1
|
Daghan B, Cinar F, Yalcin CE, Aydin SY, Acun O, Celik U, Baghaki S, Turkmen A. Morphological, histological and biomechanical comparison of bone marrow aspirate concentrate, micro-fragmented adipose tissue and platelet-rich plasma in prevention of tendon adhesion. J Plast Reconstr Aesthet Surg 2023; 87:1-9. [PMID: 37802016 DOI: 10.1016/j.bjps.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Flexor tendon repair often leads to peritendinous adhesions, reducing finger motion and hand function. This study compares the effects of stromal cells from different sources and platelet-rich plasma (PRP) on adhesion formation after tendon repair. METHODS Forty rabbits had their flexor digitorum profundus tendons transected and repaired with a modified Kessler suture technique. The control group received an isotonic solution. PRP, bone marrow aspirate concentrate (BMAC), and micro-fragmented adipose tissue (MFAT) were injected in groups 2, 3, and 4, respectively. Rabbits wore casts for 2 weeks. Assessments included morphology, histopathology, range of motion (ROM), and biomechanical testing at the 3rd and 8th weeks. RESULTS At 3 weeks, the BMAC group had the thickest and longest adhesions, the highest Tang Score, and inflammation score. However, at 8 weeks, the BMAC group had the lowest Tang Score and inflammation score. ROM was higher in the PRP group at 3 weeks and BMAC group at 8 weeks. No significant differences were found between BMAC and MFAT groups in adhesion measurements. Biomechanical parameters were higher in BMAC and MFAT groups at 8 weeks compared to control. CONCLUSION BMAC therapy after primary flexor tendon repair improves adhesion formation and maintains ROM. It also enhances the biomechanical properties of the flexor tendon during the later stages of healing.
Collapse
Affiliation(s)
- Basak Daghan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Burdur State Hospital, Burdur, Turkey
| | - Fatih Cinar
- Department of Plastic, Reconstructive and Aesthetic Surgery, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Can Ege Yalcin
- Department of Plastic, Reconstructive and Aesthetic Surgery, Cerrahpasa Medical Faculty, Istanbul University - Cerrahpasa, Istanbul, Turkey.
| | - Servet Yekta Aydin
- Department of Plastic, Reconstructive and Aesthetic Surgery, Cerrahpasa Medical Faculty, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Osman Acun
- Department of Plastic, Reconstructive and Aesthetic Surgery, Cerrahpasa Medical Faculty, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Ugur Celik
- Department of Plastic, Reconstructive and Aesthetic Surgery, Haseki Research and Training Hospital, Istanbul, Turkey
| | - Semih Baghaki
- Department of Plastic, Reconstructive and Aesthetic Surgery, School of Medicine, Koç University, Istanbul, Turkey
| | | |
Collapse
|
2
|
Song W, Zhang D, Wu D, Zhong L, Zhu Q, Bai Z, Yu W, Wang C, He Y. Cryopreserved Adipose-Derived Stem Cell Sheets: An Off-the-Shelf Scaffold for Augmenting Tendon-to-Bone Healing in a Rabbit Model of Chronic Rotator Cuff Tear. Am J Sports Med 2023; 51:2005-2017. [PMID: 37227145 DOI: 10.1177/03635465231171682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Adipose-derived stem cell (ADSC) sheets have been shown to promote tendon-to-bone healing. However, conventional laboratory preparation methods for ADSC sheets are time-consuming and risky, which precludes their diverse clinical applications. PURPOSE To explore the utility of off-the-shelf cryopreserved ADSC sheets (c-ADSC sheets) for rotator cuff tendon-to-bone healing. STUDY DESIGN Controlled laboratory study. METHODS The ADSC sheets were cryopreserved and thawed for live/dead double staining, TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, scanning electron microscopy observation, and biomechanical testing. Clone formation, proliferative capacity, and multilineage differentiation of ADSCs within the c-ADSC sheets were assayed to explore the effect of cryopreservation on stem cell properties. A total of 67 rabbits were randomly divided into 4 groups: normal group (without supraspinatus tendon tears; n = 7), control group (repair alone; n = 20), fresh ADSC (f-ADSC) sheet group (repair; n = 20), and c-ADSC sheet group (repair; n = 20). Rabbit bilateral supraspinatus tendon tears were induced to establish a chronic rotator cuff tear model. Gross observation, micro-computed tomography analysis, histological or immunohistochemical tests, and biomechanical tests were conducted at 6 and 12 weeks after repair. RESULTS No significant impairment was seen in the cell viability, morphology, and mechanical properties of c-ADSC sheets when compared with f-ADSC sheets. The stem cell properties of ADSC sheets also were preserved by cryopreservation. At 6 and 12 weeks after the repair, the f-ADSC and c-ADSC sheet groups showed superior bone regeneration, higher histological scores, larger fibrocartilage areas, more mature collagen, and better biomechanical results compared with the control group. No obvious difference was seen between the f-ADSC and c-ADSC sheet groups in terms of bone regeneration, histological score, fibrocartilage formation, and biomechanical tests. CONCLUSION c-ADSC sheets, an off-the-shelf scaffold with a high potential for clinical translational application, can effectively promote rotator cuff tendon-to-bone healing. CLINICAL RELEVANCE Programmed cryopreservation of ADSC sheets is an efficient off-the-shelf scaffold for rotator cuff tendon-to-bone healing.
Collapse
Affiliation(s)
- Wei Song
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongliang Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Wu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhong
- Department of Nursing, Medical College of Shihezi University, Shihezi, China
| | - Qi Zhu
- Department of Orthopedic Surgery, Jinshan District Central Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhenlong Bai
- Department of Orthopedic Surgery, Jinshan District Central Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Weilin Yu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chongyang Wang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaohua He
- Department of Orthopedic Surgery, Jinshan District Central Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
3
|
Zhao N, Coyne J, Abune L, Shi P, Lian XL, Zhang G, Wang Y. Exogenous Signaling Molecules Released from Aptamer-Functionalized Hydrogels Promote the Survival of Mesenchymal Stem Cell Spheroids. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24599-24610. [PMID: 32384232 PMCID: PMC7883300 DOI: 10.1021/acsami.0c05681] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Mesenchymal stem cells (MSCs) have a very low survival rate after in vivo delivery, which limits their great promise for treating human diseases. Various strategies have been studied to overcome this challenge. However, an overlooked but important potential is to apply exogenous signaling molecules as biochemical cues to promote MSC survival, presumably because it is well-known that MSCs themselves can release a variety of potent signaling molecules. Thus, the purpose of this work was to examine and understand whether the release of exogenous signaling molecules from hydrogels can promote the survival of MSC spheroids. Our data show that more vascular endothelial growth factor (VEGF) but not platelet-derived growth factor BB (PDGF-BB) were released from MSC spheroids in comparison with 2D cultured MSCs. Aptamer-functionalized fibrin hydrogel (aFn) could release exogenous VEGF and PDGF-BB in a sustained manner. PDGF-BB-loaded aFn promoted MSC survival by ∼70% more than VEGF-loaded aFn under the hypoxic condition in vitro. Importantly, PDGF-BB-loaded aFn could double the survival rate of MSC spheroids in comparison with VEGF-loaded aFn during the one-week test in vivo. Therefore, this work demonstrated that defined exogenous signaling molecules (e.g., PDGF-BB) can function as biochemical cues for promoting the survival of MSC spheroids in vivo.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - James Coyne
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lidya Abune
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Peng Shi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ge Zhang
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Ruan D, Zhu T, Huang J, Le H, Hu Y, Zheng Z, Tang C, Chen Y, Ran J, Chen X, Yin Z, Qian S, Pioletti D, Heng BC, Chen W, Shen W, Ouyang HW. Knitted Silk-Collagen Scaffold Incorporated with Ligament Stem/Progenitor Cells Sheet for Anterior Cruciate Ligament Reconstruction and Osteoarthritis Prevention. ACS Biomater Sci Eng 2019; 5:5412-5421. [PMID: 33464061 DOI: 10.1021/acsbiomaterials.9b01041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Current surgical management of anterior cruciate ligament (ACL) rupture still remains an intractable challenge in ACL regeneration due to the weak self-healing capability of ACL. Inadequate cell numbers and vascularization within the articular cavity contribute mainly to the poor prognosis. This time, we fabricated a new tissue engineering scaffold by adding ligament stem/progenitor cell (LSPC) sheets to our previous knitted silk-collagen sponge scaffold, which overcame these limitations by providing sufficient numbers of seed cells and a natural extracellular matrix to facilitate regeneration. LSPCs display excellent proliferation and multilineage differentiation capacity. Upon ectopic implantation, the knitted silk-collagen sponge scaffold incorporated with an LSPC sheet exhibited less immune cells but more fibroblast-like cells, deposited ECM and neovascularization, and better tissue ingrowth. In a rabbit model, we excised the ACL and performed a reconstructive surgery with our scaffold. Increased expression of ligament-specific genes and better collagen fibril formation could be observed after orthotopic transplantation. After 6 months, the LSPC sheet group showed better results on ligament regeneration and ligament-bone healing. Furthermore, no obvious cartilage and meniscus degeneration were observed at 6 months postoperation. In conclusion, these results indicated that the new tissue engineering scaffold can promote ACL regeneration and slow down the progression of osteoarthritis, thus suggesting its high clinical potential as an ideal graft in ACL reconstruction.
Collapse
Affiliation(s)
- Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | - Ting Zhu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Department of Cardiothoracic Surgery, Shaoxing People's Hospital, Shaoxin Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, People's Republic of China
| | - Jiayun Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Huihui Le
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | - Yejun Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Zefeng Zheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Department of Orthopedic Surgery, Children's Hospital, Zhejiang University School of Medicine, Zhejiang, 310052, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Yangwu Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | - Xiao Chen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Zi Yin
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Shengjun Qian
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | | | | | - Weishan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Laboratory of Biomechanical Orthopedics, EPFL, Lausanne, Switzerland.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Hong-Wei Ouyang
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| |
Collapse
|
5
|
Hosseini FS, Saburi E, Enderami SE, Ardeshirylajimi A, Bagherabad MB, Marzouni HZ, Ghoraeian P, Soleimanifar F. Improved chondrogenic response of mesenchymal stem cells to a polyethersulfone/polyaniline blended nanofibrous scaffold. J Cell Biochem 2019; 120:11358-11365. [PMID: 30746743 DOI: 10.1002/jcb.28412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Owing to the fact that the cartilage tissue is not able to repair itself, the treatment of the joint damages is very difficult by current methods. Induction of tissue repair requires suitable cell and extracellular matrix. Providing these two parts can only be done using tissue engineering. In the present study, polyethersulfone (PES) and polyaniline (PANI) blend was electrospined for nanofibrous scaffold fabrication. Mesenchymal stem cells were isolated from human adipose tissue (AT-MSCs), and after characterization cultured on the PES-PANI scaffold and culture plate. Electron microscopic and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assays were used for biocompatibility evaluation of the scaffold and the chondrogenic differentiation potential of AT-MSCs were investigated by staining of proteoglycans and gene and protein expression evaluation. Alcian blue staining, real-time reverse-transcriptase polymerase chain reaction and Western blot results showed that chondrogenic differentiation potential of AT-MSCs was significantly increased when grown on PES-PANI nanofibers and was compared to the one grown on a culture plate. According to the results, PES-PANI has a promising potential to be used as a biomedical implant in patients with joints lesion, such as arthritis and osteoarthritis.
