFree represents the largest pediatric liver transplant (pLT) cohort with paired longitudinal data on soluble immune mediators (SIMs) and immune phenotyping in the first year after pLT. SIM signatures allow for the selection of rejection-free patients 2 weeks after pLT independently of patient diagnosis, sex, or age. The SIM signatures may enable the non-invasive and early assessment of rejection risks, paving the way for minimization or withdrawal of immunosuppression after pLT.
Collapse
Affiliation(s)
- Evgeny Chichelnitskiy
- Institute of Transplant Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Imeke Goldschmidt
- Division of Pediatric Gastroenterology and Hepatology, MHH, Hannover, Germany; European Pediatric Liver Transplantation Network, Germany
| | - Louisa Ruhl
- Institute of Transplant Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Nicole Rübsamen
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Veronika K Jaeger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Andre Karch
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Kerstin Beushausen
- Institute of Transplant Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Jana Keil
- Institute of Transplant Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Juliane K Götz
- Division of Pediatric Gastroenterology and Hepatology, MHH, Hannover, Germany
| | - Lorenzo D'Antiga
- Pediatric Department, Hospital Papa Giovanni XXIII Bergamo, Italy; European Pediatric Liver Transplantation Network, Germany; Department of Medicine and Surgery, University of Milano - Bicocca, 20126 Milan, Italy
| | - Dominique Debray
- Pediatric liver unit, Hôpital Necker-Enfants Malades, Paris, France; European Pediatric Liver Transplantation Network, Germany
| | - Loreto Hierro
- Hospital Infantil Universitario La Paz, Madrid, Spain; European Pediatric Liver Transplantation Network, Germany
| | - Deirdre Kelly
- Birmingham Women's & Children's Hospital, and University of Birmingham, UK; European Pediatric Liver Transplantation Network, Germany
| | - Valerie McLin
- Swiss Pediatric Liver Center, Department of Pediatrics, Gynecology, and Obstetrics, University Hospitals Geneva, University of Geneva, Geneva, Switzerland; European Pediatric Liver Transplantation Network, Germany
| | - Joanna Pawlowska
- Department of Gastroenterology, Hepatology, Nutritional Disorders, and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Rafael T Mikolajczyk
- Institute of Medical Epidemiology, Biostatistics and Medical Informatics, University of Halle, Halle, Germany
| | - Michela Bravi
- Pediatric Department, Hospital Papa Giovanni XXIII Bergamo, Italy; European Pediatric Liver Transplantation Network, Germany
| | - Maja Klaudel-Dreszler
- Department of Gastroenterology, Hepatology, Nutritional Disorders, and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Zeynep Demir
- Pediatric liver unit, Hôpital Necker-Enfants Malades, Paris, France; European Pediatric Liver Transplantation Network, Germany
| | - Carla Lloyd
- Birmingham Women's & Children's Hospital, and University of Birmingham, UK; European Pediatric Liver Transplantation Network, Germany
| | - Simona Korff
- Swiss Pediatric Liver Center, Department of Pediatrics, Gynecology, and Obstetrics, University Hospitals Geneva, University of Geneva, Geneva, Switzerland; European Pediatric Liver Transplantation Network, Germany
| | - Ulrich Baumann
- Division of Pediatric Gastroenterology and Hepatology, MHH, Hannover, Germany; European Pediatric Liver Transplantation Network, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School (MHH), Hannover, Germany; German Centre for Infection Research, TTU-IICH Hannover, Hannover, Germany.
