1
|
Jeong JC, Gelman AE, Chong AS. Update on the immunological mechanisms of primary graft dysfunction and chronic lung allograft dysfunction. Curr Opin Organ Transplant 2024; 29:412-419. [PMID: 39422603 PMCID: PMC11537820 DOI: 10.1097/mot.0000000000001175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
PURPOSE OF REVIEW Primary graft dysfunction (PGD) and chronic lung allograft dysfunction (CLAD) are the leading causes of graft loss in lung transplant recipients. The development of mouse lung transplant models has allowed for the genetic dissection of cellular and molecular pathways that prevent graft survival. This review provides an overview into recent mechanistic insights into PGD and CLAD. RECENT FINDINGS Mouse orthotopic lung transplant models and investigations of human lung transplant recipeints have revealed new molecular and cellular targets that promote PGD and CLAD. Donor and recipient-derived innate immune cells promote PGD and CLAD. PGD is driven by communication between classical monocytes and tissue-resident nonclassical monocytes activating alveolar macrophages to release chemokines that recruit neutrophils. Products of cell damage trigger neutrophil NET release, which together with NK cells, antibodies and complement, that further promote PGD. The development of CLAD involves circuits that activate B cells, CD8 + T cells, classical monocytes, and eosinophils. SUMMARY Effective targeted management of PGD and CLAD in lung transplant recipient to improve their long-term outcome remains a critical unmet need. Current mechanistic studies and therapeutic studies in mouse models and humans identify new possibilities for prevention and treatment.
Collapse
Affiliation(s)
- Jong Cheol Jeong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, Illinois, USA
| | - Andrew E. Gelman
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Anita S Chong
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Beber SA, Moshkelgosha S, White M, Zehong G, Cheung M, Hedley D, Levy L, Samuels J, Renaud-Picard B, Hwang D, Martinu T, Juvet S. The CD8 + T cell content of transbronchial biopsies from patients with a first episode of clinically stable grade A1 cellular rejection is associated with future chronic lung allograft dysfunction. J Heart Lung Transplant 2024; 43:1654-1664. [PMID: 38852935 DOI: 10.1016/j.healun.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND T cells drive acute cellular rejection (ACR) and its progression to chronic lung allograft dysfunction (CLAD) following lung transplantation. International Society for Heart and Lung Transplantation grade A1 ACR without associated allograft dysfunction is often untreated, yet some patients develop progressive graft dysfunction. T-cell composition of A1 ACR lesions may have prognostic value; therefore, protein-level and epigenetic techniques were applied to transbronchial biopsy tissue to determine whether differential T-cell infiltration in recipients experiencing a first episode of stable grade A1 ACR (StA1R) is associated with early CLAD. METHODS Sixty-two patients experiencing a first episode of StA1R were divided into those experiencing CLAD within 2 years (n = 13) and those remaining CLAD-free for 5 or more years (n = 49). Imaging mass cytometry (IMC) was used to profile the spectrum and distribution of intragraft T cell phenotypes on a subcohort (n = 16; 8 early-CLAD and 8 no early-CLAD). Immunofluorescence was used to quantify CD4+, CD8+, and FOXP3+ cells. Separately, CD3+ cells were fluorescently labeled, micro-dissected, and the degree of Treg-specific demethylated region methylation was determined. RESULTS PhenoGraph unsupervised clustering on IMC revealed 50 unique immune cell subpopulations. Methylation and immunofluorescence analyses demonstrated no significant differences in Tregs between early-CLAD and no early-CLAD groups. Immunofluorescence revealed that patients who developed CLAD within 2 years of lung transplantation showed greater CD8+ T cell infiltration compared to those who remained CLAD-free for 5 or more years. CONCLUSIONS In asymptomatic patients with a first episode of A1 rejection, greater CD8+ T cell content may be indicative of worse long-term outlook.
Collapse
Affiliation(s)
- Samuel A Beber
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Medicine, New York Medical College, Valhalla, New York
| | - Sajad Moshkelgosha
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Matthew White
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Guan Zehong
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - May Cheung
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David Hedley
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Liran Levy
- Department of Medicine, Sheba Medical Center, Tel-Aviv University, Tel Aviv, Israel
| | - Joel Samuels
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - David Hwang
- Department of Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Tereza Martinu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ajmera Transplant Center, Toronto Lung Transplant Program, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Juvet
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ajmera Transplant Center, Toronto Lung Transplant Program, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Baert L, Mahmudul HM, Stegall M, Joo H, Oh S. B Cell-mediated Immune Regulation and the Quest for Transplantation Tolerance. Transplantation 2024; 108:2021-2033. [PMID: 38389135 DOI: 10.1097/tp.0000000000004948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Pathophysiologic function of B cells in graft rejection has been well recognized in transplantation. B cells promote alloantigen-specific T-cell response and secrete antibodies that can cause antibody-mediated graft failures and rejections. Therefore, strategies targeting B cells, for example, B-cell depletion, have been used for the prevention of both acute and chronic rejections. Interestingly, however, recent mounting evidence indicates that subsets of B cells yet to be further identified can display potent immune regulatory functions, and they contribute to transplantation tolerance and operational tolerance in both experimental and clinical settings, respectively. In this review, we integrate currently available information on B-cell subsets, including T-cell Ig domain and mucin domain 1-positive transitional and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive memory B cells, displaying immune regulatory functions, with a focus on transplantation tolerance, by analyzing their mechanisms of action. In addition, we will discuss potential T-cell Ig domain and mucin domain 1-positive and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive B cell-based strategies for the enhancement of operational tolerance in transplantation patients.
Collapse
Affiliation(s)
- Laurie Baert
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | | | - Mark Stegall
- Department of Surgery, William J. von Liebig Transplant Center, Mayo Clinic, Rochester, MN
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| |
Collapse
|
4
|
Ye D, Liu Q, Zhang C, Dai E, Fan J, Wu L. Relationship between immune cells and the development of chronic lung allograft dysfunction. Int Immunopharmacol 2024; 137:112381. [PMID: 38865754 DOI: 10.1016/j.intimp.2024.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
A major cause of death for lung transplant recipients (LTRs) is the advent of chronic lung allograft dysfunction (CLAD), which has long plagued the long-term post-transplant prognosis and quality of survival of transplant patients. The intricacy of its pathophysiology and the irreversibility of its illness process present major obstacles to the clinical availability of medications. Immunotherapeutic medications are available, but they only aim to slow down the course of CLAD rather than having any therapeutic impact on the disease's development. For this reason, understanding the pathophysiology of CLAD is essential for both disease prevention and proven treatment. The immunological response in particular, in relation to chronic lung allograft dysfunction, has received a great deal of interest recently. Innate immune cells like natural killer cells, eosinophils, neutrophils, and mononuclear macrophages, as well as adaptive immunity cells like T and B cells, play crucial roles in this process through the release of chemokines and cytokines. The present review delves into changes and processes within the immune microenvironment, with a particular focus on the quantity, subtype, and characteristics of effector immune cells in the peripheral and transplanted lungs after lung transplantation. We incorporate and solidify the documented role of immune cells in the occurrence and development of CLAD with the advancements in recent years.
Collapse
Affiliation(s)
- Defeng Ye
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongliang Liu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Zhang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enci Dai
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liang Wu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Calabrese DR, Ekstrand CA, Yellamilli S, Singer JP, Hays SR, Leard LE, Shah RJ, Venado A, Kolaitis NA, Perez A, Combes A, Greenland JR. Macrophage and CD8 T cell discordance are associated with acute lung allograft dysfunction progression. J Heart Lung Transplant 2024; 43:1074-1086. [PMID: 38367738 PMCID: PMC11230518 DOI: 10.1016/j.healun.2024.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Acute lung allograft dysfunction (ALAD) is an imprecise syndrome denoting concern for the onset of chronic lung allograft dysfunction (CLAD). Mechanistic biomarkers are needed that stratify risk of ALAD progression to CLAD. We hypothesized that single cell investigation of bronchoalveolar lavage (BAL) cells at the time of ALAD would identify immune cells linked to progressive graft dysfunction. METHODS We prospectively collected BAL from consenting lung transplant recipients for single cell RNA sequencing. ALAD was defined by a ≥10% decrease in FEV1 not caused by infection or acute rejection and samples were matched to BAL from recipients with stable lung function. We examined cell compositional and transcriptional differences across control, ALAD with decline, and ALAD with recovery groups. We also assessed cell-cell communication. RESULTS BAL was assessed for 17 ALAD cases with subsequent decline (ALAD declined), 13 ALAD cases that resolved (ALAD recovered), and 15 cases with stable lung function. We observed broad differences in frequencies of the 26 unique cell populations across groups (p = 0.02). A CD8 T cell (p = 0.04) and a macrophage cluster (p = 0.01) best identified ALAD declined from the ALAD recovered and stable groups. This macrophage cluster was distinguished by an anti-inflammatory signature and the CD8 T cell cluster resembled a Tissue Resident Memory subset. Anti-inflammatory macrophages signaled to activated CD8 T cells via class I HLA, fibronectin, and galectin pathways (p < 0.05 for each). Recipients with discordance between these cells had a nearly 5-fold increased risk of severe graft dysfunction or death (HR 4.6, 95% CI 1.1-19.2, adjusted p = 0.03). We validated these key findings in 2 public lung transplant genomic datasets. CONCLUSIONS BAL anti-inflammatory macrophages may protect against CLAD by suppressing CD8 T cells. These populations merit functional and longitudinal assessment in additional cohorts.