Collapse
Affiliation(s)
| | - Ehsan Saburi
- Immunogenetic and Cell Culture Department, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics research center, Department of Medical Biotechnology, Faculty of Medicine, Mazandaran university of Medical Sciences, sari, Iran
| | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Matineh Barati Bagherabad
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Zare Marzouni
- Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pegah Ghoraeian
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Soleimanifar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
6
|
Vilela CAP, Souza LEB, Siqueira RC, Calado RT, Covas DT, Paula JS. Ex vivo evaluation of intravitreal mesenchymal stromal cell viability using bioluminescence imaging. Stem Cell Res Ther 2018; 9:155. [PMID: 29895334 PMCID: PMC5998578 DOI: 10.1186/s13287-018-0909-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/14/2023] Open
Abstract
Background Bone marrow-derived mesenchymal stromal cell (MSC) therapy is a promising treatment for several degenerative ocular diseases; however, no reproducible method of monitoring these cells into the eye has been established. The aim of this study was to describe successful bioluminescence imaging (BLI) to detect viable luciferase-expressing MSC in the eye. Methods Human donor MSC in culture were transduced with 50 μl luciferase lentiviral vector (three viral particles/cell) prior to intraocular injection. Twenty-one right eyes of 21 rabbits were evaluated through BLI after receiving 1 × 106 luciferase-expressing MSC intravitreally. Contralateral eyes were injected with vehicle (phosphate-buffered saline (PBS)) and were used as controls. At seven different time points (1 h to 60 days), d-luciferin (40 mg/ml, 300 μl PBS) was injected in subsets of six enucleated eyes for evaluation of radiance decay through BLI analysis. CD90 and CD73 immunofluorescence was studied in selected eyes. Results Eyes injected with MSC showed high BLI radiance immediately after d-luciferin injection and progressive decay until 60 days. Mean BLI radiance measures from eyes with luciferase-expressing MSC were significantly higher than controls from 8 h to 30 days. At the thirtieth day, positive CD90- and CD73-expressing cells were observed only in the vitreous cavity of eyes injected with MSC. Conclusions Viable MSC were identified in the vitreous cavity 1 month after a single injection. Our results confirmed BLI as a useful and reliable method to detect MSC injected into the eye globe.
Collapse
Affiliation(s)
- Carolina Assis P Vilela
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - 12. Andar, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Lucas Eduardo B Souza
- Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, São Paulo, Brazil
| | - Rubens C Siqueira
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - 12. Andar, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rodrigo T Calado
- Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, São Paulo, Brazil
| | - Dimas T Covas
- Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, São Paulo, Brazil
| | - Jayter S Paula
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900 - 12. Andar, Ribeirão Preto, São Paulo, 14049-900, Brazil
| |
Collapse
|
7
|
González-Garza MT, Cruz-Vega DE, Cárdenas-Lopez A, de la Rosa RM, Moreno-Cuevas JE. Comparing stemness gene expression between stem cell subpopulations from peripheral blood and adipose tissue. AMERICAN JOURNAL OF STEM CELLS 2018; 7:38-47. [PMID: 29938124 PMCID: PMC6013721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
Cell therapy presents a promising alternative for the treatment of degenerative diseases. The main sources of adult stem cells are bone marrow, adipose tissue and peripheral blood. Within those tissues, there are cell subpopulations that share pluripotential characteristics. Nevertheless, there is insufficient data to determine which of these stem cell subtypes would have a better possibility to differentiate to a specific tissue. The objective of this research was to analyze and compare the stemness genes expression from peripheral blood and adipose tissue of plastic adherent cells, and those immune-selected by the CD133+ and CD271+ membrane markers. On all cell subpopulation groups, self-renew capacity, the membranes markers CD73, CD90 and CD105, as well as the stemness genes NANOG, OCT4, SOX2, REX1, NOTCH1 and, NESTIN expression were analyzed. Results showed that all samples presented the minimal criteria to define them as human stem cells. All cell subpopulation were capable of self-renewal. Nevertheless, the subpopulation cell types showed differences on the time needed to reach confluence. The slowest doubling times were for those cells bearing the CD133 marker from both sources. Surface markers determined by flow cytometry were positive for CD73, CD90 and, CD105, and negative for CD45. The stemness gene expression was positive in all subpopulation. However, there were significant differences in the amount and pattern of expression among them. Those differences could be advantageous in finding the best option for their application on cell therapy. Cells with high expression of OCT4 gene could be a better opportunity for neuron differentiation like CD133+ blood cells. On the other hand, lowest expression of NOTCH1 on CD271+ cells from the same source could be a better possibility for myoblast differentiation. The observed differences could be used as an advantage to find which cell type and from the different source; this represents the best option for its application on cell therapy. Experiments focused on the best response to specific differentiation, are conducted in order to confirm those possibilities.
Collapse
Affiliation(s)
- Maria Teresa González-Garza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud Morones Prieto 3000 Pte. Monterrey NL. CP64710, México
| | - Delia E Cruz-Vega
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud Morones Prieto 3000 Pte. Monterrey NL. CP64710, México
| | | | - Rosa Maria de la Rosa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud Morones Prieto 3000 Pte. Monterrey NL. CP64710, México
| | - Jorge E Moreno-Cuevas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud Morones Prieto 3000 Pte. Monterrey NL. CP64710, México
| |
Collapse
|
8
|
Wang T, Fang X, Yin ZS. Endothelial progenitor cell-conditioned medium promotes angiogenesis and is neuroprotective after spinal cord injury. Neural Regen Res 2018; 13:887-895. [PMID: 29863020 PMCID: PMC5998635 DOI: 10.4103/1673-5374.232484] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Endothelial progenitor cells secrete a variety of growth factors that inhibit inflammation, promote angiogenesis and exert neuroprotective effects. Therefore, in this study, we investigated whether endothelial progenitor cell-conditioned medium might have therapeutic effectiveness for the treatment of spinal cord injury using both in vitro and in vivo experiments. After primary culture of bone marrow-derived macrophages, lipopolysaccharide stimulation was used to classically activate macrophages to their proinflammatory phenotype. These cells were then treated with endothelial progenitor cell-conditioned medium or control medium. Polymerase chain reaction was used to determine mRNA expression levels of related inflammatory factors. Afterwards, primary cultures of rat spinal cord neuronal cells were prepared and treated with H2O2 and either endothelial progenitor cell-conditioned medium or control medium. Hoechst 33258 and propidium iodide staining were used to calculate the proportion of neurons undergoing apoptosis. Aortic ring assay was performed to assess the effect of endothelial progenitor cell-conditioned medium on angiogenesis. Compared with control medium, endothelial progenitor cell-conditioned medium mitigated the macrophage inflammatory response at the spinal cord injury site, suppressed apoptosis, and promoted angiogenesis. Next, we used a rat model of spinal cord injury to examine the effects of the endothelial progenitor cell-conditioned medium in vivo. The rats were randomly administered intraperitoneal injection of PBS, control medium or endothelial progenitor cell-conditioned medium, once a day, for 6 consecutive weeks. Immunohistochemistry was used to observe neuronal morphology. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay was performed to detect the proportion of apoptotic neurons in the gray matter. The Basso, Beattie and Bresnahan Locomotor Rating Scale was used to evaluate the recovery of motor function of the bilateral hind limbs after spinal cord injury. Compared with the other two groups, the number of axons was increased, cavities in the spinal cord were decreased, the proportion of apoptotic neurons in the gray matter was reduced, and the Basso, Beattie and Bresnahan score was higher in the endothelial progenitor cell-conditioned medium group. Taken together, the in vivo and in vitro results suggest that endothelial progenitor cell-conditioned medium suppresses inflammation, promotes angiogenesis, provides neuroprotection, and promotes functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Tao Wang
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University; Department of Spine Surgery, Hefei Binhu Hospital, the Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiao Fang
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zong-Sheng Yin
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
9
|
Je HJ, Kim MG, Kwon HJ. Bioluminescence Assays for Monitoring Chondrogenic Differentiation and Cartilage Regeneration. SENSORS 2017; 17:s17061306. [PMID: 28587284 PMCID: PMC5492100 DOI: 10.3390/s17061306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/24/2017] [Accepted: 06/02/2017] [Indexed: 02/06/2023]
Abstract
Since articular cartilage has a limited regeneration potential, for developing biological therapies for cartilage regeneration it is important to study the mechanisms underlying chondrogenesis of stem cells. Bioluminescence assays can visualize a wide range of biological phenomena such as gene expression, signaling, metabolism, development, cellular movements, and molecular interactions by using visible light and thus contribute substantially to elucidation of their biological functions. This article gives a concise review to introduce basic principles of bioluminescence assays and applications of the technology to visualize the processes of chondrogenesis and cartilage regeneration. Applications of bioluminescence assays have been highlighted in the methods of real-time monitoring of gene expression and intracellular levels of biomolecules and noninvasive cell tracking within animal models. This review suggests that bioluminescence assays can be applied towards a visual understanding of chondrogenesis and cartilage regeneration.