| |
Collapse
|
6
|
Baciu C, Ghosh S, Naimimohasses S, Rahmani A, Pasini E, Naghibzadeh M, Azhie A, Bhat M. Harnessing Metabolites as Serum Biomarkers for Liver Graft Pathology Prediction Using Machine Learning. Metabolites 2024; 14:254. [PMID: 38786731 PMCID: PMC11122840 DOI: 10.3390/metabo14050254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Graft injury affects over 50% of liver transplant (LT) recipients, but non-invasive biomarkers to diagnose and guide treatment are currently limited. We aimed to develop a biomarker of graft injury by integrating serum metabolomic profiles with clinical variables. Serum from 55 LT recipients with biopsy confirmed metabolic dysfunction-associated steatohepatitis (MASH), T-cell mediated rejection (TCMR) and biliary complications was collected and processed using a combination of LC-MS/MS assay. The metabolomic profiles were integrated with clinical information using a multi-class Machine Learning (ML) classifier. The model's efficacy was assessed through the Out-of-Bag (OOB) error estimate evaluation. Our ML model yielded an overall accuracy of 79.66% with an OOB estimate of the error rate at 19.75%. The model exhibited a maximum ability to distinguish MASH, with an OOB error estimate of 7.4% compared to 22.2% for biliary and 29.6% for TCMR. The metabolites serine and serotonin emerged as the topmost predictors. When predicting binary outcomes using three models: Biliary (biliary vs. rest), MASH (MASH vs. rest) and TCMR (TCMR vs. rest); the AUCs were 0.882, 0.972 and 0.896, respectively. Our ML tool integrating serum metabolites with clinical variables shows promise as a non-invasive, multi-class serum biomarker of graft pathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mamatha Bhat
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2C4, Canada; (C.B.); (S.G.); (S.N.); (A.R.); (E.P.); (M.N.); (A.A.)
| |
Collapse
|
7
|
Wang G, Chen H, Sun P, Zhou W, Jiang H, Zhong Z, Chen M, Xie X, Luo Z, Zhou L. Predictive model containing gene signature and shear wave elastography to predict patient outcomes after Kasai surgery in biliary atresia. Hepatol Res 2023; 53:1126-1133. [PMID: 37519259 DOI: 10.1111/hepr.13948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
AIMS Infants with biliary atresia (BA) are treated with Kasai portoenterostomy (KPE) surgery, but many BA patients need subsequent salvage liver transplants. The aim of this study is to develop a comprehensive gene-clinical model based on two-dimensional shear wave elastography (2DSWE), liver gene expression, and other clinical parameters to predict response to KPE for BA patients. METHODS Differentially expressed gene patterns between liver samples of BA (n = 102) and non-BA control (n = 14) were identified using RNA sequencing analysis. Biliary atresia patients were then randomly assigned to training and validation cohorts. Gene classifier based on the differentially expressed genes was built in the training cohort. Nomogram models with and without gene classifier were further constructed and validated for predicting native liver survival of BA patients. The utility of the nomograms was compared by C-index. RESULTS Using the least absolute shrinkage and selection operator model, we generated a nine-gene prognostic classifier. The nomogram based on the nine-gene classifier, age, preoperative 2DSWE, and albumin had the better C-index compared to gene classifier alone in the training cohort (0.83 [0.76-0.90] vs. 0.69 [0.61-0.77], p = 0.003) and the validation cohort (0.74 [0.67-0.82] vs. 0.62 [0.55-0.70], p = 0.001). Using risk scores developed from the nomogram, the 12-month survival rates of BA patients with native liver were 35.7% (95% confidence interval [CI], 22.7-56.3) in the high-risk group and 80.8% (95% CI, 63.4-100.0) in the low-risk group in the validation cohort. CONCLUSIONS The comprehensive genetic-clinical nomogram based on preoperative 2DSWE, liver gene expression, and other clinical parameters can accurately predict response to KPE.
Collapse
Affiliation(s)
- Guotao Wang
- Department of Medical Ultrasonics, Institute for Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huadong Chen
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Panpan Sun
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenying Zhou
- Department of Medical Ultrasonics, Institute for Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hong Jiang
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhihai Zhong
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Meixi Chen
- Department of Medical Ultrasonics, Institute for Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, Institute for Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhenhua Luo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Luyao Zhou
- Department of Medical Ultrasonics, Institute for Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Ultrasound, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
8
|
Eurich D, Schlickeiser S, Ossami Saidy RR, Uluk D, Rossner F, Postel M, Schoening W, Oellinger R, Lurje G, Pratschke J, Reinke P, Gruen N. How to Estimate the Probability of Tolerance Long-Term in Liver Transplant Recipients. J Clin Med 2023; 12:6546. [PMID: 37892685 PMCID: PMC10607917 DOI: 10.3390/jcm12206546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Operational tolerance as the ability to accept the liver transplant without pharmacological immunosuppression is a common phenomenon in the long-term course. However, it is currently underutilized due to a lack of simple diagnostic support and fear of rejection despite its recognized benefits. In the present work, we present a simple score based on clinical parameters to estimate the probability of tolerance. PATIENTS AND METHODS In order to estimate the probability of tolerance, clinical parameters from 82 patients after LT who underwent weaning from the IS for various reasons at our transplant center were extracted from a prospectively organized database and analyzed retrospectively. Univariate testing as well as multivariable logistic regression analysis were performed to assess the association of clinical variables with tolerance in the real-world setting. RESULTS The most important factors associated with tolerance after multivariable logistic regression were IS monotherapy, male sex, history of hepatocellular carcinoma pretransplant, time since LT, and lack of rejection. These five predictors were retained in an approximate model that could be presented as a simple scoring system to estimate the clinical probability of tolerance or IS dispensability with good predictive performance (AUC = 0.89). CONCLUSION In parallel with the existence of a tremendous need for further research on tolerance mechanisms, the presented score, after validation in a larger collective preferably in a multicenter setting, could be easily and safely applied in the real world and already now address all three levels of prevention in LT patients over the long-term course.