Collapse
Affiliation(s)
- Daniel R Calabrese
- Department of Medicine, University of California, San Francisco, California; Medical Service, Veterans Affairs Health Care System, San Francisco, California.
| | | | - Shivaram Yellamilli
- Department of Pathology, University of California, San Francisco, California
| | - Jonathan P Singer
- Department of Medicine, University of California, San Francisco, California
| | - Steven R Hays
- Department of Medicine, University of California, San Francisco, California
| | - Lorriana E Leard
- Department of Medicine, University of California, San Francisco, California
| | - Rupal J Shah
- Department of Medicine, University of California, San Francisco, California
| | - Aida Venado
- Department of Medicine, University of California, San Francisco, California
| | | | - Alyssa Perez
- Department of Medicine, University of California, San Francisco, California
| | - Alexis Combes
- Department of Pathology, University of California, San Francisco, California
| | - John R Greenland
- Department of Medicine, University of California, San Francisco, California; Medical Service, Veterans Affairs Health Care System, San Francisco, California
| |
Collapse
|
6
|
de Silva TA, Apte S, Voisey J, Spann K, Tan M, Chambers D, O'Sullivan B. Immunological Landscapes in Lung Transplantation: Insights from T Cell Profiling in BAL and PBMC. Int J Mol Sci 2024; 25:2476. [PMID: 38473722 DOI: 10.3390/ijms25052476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Lung transplant recipients frequently encounter immune-related complications, including chronic lung allograft dysfunction (CLAD). Monitoring immune cells within the lung microenvironment is pivotal for optimizing post-transplant outcomes. This study examined the proportion of T cell subsets in paired bronchoalveolar lavage (BAL) and peripheral PBMC comparing healthy (n = 4) and lung transplantation patients (n = 6, no CLAD and n = 14 CLAD) using 14-color flow cytometry. CD4+ T cell proportions were reduced in CD3 cells in both PBMC and BAL, and positive correlations were discerned between T cell populations in peripheral PBMC and BAL, suggesting the prospect of employing less invasive PBMC sampling as a means of monitoring lung T cells. Furthermore, regulatory T cells (Tregs) were enriched in BAL when compared to peripheral PBMC for transplant recipients. A parallel positive correlation emerged between Treg proportions in BAL and peripheral PBMC, underscoring potential avenues for monitoring lung Tregs. Finally, the most promising biomarker was the Teff (CD8+Granzyme B+)-Treg ratio, which was higher in both the PBMC and BAL of transplant recipients compared to healthy individuals, and increased in the patients with CLAD compared to no CLAD and healthy patients. Conclusions: Distinct T cell profiles in BAL and peripheral PBMC underscore the significance of localized immune monitoring in lung transplantation. The Teff (CD8+granzyme B+)-Treg ratio, particularly within the context of CLAD, emerges as a promising blood and BAL biomarker reflective of inflammation and transplant-related complications. These findings emphasize the imperative need for personalized immune monitoring strategies that tailored to address the unique immunological milieu in post-transplant lungs.
Collapse
Affiliation(s)
- Tharushi Ayanthika de Silva
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Brisbane, QLD 4001, Australia
| | - Simon Apte
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Brisbane, QLD 4001, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4001, Australia
| | - Joanne Voisey
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Kirsten Spann
- Centre for Immunology and Infection Control, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Maxine Tan
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Brisbane, QLD 4001, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4001, Australia
| | - Daniel Chambers
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Brisbane, QLD 4001, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4001, Australia
| | - Brendan O'Sullivan
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Brisbane, QLD 4001, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4001, Australia
| |
Collapse
|
7
|
House EL, Kim SY, Chalupa D, Hernady E, Groves AM, Johnston CJ, McGraw MD. IL-17A neutralization fails to attenuate airway remodeling and potentiates a proinflammatory lung microenvironment in diacetyl-exposed rats. Am J Physiol Lung Cell Mol Physiol 2023; 325:L434-L446. [PMID: 37642674 PMCID: PMC10639012 DOI: 10.1152/ajplung.00082.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Bronchiolitis obliterans (BO) is a devastating lung disease that can develop following inhalation exposure to certain chemicals. Diacetyl (DA) is one chemical commonly associated with BO development when inhaled at occupational levels. Previous studies in rats have shown that repetitive DA vapor exposures increased lung CD4+CD25+ T cells and bronchoalveolar (BAL) interleukin-17A (IL-17A) concentrations concurrent with the development of airway remodeling. We hypothesized that IL-17A neutralization would attenuate the severity of airway remodeling after repetitive DA vapor exposures. Sprague-Dawley rats were exposed to 200 parts-per-million DA vapor or filtered air (RA) for 6 h/day × 5 days and monitored for 2 wk postexposure. Treatment with IL-17A neutralization (αIL-17A) or IgG (control) began immediately following exposures and continued twice weekly until study's end. Lungs were harvested for histology, flow cytometry, and BAL analyses. Survival, oxygen saturations, and percent weight change decreased significantly in DA-exposed versus RA-exposed rats, but did not differ significantly between DA + αIL-17A versus DA + IgG. Similarly, the number nor severity of airway lesions did not differ significantly between DA + αIL-17A versus DA + IgG rats despite the percentage of lung regulatory T cells increasing with decreased BAL IL-17A concentrations. Ashcroft scoring of the distal lung parenchyma suggested worse parenchymal remodeling in DA + αIL-17A versus DA + IgG rats with increased expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and nuclear factor-kappa B (NF-κB). Collectively, IL-17A neutralization in DA-exposed rats failed to attenuate airway remodeling with increased expression of pro-inflammatory cytokines TNF-α, IL-1β, and NF-κB.NEW & NOTEWORTHY Interleukin-17A (IL-17A) neutralization has shown benefit previously in preclinical models of transplant-associated bronchiolitis obliterans (BO), yet it remains unknown whether IL-17A neutralization has similar benefit for other forms of BO. Here, IL-17A neutralization fails to prevent severe airway remodeling in rats exposed repetitively to the flavoring chemical diacetyl, and instead, promotes a proinflammatory microenvironment with increased expression of TNF-α, IL-1β, and NF-κB within the lung.
Collapse
Affiliation(s)
- Emma L House
- Department of Pathology, University of Rochester Medical Center, Rochester, New York, United States
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, New York, United States
| | - So-Young Kim
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Eric Hernady
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York, United States
| | - Angela M Groves
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York, United States
- Department of Pediatrics, Division of Neonatology, University of Rochester Medical Center, Rochester, New York, United States
| | - Carl J Johnston
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York, United States
- Department of Pediatrics, Division of Neonatology, University of Rochester Medical Center, Rochester, New York, United States
| | - Matthew D McGraw
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
8
|
Khan MA, Lau CL, Krupnick AS. Monitoring regulatory T cells as a prognostic marker in lung transplantation. Front Immunol 2023; 14:1235889. [PMID: 37818354 PMCID: PMC10561299 DOI: 10.3389/fimmu.2023.1235889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Lung transplantation is the major surgical procedure, which restores normal lung functioning and provides years of life for patients suffering from major lung diseases. Lung transplant recipients are at high risk of primary graft dysfunction, and chronic lung allograft dysfunction (CLAD) in the form of bronchiolitis obliterative syndrome (BOS). Regulatory T cell (Treg) suppresses effector cells and clinical studies have demonstrated that Treg levels are altered in transplanted lung during BOS progression as compared to normal lung. Here, we discuss levels of Tregs/FOXP3 gene expression as a crucial prognostic biomarker of lung functions during CLAD progression in clinical lung transplant recipients. The review will also discuss Treg mediated immune tolerance, tissue repair, and therapeutic strategies for achieving in-vivo Treg expansion, which will be a potential therapeutic option to reduce inflammation-mediated graft injuries, taper the toxic side effects of ongoing immunosuppressants, and improve lung transplant survival rates.
Collapse
|
9
|
Bos S, Milross L, Filby AJ, Vos R, Fisher AJ. Immune processes in the pathogenesis of chronic lung allograft dysfunction: identifying the missing pieces of the puzzle. Eur Respir Rev 2022; 31:31/165/220060. [PMID: 35896274 DOI: 10.1183/16000617.0060-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022] Open
Abstract
Lung transplantation is the optimal treatment for selected patients with end-stage chronic lung diseases. However, chronic lung allograft dysfunction remains the leading obstacle to improved long-term outcomes. Traditionally, lung allograft rejection has been considered primarily as a manifestation of cellular immune responses. However, in reality, an array of complex, interacting and multifactorial mechanisms contribute to its emergence. Alloimmune-dependent mechanisms, including T-cell-mediated rejection and antibody-mediated rejection, as well as non-alloimmune injuries, have been implicated. Moreover, a role has emerged for autoimmune responses to lung self-antigens in the development of chronic graft injury. The aim of this review is to summarise the immune processes involved in the pathogenesis of chronic lung allograft dysfunction, with advanced insights into the role of innate immune pathways and crosstalk between innate and adaptive immunity, and to identify gaps in current knowledge.
Collapse
Affiliation(s)
- Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK.,Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Luke Milross
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Andrew J Filby
- Flow Cytometry Core and Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Robin Vos
- Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Dept of Respiratory Diseases, Leuven, Belgium
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK .,Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Silva TD, Voisey J, Hopkins P, Apte S, Chambers D, O'Sullivan B. Markers of rejection of a lung allograft: state of the art. Biomark Med 2022; 16:483-498. [PMID: 35315284 DOI: 10.2217/bmm-2021-1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic lung allograft dysfunction (CLAD) affects approximately 50% of all lung transplant recipients by 5 post-operative years and is the leading cause of death in lung transplant recipients. Early CLAD diagnosis or ideally prediction of CLAD is essential to enable early intervention before significant lung injury occurs. New technologies have emerged to facilitate biomarker discovery, including epigenetic modification and single-cell RNA sequencing. This review examines new and existing technologies for biomarker discovery and the current state of research on biomarkers for identifying lung transplant rejection.
