1
|
Jordan CZ, Chen Y, Husain I, Dilts M, Fay OK, Privratsky J, Luo X, Tunbridge M. Murine kidney transplant outcome is best measured by transdermal glomerular filtration rate. Am J Transplant 2024; 24:2150-2156. [PMID: 39098449 DOI: 10.1016/j.ajt.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024]
Abstract
Mouse kidney transplantation provides a powerful preclinical model for the study of kidney transplant alloimmunity. However, accurate measurement of graft function is difficult because of the inaccuracy of traditional surrogate markers serum creatinine and urea. We report the use of transdermal glomerular filtration rate measurement under the experimental conditions of unilateral nephrectomy and allogeneic kidney transplantation. Our findings demonstrate that transdermal glomerular filtration rate measurement is easy to perform, reproducible, and has more interexperimental consistency than serum creatinine or urea measurements. Most importantly, it significantly reduces the numbers of experimental animals required to detect subtle and yet clinically relevant differences in kidney function as often is the case in experimental murine kidney transplantation models.
Collapse
Affiliation(s)
- Collin Z Jordan
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yanting Chen
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Irma Husain
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Miriam Dilts
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Olivia K Fay
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jamie Privratsky
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Matthew Tunbridge
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA; Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
2
|
Lai C, Chadban SJ, Loh YW, Kwan TKT, Wang C, Singer J, Niewold P, Ling Z, Spiteri A, Getts D, King NJC, Wu H. Targeting inflammatory monocytes by immune-modifying nanoparticles prevents acute kidney allograft rejection. Kidney Int 2022; 102:1090-1102. [PMID: 35850291 DOI: 10.1016/j.kint.2022.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 05/22/2022] [Accepted: 06/17/2022] [Indexed: 12/31/2022]
Abstract
Inflammatory monocytes are a major component of the cellular infiltrate in acutely rejecting human kidney allografts. Since immune-modifying nanoparticles (IMPs) bind to circulating inflammatory monocytes via the specific scavenger receptor MARCO, causing diversion to the spleen and subsequent apoptosis, we investigated the therapeutic potential of negatively charged, 500-nm diameter polystyrene IMPs to prevent kidney allograft rejection. Kidney transplants were performed from BALB/c (H2d) to C57BL/6 (H2b) mice in two groups: controls (allo) and allo mice infused with IMPs. Groups were studied for 14 (acute rejection) or 100 (chronic rejection) days. Allo mice receiving IMPs exhibited superior survival and markedly less acute rejection, with better kidney function, less tubulitis, and diminished inflammatory cell density, cytokine and cytotoxic molecule expression in the allograft and lower titers of donor-specific IgG2c antibody in serum at day 14, as compared to allo mice. Cells isolated from kidneys from allo mice receiving IMPs showed reduced Ly6Chi monocytes, CD11b+ cells and NKT+ cells compared to allo mice. IMPs predominantly bound CD11b+ cells in the bloodstream and CD11b+ and CD11c-B220+ marginal zone B cells in the spleen. In the spleen, IMPs were found predominantly in red pulp, colocalized with MARCO and expression of cleaved caspase-3. At day 100, allo mice receiving IMPs exhibited reduced macrophage M1 responses but were not protected from chronic rejection. IMPs afforded significant protection from acute rejection, inhibiting both innate and adaptive alloimmunity. Thus, our current experimental findings, coupled with our earlier demonstration of IMP-induced protection in kidney ischemia-reperfusion injury, identify IMPs as a potential induction agent in kidney transplantation.
Collapse
Affiliation(s)
- Christina Lai
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia; Department of Renal Medicine, Kidney Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Steven J Chadban
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia; Department of Renal Medicine, Kidney Centre, Royal Prince Alfred Hospital, Sydney, Australia.