Collapse
Affiliation(s)
- Hyeon Jeong Je
- Department of Physical Therapy and Rehabilitation Science, College of Health Science, Eulji University, Gyeonggi 13135, Korea.
| | - Min Gu Kim
- Department of Physical Therapy and Rehabilitation Science, College of Health Science, Eulji University, Gyeonggi 13135, Korea.
| | - Hyuck Joon Kwon
- Department of Physical Therapy and Rehabilitation Science, College of Health Science, Eulji University, Gyeonggi 13135, Korea.
| |
Collapse
|
10
|
Ryska O, Serclova Z, Mestak O, Matouskova E, Vesely P, Mrazova I. Local application of adipose-derived mesenchymal stem cells supports the healing of fistula: prospective randomised study on rat model of fistulising Crohn's disease. Scand J Gastroenterol 2017; 52:543-550. [PMID: 28116942 DOI: 10.1080/00365521.2017.1281434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Local application of adipose-derived mesenchymal stem cells (ADSC) represents a novel approach for the management of perianal fistula in patients with Crohn's disease. A randomised study on an animal model was performed to investigate the efficacy and to detect the distribution of implanted ADSCs by bioluminescence (BLI). MATERIALS AND METHODS A caecostomy was used as a fistula model in 32 Lewis rats. The ADSCs were isolated from transgenic donor expressing firefly luciferase. Animals were randomly assigned to groups given injections of 4 × 106 cells (n = 16, group A) or placebo (n = 16, group B) in the perifistular tissue. Fistula drainage assessment was used to evaluate the fistula healing. After application of D-luciferin, cell viability and distribution was detected using an IVIS Lumina XR camera on days 0, 2, 7, 14 and 30. RESULTS The fistula was identified as healed in 6 (38%) animals in group A vs. 1 case (6.3%) in group B (p = .033). The BLI was strongest immediately after administration of ADSCs 31.2 × 104 (6.09-111 × 104) p/s/cm2/sr. The fastest decrease was observed within the first 2 days when values fell by 50.2%. The BLI 30 days after injection was significantly higher in animals with healed fistulas - 8.23 × 104 (1.18-16.9 × 104) vs. 1.74 × 104 (0.156-6.88 × 104); p = .0393. CONCLUSIONS Local application of ADSCs resulted in significantly higher fistula closure rate on an animal model. BLI monitoring was proved to be feasible and showed rapid reduction of the ADSC mass after application. More viable cells were detected in animals with healed fistula at the end of the follow-up.
Collapse
Affiliation(s)
- Ondrej Ryska
- a Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov , Czech Republic.,b Department of Surgery, Royal Lancaster Infirmary , University Hospitals of Morecambe Bay NHS Foundation Trust , Lancaster , UK
| | - Zuzana Serclova
- c Department of Surgery , Horovice Hospital , Horovice , Czech Republic
| | - Ondrej Mestak
- d Department of Plastic Surgery , Hospital Bulovka , Prague , Czech Republic
| | - Eva Matouskova
- e Department of Burns Medicine , Third Faculty of Medicine Charles University , Prague , Czech Republic
| | - Pavel Vesely
- d Department of Plastic Surgery , Hospital Bulovka , Prague , Czech Republic
| | - Iveta Mrazova
- f Centre of Experimental Medicine, Institute for Clinical and Experimental Medicine , Prague , Czech Republic
| |
Collapse
|
11
|
Zhang Z, Yang C, Shen M, Yang M, Jin Z, Ding L, Jiang W, Yang J, Chen H, Cao F, Hu T. Autophagy mediates the beneficial effect of hypoxic preconditioning on bone marrow mesenchymal stem cells for the therapy of myocardial infarction. Stem Cell Res Ther 2017; 8:89. [PMID: 28420436 PMCID: PMC5395756 DOI: 10.1186/s13287-017-0543-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/04/2017] [Accepted: 03/23/2017] [Indexed: 12/12/2022] Open
Abstract
Background Stem cell therapy has emerged as a promising therapeutic strategy for myocardial infarction (MI). However, the poor viability of transplanted stem cells hampers their therapeutic efficacy. Hypoxic preconditioning (HPC) can effectively promote the survival of stem cells. The aim of this study was to investigate whether HPC improved the functional survival of bone marrow mesenchymal stem cells (BM-MSCs) and increased their cardiac protective effect. Methods BM-MSCs, isolated from Tg(Fluc-egfp) mice which constitutively express both firefly luciferase (Fluc) and enhanced green fluorescent protein (eGFP), were preconditioned with HPC (1% O2) for 12 h, 24 h, 36 h, and 48 h, respectively, followed by 24 h of hypoxia and serum deprivation (H/SD) injury. Results HPC dose-dependently increased the autophagy in BM-MSCs. However, the protective effects of HPC for 24 h are most pronounced. Moreover, hypoxic preconditioned BM-MSCs (HPCMSCs) and nonhypoxic preconditioned BM-MSCs (NPCMSCs) were transplanted into infarcted hearts. Longitudinal in vivo bioluminescence imaging (BLI) and immunofluorescent staining revealed that HPC enhanced the survival of engrafted BM-MSCs. Furthermore, HPCMSCs significantly reduced fibrosis, decreased apoptotic cardiomyocytes, and preserved heart function. However, the beneficial effect of HPC was abolished by autophagy inhibition with 3-methyladenine (3-MA) and Atg7siRNA. Conclusion This study demonstrates that HPC may improve the functional survival and the therapeutic efficiencies of engrafted BM-MSCs, at least in part through autophagy regulation. Hypoxic preconditioning may serve as a promising strategy for optimizing cell-based cardiac regenerative therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0543-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Chao Yang
- Department of Blood Transfusion, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Mingzhi Shen
- Department of Cardiology, Hainan Branch of PLA General Hospital, Sanya, 572013, China
| | - Ming Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 201306, China.,School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong, 271000, China
| | - Zhitao Jin
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Liping Ding
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Wei Jiang
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Junke Yang
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Haixu Chen
- Core Laboratory of Translational Medicine, Institute of Geriatrics, PLA general Hospital, Beijing, 100853, China
| | - Feng Cao
- Department of Cardiology, The General Hospital of Chinese People's Liberation Army, Beijing, 100853, China.
| | - Taohong Hu
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China.
| |
Collapse
|
12
|
Lee WYW, Wang B. Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives. J Orthop Translat 2017; 9:76-88. [PMID: 29662802 PMCID: PMC5822962 DOI: 10.1016/j.jot.2017.03.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis is a degenerative disease of joints with destruction of articular cartilage associated with subchondral bone hypertrophy and inflammation. OA is the leading cause of joint pain resulting in significant worsening of the quality-of-life in the elderly. Numerous efforts have been spent to overcome the inherently poor healing ability of articular cartilage. Mesenchymal stem cells (MSCs) have been in the limelight of cell-based therapies to promote cartilage repair. Despite progressive advancements in MSC manipulation and the introduction of various bioactive scaffolds and growth factors in preclinical studies, current clinical trials are still at early stages with preliminary aims to evaluate safety, feasibility and efficacy. This review summarises recently reported MSC-based clinical trials and discusses new research directions with particular focus on the potential application of MSC-derived extracellular vehicles, miRNAs and advanced gene editing techniques which may shed light on the development of novel treatment strategies. The translational potential of this article: This review summarises recent MSC-related clinical research that focuses on cartilage repair. We also propose a novel possible translational direction for hyaline cartilage formation and a new paradigm making use of extra-cellular signalling and epigenetic regulation in the application of MSCs for cartilage repair.
Collapse
Affiliation(s)
- Wayne Yuk-wai Lee
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, PR China
- SMART Program, Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Bin Wang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, PR China
- SMART Program, Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
13
|
Emmens RW, Oedayrajsingh-Varma M, Woudstra L, Kamp O, Meinster E, van Dijk A, Helder MN, Wouters D, Zeerleder S, van Ham SM, de Jong N, Niessen HW, Juffermans LJ, Krijnen PA. A comparison in therapeutic efficacy of several time points of intravenous StemBell administration in a rat model of acute myocardial infarction. Cytotherapy 2017; 19:131-140. [DOI: 10.1016/j.jcyt.2016.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/07/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022]
|
14
|
Petchdee S, Sompeewong S. Intravenous administration of puppy deciduous teeth stem cells in degenerative valve disease. Vet World 2016; 9:1429-1434. [PMID: 28096616 PMCID: PMC5234058 DOI: 10.14202/vetworld.2016.1429-1434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/16/2016] [Indexed: 01/05/2023] Open
Abstract
Aim: The objective of this study is to investigate the improvement of heart function in dogs with chronic valvular heart disease after puppy deciduous teeth stem cells (pDSCs) administration. Materials and Methods: 20 client-owned dogs with degenerative valvular heart disease underwent multiple intravenous injections of allogeneic pDSCs. Dogs were randomly assigned to two groups: (i) Control group (n=10) with standard treatment for heart failure and (ii) group with standard treatment and multiple administrations of pDSCs (n=10). Electrocardiography, complete transthoracic echocardiography, thoracic radiography, and blood pressure were recorded before and after pDSCs injections for 15, 30 and 60 days. Results: Post pDSCs injection showed measurable improvement in left ventricular ejection fraction, American College of Veterinary Internal Medicine (ACVIM) functional class significantly improved and improved quality of life scores were observed. In the control group, there were no significant enhancements in heart function or ACVIM class. Conclusions: This finding suggests that pDSCs could be a supplement for valvular heart disease treatment.
Collapse
Affiliation(s)
- Soontaree Petchdee
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsaen, Nakhorn Pathom 73140, Thailand
| | - Sarunya Sompeewong
- Kasetsart University, Veterinary Teaching Animal Hospital, Kamphaeng Saen, Thailand
| |
Collapse
|
15
|
Komatsu I, Wang JHC, Iwasaki K, Shimizu T, Okano T. The effect of tendon stem/progenitor cell (TSC) sheet on the early tendon healing in a rat Achilles tendon injury model. Acta Biomater 2016; 42:136-146. [PMID: 27329787 DOI: 10.1016/j.actbio.2016.06.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 02/08/2023]
Abstract
UNLABELLED Tissue-engineering approaches have a great potential to improve the treatment of tendon injuries that affect millions of people. The present study tested the hypothesis that introduction of a tendon derived stem/progenitor cell (TSC) sheet accelerates tendon healing and tendon regeneration in a rat model. TSC sheets were produced on temperature-responsive culture dishes. Then, they were grafted on unwounded Achilles tendons and at sites of a 3mm of Achilles tendon defect. At 2 and 4weeks after implantation tendons were examined by histology, immunohistochemistry, transmission electron microscopy (TEM) and mechanical testing. The results showed that the implanted TSC sheet remained stably attached on the tendon surface at 4 weeks after implantation. Moreover, in the tendon defect model, tendon defect area where TSC sheet was implanted was well regenerated and had better organized collagen fibers with elongated spindle shaped cells, compared to relatively disorganized collagen fibers and round shaped cells in the control group. TEM observations revealed longitudinally aligned collagen fibers and thick collagen fibrils in the TSC sheet implanted group. Finally, at 4weeks mechanical property of the TSC sheet implanted tendon had better ultimate load than the control. In conclusion, this study demonstrates the feasibility of implanting TSC sheets on tendons in vivo. Introduction of the cell sheets into a tendon defect significantly improved histological properties and collagen content at both 2 and 4 weeks after implantation, indicating that TSC sheets may effectively promote tendon remodeling in the early stages of tendon healing. STATEMENT OF SIGNIFICANCE Tendon injury is a highly prevalent clinical problem that debilitates millions of people worldwide in both occupational and athletic settings. It also costs billions of healthcare dollars in treatment every year. In this study, we showed the feasibility of using tendon derived stem cell sheet to deliver biologically active tenogenic-constructs and promote tendon regeneration. This work has the potential to impact the orthopaedic surgery and sports medicine fields in the treatment of tendon injury.