Collapse
Affiliation(s)
- Tharushi de Silva
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia
| | - Joanne Voisey
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Peter Hopkins
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| | - Simon Apte
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| | - Daniel Chambers
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| | - Brendan O'Sullivan
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Bos S, Filby AJ, Vos R, Fisher AJ. Effector immune cells in Chronic Lung Allograft Dysfunction: a Systematic Review. Immunology 2022; 166:17-37. [PMID: 35137398 PMCID: PMC9426626 DOI: 10.1111/imm.13458] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic lung allograft dysfunction (CLAD) remains the major barrier to long‐term survival after lung transplantation and improved insight into its underlying immunological mechanisms is critical to better understand the disease and to identify treatment targets. We systematically searched the electronic databases of PubMed and EMBASE for original research publications, published between January 2000 and April 2021, to comprehensively assess current evidence on effector immune cells in lung tissue and bronchoalveolar lavage fluid from lung transplant recipients with CLAD. Literature search revealed 1351 articles, 76 of which met the criteria for inclusion in our analysis. Our results illustrate significant complexity in both innate and adaptive immune cell responses in CLAD, along with presence of numerous immune cell products, including cytokines, chemokines and proteases associated with tissue remodelling. A clear link between neutrophils and eosinophils and CLAD incidence has been seen, in which eosinophils more specifically predisposed to restrictive allograft syndrome. The presence of cytotoxic and T‐helper cells in CLAD pathogenesis is well‐documented, although it is challenging to draw conclusions about their role in tissue processes from predominantly bronchoalveolar lavage data. In restrictive allograft syndrome, a more prominent humoral immune involvement with increased B cells, immunoglobulins and complement deposition is seen. Our evaluation of published studies over the last 20 years summarizes the complex multifactorial immunopathology of CLAD onset and progression. It highlights the phenotype of several key effector immune cells involved in CLAD pathogenesis, as well as the paucity of single cell resolution spatial studies in lung tissue from patients with CLAD.
Collapse
Affiliation(s)
- Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom.,Institute of Transplantation, The Newcastle Upon Tyne Hospital NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Andrew J Filby
- Flow Cytometry Core and Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robin Vos
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Dept. of Respiratory Diseases, Leuven, Belgium
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom.,Institute of Transplantation, The Newcastle Upon Tyne Hospital NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
12
|
Amubieya O, Ramsey A, DerHovanessian A, Fishbein GA, Lynch JP, Belperio JA, Weigt SS. Chronic Lung Allograft Dysfunction: Evolving Concepts and Therapies. Semin Respir Crit Care Med 2021; 42:392-410. [PMID: 34030202 DOI: 10.1055/s-0041-1729175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary factor that limits long-term survival after lung transplantation is chronic lung allograft dysfunction (CLAD). CLAD also impairs quality of life and increases the costs of medical care. Our understanding of CLAD continues to evolve. Consensus definitions of CLAD and the major CLAD phenotypes were recently updated and clarified, but it remains to be seen whether the current definitions will lead to advances in management or impact care. Understanding the potential differences in pathogenesis for each CLAD phenotype may lead to novel therapeutic strategies, including precision medicine. Recognition of CLAD risk factors may lead to earlier interventions to mitigate risk, or to avoid risk factors all together, to prevent the development of CLAD. Unfortunately, currently available therapies for CLAD are usually not effective. However, novel therapeutics aimed at both prevention and treatment are currently under investigation. We provide an overview of the updates to CLAD-related terminology, clinical phenotypes and their diagnosis, natural history, pathogenesis, and potential strategies to treat and prevent CLAD.
Collapse
Affiliation(s)
- Olawale Amubieya
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Allison Ramsey
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ariss DerHovanessian
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gregory A Fishbein
- Department of Pathology, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John A Belperio
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - S Samuel Weigt
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
13
|
Xu W, Yang H, Liu H, Tang X, Xu H, Li H, Zhao S. Bronchoalveolar lavage T cell cytokine profiles and their association with lung function in children with Mycoplasma pneumoniae -associated bronchiolitis obliterans. Pediatr Pulmonol 2020; 55:2033-2040. [PMID: 32478954 DOI: 10.1002/ppul.24882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/17/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Mycoplasma pneumoniae (M. pneumoniae) infection may progress to bronchiolitis obliterans (BO), with an underlying chronic inflammatory process. The aim of this study was to investigate the cytokine profiles in pulmonary T-lymphocytes and their associations with lung function in patients with BO following M. pneumoniae infection. METHODS Bronchoalveolar lavage (BAL) samples were obtained from 10 controls and 18 children with M. pneumoniae-associated BO. We analyzed the BAL T cells for interferon (IFN)-γ, interleukin (IL)-4, IL-9, IL-17, CD25, and Foxp3 by intercellular flow cytometry. The associations with T-cell subpopulations and lung function parameters were determined. RESULTS In BAL fluid, significantly increased proportions of T-helper 1 (Th1), Th17, and Tc1 cells were found in M. pneumoniae-associated BO patients when compared with controls. The percentages of Th17 cells showed correlations with forced expiratory volume in 1 second % predicted value (r = -0585; P < .05) and forced expiratory flow at 25% to 75% (FEF25%-75% ) % predicted value (r = -.618; P < .01). Higher proportions of Tc1 (r = -.488; P < .05) and Tc17 (r = -.542; P < .05) were significantly correlated with a reduced FEF25%-75% % predicted value in M. pneumoniae-associated BO patients. CONCLUSIONS Our comprehensive cytokines analysis of BAL T cells revealed correlations of IL-17-producing and IFN-γ-producing T cells with lung function, suggesting that increased T-cell subpopulations may play a role in M. pneumoniae-associated BO progression.
Collapse
Affiliation(s)
- Weihan Xu
- Department 2 of Respiratory Medicine, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Haiming Yang
- Department 2 of Respiratory Medicine, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Hui Liu
- Department 2 of Respiratory Medicine, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaolei Tang
- Department 2 of Respiratory Medicine, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Hui Xu
- Department 2 of Respiratory Medicine, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Huimin Li
- Department 2 of Respiratory Medicine, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shunying Zhao
- Department 2 of Respiratory Medicine, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Yang S, Abuduwufuer A, Lv W, Bao F, Hu J. [Predictors for the Bronchiolitis Obliterans Syndrome in Lung Transplant Patient]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:496-502. [PMID: 32517455 PMCID: PMC7309540 DOI: 10.3779/j.issn.1009-3419.2020.101.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
肺移植是治疗终末期肺病的有效方法。目前,肺移植术后1年生存率已达到80%,由于闭塞性细支气管炎综合症(bronchiolitis obliterans syndrome, BOS)的发生,5年生存率维持在50%左右。BOS是一个纤维化的过程,最终导致不可逆的气道闭塞。缺血-再灌注损伤、感染、氧化应激以及急性排斥反应等多个因素参与了BOS的发生。研究证实BOS的早期诊断与预后良好相关。因此,寻找灵敏、特异的BOS预测标记物对于提高肺移植患者长期生存具有重要的科学和临床意义。本文就与BOS发生发展相关的免疫调节细胞、分泌性蛋白质、细胞膜蛋白等指标的变化在BOS早期诊断中的作用进行综述。
Collapse
Affiliation(s)
- Sijia Yang
- The First Affiliated Hospital, Collage of Medicine, Zhejiang University, Hangzhou 310003, China
| | | | - Wang Lv
- The First Affiliated Hospital, Collage of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Feichao Bao
- The First Affiliated Hospital, Collage of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian Hu
- The First Affiliated Hospital, Collage of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
15
|
Ius F, Salman J, Knoefel AK, Sommer W, Nakagiri T, Verboom M, Siemeni T, Poyanmehr R, Bobylev D, Kuehn C, Avsar M, Erdfelder C, Hallensleben M, Boethig D, Hecker H, Schwerk N, Mueller C, Welte T, Falk C, Preissler G, Haverich A, Tudorache I, Warnecke G. Increased frequency of CD4 + CD25 high CD127 low T cells early after lung transplant is associated with improved graft survival - a retrospective study. Transpl Int 2020; 33:503-516. [PMID: 31903646 DOI: 10.1111/tri.13568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/04/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022]
Abstract
In this retrospective study, we analyzed the presence of any association of three CD4+ CD25high regulatory T-cell subpopulations at 3 weeks after lung transplantation with the later incidence of chronic lung allograft dysfunction and graft survival. Among lung-transplanted patients between January 2009 and April 2018, only patients with sufficient T-cell measurements at 3 weeks after transplantation were included into the study. Putative regulatory T cells were defined as CD4+ CD25high T cells, detected in peripheral blood and further analyzed for CD127low , FoxP3+ , and CD152+ using fluorescence-activated cell sorting (FACS) analysis. Associations of regulatory T cells with chronic lung allograft dysfunction (CLAD) and graft survival were evaluated using Cox analysis. During the study period, 724 (71%) patients were included into the study. Freedom from chronic lung allograft dysfunction (CLAD) and graft survival amounted to 66% and 68% at 5 years. At the multivariable analysis, increasing frequencies of CD127low were associated with better freedom from CLAD (hazard ratio for each 1% increase of %CD127low , HR = 0.989, 95% CI = 0.981-0.996, P = 0.003) and better graft survival (HR = 0.991, 95% CI = 0.984-0.999, P = 0.026). A higher frequency of CD127low regulatory T cells in peripheral blood early after lung transplantation estimated a protective effect against chronic lung allograft dysfunction, mortality, and re-transplantation.