| | - Yik Wen Loh
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Tony King-Tak Kwan
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Chuanmin Wang
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Julian Singer
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia; Department of Renal Medicine, Kidney Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Paula Niewold
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Zheng Ling
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Alanna Spiteri
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Daniel Getts
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Nicholas Jonathan Cole King
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The University of Sydney Nano Institute, University of Sydney, Sydney, Australia
| | - Huiling Wu
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia; Department of Renal Medicine, Kidney Centre, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
3
|
Scarsella L, Pollmann R, Amber KT. Autoreactive T cells in pemphigus: perpetrator and target. Ital J Dermatol Venerol 2020; 156:124-133. [PMID: 33179878 DOI: 10.23736/s2784-8671.20.06706-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pemphigus vulgaris (PV) is an autoimmune blistering disease, in which autoantibodies against epidermal cadherins, such as desmoglein (Dsg)1 and Dsg3, lead to the development of blisters and erosions on the skin and mucous membranes. Autoreactive CD4+ T cells are essential for the induction and perpetuation of the disease by interaction with B cells producing autoantibodies. PV has a strong genetic association with certain human leucocyte antigen (HLA) alleles with HLA-DRB1*04:02 and LA-DQB1*05:03 being the most prevalent in patients. Recently, genome-wide association studies have provided a new approach to identify single nucleotide polymorphisms, alongside the known association with HLA alleles. Loss of tolerance against Dsgs and other autoantigens is a critical event in the pathogenesis of PV. Epitope spreading contributes to the progression of PV, leading to an extension of the Dsg-specific autoimmune response to other molecular epitopes of autoantigens, such as desmocollins or muscarinic receptors. Alterations in CD4+CD25+ FoxP3+ regulatory T cells are thought to contribute to the development of PV representing a suitable target for therapeutic interventions. Several CD4+ T-cell subsets and cytokines are involved in the pathogenesis of PV, while Th2 cells are the extensively studied population. Recently, other T cell subsets like T follicular helper cells and Th17 have gained attention as new potential players in PV pathogenesis. The involvement of local autoantibody production in the lesional skin of PV patients in tertiary lymphoid organs is currently discussed but not yet clarified. In this study, we reviewed the current knowledge about the development, characteristics and function of autoreactive T cells in pemphigus and present current new T cell-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Luca Scarsella
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Robert Pollmann
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany -
| | - Kyle T Amber
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| |
Collapse
|
4
|
Bikhet M, Morsi M, Hara H, Rhodes LA, Carlo WF, Cleveland D, Cooper DK, Iwase H. The immune system in infants: Relevance to xenotransplantation. Pediatr Transplant 2020; 24:e13795. [PMID: 32845539 PMCID: PMC7606572 DOI: 10.1111/petr.13795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Despite the improvement in surgical interventions in the treatment of congenital heart disease, many life-threatening lesions (eg, hypoplastic left heart syndrome) ultimately require transplantation. However, there is a great limitation in the availability of deceased human cardiac donors of a suitable size. Hearts from genetically engineered pigs may provide an alternative source. The relatively immature immune system in infants (eg, absence of anti-carbohydrate antibodies, reduced complement activation, reduced innate immune cell activity) should minimize the risk of early antibody-mediated rejection of a pig graft. Additionally, recipient thymectomy, performed almost routinely as a preliminary to orthotopic heart transplantation in this age-group, impairs the T-cell response. Because of the increasing availability of genetically engineered pigs (eg, triple-knockout pigs that do not express any of the three known carbohydrate antigens against which humans have natural antibodies) and the ability to diagnose congenital heart disease during fetal life, cardiac xenotransplantation could be preplanned to be carried out soon after birth. Because of these several advantages, prolonged graft survival and even the induction of tolerance, for example, following donor-specific pig thymus transplantation, are more likely to be achieved in infants than in adults. In this review, we summarize the factors in the infant immune system that would be advantageous in the success of cardiac xenotransplantation in this age-group.
Collapse
Affiliation(s)
- Mohamed Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Mahmoud Morsi
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Leslie A. Rhodes
- Division of Pediatric Cardiology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Waldemar F. Carlo
- Division of Pediatric Cardiology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Cleveland
- Department of Pediatric Cardiovascular Surgery, Children’s Hospital of Alabama, Birmingham, AL, USA
| | - David K.C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
5
|
Gorbacheva V, Fan R, Beavers A, Fairchild RL, Baldwin WM, Valujskikh A. Anti-donor MHC Class II Alloantibody Induces Glomerular Injury in Mouse Renal Allografts Subjected to Prolonged Cold Ischemia. J Am Soc Nephrol 2019; 30:2413-2425. [PMID: 31597715 DOI: 10.1681/asn.2018111169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 09/07/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The mechanisms underlying the effects of prolonged cold-ischemia storage on kidney allografts are poorly understood. METHODS To investigate effects of cold ischemia on donor-reactive immune responses and graft pathology, we used a mouse kidney transplantation model that subjected MHC-mismatched BALB/c kidney allografts to cold-ischemia storage for 0.5 or 6 hours before transplant into C57BL/6 mice. RESULTS At day 14 post-transplant, recipients of allografts subjected to 6 versus 0.5 hours of cold-ischemia storage had increased levels of anti-MHC class II (but not class I) donor-specific antibodies, increased donor-reactive T cells, and a significantly higher proportion of transplant glomeruli infiltrated with macrophages. By day 60 post-transplant, allografts with a 6 hour cold-ischemia time developed extensive glomerular injury compared with moderate pathology in allografts with 0.5 hour of cold-ischemia time. Pathology was associated with increased serum levels of anti-class 2 but not anti-class 1 donor-specific antibodies. Recipient B cell depletion abrogated early macrophage recruitment, suggesting augmented donor-specific antibodies, rather than T cells, increase glomerular pathology after prolonged cold ischemia. Lymphocyte sequestration with sphingosine-1-phosphate receptor 1 antagonist FTY720 specifically inhibited anti-MHC class II antibody production and abrogated macrophage infiltration into glomeruli. Adoptive transfer of sera containing anti-donor MHC class II antibodies or mAbs against donor MHC class II restored early glomerular macrophage infiltration in FTY720-treated recipients. CONCLUSIONS Post-transplant inflammation augments generation of donor-specific antibodies against MHC class II antigens. Resulting MHC class II-reactive donor-specific antibodies are essential mediators of kidney allograft glomerular injury caused by prolonged cold ischemia.