Collapse
|
16
|
Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiol Rev 2016; 96:1127-68. [PMID: 27335447 PMCID: PMC6345247 DOI: 10.1152/physrev.00019.2015] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are broadly distributed cells that retain postnatal capacity for self-renewal and multilineage differentiation. MSCs evade immune detection, secrete an array of anti-inflammatory and anti-fibrotic mediators, and very importantly activate resident precursors. These properties form the basis for the strategy of clinical application of cell-based therapeutics for inflammatory and fibrotic conditions. In cardiovascular medicine, administration of autologous or allogeneic MSCs in patients with ischemic and nonischemic cardiomyopathy holds significant promise. Numerous preclinical studies of ischemic and nonischemic cardiomyopathy employing MSC-based therapy have demonstrated that the properties of reducing fibrosis, stimulating angiogenesis, and cardiomyogenesis have led to improvements in the structure and function of remodeled ventricles. Further attempts have been made to augment MSCs' effects through genetic modification and cell preconditioning. Progression of MSC therapy to early clinical trials has supported their role in improving cardiac structure and function, functional capacity, and patient quality of life. Emerging data have supported larger clinical trials that have been either completed or are currently underway. Mechanistically, MSC therapy is thought to benefit the heart by stimulating innate anti-fibrotic and regenerative responses. The mechanisms of action involve paracrine signaling, cell-cell interactions, and fusion with resident cells. Trans-differentiation of MSCs to bona fide cardiomyocytes and coronary vessels is also thought to occur, although at a nonphysiological level. Recently, MSC-based tissue engineering for cardiovascular disease has been examined with quite encouraging results. This review discusses MSCs from their basic biological characteristics to their role as a promising therapeutic strategy for clinical cardiovascular disease.
Collapse
Affiliation(s)
- Samuel Golpanian
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Ariel Wolf
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
17
|
Goodfellow F, Simchick GA, Mortensen LJ, Stice SL, Zhao Q. Tracking and Quantification of Magnetically Labeled Stem Cells using Magnetic Resonance Imaging. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3899-3915. [PMID: 28751853 PMCID: PMC5526633 DOI: 10.1002/adfm.201504444] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Stem cell based therapies have critical impacts on treatments and cures of diseases such as neurodegenerative or cardiovascular disease. In vivo tracking of stem cells labeled with magnetic contrast agents is of particular interest and importance as it allows for monitoring of the cells' bio-distribution, viability, and physiological responses. Herein, recent advances are introduced in tracking and quantification of super-paramagnetic iron oxide (SPIO) nanoparticles-labeled cells with magnetic resonance imaging, a noninvasive approach that can longitudinally monitor transplanted cells. This is followed by recent translational research on human stem cells that are dual-labeled with green fluorescence protein (GFP) and SPIO nanoparticles, then transplanted and tracked in a chicken embryo model. Cell labeling efficiency, viability, and cell differentiation are also presented.
Collapse
Affiliation(s)
| | - Gregory A Simchick
- Bioimaging Research Center, Regenerative Bioscience Center, and Department of Physics University of Georgia, Athens, GA. 30602, USA
| | | | | | - Qun Zhao
- Bioimaging Research Center, Regenerative Bioscience Center, and Department of Physics University of Georgia, Athens, GA. 30602, USA
| |
Collapse
|
18
|
Zhilai Z, Biling M, Sujun Q, Chao D, Benchao S, Shuai H, Shun Y, Hui Z. Preconditioning in lowered oxygen enhances the therapeutic potential of human umbilical mesenchymal stem cells in a rat model of spinal cord injury. Brain Res 2016; 1642:426-435. [PMID: 27085204 DOI: 10.1016/j.brainres.2016.04.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/25/2016] [Accepted: 04/12/2016] [Indexed: 12/20/2022]
Abstract
Human umbilical cord mesenchymal stem cells (UCMSCs) have recently been shown to hold great therapeutic potential for the treatment of spinal cord injury (SCI). However, the number of engrafted cells has been shown to decrease dramatically post-transplantation. Physioxia is known to enhance the paracrine properties and immune modulation of stem cells, a notion that has been applied in many clinical settings. We therefore hypothesized that preconditioning of UCMSCs in physioxic environment would enhance the regenerative properties of these cells in the treatment of rat SCI. UCMSCs were pretreated with either atmospheric normoxia (21% O2, N-UCMSC) or physioxia (5% O2, P-UCMSC). The MSCs were characterized using flow cytometry, immunocytochemistry, and real-time polymerase chain reaction. Furthermore, 10(5) N-UCMSC or P-UCMSC were injected into the injured spinal cord immediately after SCI, and locomotor function as well as cellular, molecular and pathological changes were compared between the groups. We found that N-UCMSC and P-UCMSC displayed similar surface protein expression. P-UCMSC grew faster, while physioxia up-regulated the expression of trophic and growth factors, including hepatocyte growth factor (HGF), brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor(VEGF), in UCMSCs. Compared to N-UCMSC, treatment with P-UCMSC was associated with marked changes in the SCI environment, with a significant increase in axonal preservation and a decrease in the number of caspase-3+ cells and ED-1+ macrophages. These changes were accompanied by improved functional recovery. Thus, the present study indicated that preculturing UCMSCs under 5% lowered oxygen physioxic conditions prior to transplantation improves their therapeutic potential for the treatment of SCI in rats.
Collapse
Affiliation(s)
- Zhou Zhilai
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye road, 510282 Guangzhou, China
| | - Mo Biling
- Department of Cardiology, Liwan Hospital, Guangzhou Medical University, China.
| | - Qiu Sujun
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye road, 510282 Guangzhou, China
| | - Dong Chao
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye road, 510282 Guangzhou, China
| | - Shi Benchao
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye road, 510282 Guangzhou, China
| | - Huang Shuai
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye road, 510282 Guangzhou, China
| | - Yao Shun
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye road, 510282 Guangzhou, China
| | - Zhang Hui
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye road, 510282 Guangzhou, China.
| |
Collapse
|
19
|
Discrepant Results of Experimental Human Mesenchymal Stromal Cell Therapy after Myocardial Infarction: Are Animal Models Robust Enough? PLoS One 2016; 11:e0152938. [PMID: 27050443 PMCID: PMC4822837 DOI: 10.1371/journal.pone.0152938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/20/2016] [Indexed: 12/13/2022] Open
Abstract
Background Human mesenchymal stromal cells (MSCs) have been reported to preserve cardiac function in myocardial infarction (MI) models. Previously, we found a beneficial effect of intramyocardial injection of unstimulated human MSCs (uMSCs) on cardiac function after permanent coronary artery ligation. In the present study we aimed to extend this research by investigating the effect of intramyocardial injection of human MSCs pre-stimulated with the pro-inflammatory cytokine interferon-gamma (iMSCs), since pro-inflammatory priming has shown additional salutary effects in multiple experimental disease models. Methods MI was induced in NOD/Scid mice by permanent ligation of the left anterior descending coronary artery. Animals received intramyocardial injection of uMSCs, iMSCs or PBS. Sham-operated animals were used to determine baseline characteristics. Cardiac performance was assessed after 2 and 14 days using 7-Tesla magnetic resonance imaging and pressure-volume loop measurements. Histology and q-PCR were used to confirm MSC engraftment in the heart. Results Both uMSC and iMSC therapy had no significant beneficial effect on cardiac function or remodelling in contrast to our previous studies. Conclusions Animal models for cardiac MSC therapy appear less robust than initially envisioned.
Collapse
|
20
|
Human adipose mesenchymal stem cells as potent anti-fibrosis therapy for systemic sclerosis. J Autoimmun 2016; 70:31-9. [PMID: 27052182 DOI: 10.1016/j.jaut.2016.03.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Displaying immunosuppressive and trophic properties, mesenchymal stem/stromal cells (MSC) are being evaluated as promising therapeutic options in a variety of autoimmune and degenerative diseases. Although benefits may be expected in systemic sclerosis (SSc), a rare autoimmune disease with fibrosis-related mortality, MSC have yet to be evaluated in this specific condition. While autologous approaches could be inappropriate because of functional alterations in MSC from patients, the objective of the present study was to evaluate allogeneic and xenogeneic MSC in the HOCl-induced model of diffuse SSc. We also questioned the source of human MSC and compared bone marrow- (hBM-MSC) and adipose-derived MSC (hASC). METHODS HOCl-challenged BALB/c mice received intravenous injection of BM-MSC from syngeneic BALB/c or allogeneic C57BL/6 mice, and xenogeneic hBM-MSC or hASC (3 donors each). Skin thickness was measured during the experiment. At euthanasia, histology, immunostaining, collagen determination and RT-qPCR were performed in skin and lungs. RESULTS Xenogeneic hBM-MSC were as effective as allogeneic or syngeneic BM-MSC in decreasing skin thickness, expression of Col1, Col3, α-Sma transcripts, and collagen content in skin and lungs. This anti-fibrotic effect was not associated with MSC migration to injured skin or with long-term MSC survival. Interestingly, compared with hBM-MSC, hASC were significantly more efficient in reducing skin fibrosis, which was related to a stronger reduction of TNFα, IL1β, and enhanced ratio of Mmp1/Timp1 in skin and lung tissues. CONCLUSIONS Using primary cells isolated from 3 murine and 6 human individuals, this preclinical study demonstrated similar therapeutic effects using allogeneic or xenogeneic BM-MSC while ASC exerted potent anti-inflammatory and remodeling properties. This sets the proof-of-concept prompting to evaluate the therapeutic efficacy of allogeneic ASC in SSc patients.