Collapse
Affiliation(s)
- Fabio Ius
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jawad Salman
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ann-Kathrin Knoefel
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Wiebke Sommer
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Center for Lung Research (DZL), Hannover, Germany
| | - Tomoyuki Nakagiri
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Murielle Verboom
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Thierry Siemeni
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Reza Poyanmehr
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Dmitry Bobylev
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Christian Kuehn
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Murat Avsar
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Caroline Erdfelder
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | | | - Dietmar Boethig
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Hartmut Hecker
- Institute for Biometry, Hannover Medical School, Hannover, Germany
| | - Nicolaus Schwerk
- Department of pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Carsten Mueller
- Department of pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- German Center for Lung Research (DZL), Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Gerhard Preissler
- German Center for Lung Research (DZL), Hannover, Germany.,Department of Surgery, Munich Lung Transplant Group, Ludwig-Maximilian's University, Munich, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Center for Lung Research (DZL), Hannover, Germany
| | - Igor Tudorache
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Gregor Warnecke
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
16
|
Guo Y, Wang Q, Li D, Onyema OO, Mei Z, Manafi A, Banerjee A, Mahgoub B, Stoler MH, Barker TH, Wilkes DS, Gelman AE, Kreisel D, Krupnick AS. Vendor-specific microbiome controls both acute and chronic murine lung allograft rejection by altering CD4 + Foxp3 + regulatory T cell levels. Am J Transplant 2019; 19:2705-2718. [PMID: 31278849 PMCID: PMC7919421 DOI: 10.1111/ajt.15523] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
Abstract
Despite standardized postoperative care, some lung transplant patients suffer multiple episodes of acute and chronic rejection while others avoid graft problems for reasons that are poorly understood. Using an established model of C57BL/10 to C57BL/6 minor antigen mismatched single lung transplantation, we now demonstrate that the recipient microbiota contributes to variability in the alloimmune response. Specifically, mice from the Envigo facility in Frederick, Maryland contain nearly double the number of CD4+ Foxp3+ regulatory T cells (Tregs ) than mice from the Jackson facility in Bar Harbor, Maine or the Envigo facility in Indianapolis, Indiana (18 vs 9 vs 7%). Lung graft recipients from the Maryland facility thus do not develop acute or chronic rejection. Treatment with broad-spectrum antibiotics decreases Tregs and increases both acute and chronic graft rejection in otherwise tolerant strains of mice. Constitutive depletion of regulatory T cells, using Foxp3-driven expression of diphtheria toxin receptor, leads to the development of chronic rejection and supports the role of Tregs in both acute and chronic alloimmunity. Taken together, our data demonstrate that the microbiota of certain individuals may contribute to tolerance through Treg -dependent mechanisms and challenges the practice of indiscriminate broad-spectrum antibiotic use in the perioperative period.
Collapse
Affiliation(s)
- Yizhan Guo
- Department of Surgery University of Virginia, Charlottesville, Virginia, United States,Carter Immunology Center University of Virginia, Charlottesville, Virginia, United States
| | - Qing Wang
- Department of Surgery University of Virginia, Charlottesville, Virginia, United States,Carter Immunology Center University of Virginia, Charlottesville, Virginia, United States
| | - Dongge Li
- Department of Surgery University of Virginia, Charlottesville, Virginia, United States,Carter Immunology Center University of Virginia, Charlottesville, Virginia, United States
| | - Oscar Okwudiri Onyema
- Department of Surgery University of Virginia, Charlottesville, Virginia, United States,Carter Immunology Center University of Virginia, Charlottesville, Virginia, United States
| | - Zhongcheng Mei
- Department of Surgery University of Virginia, Charlottesville, Virginia, United States,Carter Immunology Center University of Virginia, Charlottesville, Virginia, United States
| | - Amir Manafi
- Department of Surgery University of Virginia, Charlottesville, Virginia, United States,Carter Immunology Center University of Virginia, Charlottesville, Virginia, United States
| | - Anirban Banerjee
- Department of Surgery University of Virginia, Charlottesville, Virginia, United States,Carter Immunology Center University of Virginia, Charlottesville, Virginia, United States
| | - Bayan Mahgoub
- Department of Surgery University of Virginia, Charlottesville, Virginia, United States
| | - Mark H. Stoler
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States
| | - Thomas H. Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia United States
| | - David S. Wilkes
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Andrew E. Gelman
- Department of Surgery Washington University in St. Louis, Missouri, United States,Department of Pathology & Immunology, Washington University in St. Louis, Missouri, United States
| | - Daniel Kreisel
- Department of Surgery Washington University in St. Louis, Missouri, United States,Department of Pathology & Immunology, Washington University in St. Louis, Missouri, United States
| | - Alexander Sasha Krupnick
- Department of Surgery University of Virginia, Charlottesville, Virginia, United States,Carter Immunology Center University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
17
|
Gauthier JM, Harrison MS, Krupnick AS, Gelman AE, Kreisel D. The emerging role of regulatory T cells following lung transplantation. Immunol Rev 2019; 292:194-208. [PMID: 31536165 DOI: 10.1111/imr.12801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Regulatory T cells (Treg) have proven to be a powerful immunologic force in nearly every organ system and hold therapeutic potential for a wide range of diseases. Insights gained from non-transplant pathologies, such as infection, cancer, and autoimmunity, are now being translated to the field of solid organ transplantation, particularly for livers and kidneys. Recent insights from animal models of lung transplantation have established that Tregs play a vital role in suppressing rejection and facilitating tolerance of lung allografts, and such discoveries are being validated in human studies and preclinical trials. Given that long-term outcomes following lung transplantation remain profoundly limited by chronic rejection, Treg therapy holds the potential to significantly improve patient outcomes and should be aggressively investigated.
Collapse
Affiliation(s)
- Jason M Gauthier
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University, Saint Louis, MO, USA
| | - M Shea Harrison
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University, Saint Louis, MO, USA
| | - Alexander S Krupnick
- Division of Thoracic Surgery, Department of Surgery, University of Virginia, Charlottesville, VA, USA.,Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
| | - Andrew E Gelman
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University, Saint Louis, MO, USA.,Department of Pathology & Immunology, Washington University, Saint Louis, MO, USA
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University, Saint Louis, MO, USA.,Department of Pathology & Immunology, Washington University, Saint Louis, MO, USA
| |
Collapse
|
18
|
Ozeki N, Yamawaki-Ogata A, Narita Y, Mii S, Ushida K, Ito M, Hirano SI, Kurokawa R, Ohno K, Usui A. Hydrogen water alleviates obliterative airway disease in mice. Gen Thorac Cardiovasc Surg 2019; 68:158-163. [PMID: 31468277 DOI: 10.1007/s11748-019-01195-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Bronchiolitis obliterans syndrome arising from chronic airway inflammation is a leading cause of death following lung transplantation. Several studies have suggested that inhaled hydrogen can protect lung grafts from ischemia-reperfusion injury via anti-inflammatory and -oxidative mechanisms. We investigated whether molecular hydrogen-saturated water can preserve lung allograft function in a heterotopic tracheal allograft mouse model of obliterative airway disease METHODS: Obliterative airway disease was induced by heterotopically transplanting tracheal allografts from BALB/c donor mice into C57BL/6 recipient mice, which were subsequently administered hydrogen water (10 ppm) or tap water (control group) (n = 6 each) daily without any immunosuppressive treatment. Histological and immunohistochemical analyses were performed on days 7, 14, and 21. RESULTS Hydrogen water decreased airway occlusion on day 14. No significant histological differences were observed on days 7 or 21. The cluster of differentiation 4/cluster of differentiation 3 ratio in tracheal allografts on day 14 was higher in the hydrogen water group than in control mice. Enzyme-linked immunosorbent assay performed on day 7 revealed that hydrogen water reduced the level of the pro-inflammatory cytokine interleukin-6 and increased that of forkhead box P3 transcription factor, suggesting an enhancement of regulatory T cell activity. CONCLUSIONS Hydrogen water suppressed the development of mid-term obliterative airway disease in a mouse tracheal allograft model via anti-oxidant and -inflammatory mechanisms and through the activation of Tregs. Thus, hydrogen water is a potential treatment strategy for BOS that can improve the outcome of lung transplant patients.
Collapse
Affiliation(s)
- Naoki Ozeki
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Aika Yamawaki-Ogata
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuji Narita
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaori Ushida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Specimen Preparation Room for Optical Microscopic Examinations, Core Clinical Research Hospital Support Room, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiko Usui
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
19
|
Tissot A, Danger R, Claustre J, Magnan A, Brouard S. Early Identification of Chronic Lung Allograft Dysfunction: The Need of Biomarkers. Front Immunol 2019; 10:1681. [PMID: 31379869 PMCID: PMC6650588 DOI: 10.3389/fimmu.2019.01681] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/04/2019] [Indexed: 01/12/2023] Open
Abstract
A growing number of patients with end-stage lung disease have benefited from lung transplantation (LT). Improvements in organ procurement, surgical techniques and intensive care management have greatly increased short-term graft survival. However, long-term outcomes remain limited, mainly due to the onset of chronic lung allograft dysfunction (CLAD), whose diagnosis is based on permanent loss of lung function after the development of irreversible lung lesions. CLAD is associated with high mortality and morbidity, and its exact physiopathology is still only partially understood. Many researchers and clinicians have searched for CLAD biomarkers to improve diagnosis, to refine the phenotypes associated with differential prognosis and to identify early biological processes that lead to CLAD to enable an early intervention that could modify the inevitable degradation of respiratory function. Donor-specific antibodies are currently the only biomarkers used in routine clinical practice, and their significance for accurately predicting CLAD is still debated. We describe here significant studies that have highlighted potential candidates for reliable and non-invasive biomarkers of CLAD in the fields of imaging and functional monitoring, humoral immunity, cell-mediated immunity, allograft injury, airway remodeling and gene expression. Such biomarkers would improve CLAD prediction and allow differential LT management regarding CLAD risk.