Collapse
Affiliation(s)
- Victoria Gorbacheva
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ran Fan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ashley Beavers
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
6
|
The Costimulatory Pathways and T Regulatory Cells in Ischemia-Reperfusion Injury: A Strong Arm in the Inflammatory Response? Int J Mol Sci 2018; 19:ijms19051283. [PMID: 29693595 PMCID: PMC5983665 DOI: 10.3390/ijms19051283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/14/2018] [Accepted: 04/19/2018] [Indexed: 02/08/2023] Open
Abstract
Costimulatory molecules have been identified as crucial regulators in the inflammatory response in various immunologic disease models. These molecules are classified into four different families depending on their structure. Here, we will focus on various ischemia studies that use costimulatory molecules as a target to reduce the inherent inflammatory status. Furthermore, we will discuss the relevant role of T regulatory cells in these inflammatory mechanisms and the costimulatory pathways in which they are involved.
Collapse
|
7
|
Mahr B, Wekerle T. Murine models of transplantation tolerance through mixed chimerism: advances and roadblocks. Clin Exp Immunol 2017; 189:181-189. [PMID: 28395110 PMCID: PMC5508343 DOI: 10.1111/cei.12976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Organ transplantation is the treatment of choice for patients with end-stage organ failure, but chronic immunosuppression is taking its toll in terms of morbidity and poor efficacy in preventing late graft loss. Therefore, a drug-free state would be desirable where the recipient permanently accepts a donor organ while remaining otherwise fully immunologically competent. Mouse studies unveiled mixed chimerism as an effective approach to induce such donor-specific tolerance deliberately and laid the foundation for a series of clinical pilot trials. Nevertheless, its widespread clinical implementation is currently prevented by cytotoxic conditioning and limited efficacy. Therefore, the use of mouse studies remains an indispensable tool for the development of novel concepts with potential for translation and for the delineation of underlying tolerance mechanisms. Recent innovations developed in mice include the use of pro-apoptotic drugs or regulatory T cell (Treg ) transfer for promoting bone marrow engraftment in the absence of myelosuppression and new insight gained in the role of innate immunity and the interplay between deletion and regulation in maintaining tolerance in chimeras. Here, we review these and other recent advances in murine studies inducing transplantation tolerance through mixed chimerism and discuss both the advances and roadblocks of this approach.
Collapse
Affiliation(s)
- B. Mahr
- Section of Transplantation Immunology, Department of SurgeryMedical University of ViennaViennaAustria
| | - T. Wekerle
- Section of Transplantation Immunology, Department of SurgeryMedical University of ViennaViennaAustria
| |
Collapse
|
8
|
Application of modified small bladder patch-to-bladder double-layer sutures to improve renal transplantation in mice. Eur Surg 2017; 49:17-22. [PMID: 28191012 PMCID: PMC5263196 DOI: 10.1007/s10353-016-0391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 02/18/2016] [Indexed: 11/22/2022]
Abstract
Background This study aimed to introduce an improved surgical procedure to reduce the incidence of urinary tract complications after renal transplantation in mice using a modified bladder patch-to-bladder anastomosis technique. Methods Renal isotransplantation was performed in 28 male C57BL/6 mice. The urinary tract was reconstructed with a ureteral anastomosis between the donor’s small bladder patch and the recipient’s bladder. The bladder patch was secured through a cystotomy in the recipient’s bladder mucosa and seromuscular layers, which were sutured in a double-layer manner. The food intake and survival of mice were recorded for 100 days in addition to monitoring appearance, weight, and symptoms of pain. On post-transplantation day 7, the native kidney in the recipients was removed and the transplanted kidney assessed visually. Urine leakage from the transplanted graft was monitored by assessing the degree of ascites. Results The success rate of renal transplantation was 82 % (23 of 28 cases). Arterial thrombosis at the site of anastomosis occurred in 3 cases (11 %) and hemorrhagic shock in 2 cases (7 %). The mean ± SD time of the operation in recipients was 81 ± 5 min. No complications were noted in the successfully transplanted animals. Conclusions The modified procedure of a small bladder patch-to-bladder with double-layer suturing minimizes complications after renal transplantation in mice while requiring the same operating time as other approaches such as ureter to bladder anastomosis, which are associated with more complications.