Collapse
|
21
|
He J, Wang C, Sun Y, Lu B, Cui J, Dong N, Zhang M, Liu Y, Yu B. Exendin-4 protects bone marrow-derived mesenchymal stem cells against oxygen/glucose and serum deprivation-induced apoptosis through the activation of the cAMP/PKA signaling pathway and the attenuation of ER stress. Int J Mol Med 2016; 37:889-900. [PMID: 26935620 PMCID: PMC4790651 DOI: 10.3892/ijmm.2016.2509] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 01/28/2016] [Indexed: 12/11/2022] Open
Abstract
Exendin-4 (ex-4) is a long-acting glucagon-like peptide-1 receptor (GLP-1R) agonist which exerts beneficial effects on glycemic control and promotes cell viability. In the present study, we investigated the anti-apoptotic effects of ex-4, as well as the potential mechanisms responsible for these effects in rat bone marrow-derived mesenchymal stem cells (BM-MSCs) under conditions of oxygen, glucose and serum deprivation (OGD). The apoptosis of the MSCs was induced by subjecting the cells to OGD conditions for 4 h and was detected by Annexin V/PI and Hoechst 33258 staining. The MSCs were pre-conditioned with ex-4 for 12 h prior to being subjected to OGD conditions, and the expression levels of an apoptotic marker (cleaved caspase-3), endoplasmic reticulum (ER) stress markers [phosphorylated (p-)protein kinase RNA-like endoplasmic reticulum kinase (PERK), PERK, binding immunoglobulin protein (BIP), activating transcription factor 4 (ATF-4) and C/EBP homologous protein (CHOP)], as well as those of a survival marker (Bcl-2) were measured by western blot analysis. Furthermore, the mRNA levels of ATF-4 and CHOP were determined by RT-qPCR. ELISA was used to examine the activity of intracellular cAMP. Moreover, the GLP-1R antagonist, exendin9-39 (ex9-39), the protein kinase A (PKA) inhibitor, H89, and small interfering RNA (siRNA) targeting rat ATF-4 and CHOP were co-incubated with the MSCs. The apoptotic rate was markedly diminished following pre-conditioning with ex-4 in a dose-dependent manner (P<0.05). The ER stress markers, p-PERK, BIP, ATF-4 and CHOP, were upregulated in the cells subjected to OGD conditions. Ex-4 pre-conditioning significantly decreased the mRNA and protein levels of ATF-4 and CHOP (P<0.05), and increased the activity of intracellular cAMP (P<0.05). Furthermore, the anti-apoptotic effects of ex-4 were almost reversed by treatment with either H89 or ex9-39 (P<0.05); transfection with siRNA-CHOP significantly reduced the apoptotic rate of the MSCs and did not impair the cytoprotective effects of ex-4. Taken together, these findings suggest that ex-4 protects rat BM-MSCs from OGD-induced apoptosis through the activation of the PKA/cAMP pathway and the attenuation of the ER stress signaling pathway. Ex-4 may thus prove to be a therapeutic agent with the potential to improve the viability of MSCs in the ischemic milieu, and consequently, to optimize the therapeutic effects of MSC therapy in acute myocardial infarction.
Collapse
Affiliation(s)
- Jieqiong He
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, P.R. China
| | - Chao Wang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, P.R. China
| | - Yunpeng Sun
- Department of Cardiology, The First Hospital of Qiqihar, Qiqihar, Heilongjiang, P.R. China
| | - Bo Lu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, P.R. China
| | - Jinjin Cui
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, P.R. China
| | - Nana Dong
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, P.R. China
| | - Maomao Zhang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, P.R. China
| | - Youbing Liu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, P.R. China
| | - Bo Yu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
22
|
Gadkari R, Zhao L, Teklemariam T, Hantash BM. Human embryonic stem cell derived-mesenchymal stem cells: an alternative mesenchymal stem cell source for regenerative medicine therapy. Regen Med 2015; 9:453-65. [PMID: 25159063 DOI: 10.2217/rme.14.13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM To enumerate and characterize mesenchymal stem cells (MSC) derived from human embryonic stem cells (hESC) for clinical application. MATERIALS & METHODS hESC were differentiated into hESC-MSC and characterized by the expression of surface markers using flow cytometry. hESC-MSC were evaluated with respect to growth kinetics, colony-forming potential, as well as osteogenic and adipogenic differentiation capacity. Immunosuppressive effects were assessed using peripheral blood mononuclear cell (PBMC) proliferation and cytotoxicity assays. RESULTS hESC-MSC showed similar morphology, and cell surface markers as adipose (AMSC) and bone marrow-derived MSC (BMSC). hESC-MSC exhibited a higher growth rate during early in vitro expansion and equivalent adipogenic and osteogenic differentiation and colony-forming potential as AMSC and BMSC. hESC-MSC demonstrated similar immunosuppressive effects as AMSC and BMSC. CONCLUSION hESC-MSC were comparable to BMSC and AMSC and hence can be used as an alternative source of MSC for clinical applications.
Collapse
Affiliation(s)
- Rishali Gadkari
- San Jose State University, 1 Washington Square, San Jose, CA 95192, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Heart failure remains a major cause of death and disability, requiring rapid development of new therapies. Bone marrow-derived mesenchymal stem cell (MSC)-based therapy is an emerging approach for the treatment of both acute and chronic heart failure. Following successful experimental studies in a range of models, more than 40 clinical trials of MSC-based therapy for heart failure have now been registered, and the results of completed clinical trials so far have shown feasibility and safety of this approach with therapeutic potential suggested (though preliminarily). However, there appear to be several critical issues to be solved before this treatment could become a widespread standard therapy for heart failure. In this review, we comprehensively and systemically summarize a total of 73 preclinical studies and 11 clinical trial reports published to date. By analyzing the data in these reports, (1) improvement in the cell delivery method to the heart in order to enhance donor cell engraftment, (2) elucidation of mechanisms underpinning the therapeutic effects of the treatment differentiation and/or treatment secretion, and (3) validation of the utility of allogeneic MSCs which could enhance the efficacy and expand the application/indication of this therapeutic approach are highlighted as future perspectives. These important respects are further discussed in this review article with referencing latest scientific and clinical information.
Collapse
Affiliation(s)
- Takuya Narita
- Cardiothoracic Surgery, National Heart Centre, Singapore, Singapore
| | | |
Collapse
|
24
|
Bernsen MR, Guenoun J, van Tiel ST, Krestin GP. Nanoparticles and clinically applicable cell tracking. Br J Radiol 2015; 88:20150375. [PMID: 26248872 DOI: 10.1259/bjr.20150375] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In vivo cell tracking has emerged as a much sought after tool for design and monitoring of cell-based treatment strategies. Various techniques are available for pre-clinical animal studies, from which much has been learned and still can be learned. However, there is also a need for clinically translatable techniques. Central to in vivo cell imaging is labelling of cells with agents that can give rise to signals in vivo, that can be detected and measured non-invasively. The current imaging technology of choice for clinical translation is MRI in combination with labelling of cells with magnetic agents. The main challenge encountered during the cell labelling procedure is to efficiently incorporate the label into the cell, such that the labelled cells can be imaged at high sensitivity for prolonged periods of time, without the labelling process affecting the functionality of the cells. In this respect, nanoparticles offer attractive features since their structure and chemical properties can be modified to facilitate cellular incorporation and because they can carry a high payload of the relevant label into cells. While these technologies have already been applied in clinical trials and have increased the understanding of cell-based therapy mechanism, many challenges are still faced.
Collapse
Affiliation(s)
- Monique R Bernsen
- 1 Department of Radiology, Erasmus MC, Rotterdam, Netherlands.,2 Department of Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Jamal Guenoun
- 1 Department of Radiology, Erasmus MC, Rotterdam, Netherlands
| | | | | |
Collapse
|
25
|
Adipose-derived Mesenchymal Stem Cells and Their Reparative Potential in Ischemic Heart Disease. ACTA ACUST UNITED AC 2015; 68:599-611. [DOI: 10.1016/j.rec.2015.02.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/23/2015] [Indexed: 12/21/2022]
|
26
|
Badimon L, Oñate B, Vilahur G. Células madre mesenquimales derivadas de tejido adiposo y su potencial reparador en la enfermedad isquémica coronaria. Rev Esp Cardiol 2015. [DOI: 10.1016/j.recesp.2015.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Adipose Tissue-Derived Mesenchymal Stem Cells Attenuate Staphylococcal Enterotoxin A-Induced Toxic Shock. Infect Immun 2015; 83:3490-6. [PMID: 26099581 DOI: 10.1128/iai.00730-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/13/2015] [Indexed: 12/29/2022] Open
Abstract
Adipose tissue-derived stem cells (ASCs), which are mesenchymal stromal cells isolated from adipose tissues, exhibit immunomodulatory effects that are promising for several applications, including the therapeutics of inflammatory diseases. In the present study, the effect of ASCs on bacterial toxin-induced inflammation was investigated. Intraperitoneal administration of ASCs rescued mice from lethal shock induced by staphylococcal enterotoxin A (SEA) potentiated with lipopolysaccharide. In the sera and/or spleens of mice administered ASCs, the production of proinflammatory cytokines, including interferon gamma, tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-2 was reduced. By quantitative real-time PCR, the expression of Foxp3 in the mice administered ASCs was not altered. On the other hand, the expression of IL-12 receptor and STAT4 was decreased with ASC administration. These results imply that the effect of ASCs is not involved in the lineage of regulatory T cells but that these cells may modulate TH1 differentiation. This information provides evidence that ASCs have properties that are effective to attenuate SEA-induced toxic shock and should prompt further exploration on other inflammatory diseases caused by bacterial toxins or bacterial infections.