Collapse
Affiliation(s)
- Adrien Tissot
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Service de Pneumologie, Institut du Thorax, CHU Nantes, Nantes, France
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Johanna Claustre
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Service Hospitalo-Universitaire de Pneumologie - Physiologie, CHU Grenoble Alpes, Grenoble, France
| | - Antoine Magnan
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Service de Pneumologie, Institut du Thorax, CHU Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,UMR S 1087 CNRS UMR 6291, Institut du Thorax, CHU Nantes, Université de Nantes, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
20
|
The prevention of tracheal graft occlusion using pioglitazone: A mouse tracheal transplant model study. Transpl Immunol 2019; 53:21-27. [DOI: 10.1016/j.trim.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 12/11/2022]
|
21
|
Abstract
INTRODUCTION Bronchiolitis obliterans (BO) is a chronic and irreversible obstructive lung disease leading to the obstruction and/or obliteration of the small airways. Three main BO entities are distinguished: post-infectious BO (PIBO); BO post lung transplantation; and BO after bone marrow transplantation (BMT) or hematopoietic stem cell transplantation (HSCT). All three entities are separate, however, there are similarities in histopathological characteristics and possibly in aspects of the development pathway. Areas covered: We review current evidence of bronchiolitis obliterans diagnosis and management in children. The diagnosis of BO is usually based on a combination of history, clinical and radiological findings, although lung biopsy and histopathology remain the gold standard approaches to confirm BO. Expert opinion: At present, we do not have a clear understanding of the mechanisms of the development of BO and lack strong evidence for treatment. Although most BO in children is post-infectious, most of the current evidence for treatment originates from studies analyzing BO in adult lung transplant and HSCT patients. BO management requires multidisciplinary approach and care in specialized centers.
Collapse
Affiliation(s)
- Ema Kavaliunaite
- a Respiratory Unit , Great Ormond Street Hospital for Children NHS Foundation Trust , London , UK
| | - Paul Aurora
- a Respiratory Unit , Great Ormond Street Hospital for Children NHS Foundation Trust , London , UK.,b Respiratory Critical Care and Anaesthesia Section , Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health , London , UK
| |
Collapse
|
22
|
Transplant arteriosclerosis in humanized mice reflects chronic lung allograft dysfunction and is controlled by regulatory T cells. J Thorac Cardiovasc Surg 2019; 157:2528-2537. [PMID: 30955963 DOI: 10.1016/j.jtcvs.2019.01.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Chronic lung allograft dysfunction (CLAD) is a severe complication of lung transplantation limiting long-term survival. We studied correlations between CLAD after clinical lung transplantation and leukocyte-mediated development of transplant arteriosclerosis (TA) in a humanized mouse model. The pericardiophrenic artery was procured from surplus tissue of donor lungs (n = 22) transplanted in our clinical program and was implanted into the abdominal aorta of immune-deficient mice. METHODS Allogeneic human peripheral blood mononuclear cells (PBMCs) had been procured 1 day after lung transplantation from the respective recipients with or without enriching for CD4+CD25high T cells were used. TA was assessed in mice 28 days later by histology. The respective clinical lung recipients were later divided into 2 groups. Eight patients (36.3%) had developed CLAD 23 ± 5 months after lung transplantation, whereas the remaining 14 (63.6%) did not develop CLAD within 25 ± 5 months. RESULTS In the PBMC CLAD+ group of mouse experiments, TA was significantly more severe than in the PBMC CLAD- group (39.9% ± 13% vs 14.9% ± 4% intimal thickening; P = .0081). Then, intimal thickening was significantly inhibited in the PBMC+ regulatory T cells CLAD+ group compared with the PBMC CLAD+ group (0.4% ± 4% vs 39.9% ± 13%; P = .003). In the experiments using PBMCs from lung recipients without CLAD, enriching regulatory T cells also suppressed the development of TA (0.9% ± 3% PBMC CLAD- vs 14.9% ± 4% PBMC+ regulatory T cells CLAD-; P = .001). CONCLUSIONS Lung transplant recipients who later develop CLAD have peripheral leukocytes already at the time of transplant that transfer proinflammatory properties leading to TA in a humanized mouse model. TA remains sensitive to inhibition by autologous regulatory T cells, suggesting a cell therapy-based approach for the prevention of CLAD after lung transplantation.
Collapse
|
23
|
Barabadi M, Shahbaz SK, Foroughi F, Hosseinzadeh M, Nafar M, Yekaninejad MS, Amirzargar A. High Expression of FOXP3 mRNA in Blood and Urine as a Predictive Marker in Kidney Transplantation. Prog Transplant 2018; 28:134-141. [PMID: 29798728 DOI: 10.1177/1526924818765812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Diagnosis of allograft dysfunction by noninvasive biomarker tests is preferable to invasive allograft biopsies and has been extensively considered in recent years. This study aims to evaluate blood and urinary forkhead box P3 (FOXP3) messenger RNA (mRNA) expression in renal transplant recipients in an attempt to determine whether differential diagnosis of graft dysfunction is feasible using mRNA profiles. METHODS We analyzed FOXP3 mRNA expression in paired urinary and peripheral blood mononuclear cell (PBMC) samples. A total of 91 kidney transplant recipients enrolled in this study that were classified into 3 groups: biopsy-proven acute rejection (AR; n = 27), chronic allograft nephropathy (n = 19), and well-functioning graft (n = 45). The FOXP3 mRNA expression was quantified by TaqMan probe real-time polymerase chain reaction. RESULTS Acute rejection patients had a higher expression level of transcription factor FOXP3 compared to the chronic nephropathy and control groups. Analysis of receiver operating characteristic curves showed that rejection could be diagnosed with 100% sensitivity and 96% specificity in urine, and 92% sensitivity and 86% specificity in PBMC samples using the optimal FOXP3 mRNA cutoff value. We subdivided the AR group into progressive and nonprogressive patients, which showed a significant difference in FOXP3 mRNA expression. This result confirmed the role of FOXP3 as a diagnostic marker in predicting transplantation outcomes. CONCLUSION Our results suggested that elevated expression of FOXP3 in blood and urine samples from kidney transplant recipients could be a useful noninvasive biomarker to diagnose graft dysfunction.
Collapse
Affiliation(s)
- Mehri Barabadi
- 1 Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Keshavarz Shahbaz
- 1 Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Foroughi
- 2 Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Morteza Hosseinzadeh
- 3 Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohsen Nafar
- 4 Department of Nephrology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- 5 Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Amirzargar
- 1 Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- 6 Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Durand M, Lacoste P, Danger R, Jacquemont L, Brosseau C, Durand E, Tilly G, Loy J, Foureau A, Royer PJ, Tissot A, Roux A, Reynaud-Gaubert M, Kessler R, Mussot S, Dromer C, Brugière O, Mornex JF, Guillemain R, Claustre J, Degauque N, Magnan A, Brouard S. High circulating CD4 +CD25 hiFOXP3 + T-cell sub-population early after lung transplantation is associated with development of bronchiolitis obliterans syndrome. J Heart Lung Transplant 2018; 37:770-781. [PMID: 29571601 DOI: 10.1016/j.healun.2018.01.1306] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/07/2017] [Accepted: 01/24/2018] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Chronic bronchiolitis obliterans syndrome (BOS) remains a major limitation for long-term survival after lung transplantation. The immune mechanisms involved and predictive biomarkers have yet to be identified. The purpose of this study was to determine whether peripheral blood T-lymphocyte profile could predict BOS in lung transplant recipients. METHODS An in-depth profiling of CD4+ and CD8+ T cells was prospectively performed on blood cells from stable (STA) and BOS patients with a longitudinal follow-up. Samples were analyzed at 1 and 6 months after transplantation, at the time of BOS diagnosis, and at an intermediate time-point at 6 to 12 months before BOS diagnosis. RESULTS Although no significant difference was found for T-cell compartments at BOS diagnosis or several months beforehand, we identified an increase in the CD4+CD25hiFoxP3+ T-cell sub-population in BOS patients at 1 and 6 months after transplantation (3.39 ± 0.40% vs 1.67 ± 0.22% in STA, p < 0.001). A CD4+CD25hiFoxP3+ T-cell threshold of 2.4% discriminated BOS and stable patients at 1 month post-transplantation. This was validated on a second set of patients at 6 months post-transplantation. Patients with a proportion of CD4+CD25hiFoxP3+ T cells up to 2.4% in the 6 months after transplantation had a 2-fold higher risk of developing BOS. CONCLUSIONS This study is the first to report an increased proportion of circulating CD4+CD25hiFoxP3+ T cells early post-transplantation in lung recipients who proceed to develop BOS within 3 years, which supports its use as a BOS predictive biomarker.