Collapse
|
9
|
Chemoattractant Signals and Adhesion Molecules Promoting Human Regulatory T Cell Recruitment to Porcine Endothelium. Transplantation 2016; 100:753-62. [PMID: 26720299 DOI: 10.1097/tp.0000000000001034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Human CD4+CD25+Foxp3+ T regulatory cells (huTreg) suppress CD4+ T cell-mediated antipig xenogeneic responses in vitro and might therefore be used to induce xenograft tolerance. The present study investigated the role of the adhesion molecules, their porcine ligands, and the chemoattractant factors that may promote the recruitment of huTreg to porcine aortic endothelial cells (PAEC) and their capacity to regulate antiporcine natural killer (NK) cell responses. METHODS Interactions between ex vivo expanded huTreg and PAEC were studied by static chemotaxis assays and flow-based adhesion and transmigration assays. In addition, the suppressive function of huTreg on human antiporcine NK cell responses was analyzed. RESULTS The TNFα-activated PAEC released factors that induce huTreg chemotaxis, partially inhibited by antihuman CXCR3 blocking antibodies. Coating of PAEC with human CCL17 significantly increased the transmigration of CCR4+ huTreg under physiological shear stress. Under static conditions, transendothelial Treg migration was inhibited by blocking integrin sub-units (CD18, CD49d) on huTreg, or their respective porcine ligands intercellular adhesion molecule 2 (CD102) and vascular cell adhesion molecule 1 (CD106). Finally, huTreg partially suppressed xenogeneic human NK cell adhesion, NK cytotoxicity and degranulation (CD107 expression) against PAEC; however, this inhibition was modest, and there was no significant change in the production of IFNγ. CONCLUSIONS Recruitment of huTreg to porcine endothelium depends on particular chemokine receptors (CXCR3, CCR4) and integrins (CD18 and CD49d) and was increased by CCL17 coating. These results will help to develop new strategies to enhance the recruitment of host huTreg to xenogeneic grafts to regulate cell-mediated xenograft rejection including NK cell responses.
Collapse
|
10
|
Di Zenzo G, Amber KT, Sayar BS, Müller EJ, Borradori L. Immune response in pemphigus and beyond: progresses and emerging concepts. Semin Immunopathol 2015; 38:57-74. [DOI: 10.1007/s00281-015-0541-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/30/2015] [Indexed: 12/18/2022]
|
11
|
You S. Differential sensitivity of regulatory and effector T cells to cell death: a prerequisite for transplant tolerance. Front Immunol 2015; 6:242. [PMID: 26042125 PMCID: PMC4437185 DOI: 10.3389/fimmu.2015.00242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022] Open
Abstract
Despite significant progress achieved in transplantation, immunosuppressive therapies currently used to prevent graft rejection are still endowed with severe side effects impairing their efficiency over the long term. Thus, the development of graft-specific, non-toxic innovative therapeutic strategies has become a major challenge, the goal being to selectively target alloreactive effector T cells while sparing CD4+Foxp3+ regulatory T cells (Tregs) to promote operational tolerance. Various approaches, notably the one based on monoclonal antibodies or fusion proteins directed against the TCR/CD3 complex, TCR coreceptors, or costimulatory molecules, have been proposed to reduce the alloreactive T cell pool, which is an essential prerequisite to create a therapeutic window allowing Tregs to induce and maintain allograft tolerance. In this mini review, we focus on the differential sensitivity of Tregs and effector T cells to the depleting and inhibitory effect of these immunotherapies, with a particular emphasis on CD3-specific antibodies that beyond their immunosuppressive effect, also express potent tolerogenic capacities.