Collapse
|
28
|
Stoddart MJ, Bara J, Alini M. Cells and secretome--towards endogenous cell re-activation for cartilage repair. Adv Drug Deliv Rev 2015; 84:135-45. [PMID: 25174306 DOI: 10.1016/j.addr.2014.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/26/2014] [Accepted: 08/20/2014] [Indexed: 01/01/2023]
Abstract
Regenerative medicine approaches to cartilage tissue repair have mainly been concerned with the implantation of a scaffold material containing monolayer expanded cells into the defect, with the aim to differentiate the cells into chondrocytes. While this may be a valid approach, the secretome of the implanted cells and its effects on the endogenous resident cells, is gaining in interest. This review aims to summarize the knowledge on the secretome of mesenchymal stem cells, including knowledge from other tissues, in order to indicate how these mechanisms may be of value in repairing articular cartilage defects. Potential therapies and their effects on the repair of articular cartilage defects will be discussed, with a focus on the transition from classical cell therapy to the implantation of cell free matrices releasing specific cytokines.
Collapse
|
29
|
Bortolotti F, Ukovich L, Razban V, Martinelli V, Ruozi G, Pelos B, Dore F, Giacca M, Zacchigna S. In vivo therapeutic potential of mesenchymal stromal cells depends on the source and the isolation procedure. Stem Cell Reports 2015; 4:332-9. [PMID: 25660405 PMCID: PMC4375942 DOI: 10.1016/j.stemcr.2015.01.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 01/02/2015] [Accepted: 01/02/2015] [Indexed: 01/09/2023] Open
Abstract
Over the last several years, mesenchymal stromal cells (MSCs) have been isolated from different tissues following a variety of different procedures. Here, we comparatively assess the ex vivo and in vivo properties of MSCs isolated from either adipose tissue or bone marrow by different purification protocols. After MSC transplantation into a mouse model of hindlimb ischemia, clinical and histological analysis revealed that bone marrow MSCs purified on adhesive substrates exerted the best therapeutic activity, preserving tissue viability and promoting formation of new arterioles without directly transdifferentiating into vascular cells. In keeping with these observations, these cells abundantly expressed cytokines involved in vessel maturation and cell retention. These findings indicate that the choice of MSC source and purification protocol is critical in determining the therapeutic potential of these cells and warrant the standardization of an optimal MSC isolation procedure in order to select the best conditions to move forward to more effective clinical experimentation. MSCs were isolated from various tissues according to different protocols All MSCs provided a therapeutic benefit in a hindlimb ischemia model Adhesive MSCs from bone marrow were the most effective in preserving tissue viability These cells promoted massive vascularization in a paracrine fashion
Collapse
Affiliation(s)
- Francesca Bortolotti
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Laura Ukovich
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Vahid Razban
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; Tissue Engineering Department, Shiraz University of Medical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz 7134814336, Iran
| | - Valentina Martinelli
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Giulia Ruozi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Barbara Pelos
- Struttura Complessa di Medicina Nucleare, "Ospedali Riuniti," 34142 Trieste, Italy
| | - Franca Dore
- Struttura Complessa di Medicina Nucleare, "Ospedali Riuniti," 34142 Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Serena Zacchigna
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy.
| |
Collapse
|
30
|
Proffen BL, Vavken P, Haslauer CM, Fleming BC, Harris CE, Machan JT, Murray MM. Addition of autologous mesenchymal stem cells to whole blood for bioenhanced ACL repair has no benefit in the porcine model. Am J Sports Med 2015; 43:320-30. [PMID: 25549633 PMCID: PMC4511104 DOI: 10.1177/0363546514559826] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Coculture of mesenchymal stem cells (MSCs) from the retropatellar fat pad and peripheral blood has been shown to stimulate anterior cruciate ligament (ACL) fibroblast proliferation and collagen production in vitro. Current techniques of bioenhanced ACL repair in animal studies involve adding a biologic scaffold, in this case an extracellular matrix-based scaffold saturated with autologous whole blood, to a simple suture repair of the ligament. Whether the enrichment of whole blood with MSCs would further improve the in vivo results of bioenhanced ACL repair was investigated. HYPOTHESIS The addition of MSCs derived from adipose tissue or peripheral blood to the blood-extracellular matrix composite, which is used in bioenhanced ACL repair to stimulate healing, would improve the biomechanical properties of a bioenhanced ACL repair after 15 weeks of healing. STUDY DESIGN Controlled laboratory study. METHODS Twenty-four adolescent Yucatan mini-pigs underwent ACL transection followed by (1) bioenhanced ACL repair, (2) bioenhanced ACL repair with the addition of autologous adipose-derived MSCs, and (3) bioenhanced ACL repair with the addition of autologous peripheral blood derived MSCs. After 15 weeks of healing, the structural properties of the ACL (yield load, failure load, and linear stiffness) were measured. Cell and vascular density were measured in the repaired ACL via histology, and its tissue structure was qualitatively evaluated using the advanced Ligament Maturity Index. RESULTS After 15 weeks of healing, there were no significant improvements in the biomechanical or histological properties with the addition of adipose-derived MSCs. The only significant change with the addition of peripheral blood MSCs was an increase in knee anteroposterior laxity when measured at 30° of flexion. CONCLUSION These findings suggest that the addition of adipose or peripheral blood MSCs to whole blood before saturation of an extracellular matrix carrier with the blood did not improve the functional results of bioenhanced ACL repair after 15 weeks of healing in the pig model. CLINICAL RELEVANCE Whole blood represents a practical biologic additive to ligament repair, and any other additive (including stem cells) should be demonstrated to be superior to this baseline before clinical use is considered.
Collapse
Affiliation(s)
- Benedikt L. Proffen
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Patrick Vavken
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Orthopaedic Surgery, University Hospital Basel, Switzerland
| | - Carla M. Haslauer
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Braden C. Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA
| | - Chad E. Harris
- Department of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Jason T. Machan
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA
- Biostatistics, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Martha M. Murray
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Adipose-Derived Stem Cells for Therapeutic Applications. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
32
|
Human Adipose-Derived Stem Cells (ASC): Their Efficacy in Clinical Applications. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
33
|
Therapeutic application of adipose derived stem cells in acute myocardial infarction: lessons from animal models. Stem Cell Rev Rep 2014; 10:389-98. [PMID: 24577790 DOI: 10.1007/s12015-014-9502-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The majority of patients survive an acute myocardial infarction (AMI). Their outcome is negatively influenced by post-AMI events, such as loss of viable cardiomyocytes due to a post-AMI inflammatory response, eventually resulting in heart failure and/or death. Recent pre-clinical animal studies indicate that mesenchymal stem cells derived from adipose tissue (ASC) are new promising candidates that may facilitate cardiovascular regeneration in the infarcted myocardium. In this review we have compared all animal studies in which ASC were used as a therapy post-AMI and have focused on aspects that might be important for future successful clinical application of ASC.
Collapse
|
34
|
Abstract
INTRODUCTION Adipose-derived stem cells (ASCs) have shown potential for cell-based therapy in the field of plastic surgery. However, the fate of ASCs after transplantation and the mechanism(s) of their biologic capabilities remain unclear. METHODS We isolated and cultured ASCs from transgenic mice that express both luciferase and green fluorescent protein and injected the cells into the inguinal fat pads of wild-type mice. We tested 4 experimental groups, namely, ischemic fat pads with/without ASCs and control fat pads with/without ASCs. RESULTS Transplanted ASCs were tracked with bioluminescence imaging. The luminescence gradually decreased over 28 days, indicating cell death after transplantation. More ASCs were retained in ischemic fat pads on day 7 compared to control fat pads. On day 14, adipose tissue vascular density was higher in the ASC transplantation groups compared to those without ASCs. On day 28, there was decreased atrophy of adipose tissue in ASC-treated ischemic fat pads. Transplanted ASCs were detected as nonproliferating green fluorescent protein-positive cells, whereas native endothelial cells adjacent to the transplanted ASCs were proliferative. Protein analysis demonstrated higher expression of hepatocyte growth factor and vascular endothelial growth factor in the ASC transplantation groups, suggesting a paracrine mechanism, which was confirmed by in vitro experiments with conditioned media from ASCs. CONCLUSIONS Transplanted ASCs are preferentially retained in ischemic adipose tissue, although most of the cells eventually undergo cell death. They exert an angiogenic effect on adipose tissue mainly through a paracrine mechanism. Increased understanding of these effects will help develop ASCs as a tool for cell-based therapy.
Collapse
|
35
|
Lepperhof V, Polchynski O, Kruttwig K, Brüggemann C, Neef K, Drey F, Zheng Y, Ackermann JP, Choi YH, Wunderlich TF, Hoehn M, Hescheler J, Šarić T. Bioluminescent imaging of genetically selected induced pluripotent stem cell-derived cardiomyocytes after transplantation into infarcted heart of syngeneic recipients. PLoS One 2014; 9:e107363. [PMID: 25226590 PMCID: PMC4167328 DOI: 10.1371/journal.pone.0107363] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 08/15/2014] [Indexed: 01/16/2023] Open
Abstract
Cell loss after transplantation is a major limitation for cell replacement approaches in regenerative medicine. To assess the survival kinetics of induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) we generated transgenic murine iPSC lines which, in addition to CM-specific expression of puromycin N-acetyl-transferase and enhanced green fluorescent protein (EGFP), also constitutively express firefly luciferase (FLuc) for bioluminescence (BL) in vivo imaging. While undifferentiated iPSC lines generated by random integration of the transgene into the genome retained stable FLuc activity over many passages, the BL signal intensity was strongly decreased in purified iPS-CM compared to undifferentiated iPSC. Targeted integration of FLuc-expression cassette into the ROSA26 genomic locus using zinc finger nuclease (ZFN) technology strongly reduced transgene silencing in iPS-CM, leading to a several-fold higher BL compared to iPS-CM expressing FLuc from random genomic loci. To investigate the survival kinetics of iPS-CM in vivo, purified CM obtained from iPSC lines expressing FLuc from a random or the ROSA26 locus were transplanted into cryoinfarcted hearts of syngeneic mice. Engraftment of viable cells was monitored by BL imaging over 4 weeks. Transplanted iPS-CM were poorly retained in the myocardium independently of the cell line used. However, up to 8% of cells survived for 28 days at the site of injection, which was confirmed by immunohistological detection of EGFP-positive iPS-CM in the host tissue. Transplantation of iPS-CM did not affect the scar formation or capillary density in the periinfarct region of host myocardium. This report is the first to determine the survival kinetics of drug-selected iPS-CM in the infarcted heart using BL imaging and demonstrates that transgene silencing in the course of iPSC differentiation can be greatly reduced by employing genome editing technology. FLuc-expressing iPS-CM generated in this study will enable further studies to reduce their loss, increase long-term survival and functional integration upon transplantation.