Collapse
Affiliation(s)
- Maxim Durand
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France
| | - Philippe Lacoste
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France; Institut du thorax, CHU de Nantes, Nantes, France
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Lola Jacquemont
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Carole Brosseau
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Eugénie Durand
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Gaelle Tilly
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Jennifer Loy
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France; Institut du thorax, CHU de Nantes, Nantes, France
| | - Aurore Foureau
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France; Institut du thorax, CHU de Nantes, Nantes, France
| | - Pierre-Joseph Royer
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France; Institut du thorax, CHU de Nantes, Nantes, France
| | - Adrien Tissot
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France; Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France; Institut du thorax, CHU de Nantes, Nantes, France
| | - Antoine Roux
- Hôpital Foch, Suresnes, Université de Versailles, Saint-Quentin-en-Yvelines, France
| | | | | | - Sacha Mussot
- Centre Chirurgical Marie Lannelongue, Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardiopulmonaire, Le Plessis Robinson, France
| | | | - Olivier Brugière
- Hôpital Bichat, Service de Pneumologie et Transplantation Pulmonaire, Paris, France
| | | | | | - Johanna Claustre
- Clinique Universitaire de Pneumologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Université Grenoble Alpes, Inserm U1055, Grenoble, France
| | - Nicolas Degauque
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Antoine Magnan
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France; Institut du thorax, CHU de Nantes, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France; Centre d'Investigation Clinique Biothérapie, CHU Nantes, Nantes, France.
| | | |
Collapse
|
25
|
Danger R, Royer PJ, Reboulleau D, Durand E, Loy J, Tissot A, Lacoste P, Roux A, Reynaud-Gaubert M, Gomez C, Kessler R, Mussot S, Dromer C, Brugière O, Mornex JF, Guillemain R, Dahan M, Knoop C, Botturi K, Foureau A, Pison C, Koutsokera A, Nicod LP, Brouard S, Magnan A. Blood Gene Expression Predicts Bronchiolitis Obliterans Syndrome. Front Immunol 2018; 8:1841. [PMID: 29375549 PMCID: PMC5768645 DOI: 10.3389/fimmu.2017.01841] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/05/2017] [Indexed: 12/14/2022] Open
Abstract
Bronchiolitis obliterans syndrome (BOS), the main manifestation of chronic lung allograft dysfunction, leads to poor long-term survival after lung transplantation. Identifying predictors of BOS is essential to prevent the progression of dysfunction before irreversible damage occurs. By using a large set of 107 samples from lung recipients, we performed microarray gene expression profiling of whole blood to identify early biomarkers of BOS, including samples from 49 patients with stable function for at least 3 years, 32 samples collected at least 6 months before BOS diagnosis (prediction group), and 26 samples at or after BOS diagnosis (diagnosis group). An independent set from 25 lung recipients was used for validation by quantitative PCR (13 stables, 11 in the prediction group, and 8 in the diagnosis group). We identified 50 transcripts differentially expressed between stable and BOS recipients. Three genes, namely POU class 2 associating factor 1 (POU2AF1), T-cell leukemia/lymphoma protein 1A (TCL1A), and B cell lymphocyte kinase, were validated as predictive biomarkers of BOS more than 6 months before diagnosis, with areas under the curve of 0.83, 0.77, and 0.78 respectively. These genes allow stratification based on BOS risk (log-rank test p < 0.01) and are not associated with time posttransplantation. This is the first published large-scale gene expression analysis of blood after lung transplantation. The three-gene blood signature could provide clinicians with new tools to improve follow-up and adapt treatment of patients likely to develop BOS.
Collapse
Affiliation(s)
- Richard Danger
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Pierre-Joseph Royer
- UMR S 1087 CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, CHU Nantes, Nantes, France
| | - Damien Reboulleau
- UMR S 1087 CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, CHU Nantes, Nantes, France
| | - Eugénie Durand
- UMR S 1087 CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, CHU Nantes, Nantes, France
| | - Jennifer Loy
- UMR S 1087 CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, CHU Nantes, Nantes, France
| | - Adrien Tissot
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,UMR S 1087 CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, CHU Nantes, Nantes, France
| | - Philippe Lacoste
- UMR S 1087 CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, CHU Nantes, Nantes, France
| | - Antoine Roux
- Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Department, Foch Hospital, Suresnes, France.,Universite Versailles Saint-Quentin-en-Yvelines, UPRES EA220, Suresnes, France
| | - Martine Reynaud-Gaubert
- Service de Pneumologie et Transplantation Pulmonaire, CHU Nord de Marseille, Aix-Marseille Université, Marseille, France
| | - Carine Gomez
- Service de Pneumologie et Transplantation Pulmonaire, CHU Nord de Marseille, Aix-Marseille Université, Marseille, France
| | - Romain Kessler
- Groupe de Transplantation Pulmonaire des Hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - Sacha Mussot
- Hôpital Marie Lannelongue, Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardiopulmonaire, Le Plessis Robinson, France
| | | | - Olivier Brugière
- Hôpital Bichat, Service de Pneumologie et Transplantation Pulmonaire, Paris, France
| | | | | | | | | | - Karine Botturi
- UMR S 1087 CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, CHU Nantes, Nantes, France
| | - Aurore Foureau
- UMR S 1087 CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, CHU Nantes, Nantes, France
| | - Christophe Pison
- Clinique Universitaire Pneumologie, Pôle Thorax et Vaisseaux, CHU de Grenoble, Université de Grenoble, INSERM U1055, Grenoble, France
| | - Angela Koutsokera
- Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Laurent P Nicod
- Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Antoine Magnan
- UMR S 1087 CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, CHU Nantes, Nantes, France
| | | |
Collapse
|
26
|
Gelman AE, Fisher AJ, Huang HJ, Baz MA, Shaver CM, Egan TM, Mulligan MS. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part III: Mechanisms: A 2016 Consensus Group Statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2017; 36:1114-1120. [PMID: 28818404 DOI: 10.1016/j.healun.2017.07.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/16/2017] [Indexed: 01/17/2023] Open
Affiliation(s)
- Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Andrew J Fisher
- Institute of Transplantation, Freeman Hospital and Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Howard J Huang
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Maher A Baz
- Departments of Medicine and Surgery, University of Kentucky, Lexington, Kentucky, USA
| | - Ciara M Shaver
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Thomas M Egan
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Micheal S Mulligan
- Department of Surgery, Division of Cardiothoracic Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
27
|
Analysis of long term CD4+CD25highCD127- T-reg cells kinetics in peripheral blood of lung transplant recipients. BMC Pulm Med 2017; 17:102. [PMID: 28720146 PMCID: PMC5516333 DOI: 10.1186/s12890-017-0446-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/14/2017] [Indexed: 12/26/2022] Open
Abstract
Background The role of CD4+CD25highCD127− T-reg cells in solid-organ Transplant (Tx) acceptance has been extensively studied. In previous studies on kidney and liver recipients, peripheral T-reg cell counts were associated to graft survival, while in lung Tx, there is limited evidence for similar findings. This study aims to analyze long term peripheral kinetics of T-reg-cells in a cohort of lung recipients and tests its association to several clinical variables. Methods From jan 2009 to dec 2014, 137 lung Tx recipients were submitted to an immunological follow up (median: 105.9 months (6.7–310.5)). Immunological follow up consisted of a complete blood peripheral immuno-phenotype, inclusive of CD4+CD25highCD127− T and FOXP3+ cells. We tested the association between T-reg and relevant variables by linear OR regression models for repeated measures, adjusting for time from Tx. Also, by ordered logistic models for panel data, the association between Chronic Lung Allograft Dysfuncton (CLAD) onset/progression and T-reg counts in the previous 3 months was tested. Results Among all variables analyzed at multivariate analysis: Bronchiolitis Obliterans Syndrome (OR −6.51, p < 0.001), Restrictive Allograft Syndrome (OR −5.19, p = 0.04) and Extracorporeal photopheresis (OR −5.65, p < 0.001) were significantly associated to T-reg cell. T-reg cell counts progressively decreased according to the severity of CLAD. Furthermore, patients with higher mean T-reg counts in a trimester had a significantly lower risk (OR 0.97, p = 0.012) of presenting CLAD or progressing in the graft dysfunction in the following trimester. Conclusions Our present data confirm animal observations on the possible role of T-reg in the evolution of CLAD.
Collapse
|
28
|
Salman J, Ius F, Knoefel AK, Sommer W, Siemeni T, Kuehn C, Tudorache I, Avsar M, Nakagiri T, Preissler G, Hatz R, Greer M, Welte T, Haverich A, Warnecke G. Association of Higher CD4 + CD25 high CD127 low , FoxP3 + , and IL-2 + T Cell Frequencies Early After Lung Transplantation With Less Chronic Lung Allograft Dysfunction at Two Years. Am J Transplant 2017; 17:1637-1648. [PMID: 27931084 DOI: 10.1111/ajt.14148] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/13/2016] [Accepted: 11/25/2016] [Indexed: 01/25/2023]
Abstract
Regulatory T cells (Treg) can regulate alloantigens and may counteract chronic lung allograft dysfunction (CLAD) in lung transplantation. We analyzed Treg in peripheral blood prospectively and correlated percentages of subpopulations with the incidence of CLAD at 2 years. Among lung-transplanted patients between January 2009 and July 2011, only patients with sufficient Treg measurements were included into the study. Tregs were measured immediately before lung transplantation, at 3 weeks and 3, 6, 12, and 24 months after transplantation and were defined as CD4+ CD25high T cells and further analyzed for CTLA4, CD127, FoxP3, and IL-2 expressions. Between January 2009 and July 2011, 264 patients were transplanted at our institution. Among the 138 (52%) patients included into the study, 31 (22%) developed CLAD within 2 years after transplantation. As soon as 3 weeks after lung transplantation, a statistically significant positive association was detected between Treg frequencies and later absence of CLAD. At the multivariate analysis, increasing frequencies of CD4+ CD25high CD127low , CD4+ CD25high FoxP3+ and CD4+ CD25high IL-2+ T cells at 3 weeks after lung transplantation emerged as protective factors against development of CLAD at 2 years. In conclusion, higher frequencies of specific Treg subpopulations early after lung transplantation are protective against CLAD development.