Collapse
Affiliation(s)
- Sylvaine You
- Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; INSERM U1151, Institut Necker-Enfants Malades , Paris , France ; CNRS UMR 8253, Institut Necker-Enfants Malades , Paris , France
| |
Collapse
|
12
|
Abstract
Seminal studies in rabbits and rodent transplantation models by Peter Medawar revealed that cellular processes, rather than humoral antibodies, are central to the acute rejection of transplanted organs, and much of basic transplantation research continues to be focused on the biology and control of these cells, which were subsequently shown to be T cells. However, the success of current immunosuppression at controlling T-cell-mediated rejection has resulted in an increasing awareness of antibody-mediated rejection in the clinic. This, in turn, has fueled an emerging interest in the biology of allospecific antibodies, the B cells that produce these antibodies, and the development of mouse models that allow their investigation. Here we summarize some of the more widely used mouse models that have been developed to study the immunobiology of alloreactivity, transplantation rejection and tolerance, and used to identify therapeutic strategies that modulate these events.
Collapse
Affiliation(s)
- Anita S Chong
- Section of Transplantation, Department of Surgery, The University of Chicago, Chicago, Illinois 60637
| | | | | | | |
Collapse
|
13
|
Amber KT, Staropoli P, Shiman MI, Elgart GW, Hertl M. Autoreactive T cells in the immune pathogenesis of pemphigus vulgaris. Exp Dermatol 2013; 22:699-704. [DOI: 10.1111/exd.12229] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Kyle T. Amber
- Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine; Miami FL USA
| | - Patrick Staropoli
- Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine; Miami FL USA
| | - Michael I. Shiman
- Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine; Miami FL USA
| | - George W. Elgart
- Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine; Miami FL USA
| | - Michael Hertl
- Department of Dermatology and Allergology; Philipps-Universität; Marburg Germany
| |
Collapse
|
14
|
Tse GH, Hughes J, Marson LP. Systematic review of mouse kidney transplantation. Transpl Int 2013; 26:1149-60. [PMID: 23786597 DOI: 10.1111/tri.12129] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/29/2013] [Accepted: 05/13/2013] [Indexed: 01/06/2023]
Abstract
A mouse model of kidney transplantation was first described in 1973 by Skoskiewicz et al. Although the mouse model is technically difficult, it is attractive for several reasons: the mouse genome has been characterized and in many aspects is similar to man and there is a greater diversity of experimental reagents and techniques available for mouse studies than other experimental models. We reviewed the literature on all studies of mouse kidney transplantation to report the donor and recipient strain combinations that have been investigated and the resultant survival and histological outcomes. Some models of kidney transplantation have used the transplanted kidney as a life-supporting organ, however, in many studies the recipient mouse's native kidney has been left in situ. Several different combinations of inbred mouse strains have been reported, with varying degrees of injury, survival or tolerance because of haplotype differences. This model has been exceptionally useful as an investigational tool to understand multiple aspects of transplantation including acute rejection, cellular and humoral rejection mechanisms and their treatment. Furthermore, this model has been used to investigate disease mechanisms beyond transplant rejection including intrinsic renal disease and infection-associated pathology.
Collapse
Affiliation(s)
- George Hondag Tse
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
15
|
Yeh H, Moore DJ, Markmann JF, Kim JI. Mechanisms of regulatory T cell counter-regulation by innate immunity. Transplant Rev (Orlando) 2013; 27:61-4. [PMID: 23474287 PMCID: PMC3637936 DOI: 10.1016/j.trre.2013.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 11/15/2022]
Abstract
One of the most significant advances in the field of immunology in the last decade is delineation of the pivotal role of regulatory T cells (Tregs) in the maintenance of self-tolerance. While Tregs are just now being applied therapeutically in early phase clinical trials, data gleaned from basic and translational studies to-date suggest enormous potential to intervene in human disease. Data from our work and the work of others suggest that the innate immune system plays an important role in the differentiation and function of Tregs, largely through the production of cytokines but also through expression of cell surface ligands. These molecules are expressed differentially depending on whether the stimulus includes trauma, ischemia/necrosis, and microbial infection, and have opposing effects on Tregs, in contrast to those associated with dendritic cell maturation and somatic cell apoptosis, which promote Treg differentiation and function. We refer to the former process as Treg counter-regulation. Since the transplantation procedure involves surgical trauma, organ ischemia, and exposure to environmental microbes, Treg counter-regulation represents a key area of intervention to improve strategies for promoting allograft tolerance.