Collapse
Affiliation(s)
- Vera Lepperhof
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Olga Polchynski
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Klaus Kruttwig
- In-vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
| | - Chantal Brüggemann
- In-vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
| | - Klaus Neef
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Florian Drey
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Yunjie Zheng
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Justus P. Ackermann
- Max Planck Institute for Metabolism Research and Institute for Genetics, Cologne, Germany
| | - Yeong-Hoon Choi
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Thomas F. Wunderlich
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Max Planck Institute for Metabolism Research and Institute for Genetics, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Tomo Šarić
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
36
|
Skiles ML, Hanna B, Rucker L, Tipton A, Brougham-Cook A, Jabbarzadeh E, Blanchette JO. ASC spheroid geometry and culture oxygenation differentially impact induction of preangiogenic behaviors in endothelial cells. Cell Transplant 2014; 24:2323-35. [PMID: 25197983 DOI: 10.3727/096368914x684051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell-based angiogenic therapies offer potential for the repair of ischemic injuries, while avoiding several of the limitations associated with material-based growth factor delivery strategies. Evidence supports that applying MSCs as spheroids rather than dispersed cells can improve retention and enhance therapeutic effect through increased secretion of angiogenic factors due to hypoxia. However, while spheroid culture appears to modulate MSC behavior, there has been little investigation of how major culture parameters that affect cellular oxygen tension, such as external oxygenation and culture size, impact the angiogenic potential of spheroids. We cultured equal numbers of adipose-derived stem cells (ASCs) as spheroids containing 10,000 (10k) or 60,000 (60k) cells each, in 20% and 2% oxygen. VEGF secretion varied among the sample groups, with 10k, 2% O2 spheroids exhibiting the highest production. Spheroid-conditioned media was applied to HUVEC monolayers, and proliferation was assessed. Spheroids of either size in 2% oxygen induced comparable proliferation compared to a 2 ng/ml VEGF control sample, while spheroids in 20% oxygen induced less proliferation. Spheroids were also applied in coculture with HUVEC monolayers, and induction of migration through a Transwell membrane was evaluated. Sixty thousand, 2% O2 spheroids induced similar levels of migration as VEGF controls, while 10k, 2% O2 spheroids induced significantly more. Ten thousand, 20% spheroids performed no better than VEGF-free controls. We conclude that the therapeutic ability of ASC spheroids to stimulate angiogenesis in endothelial cells is affected by both culture size and oxygenation parameters, suggesting that, while ASC spheroids offer potential in the treatment of injured and ischemic tissues, careful consideration of culture size in respect to in vivo local oxygen tension will be necessary for optimal results.
Collapse
Affiliation(s)
- Matthew L Skiles
- Chemical Engineering Department, University of South Carolina, Columbia, SC, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Wang X, Zhang H, Nie L, Xu L, Chen M, Ding Z. Myogenic differentiation and reparative activity of stromal cells derived from pericardial adipose in comparison to subcutaneous origin. Stem Cell Res Ther 2014; 5:92. [PMID: 25084810 PMCID: PMC4139604 DOI: 10.1186/scrt481] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 07/16/2014] [Indexed: 01/22/2023] Open
Abstract
Introduction Adipose tissue-derived stromal cells (ADSCs) are abundant and easy to obtain, but the diversity of differentiation potential from different locations may vary with the developmental origin of their mesenchymal compartment. We therefore aim to compare the myogenic differentiation and reparative activity of ADSCs derived from the pericardial tissue to ADSCs of subcutaneous origin. Methods Pericardial and inguinal adipose tissues from Wistar rats were surgically obtained, and the stromal fraction was isolated after enzymatic digestion. The phenotypic epitopes of the resultant two types of ADSCs were analyzed with flow cytometry, and the expression of transcriptional factors was analyzed with immunostaining. Furthermore, their potential toward adipogenic, osteogenic, and myogenic differentiation also was compared. Finally, the reparative activity and the resultant functional benefits were examined by allograft transplantation into an infarcted model in rats. Results ADSCs from two adipose sources showed identical morphology and growth curve at the initial stage, but inguinal ADSCs (ingADSCs) sustained significantly vigorous growth after 25 days of cultivation. Although both ADSCs shared similar immunophenotypes, the pericardial ADSCs (periADSC) intrinsically exhibited partial expression of transcription factors for cardiogenesis (such as GATA-4, Isl-1, Nkx 2.5, and MEF-2c) and more-efficient myogenic differentiation, but less competent for adipogenic and osteogenic differentiation. After in vivo transplantation, periADSCs exhibited significantly vigorous reparative activity evidenced by thickening of ventricular wall and pronounced vasculogenesis and myogenesis, although the majority of prelabeled cells disappeared 28 days after transplantation. The structural repair also translated into functional benefits of hearts after infarction. Conclusions Although two sources of ADSCs are phenotypically identical, pericADSCs constituted intrinsic properties toward myogenesis and vasculogenesis, and thus provided more potent reparative effects after transplantation; therefore, they represent an attractive candidate cell donor for cardiac therapy.
Collapse
|
38
|
Renin inhibition improves the survival of mesenchymal stromal cells in a mouse model of myocardial infarction. J Cardiovasc Transl Res 2014; 7:560-9. [PMID: 25030734 DOI: 10.1007/s12265-014-9575-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/02/2014] [Indexed: 12/12/2022]
Abstract
The aim of this study was to determine if renin inhibition is able to improve the survival of transplanted stem cells in a mouse model of myocardial infarction. Myocardial infarction was induced in FVB/NJ inbred mice (n = 23). Bone marrow-derived mouse mesenchymal stromal cells (mMSCs, 3 × 10(5)) expressing the reporter gene firefly luciferase were delivered intramyocardially (n = 12) and monitored non-invasively by bioluminescence imaging. A group of these mice (n = 6) received aliskiren (15 mg/kg/day) via an osmotic pump implanted subcutaneously. The survival of mMSCs was significantly increased in those animals that received aliskiren leading to a significant improvement in systolic function after myocardial infarction. Histological analysis revealed a significant reduction in inflammation and collagen deposition in those mice that received aliskiren compared to controls. Renin inhibition of the ischemic myocardium is able to modulate the microenvironment improving the survival and efficacy of transplanted mMSCs in a mouse model of myocardial infarction.
Collapse
|
39
|
Isolation, characterization, differentiation, and application of adipose-derived stem cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 123:55-105. [PMID: 20091288 DOI: 10.1007/10_2009_24] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While bone marrow-derived mesenchymal stem cells are known and have been investigated for a long time, mesenchymal stem cells derived from the adipose tissue were identified as such by Zuk et al. in 2001. However, as subcutaneous fat tissue is a rich source which is much more easily accessible than bone marrow and thus can be reached by less invasive procedures, adipose-derived stem cells have moved into the research spotlight over the last 8 years.Isolation of stromal cell fractions involves centrifugation, digestion, and filtration, resulting in an adherent cell population containing mesenchymal stem cells; these can be subdivided by cell sorting and cultured under common conditions.They seem to have comparable properties to bone marrow-derived mesenchymal stem cells in their differentiation abilities as well as a favorable angiogenic and anti-inflammatory cytokine secretion profile and therefore have become widely used in tissue engineering and clinical regenerative medicine.
Collapse
|
40
|
Naumova AV, Balu N, Yarnykh VL, Reinecke H, Murry CE, Yuan C. Magnetic Resonance Imaging Tracking of Graft Survival in the Infarcted Heart: Iron Oxide Particles Versus Ferritin Overexpression Approach. J Cardiovasc Pharmacol Ther 2014; 19:358-367. [PMID: 24685664 DOI: 10.1177/1074248414525999] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The main objective of cell therapy is the regeneration of damaged tissues. To distinguish graft from host tissue by magnetic resonance imaging (MRI), a paramagnetic label must be introduced to cells prior to transplantation. The paramagnetic label can be either exogenous iron oxide nanoparticles or a genetic overexpression of ferritin, an endogenous iron storage protein. The purpose of this work was to compare the efficacy of these 2 methods for MRI evaluation of engrafted cell survival in the infarcted mouse heart. Mouse skeletal myoblasts were labeled either by cocultivation with iron oxide particles or by engineering them to overexpress ferritin. Along with live cell transplantation, 2 other groups of mice were injected with dead-labeled cells. Both particle-labeled and ferritin-tagged grafts were detected as areas of MRI signal hypointensity in the left ventricle of the mouse heart using T2*-weighted sequences, although the signal attenuation decreased with ferritin tagging. Importantly, live cells could not be distinguished from dead cells when labeled with iron oxide particles, whereas the ferritin tagging was detected only in live grafts, thereby allowing identification of viable grafts using MRI. Thus, iron oxide particles can provide information about initial cell injection success but cannot assess graft viability. On the other hand, genetically based cell tagging, such as ferritin overexpression, despite having lower signal intensity in comparison with iron oxide particles, is able to identify live transplanted cells.
Collapse
Affiliation(s)
- Anna V Naumova
- Department of Radiology, University of Washington, Seattle, WA, USA Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Niranjan Balu
- Department of Radiology, University of Washington, Seattle, WA, USA Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, WA, USA Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Hans Reinecke
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA Department of Pathology, University of Washington, Seattle, WA, USA
| | - Charles E Murry
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA Department of Pathology, University of Washington, Seattle, WA, USA Department of Bioengineering, University of Washington, Seattle, WA, USA Department of Medicine/Cardiology, University of Washington, Seattle, WA, USA
| | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA, USA Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
41
|
Mesenchymal stem cell delivery strategies to promote cardiac regeneration following ischemic injury. Biomaterials 2014; 35:3956-74. [PMID: 24560461 DOI: 10.1016/j.biomaterials.2014.01.075] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/30/2014] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is one of the leading causes of mortality worldwide and is associated with irreversible cardiomyocyte death and pathological remodeling of cardiac tissue. In the past 15 years, several animal models have been developed for pre-clinical testing to assess the potential of stem cells for functional tissue regeneration and the attenuation of left ventricular remodeling. The promising results obtained in terms of improved cardiac function, neo-angiogenesis and reduction in infarct size have motivated the initiation of clinical trials in humans. Despite the potential, the results of these studies have highlighted that the effective delivery and retention of viable cells within the heart remain significant challenges that have limited the therapeutic efficacy of cell-based therapies for treating the ischemic myocardium. In this review, we discuss key elements for designing clinically translatable cell-delivery approaches to promote myocardial regeneration. Key topics addressed include cell selection, with a focus on mesenchymal stem cells derived from the bone marrow (bMSCs) and adipose tissue (ASCs), including a discussion of their potential mechanisms of action. Natural and synthetic biomaterials that have been investigated as injectable cell delivery vehicles for cardiac applications are critically reviewed, including an analysis of the role of the biomaterials themselves in the therapeutic scheme.