Collapse
Affiliation(s)
- J Salman
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - F Ius
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - A-K Knoefel
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - W Sommer
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - T Siemeni
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - C Kuehn
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - I Tudorache
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - M Avsar
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - T Nakagiri
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - G Preissler
- Department of Surgery, Munich Lung Transplant Group, Ludwig-Maximilian's University, Munich, Germany
| | - R Hatz
- Department of Surgery, Munich Lung Transplant Group, Ludwig-Maximilian's University, Munich, Germany
| | - M Greer
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - T Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - A Haverich
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - G Warnecke
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
29
|
Hsiao HM, Scozzi D, Gauthier JM, Kreisel D. Mechanisms of graft rejection after lung transplantation. Curr Opin Organ Transplant 2017; 22:29-35. [PMID: 27861263 PMCID: PMC5443682 DOI: 10.1097/mot.0000000000000371] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW To date, outcomes after lung transplantation are far worse than after transplantation of other solid organs. New insights into mechanisms that contribute to graft rejection and tolerance after lung transplantation remain of great interest. This review examines the recent literature on the role of innate and adaptive immunity in shaping the fate of lung grafts. RECENT FINDINGS Innate and adaptive immune cells orchestrate allograft rejection after transplantation. Innate immune cells such as neutrophils are recruited to the lung graft early after reperfusion and subsequently promote allograft rejection. Although it is widely recognized that CD4 T lymphocytes in concert with CD8 T cells promote graft rejection, regulatory Foxp3 CD4 T, central memory CD8 T cells, and natural killer cells can facilitate tolerance. SUMMARY This review highlights interactions between innate and adaptive immune pathways and how they contribute to lung allograft rejection. These findings lay a foundation for the design of new therapeutic strategies that target both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Hsi-Min Hsiao
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Davide Scozzi
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Jason M. Gauthier
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
30
|
Siemeni T, Knöfel AK, Madrahimov N, Sommer W, Avsar M, Salman J, Ius F, Frank N, Büchler G, Jonigk D, Jansson K, Maus U, Tudorache I, Falk CS, Haverich A, Warnecke G. In Vivo Development of Transplant Arteriosclerosis in Humanized Mice Reflects Alloantigen Recognition and Peripheral Treg Phenotype of Lung Transplant Recipients. Am J Transplant 2016; 16:3150-3162. [PMID: 27273729 DOI: 10.1111/ajt.13905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 01/25/2023]
Abstract
Experimentally, regulatory T cells inhibit rejection. In clinical transplantations, however, it is not known whether T cell regulation is the cause for, or an epiphenomenon of, long-term allograft survival. Here, we study naïve and alloantigen-primed T cell responses of clinical lung transplant recipients in humanized mice. The pericardiophrenic artery procured from human lung grafts was implanted into the aorta of NODrag-/- /IL-2rγc-/- mice reconstituted with peripheral blood mononuclear cells (PBMCs) from the respective lung recipient. Naïve or primed allogeneic PBMCs procured 21 days post-lung transplantation with or without enriching for CD4+ CD25high T cells were used. Transplant arteriosclerosis was assessed 28 days later by histology. Mice reconstituted with alloantigen-primed PBMCs showed significantly more severe transplant arteriosclerosis than did mice with naïve PBMCs (p = 0.005). Transplant arteriosclerosis was equally suppressed by enriching for autologous naïve (p = 0.012) or alloantigen-primed regulatory T cells (Tregs) (p = 0.009). Alloantigen priming in clinical lung recipients can be adoptively transferred into a humanized mouse model. Transplant arteriosclerosis elicited by naïve or alloantigen-primed PBMCs can be similarly controlled by potent autologous Tregs. Cellular therapy with expanded autologous Tregs in lung transplantation might be a promising future strategy.
Collapse
Affiliation(s)
- T Siemeni
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - A-K Knöfel
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Centre for Lung Research, BREATH Site, Hannover Medical School, Hannover, Germany
| | - N Madrahimov
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - W Sommer
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Centre for Lung Research, BREATH Site, Hannover Medical School, Hannover, Germany
| | - M Avsar
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - J Salman
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - F Ius
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - N Frank
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - G Büchler
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - D Jonigk
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - K Jansson
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - U Maus
- German Centre for Lung Research, BREATH Site, Hannover Medical School, Hannover, Germany.,Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - I Tudorache
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - C S Falk
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School, Hannover, Germany
| | - A Haverich
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.,German Centre for Lung Research, BREATH Site, Hannover Medical School, Hannover, Germany
| | - G Warnecke
- Division of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany. .,German Centre for Lung Research, BREATH Site, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
31
|
Baroja-Mazo A, Revilla-Nuin B, Parrilla P, Martínez-Alarcón L, Ramírez P, Pons JA. Tolerance in liver transplantation: Biomarkers and clinical relevance. World J Gastroenterol 2016; 22:7676-91. [PMID: 27678350 PMCID: PMC5016367 DOI: 10.3748/wjg.v22.i34.7676] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/04/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023] Open
Abstract
Transplantation is the optimal treatment for end-stage organ failure, and modern immunosuppression has allowed important progress in short-term outcomes. However, immunosuppression poorly influences chronic rejection and elicits chronic toxicity in current clinical practice. Thus, a major goal in transplantation is to understand and induce tolerance. It is well established that human regulatory T cells expressing the transcription factor FoxP3 play important roles in the maintenance of immunological self-tolerance and immune homeostasis. The major regulatory T cell subsets and mechanisms of expansion that are critical for induction and long-term maintenance of graft tolerance and survival are being actively investigated. Likewise, other immune cells, such as dendritic cells, monocyte/macrophages or natural killer cells, have been described as part of the process known as "operational tolerance". However, translation of these results towards clinical practice needs solid tools to identify accurately and reliably patients who are going to be tolerant. In this way, a plethora of genetic and cellular biomarkers is raising and being validated worldwide in large multi-center clinical trials. Few of the studies performed so far have provided a detailed analysis of the impact of immunosuppression withdrawal on pre-existing complications derived from the long-term administration of immunosuppressive drugs and the side effects associated with them. The future of liver transplantation is aimed to develop new therapies which increase the actual low tolerant vs non-tolerant recipients ratio.
Collapse
|
32
|
|
33
|
Verleden SE, Sacreas A, Vos R, Vanaudenaerde BM, Verleden GM. Advances in Understanding Bronchiolitis Obliterans After Lung Transplantation. Chest 2016; 150:219-25. [PMID: 27212132 DOI: 10.1016/j.chest.2016.04.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 03/29/2016] [Accepted: 04/13/2016] [Indexed: 11/30/2022] Open
Abstract
Bronchiolitis obliterans syndrome (BOS) remains a major complication after lung transplantation, causing significant morbidity and mortality in a majority of recipients. BOS is believed to be the clinical correlate of chronic allograft dysfunction, and is defined as an obstructive pulmonary function defect in the absence of other identifiable causes, mostly not amenable to treatment. Recently, it has become clear that BOS is not the only form of chronic allograft dysfunction and that other clinical phenotypes exist; however, we focus exclusively on BOS. Radiologic findings typically demonstrate air trapping, mosaic attenuation, and hyperinflation. Pathologic examination reveals obliterative bronchiolitis lesions and a pure obliteration of the small airways (< 2 mm), with a relatively normal surrounding parenchyma. In this review, we highlight recent advances in diagnosis, pathologic examination, and risk factors, such as microbes, viruses, and antibodies. Although the pathophysiological mechanisms remain largely unknown, we review the role of the airway epithelium and inflammation and the various experimental animal models. We also clarify the clinical and therapeutic implications of these findings. Although significant progress has been made, the exact pathophysiological mechanisms and adequate therapy for posttransplantation BOS remain unknown, highlighting the need for further research to improve long-term posttransplantation BOS-free and overall survival.
Collapse
Affiliation(s)
- Stijn E Verleden
- Department of Clinical and Experimental Medicine, Lung Transplant Unit, KU Leuven, Leuven, Belgium
| | - Annelore Sacreas
- Department of Clinical and Experimental Medicine, Lung Transplant Unit, KU Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Clinical and Experimental Medicine, Lung Transplant Unit, KU Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Department of Clinical and Experimental Medicine, Lung Transplant Unit, KU Leuven, Leuven, Belgium
| | - Geert M Verleden
- Department of Clinical and Experimental Medicine, Lung Transplant Unit, KU Leuven, Leuven, Belgium.
| |
Collapse
|
34
|
Bamoulid J, Courivaud C, Crepin T, Carron C, Gaiffe E, Roubiou C, Laheurte C, Moulin B, Frimat L, Rieu P, Mousson C, Durrbach A, Heng AE, Rebibou JM, Saas P, Ducloux D. Pretransplant thymic function predicts acute rejection in antithymocyte globulin-treated renal transplant recipients. Kidney Int 2016; 89:1136-1143. [PMID: 27083287 DOI: 10.1016/j.kint.2015.12.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/26/2015] [Accepted: 12/17/2015] [Indexed: 12/25/2022]
Abstract
Lack of clear identification of patients at high risk of acute rejection hampers the ability to individualize immunosuppressive therapy. Here we studied whether thymic function may predict acute rejection in antithymocyte globulin (ATG)-treated renal transplant recipients in 482 patients prospectively studied during the first year post-transplant of which 86 patients experienced acute rejection. Only CD45RA(+)CD31(+)CD4(+) T cell (recent thymic emigrant [RTE]) frequency (RTE%) was marginally associated with acute rejection in the whole population. This T-cell subset accounts for 26% of CD4(+) T cells. Pretransplant RTE% was significantly associated with acute rejection in ATG-treated patients (hazard ratio, 1.04; 95% confidence interval, 1.01-1.08) for each increased percent in RTE/CD4(+) T cells), but not in anti-CD25 monoclonal (αCD25 mAb)-treated patients. Acute rejection was significantly more frequent in ATG-treated patients with high pretransplant RTE% (31.2% vs. 16.4%) or absolute number of RTE/mm(3) (31.7 vs. 16.1). This difference was not found in αCD25 monclonal antibody-treated patients. Highest values of both RTE% (>31%, hazard ratio, 2.50; 95% confidence interval, 1.09-5.74) and RTE/mm(3) (>200/mm(3), hazard ratio, 3.71; 95% confidence interval, 1.59-8.70) were predictive of acute rejection in ATG-treated patients but not in patients having received αCD25 monoclonal antibody). Results were confirmed in a retrospective cohort using T-cell receptor excision circle levels as a marker of thymic function. Thus, pretransplant thymic function predicts acute rejection in ATG-treated patients.