Collapse
Affiliation(s)
- Heidi Yeh
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
16
|
Abstract
T cells must be activated before they can elicit damage to allografts, through interaction of their T cell receptor (TCR) with peptide-MHC complex and through accessory molecules. Signaling through accessory molecules or costimulatory molecules is a critical way for the immune system to fine tune T cell activation. An emerging therapeutic strategy is to target selective molecules involved in the process of T cell activation using biologic agents, which do not impact TCR signaling, thus only manipulating the T cells, which recognize alloantigen. Costimulatory receptors and their ligands are attractive targets for this strategy and could be used both to prevent acute graft rejection as well as for maintenance immunosuppression. Therapeutic agents targeting costimulatory molecules, notably belatacept, have made the progression from the bench, through nonhuman primate studies and into the clinic. This overview describes some of the most common costimulatory molecules, their role in T cell activation, and the development of reagents, which target these pathways and their efficacy in transplantation.
Collapse
Affiliation(s)
| | | | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU UK
| |
Collapse
|
17
|
Hofstetter AR, Ford ML, Sullivan LC, Wilson JJ, Hadley A, Brooks AG, Lukacher AE. MHC class Ib-restricted CD8 T cells differ in dependence on CD4 T cell help and CD28 costimulation over the course of mouse polyomavirus infection. THE JOURNAL OF IMMUNOLOGY 2012; 188:3071-9. [PMID: 22393155 DOI: 10.4049/jimmunol.1103554] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently identified a protective MHC class Ib-restricted CD8 T cell response to infection with mouse polyomavirus. These CD8 T cells recognize a peptide from aa 139-147 of the VP2 viral capsid protein bound to the nonpolymorphic H-2Q9 molecule, a member of the Qa-2 family of β(2)m-associated MHC class Ib molecules. Q9:VP2.139-specific CD8 T cells exhibit an unusual inflationary response characterized by a gradual expansion over 3 mo followed by a stable maintenance phase. We previously demonstrated that Q9:VP2.139-specific CD8 T cells are dependent on Ag for expansion, but not for long-term maintenance. In this study, we tested the hypothesis that the expansion and maintenance components of the Q9:VP2.139-specific T cell response are differentially dependent on CD4 T cell help and CD28 costimulation. Depletion of CD4(+) cells and CD28/CD40L blockade impaired expansion of Q9:VP2.139-specific CD8 T cells, and intrinsic CD28 signaling was sufficient for expansion. In contrast, CD4 T cell insufficiency, but not CD28/CD40L blockade, resulted in a decline in frequency of Q9:VP2.139-specific CD8 T cells during the maintenance phase. These results indicate that the Q9:VP2.139-specific CD8 T cell response to mouse polyomavirus infection depends on CD4 T cell help and CD28 costimulation for inflationary expansion, but only on CD4 T cell help for maintenance.
Collapse
Affiliation(s)
- Amelia R Hofstetter
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Dodd-o JM, Lendermon EA, Miller HL, Zhong Q, John ER, Jungraithmayr WM, D'Alessio FR, McDyer JF. CD154 blockade abrogates allospecific responses and enhances CD4(+) regulatory T-cells in mouse orthotopic lung transplant. Am J Transplant 2011; 11:1815-24. [PMID: 21827610 PMCID: PMC3827913 DOI: 10.1111/j.1600-6143.2011.03623.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acute cellular rejection (ACR) is a common and important clinical complication following lung transplantation. While there is a clinical need for the development of novel therapies to prevent ACR, the regulation of allospecific effector T-cells in this process remains incompletely understood. Using the MHC-mismatched mouse orthotopic lung transplant model, we investigated the short-term role of anti-CD154 mAb therapy alone on allograft pathology and alloimmune T-cell effector responses. Untreated C57BL/6 recipients of BALB/c left lung allografts had high-grade rejection and diminished CD4(+) : CD8(+) graft ratios, marked by predominantly CD8(+) >CD4(+) IFN-γ(+) allospecific effector responses at day 10, compared to isograft controls. Anti-CD154 mAb therapy strikingly abrogated both CD8(+) and CD4(+) alloeffector responses and significantly increased lung allograft CD4(+) : CD8(+) ratios. Examination of graft CD4(+) T-cells revealed significantly increased frequencies of CD4(+) CD25(+) Foxp3(+) regulatory T-cells in the lung allografts of anti-CD154-treated mice and was associated with significant attenuation of ACR compared to untreated controls. Together, these data show that CD154/CD40 costimulation blockade alone is sufficient to abrogate allospecific effector T-cell responses and significantly shifts the lung allograft toward an environment predominated by CD4(+) T regulatory cells in association with an attenuation of ACR.