Collapse
Affiliation(s)
- Dennis Eurich
- Department of Surgery, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (R.R.O.S.); (D.U.); (M.P.); (W.S.); (R.O.); (G.L.); (J.P.)
| | - Stephan Schlickeiser
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.S.); (P.R.)
| | - Ramin Raul Ossami Saidy
- Department of Surgery, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (R.R.O.S.); (D.U.); (M.P.); (W.S.); (R.O.); (G.L.); (J.P.)
| | - Deniz Uluk
- Department of Surgery, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (R.R.O.S.); (D.U.); (M.P.); (W.S.); (R.O.); (G.L.); (J.P.)
| | - Florian Rossner
- Department of Pathology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- Max Delbrueck Center for Molecular Medicine, Helmholtz Association, 13125 Berlin, Germany
| | - Maximilian Postel
- Department of Surgery, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (R.R.O.S.); (D.U.); (M.P.); (W.S.); (R.O.); (G.L.); (J.P.)
| | - Wenzel Schoening
- Department of Surgery, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (R.R.O.S.); (D.U.); (M.P.); (W.S.); (R.O.); (G.L.); (J.P.)
| | - Robert Oellinger
- Department of Surgery, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (R.R.O.S.); (D.U.); (M.P.); (W.S.); (R.O.); (G.L.); (J.P.)
| | - Georg Lurje
- Department of Surgery, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (R.R.O.S.); (D.U.); (M.P.); (W.S.); (R.O.); (G.L.); (J.P.)
| | - Johann Pratschke
- Department of Surgery, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (R.R.O.S.); (D.U.); (M.P.); (W.S.); (R.O.); (G.L.); (J.P.)
| | - Petra Reinke
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.S.); (P.R.)
- Berlin Center for Advanced Therapies (BeCAT), Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité—Universitaetsmedizin Berlin, 13353 Berlin, Germany;
| | - Natalie Gruen
- Berlin Center for Advanced Therapies (BeCAT), Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité—Universitaetsmedizin Berlin, 13353 Berlin, Germany;
- Department of Nephrology and Internal Intensive Care Medicine, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
9
|
Merola J, Emond JC, Levitsky J. Novel Noninvasive Biomarkers in Liver Transplantation: A Tool on the Doorstep of Clinical Utilization. Transplantation 2023; 107:2120-2125. [PMID: 37019173 DOI: 10.1097/tp.0000000000004580] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Biomarkers have the potential to transform the detection, treatment, and outcomes of liver transplant complications, though their application is limited because of the lack of prospective validation. Although many genetic, proteomic, and immune markers correlating with allograft rejection and graft dysfunction have been described, evaluation of these markers in combination and validation among a broad liver transplant recipient population remain understudied. In this review, we present evidence supporting biomarker applications in 5 clinical liver transplant scenarios: (i) diagnosis of allograft rejection, (ii) prediction of allograft rejection, (iii) minimization of immunosuppression, (iv) detection of fibrosis and recurrent disease, and (v) prediction of renal recovery following liver transplantation. Current limitations for biomarker utilization and opportunities for further investigation are discussed. Accurate risk assessment, diagnosis, and evaluation of treatment responses using such noninvasive tools will pave the way for a more personalized and precise approach to management of the liver transplant patients that has profound potential to reduce morbidity and improve graft and patient longevity.