Collapse
|
42
|
Amin S, Banijamali SE, Tafazoli-Shadpour M, Shokrgozar MA, Dehghan MM, Haghighipour N, Mahdian R, Bayati V, Abbasnia P. Comparing the effect of equiaxial cyclic mechanical stimulation on GATA4 expression in adipose-derived and bone marrow-derived mesenchymal stem cells. Cell Biol Int 2014; 38:219-227. [PMID: 24123331 DOI: 10.1002/cbin.10194] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/17/2013] [Indexed: 11/10/2022]
Abstract
Myocardium is prone to mechanical stimuli among which pulsatile blood flow exerts both radial and longitudinal strains on the heart. Recent studies have shown that mechanical stimulation can notably influence regeneration of cardiac muscle cells. GATA4 is a cardiac-specific transcription factor that plays an important role in late embryonic heart development. Our study aimed at investigating the effect of equiaxial cyclic strain on GATA4 expression in adipose-derived (ASCs) and bone marrow-derived (BMSCs) mesenchymal stem cells. For this reason, both ASCs and BMSCs were studied in four distinct groups of chemical, mechanical, mechano-chemical and negative control. According to this categorisation, the cells were exposed to cyclic mechanical loading and/or 5-azacytidine as the chemical factor. The level of GATA4 expression was then quantified using real-time PCR method on the first, fourth and seventh days. The results show that: (1) equiaxial cyclic stimulation of mesenchymal stem cells could promote GATA4 expression from the early days of induction and as it went on, its combination with chemical factor elevated expression; (2) cyclic strain could accelerate GATA4 expression compared to the chemical factor; (3) in this regard, these results indicate a higher capacity of ASCs than BMSCs to express GATA4.
Collapse
Affiliation(s)
- Susan Amin
- Cardiovascular Lab, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim EH, Heo CY. Current applications of adipose-derived stem cells and their future perspectives. World J Stem Cells 2014; 6:65-68. [PMID: 24567789 PMCID: PMC3927015 DOI: 10.4252/wjsc.v6.i1.65] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/25/2013] [Accepted: 12/13/2013] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells have a great potential to treat various diseases. For these cell-based therapies, adipose-derived stem cells (ADSCs) are one of the most promising stem cell types, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs and iPSCs have taken center stage due to their pluripotency. However, ESCs and iPSCs have limitations in ethical issues and in identification of characteristics, respectively. Unlike ESCs and iPSCs, ADSCs do not have such limitations and are not only easily obtained but also uniquely expandable. ADSCs can differentiate into adipocytes, osteoblasts, chondrocytes, myocytes and neurons under specific differentiation conditions, and these kinds of differentiation potential of ADSCs could be applied in regenerative medicine e.g., skin reconstruction, bone and cartilage formation, etc. In this review, the current status of ADSC isolation, differentiation and their therapeutic applications are discussed.
Collapse
|
44
|
|
45
|
Sousa BR, Parreira RC, Fonseca EA, Amaya MJ, Tonelli FMP, Lacerda SMSN, Lalwani P, Santos AK, Gomes KN, Ulrich H, Kihara AH, Resende RR. Human adult stem cells from diverse origins: An overview from multiparametric immunophenotyping to clinical applications. Cytometry A 2013; 85:43-77. [DOI: 10.1002/cyto.a.22402] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Bruna R. Sousa
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Ricardo C. Parreira
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Emerson A Fonseca
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Maria J. Amaya
- Department of Internal Medicine, Section of Digestive Diseases; Yale University School of Medicine; New Haven Connecticut
| | - Fernanda M. P. Tonelli
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Samyra M. S. N. Lacerda
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Pritesh Lalwani
- Faculdade de Ciências Farmacêuticas; Universidade Federal do Amazonas; Manaus AM Brazil
| | - Anderson K. Santos
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Katia N. Gomes
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Henning Ulrich
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo; São Paulo SP Brazil
| | - Alexandre H. Kihara
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição; Universidade Federal do ABC; Santo André SP Brazil
| | - Rodrigo R. Resende
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| |
Collapse
|
46
|
Emmert MY, Wolint P, Wickboldt N, Gemayel G, Weber B, Brokopp CE, Boni A, Falk V, Bosman A, Jaconi ME, Hoerstrup SP. Human stem cell-based three-dimensional microtissues for advanced cardiac cell therapies. Biomaterials 2013; 34:6339-54. [DOI: 10.1016/j.biomaterials.2013.04.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 04/17/2013] [Indexed: 11/15/2022]
|
47
|
Inferior ectopic bone formation of mesenchymal stromal cells from adipose tissue compared to bone marrow: rescue by chondrogenic pre-induction. Stem Cell Res 2013; 11:1393-406. [PMID: 24140198 DOI: 10.1016/j.scr.2013.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/22/2013] [Accepted: 07/29/2013] [Indexed: 01/08/2023] Open
Abstract
Human mesenchymal stromal cells derived from bone marrow (BMSC) and adipose tissue (ATSC) represent a valuable source of progenitor cells for cell therapy and tissue engineering. While ectopic bone formation is a standard activity of human BMSC on calcium phosphate ceramics, the bone formation capacity of human ATSC has so far been unclear. The objectives of this study were to assess the therapeutic potency of ATSC for bone formation in an ectopic mouse model and determine molecular differences by standardized comparison with BMSC. Although ATSC contained less CD146(+) cells, exhibited better proliferation and displayed similar alkaline phosphatase activity upon osteogenic in vitro differentiation, cells did not develop into bone-depositing osteoblasts on β-TCP after 8weeks in vivo. Additionally, ATSC expressed less BMP-2, BMP-4, VEGF, angiopoietin and IL-6 and more adiponectin mRNA, altogether suggesting insufficient osteochondral commitment and reduced proangiogenic activity. Chondrogenic pre-induction of ATSC/β-TCP constructs with TGF-β and BMP-6 initiated ectopic bone formation in >75% of samples. Both chondrogenic pre-induction and the osteoconductive microenvironment of β-TCP were necessary for ectopic bone formation by ATSC pointing towards a need for inductive conditions/biomaterials to make this more easily accessible cell source attractive for future applications in bone regeneration.
Collapse
|
48
|
Imaging the survival and utility of pre-differentiated allogeneic MSC in ischemic heart. Biochem Biophys Res Commun 2013; 438:382-7. [DOI: 10.1016/j.bbrc.2013.07.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 07/20/2013] [Indexed: 12/30/2022]
|
49
|
Rodrigues M, Blair H, Stockdale L, Griffith L, Wells A. Surface tethered epidermal growth factor protects proliferating and differentiating multipotential stromal cells from FasL-induced apoptosis. Stem Cells 2013; 31:104-16. [PMID: 22948863 DOI: 10.1002/stem.1215] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
Multipotential stromal cells or mesenchymal stem cells (MSCs) have been proposed as aids in regenerating bone and adipose tissues, as these cells form osteoblasts and adipocytes. A major obstacle to this use of MSC is the initial loss of cells postimplantation. This cell death in part is due to ubiquitous nonspecific inflammatory cytokines such as FasL generated in the implant site. Our group previously found that soluble epidermal growth factor (sEGF) promotes MSC expansion. Furthermore, tethering EGF (tEGF) onto a two-dimensional surface altered MSC responses, by restricting epidermal growth factor receptor (EGFR) to the cell surface, causing sustained activation of EGFR, and promoting survival from FasL-induced death. sEGF by causing internalization of EGFR does not support MSC survival. However, for tEGF to be useful in bone regeneration, it needs to allow for MSC differentiation into osteoblasts while also protecting emerging osteoblasts from apoptosis. tEGF did not block induced differentiation of MSCs into osteoblasts, or adipocytes, a common default MSC-differentiation pathway. MSC-derived preosteoblasts showed increased Fas levels and became more susceptible to FasL-induced death, which tEGF prevented. Differentiating adipocytes underwent a reduction in Fas expression and became resistant to FasL-induced death, with tEGF having no further survival effect. tEGF protected undifferentiated MSC from combined insults of FasL, serum deprivation, and physiologic hypoxia. Additionally, tEGF was dominant in the face of sEGF to protect MSC from FasL-induced death. Our results suggest that MSCs and differentiating osteoblasts need protective signals to survive in the inflammatory wound milieu and that tEGF can serve this function.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
50
|
Li H, Wang Y, Cao F. In vivo bioluminescence imaging monitoring of stem cells' participation in choroidal neovascularization. Ophthalmic Res 2013; 50:19-26. [PMID: 23711902 DOI: 10.1159/000348737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/16/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND Choroidal neovascularization (CNV) is common in various retinal diseases and is one of the most common causes of severe and irreversible visual loss. Our previous works suggested that bone marrow-derived cells (BMCs) participate in CNV, but little is known about stem cells' dynamic change when injected into mouse CNV. In vivo optical bioluminescence imaging (BLI) is a newly developing technology for dynamically observing biological behavior. Using this technology, we can observe the stem cells' dynamic behavior in CNV, in vivo. METHODS Two types of BMCs were used: bone marrow mononuclear cells (BMMNCs) and bone mesenchymal stem cells (MSCs). Cells were characterized using flow cytometry and BLI. C57BL/6J mice (n = 6/group) underwent CNV followed by caudal vein injection of 4 × 10⁶ BMMNCs, MSCs or phosphate buffer. Cell survival was measured: (1) in vivo using BLI during 2 weeks, and (2) in vitro using firefly luciferase (Fluc) assays and histology. RESULTS BMMNCs and MSCs expressed a similar Fluc reporter enzyme, as confirmed by luminometry. After injection into CNV mouse models, the two cell types showed dynamic behavior in CNV using BLI. The in vitro Fluc assay and histology results provided further proof for the above results. CONCLUSION This is the first study comparing the behavior of stem cells in CNV using BLI, in vivo. BMMNCs and MSCs could contribute to CNV and could serve as delivery vehicles for CNV treatments. Meanwhile, BLI could lay a foundation for CNV mechanism research in a prospective manner.
Collapse
Affiliation(s)
- H Li
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | |
Collapse
|