Collapse
Affiliation(s)
- J M Dodd-o
- Department of Anesthesiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Decreased percentage of CD4+FoxP3+ cells in bronchoalveolar lavage from lung transplant recipients correlates with development of bronchiolitis obliterans syndrome. Transplantation 2010; 90:540-6. [PMID: 20628341 DOI: 10.1097/tp.0b013e3181e8dabe] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Lung transplantation, in patients with end-stage lung disease, is limited by chronic rejection, which occurs with an incidence and severity exceeding most other transplanted organs. Alloimmune responses play an important role in progression to chronic rejection that manifests as bronchiolitis obliterans syndrome (BOS), but no biomarker can currently predict the progression to BOS. Studies in animal models suggest that intragraft T regulatory cells (Tregs) are important in maintaining transplantation tolerance, and FoxP3 is the protoypic Treg marker. METHODS Leukocytes in blood and bronchoalveolar lavage (BAL) fluid were compared for expression of FoxP3 by flow cytometry in 14 stable lung transplant recipients and 6 lung transplant recipients who eventually developed BOS. RESULTS Stable patients, compared with patients who subsequently developed BOS, consistently had a significantly increased percentage of FoxP3 cells among CD4 cells in BAL and greater levels of the Treg-attracting chemokine CCL22. These differences were observed in limited sequential analyses, before, at the time of acute rejection, and postacute rejection. In this pilot study, a threshold of 3.2% CD4/FoxP3 cells in the BAL distinguished stable recipients from those subsequently developing BOS within the first 2 years posttransplantation. CONCLUSION The proportion of FoxP3 cells among CD4 cells in BAL may help to predict lung allograft outcome and guide therapeutic immunosuppression in lung transplant recipients.
Collapse
|
20
|
Elster EA, Hawksworth JS, Cheng O, Leeser DB, Ring M, Tadaki DK, Kleiner DE, Eberhardt JS, Brown TS, Mannon RB. Probabilistic (Bayesian) modeling of gene expression in transplant glomerulopathy. J Mol Diagn 2010; 12:653-63. [PMID: 20688906 PMCID: PMC2928430 DOI: 10.2353/jmoldx.2010.090101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2010] [Indexed: 11/20/2022] Open
Abstract
Transplant glomerulopathy (TG) is associated with rapid decline in glomerular filtration rate and poor outcome. We used low-density arrays with a novel probabilistic analysis to characterize relationships between gene transcripts and the development of TG in allograft recipients. Retrospective review identified TG in 10.8% of 963 core biopsies from 166 patients; patients with stable function were studied for comparison. The biopsies were analyzed for expression of 87 genes related to immune function and fibrosis by using real-time PCR, and a Bayesian model was generated and validated to predict histopathology based on gene expression. A total of 57 individual genes were increased in TG compared with stable function biopsies (P < 0.05). The Bayesian analysis identified critical relationships between ICAM-1, IL-10, CCL3, CD86, VCAM-1, MMP-9, MMP-7, and LAMC2 and allograft pathology. Moreover, Bayesian models predicted TG when derived from either immune function (area under the curve [95% confidence interval] of 0.875 [0.675 to 0.999], P = 0.004) or fibrosis (area under the curve [95% confidence interval] of 0.859 [0.754 to 0.963], P < 0.001) gene networks. Critical pathways in the Bayesian models were also analyzed by using the Fisher exact test and had P values <0.005. This study demonstrates that evaluating quantitative gene expression profiles with Bayesian modeling can identify significant transcriptional associations that have the potential to support the diagnostic capability of allograft histology. This integrated approach has broad implications in the field of transplant diagnostics.
Collapse
Affiliation(s)
- Eric A Elster
- Regenerative Medicine Department, Combat Casualty Care, Naval Medical Research Center, Silver Spring, Maryland 20910, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rowley DA, Stuart FP, Fitch FW. Prevention of renal allograft rejection without immune suppression: a model to revisit. Clin Transplant 2010; 25:104-10. [PMID: 20731687 DOI: 10.1111/j.1399-0012.2010.01314.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spectacular success in preventing renal allograft rejection in rats was obtained over 40 yr ago using only the reactants of the response: donor-type antigen and homologous antiserum directed against donor-type antigen. Tolerance was antigen specific and sustained by persistent antigen of the graft. The model has never been tested rigorously in a large species, though the rationale for why the procedures should work applies across species including humans. Confirming the results in a large species would have profound impact on research for treating multiple immune mediated diseases, in addition to providing a way for treating some transplant recipients. This is a propitious time to confirm the applicability to larger species. If successful, only the lack of imagination limits the potential impact.