Collapse
Affiliation(s)
- Jonathan Merola
- Center for Liver Disease and Transplantation, Columbia University Medical Center, New York, NY
| | - Jean C Emond
- Center for Liver Disease and Transplantation, Columbia University Medical Center, New York, NY
| | - Josh Levitsky
- Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
10
|
Harding-Theobald E, Kriss M. Evaluation and management of abnormal liver enzymes in the liver transplant recipient: When, why, and what now? Clin Liver Dis (Hoboken) 2023; 21:178-186. [PMID: 37361257 PMCID: PMC10287122 DOI: 10.1097/cld.0000000000000057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/25/2023] [Indexed: 06/28/2023] Open
Affiliation(s)
- Emily Harding-Theobald
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael Kriss
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Colorado Center for Transplantation Care, Research, and Education (CCTCARE), University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
11
|
Millán O, Ruiz P, Julian J, Lizana A, Fundora Y, Crespo G, Colmenero J, Navasa M, Brunet M. A plasmatic score using a miRNA signature and CXCL-10 for accurate prediction and diagnosis of liver allograft rejection. Front Immunol 2023; 14:1196882. [PMID: 37325660 PMCID: PMC10265684 DOI: 10.3389/fimmu.2023.1196882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction The use of noninvasive biomarkers may avoid the need for liver biopsy (LB) and could guide immunosuppression adjustment in liver transplantation (LT). The aims of this study were: to confirm the predictive and diagnostic capacity of plasmatic expression of miR-155-5p, miR-181a-5p, miR-122-5p and CXCL-10 for assessing T-cell mediated rejection (TCMR) risk; to develop a score based on a panel of noninvasive biomarkers to predict graft rejection risk and to validate this score in a separate cohort. Methods A prospective, observational study was conducted with a cohort of 79 patients followed during the first year after LT. Plasma samples were collected at predetermined time points for the analysis of miRNAs and the CXCL-10. Patients with LFTs abnormalities were submitted to a LB to rule out rejection, assessing previous and concurrent expression of the biomarkers to evaluate their predictive and diagnostic ability. Information from 86 patients included in a previous study was collected and used as a validation cohort. Results Twenty-four rejection episodes were diagnosed in 22 patients. Plasmatic CXCL-10 concentration and the expression of the three miRNAs were significantly elevated prior to and at the moment of the diagnosis of rejection. We developed a logistic model for rejection prediction and diagnosis, which included CXCL-10, miR-155-5p and miR-181a-5p. The area under the ROC curve (AUROC) for rejection prediction was 0.975 (79.6% sensitivity, 99.1% specificity, 90,7% PPV; 97.7% NPV; 97.1% correctly classified) and 0.99 for diagnosis (87.5% sensitivity, 99.5% specificity, 91.3% PPV; 99.3% NPV; 98.9% correctly classified). In the validation cohort (n=86; 14 rejections), the same cut-off points were used obtaining AUROCs for rejection prediction and diagnosis of 0.89 and 0.92 respectively. In patients with graft dysfunction in both cohorts the score could discriminate those with rejection regarding other causes with an AUROC of 0.98 (97.3% sensitivity, 94.1%specificity). Conclusion These results suggest that the clinical implementation of the monitoring of this noninvasive plasmatic score may allow the prediction and diagnosis of rejection and identify patients with graft dysfunction due to rejection, helping with a more efficient guide for immunosuppressive therapy adjustment. This finding warrants the development of prospective biomarker-guided clinical trials.
Collapse
Affiliation(s)
- Olga Millán
- Biomedical Research Center in Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III (ISCII), Madrid, Spain
- Pharmacology and Toxicology, Biochemistry and Molecular Genetics, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Pablo Ruiz
- Liver Unit, Hospital Clinic of Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Judit Julian
- Pharmacology and Toxicology, Biochemistry and Molecular Genetics, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics, Biomedical Diagnostic Center, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Ana Lizana
- Pharmacology and Toxicology, Biochemistry and Molecular Genetics, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Yiliam Fundora
- Biomedical Research Center in Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III (ISCII), Madrid, Spain
- Department of General and Digestive Surgery, Hospital Clínic Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Gonzalo Crespo
- Biomedical Research Center in Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III (ISCII), Madrid, Spain
- Liver Unit, Hospital Clinic of Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jordi Colmenero
- Biomedical Research Center in Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III (ISCII), Madrid, Spain
- Liver Unit, Hospital Clinic of Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Miquel Navasa
- Biomedical Research Center in Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III (ISCII), Madrid, Spain
- Liver Unit, Hospital Clinic of Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Mercè Brunet
- Biomedical Research Center in Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III (ISCII), Madrid, Spain
- Pharmacology and Toxicology, Biochemistry and Molecular Genetics, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Harrington C, Krishnan S, Mack CL, Cravedi P, Assis DN, Levitsky J. Noninvasive biomarkers for the diagnosis and management of autoimmune hepatitis. Hepatology 2022; 76:1862-1879. [PMID: 35611859 PMCID: PMC9796683 DOI: 10.1002/hep.32591] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/07/2023]
Abstract
Autoimmune hepatitis (AIH) is a rare disease of unclear etiology characterized by loss of self-tolerance that can lead to liver injury, cirrhosis, and acute liver failure. First-line treatment consists of systemic corticosteroids, or budesonide, and azathioprine, to which most patients are initially responsive, although predictors of response are lacking. Relapses are very common, correlate with histological activity despite normal serum transaminases, and increase hepatic fibrosis. Furthermore, current regimens lead to adverse effects and reduced quality of life, whereas medication titration is imprecise. Biomarkers that can predict the clinical course of disease, identify patients at elevated risk for relapse, and improve monitoring and medication dosing beyond current practice would have high clinical value. Herein, we review novel candidate biomarkers in adult and pediatric AIH based on prespecified criteria, including gene expression profiles, proteins, metabolites, and immune cell phenotypes in different stages of AIH. We also discuss biomarkers relevant to AIH from other immune diseases. We conclude with proposed future directions in which biomarker implementation into clinical practice could lead to advances in personalized therapeutic management of AIH.
Collapse
Affiliation(s)
- Claire Harrington
- Division of Gastroenterology & HepatologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Swathi Krishnan
- Medicine DepartmentYale School of MedicineNew HavenConnecticutUSA
| | - Cara L. Mack
- Section of Pediatric Gastroenterology, Hepatology & Nutrition, Children's Hospital ColoradoUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Paolo Cravedi
- Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - David N. Assis
- Section of Digestive DiseasesYale School of MedicineNew HavenConnecticutUSA
| | - Josh Levitsky
- Division of Gastroenterology & HepatologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
13
|
Liu X, Taylor SA, Celaj S, Levitsky J, Green RM. Expression of unfolded protein response genes in post-transplantation liver biopsies. BMC Gastroenterol 2022; 22:380. [PMID: 35948878 PMCID: PMC9364610 DOI: 10.1186/s12876-022-02459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/30/2022] [Indexed: 11/29/2022] Open
Abstract
Background Cholestatic liver diseases are a major source of morbidity and mortality that can progress to end-stage liver disease and hyperbilirubinemia is a hallmark of cholestasis. There are few effective medical therapies for primary biliary cholangitis, primary sclerosing cholangitis and other cholestatic liver diseases, in part, due to our incomplete understanding of the pathogenesis of cholestatic liver injury. The hepatic unfolded protein response (UPR) is an adaptive cellular response to endoplasmic reticulum stress that is important in the pathogenesis of many liver diseases and recent animal studies have demonstrated the importance of the UPR in the pathogenesis of cholestatic liver injury. However, the role of the UPR in human cholestatic liver diseases is largely unknown. Methods RNA was extracted from liver biopsies from patients after liver transplantation. RNA-seq was performed to determine the transcriptional profile and hepatic UPR gene expression that is associated with liver injury and cholestasis. Results Transcriptome analysis revealed that patients with hyperbilirubinemia had enhanced expression of hepatic UPR pathways. Alternatively, liver biopsy samples from patients with acute rejection had enhanced gene expression of LAG3 and CDK1. Pearson correlation analysis of serum alanine aminotransferase, aspartate aminotransferase and total bilirubin levels demonstrated significant correlations with the hepatic expression of several UPR genes, as well as genes involved in hepatic bile acid metabolism and inflammation. In contrast, serum alkaline phosphatase levels were correlated with the level of hepatic bile acid metabolism gene expression but not liver UPR gene expression. Conclusions Overall, these data indicate that hepatic UPR pathways are increased in cholestatic human liver biopsy samples and supports an important role of the UPR in the mechanism of human cholestatic liver injury.
Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02459-8.