Collapse
Affiliation(s)
- Donald A Rowley
- Department of Pathology, University of Chicago Northwestern University, Chicago, IL 60637-5420, USA.
| | | | | |
Collapse
|
22
|
Zhang C, Shan J, Feng L, Lu J, Xiao Z, Luo L, Li C, Guo Y, Li Y. The effects of immunosuppressive drugs on CD4(+) CD25(+) regulatory T cells: a systematic review of clinical and basic research. J Evid Based Med 2010; 3:117-29. [PMID: 21349053 DOI: 10.1111/j.1756-5391.2010.01083.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To review the effects of different immunosuppressive drugs on proliferation and function of regulatory T cells (Tregs). METHODS We searched MEDLINE, Embase (from inception to September 2009), and the Cochrane Library (Issue 4, 2009) for clinical and basic research about the effects of various immunosuppressive drugs on Tregs. Data were extracted and methodological quality was assessed by two independent reviewers. Outcome measures for clinical research included blood Tregs levels, acute rejection episodes, and graft function. Outcomes for basic research included percentage of Tregs proliferation, function, Tregs phenotype, and evidence for possible mechanisms. We analyzed data qualitatively. RESULTS Forty-two studies, including 19 clinical trials and 23 basic studies, were included. The immunosuppressive drugs studied were calcineurin inhibitors (CNIs), Rapa, anti-metabolism drugs, IL-2 receptor-blocking antibodies, T-cell depleting antibodies, and co-stimulation blockade antibodies. Most of the studies were on Rapa and CNIs. Eight basic studies on Rapa and CNIs showed that Rapa could promote the proliferation and function of Tregs, while CNIs could not. Five clinical trials involving a total of 158 patients showed that patients taking Rapa had higher blood concentration of Tregs than patients taking CNIs, but no difference was found in graft function (6-42 months follow-up). CONCLUSION There is substantial evidence that Rapa favors Tregs survival and function. However, the higher numbers of blood Tregs in patients treated with Rapa do not show any association with better graft function. Larger clinical studies with longer follow-up are needed to more thoroughly assess the efficacy of immunosuppressive drugs on Tregs, and reveal whether a relationship exists between Tregs and graft function.
Collapse
Affiliation(s)
- Chuntao Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Noris M, Cassis P, Azzollini N, Cavinato R, Cugini D, Casiraghi F, Aiello S, Solini S, Cassis L, Mister M, Todeschini M, Abbate M, Benigni A, Trionfini P, Tomasoni S, Mele C, Garlanda C, Polentarutti N, Mantovani A, Remuzzi G. The Toll-IL-1R member Tir8/SIGIRR negatively regulates adaptive immunity against kidney grafts. THE JOURNAL OF IMMUNOLOGY 2009; 183:4249-60. [PMID: 19734209 DOI: 10.4049/jimmunol.0803549] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Members of the TLR/IL-1R superfamily mediate ischemia/reperfusion injury and initiate immune response in transplanted organs. In this study, we tested the hypothesis that Toll-IL-1R8 (TIR8), a negative regulator of TLR/IL-1R highly expressed in the kidney, modulates immune cell activation underlying kidney rejection. In a mouse model of fully mismatched kidney allotransplantation in which the graft is spontaneously accepted, intragraft Tir8 expression was enhanced compared with naive kidneys. Targeted deletion of Tir8 in the graft exerted a powerful antitolerogenic action leading to acute rejection. Similarly, in a mouse model of kidney graft acceptance induced by costimulation blockade, most Tir8(-/-) grafts were acutely rejected. Despite similar levels of TLR4, IL-1R, and their ligands, the posttransplant ischemia/reperfusion-induced inflammatory response was more severe in Tir8(-/-) than in Tir8(+/+) grafts and was followed by expansion and maturation of resident dendritic cell precursors. In vitro, Tir8(-/-) dendritic cell precursors acquired higher allostimulatory activity and released more IL-6 upon stimulation with a TLR4 ligand and TNF-alpha than Tir8(+/+) cells, which may explain the increased frequency of antidonor-reactive T cells and the block of regulatory T cell formation in recipients of a Tir8(-/-) kidney. Thus, TIR8 acts locally as a key regulator of allogeneic immune response in the kidney. Tir8 expression and/or signaling in donor tissue are envisaged as a novel target for control of innate immunity and amelioration of graft survival.
Collapse
Affiliation(s)
- Marina Noris
- Transplant Research Center Chiara Cucchi De Alessandri & Gilberto Crespi, Mario Negri Institute for Pharmacological Research, via Camozzi 3, 24020 Ranica, Bergamo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|