Collapse
Affiliation(s)
- Xiaoying Liu
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Sarah A Taylor
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Stela Celaj
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Josh Levitsky
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Richard M Green
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
14
|
Levitsky J, Kandpal M, Guo K, Kleiboeker S, Sinha R, Abecassis M. Donor-derived cell-free DNA levels predict graft injury in liver transplant recipients. Am J Transplant 2022; 22:532-540. [PMID: 34510731 DOI: 10.1111/ajt.16835] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/15/2021] [Accepted: 09/02/2021] [Indexed: 01/25/2023]
Abstract
Donor-derived cell-free DNA (dd-cfDNA) has been evaluated as a rejection marker in organ transplantation. This study sought to assess the utility of dd-cfDNA to diagnose graft injury in liver transplant recipients (LTR) and as a predictive biomarker prior to different causes of graft dysfunction. Plasma from single and multicenter LTR cohorts was analyzed for dd-cfDNA. Phenotypes of treated biopsy-proven acute rejection (AR, N = 57), normal function (TX, N = 94), and acute dysfunction no rejection (ADNR; N = 68) were divided into training and test sets. In the training set, dd-cfDNA was significantly different between AR versus TX (AUC 0.95, 5.3% cutoff) and AR versus ADNR (AUC 0.71, 20.4% cutoff). Using these cutoffs in the test set, the accuracy and NPV were 87% and 100% (AR vs. TX) and 66.7% and 87.8% (AR vs. ADNR). Blood samples collected serially from LTR demonstrated incremental elevations in dd-cfDNA prior to the onset of graft dysfunction (AR > ADNR), but not in TX. Dd-cfDNA also decreased following treatment of rejection. In conclusion, the serial elevation of dd-cfDNA identifies pre-clinical graft injury in the context of normal liver function tests and is greatest in rejection. This biomarker may help detect early signs of graft injury and rejection to inform LTR management strategies.
Collapse
Affiliation(s)
- Josh Levitsky
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Manoj Kandpal
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Biostatistics Collaboration Center, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kexin Guo
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Biostatistics Collaboration Center, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Rohita Sinha
- Eurofins Viracor Clinical Diagnostics, Lee's Summit, Missouri
| | | |
Collapse
|
15
|
|
16
|
Melani RD, Gerbasi VR, Anderson LC, Sikora JW, Toby TK, Hutton JE, Butcher DS, Negrão F, Seckler HS, Srzentić K, Fornelli L, Camarillo JM, LeDuc RD, Cesnik AJ, Lundberg E, Greer JB, Fellers RT, Robey MT, DeHart CJ, Forte E, Hendrickson CL, Abbatiello SE, Thomas PM, Kokaji AI, Levitsky J, Kelleher NL. The Blood Proteoform Atlas: A reference map of proteoforms in human hematopoietic cells. Science 2022; 375:411-418. [PMID: 35084980 PMCID: PMC9097315 DOI: 10.1126/science.aaz5284] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human biology is tightly linked to proteins, yet most measurements do not precisely determine alternatively spliced sequences or posttranslational modifications. Here, we present the primary structures of ~30,000 unique proteoforms, nearly 10 times more than in previous studies, expressed from 1690 human genes across 21 cell types and plasma from human blood and bone marrow. The results, compiled in the Blood Proteoform Atlas (BPA), indicate that proteoforms better describe protein-level biology and are more specific indicators of differentiation than their corresponding proteins, which are more broadly expressed across cell types. We demonstrate the potential for clinical application, by interrogating the BPA in the context of liver transplantation and identifying cell and proteoform signatures that distinguish normal graft function from acute rejection and other causes of graft dysfunction.
Collapse
Affiliation(s)
- Rafael D. Melani
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Vincent R. Gerbasi
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Lissa C. Anderson
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Jacek W. Sikora
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Timothy K. Toby
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Josiah E. Hutton
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - David S. Butcher
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Fernanda Negrão
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Henrique S. Seckler
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Kristina Srzentić
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Luca Fornelli
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Jeannie M. Camarillo
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Richard D. LeDuc
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Anthony J. Cesnik
- Department of Genetics, Stanford University, Stanford, CA, USA
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Emma Lundberg
- Department of Genetics, Stanford University, Stanford, CA, USA
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Joseph B. Greer
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Ryan T. Fellers
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Matthew T. Robey
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Caroline J. DeHart
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Eleonora Forte
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | - Paul M. Thomas
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | | | - Josh Levitsky
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Neil L. Kelleher
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|