Collapse
Affiliation(s)
- Jamal Bamoulid
- INSERM, UMR1098, Federation hospitalo-universitaire INCREASE, Besançon, France; Faculté de Médecine et de Pharmacie, University Bourgogne Franche-Comté, Besançon, France; Structure Fédérative de Recherche, Besançon, France; Department of Nephrology, Dialysis, and Renal Transplantation, CHU Besançon, Besançon, France
| | - Cécile Courivaud
- INSERM, UMR1098, Federation hospitalo-universitaire INCREASE, Besançon, France; Faculté de Médecine et de Pharmacie, University Bourgogne Franche-Comté, Besançon, France; Structure Fédérative de Recherche, Besançon, France; Department of Nephrology, Dialysis, and Renal Transplantation, CHU Besançon, Besançon, France
| | - Thomas Crepin
- INSERM, UMR1098, Federation hospitalo-universitaire INCREASE, Besançon, France; Faculté de Médecine et de Pharmacie, University Bourgogne Franche-Comté, Besançon, France; Structure Fédérative de Recherche, Besançon, France; Department of Nephrology, Dialysis, and Renal Transplantation, CHU Besançon, Besançon, France
| | - Clémence Carron
- INSERM, UMR1098, Federation hospitalo-universitaire INCREASE, Besançon, France; Faculté de Médecine et de Pharmacie, University Bourgogne Franche-Comté, Besançon, France; Structure Fédérative de Recherche, Besançon, France
| | - Emilie Gaiffe
- Department of Nephrology, Dialysis, and Renal Transplantation, CHU Besançon, Besançon, France; CHU Besançon, CIC Biothérapie, INSERM CIC1431, Besançon, France
| | - Caroline Roubiou
- Faculté de Médecine et de Pharmacie, University Bourgogne Franche-Comté, Besançon, France; Structure Fédérative de Recherche, Besançon, France; Department of Nephrology, Dialysis, and Renal Transplantation, CHU Besançon, Besançon, France
| | - Caroline Laheurte
- INSERM, UMR1098, Federation hospitalo-universitaire INCREASE, Besançon, France; EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, CIC 1431/UMR1098, Besançon, France
| | - Bruno Moulin
- Department of Nephrology, Dialysis, and Renal Transplantation, CHU Strasbourg, Strasbourg, France
| | - Luc Frimat
- Department of Nephrology, Dialysis, and Renal Transplantation, CHU Nancy, Nancy, France
| | - Philippe Rieu
- Department of Nephrology, Dialysis, and Renal Transplantation, CHU Reims, Reims, France
| | - Christiane Mousson
- Department of Nephrology, Dialysis, and Renal Transplantation, CHU Dijon, Dijon, France
| | - Antoine Durrbach
- Department of Nephrology, Dialysis, and Renal Transplantation, CHU Kremlin-Bicêtre, Le Kremlin-Bicêtre, France
| | - Anne-Elisabeth Heng
- Department of Nephrology, Dialysis, and Renal Transplantation, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Jean-Michel Rebibou
- INSERM, UMR1098, Federation hospitalo-universitaire INCREASE, Besançon, France; Department of Nephrology, Dialysis, and Renal Transplantation, CHU Dijon, Dijon, France
| | - Philippe Saas
- INSERM, UMR1098, Federation hospitalo-universitaire INCREASE, Besançon, France; Faculté de Médecine et de Pharmacie, University Bourgogne Franche-Comté, Besançon, France; Structure Fédérative de Recherche, Besançon, France; CHU Besançon, CIC Biothérapie, INSERM CIC1431, Besançon, France; EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, CIC 1431/UMR1098, Besançon, France
| | - Didier Ducloux
- INSERM, UMR1098, Federation hospitalo-universitaire INCREASE, Besançon, France; Faculté de Médecine et de Pharmacie, University Bourgogne Franche-Comté, Besançon, France; Structure Fédérative de Recherche, Besançon, France; Department of Nephrology, Dialysis, and Renal Transplantation, CHU Besançon, Besançon, France; CHU Besançon, CIC Biothérapie, INSERM CIC1431, Besançon, France.
| |
Collapse
|
35
|
A call to arms: a critical need for interventions to limit pulmonary toxicity in the stem cell transplantation patient population. Curr Hematol Malig Rep 2015; 10:8-17. [PMID: 25662904 DOI: 10.1007/s11899-014-0244-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Noninfectious pulmonary toxicity after allogeneic hematopoietic stem cell transplantation (allo-HSCT) causes significant morbidity and mortality. Main presentations are idiopathic pneumonia syndrome (IPS) in the acute setting and bronchiolitis obliterans syndrome (BOS) and cryptogenic organizing pneumonia (COP) at later time point. While COP responds well to corticosteroids, IPS and BOS often are treatment refractory. IPS, in most cases, is rapidly fatal, whereas BOS progresses over time, resulting in chronic respiratory failure, impaired quality of life, and eventually, death. Standard second-line treatments are currently lacking, and current approaches, such as augmented T cell-directed immunosuppression, B cell depletion, TNF blockade, extracorporeal photopheresis, and tyroskine kinase inhibitor therapy, are unsatisfactory with responses in only a subset of patients. Better understanding of underlying pathophysiology hopefully results in the identification of future targets for preventive and therapeutic strategies along with an emphasis on currently underutilized rehabilitative and supportive measures.
Collapse
|
36
|
Jonigk D, Izykowski N, Rische J, Braubach P, Kühnel M, Warnecke G, Lippmann T, Kreipe H, Haverich A, Welte T, Gottlieb J, Laenger F. Molecular Profiling in Lung Biopsies of Human Pulmonary Allografts to Predict Chronic Lung Allograft Dysfunction. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3178-88. [PMID: 26476349 DOI: 10.1016/j.ajpath.2015.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/03/2015] [Accepted: 08/28/2015] [Indexed: 10/22/2022]
Abstract
Chronic lung allograft dysfunction (CLAD) is the main reason for poor long-term outcome of lung transplantation, with bronchiolitis obliterans (BO) representing the predominant pathological feature. BO is defined as a progressive fibrous obliteration of the small airways, thought to be triggered by a combination of nonimmune bronchial injury and alloimmune and autoimmune mechanisms. Because biopsy samples are too insensitive to reliably detect BO and a decline in lung function test results, which is clinically used to define CLAD, does not detect early stages, there is need for alternative biomarkers for early diagnosis. Herein, we analyzed the cellular composition and differential expression of 45 tissue remodeling-associated genes in transbronchial lung biopsy specimens from two cohorts with 18 patients each: patients who did not develop CLAD within 3 years after transplantation (48 biopsy specimens) and patients rapidly developing CLAD within the first 3 postoperative years (57 biopsy specimens). Integrating the mRNA expression levels of the five most significantly dysregulated genes from the transforming growth factor-β axis (BMP4, IL6, MMP1, SMAD1, and THBS1) into a score, patient groups could be confidently separated and the outcome predicted (P < 0.001). We conclude that overexpression of fibrosis-associated genes may be valuable as a tissue-based molecular biomarker to more accurately diagnose or predict the development of CLAD.
Collapse
Affiliation(s)
- Danny Jonigk
- Institute of Pathology, Hanover Medical School, Hanover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease, the Hanover Division of the German Center for Lung Research, Gießen, Germany.
| | - Nicole Izykowski
- Institute of Pathology, Hanover Medical School, Hanover, Germany
| | - Johanna Rische
- Institute of Pathology, Hanover Medical School, Hanover, Germany
| | - Peter Braubach
- Institute of Pathology, Hanover Medical School, Hanover, Germany
| | - Mark Kühnel
- Institute of Functional and Applied Anatomy, Hanover Medical School, Hanover, Germany
| | - Gregor Warnecke
- Biomedical Research in Endstage and Obstructive Lung Disease, the Hanover Division of the German Center for Lung Research, Gießen, Germany; Department of Thoracic Surgery, Hanover Medical School, Hanover, Germany
| | - Torsten Lippmann
- Institute of Pathology, Hanover Medical School, Hanover, Germany
| | - Hans Kreipe
- Institute of Pathology, Hanover Medical School, Hanover, Germany
| | - Axel Haverich
- Biomedical Research in Endstage and Obstructive Lung Disease, the Hanover Division of the German Center for Lung Research, Gießen, Germany; Department of Thoracic Surgery, Hanover Medical School, Hanover, Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease, the Hanover Division of the German Center for Lung Research, Gießen, Germany; Department of Respiratory Medicine, Hanover Medical School, Hanover, Germany
| | - Jens Gottlieb
- Biomedical Research in Endstage and Obstructive Lung Disease, the Hanover Division of the German Center for Lung Research, Gießen, Germany; Department of Respiratory Medicine, Hanover Medical School, Hanover, Germany
| | - Florian Laenger
- Institute of Pathology, Hanover Medical School, Hanover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease, the Hanover Division of the German Center for Lung Research, Gießen, Germany
| |
Collapse
|
37
|
Allogeneic CD4+CD25high T cells regulate obliterative bronchiolitis of heterotopic bronchus allografts in both porcinized and humanized mouse models. Transplantation 2015; 99:482-91. [PMID: 25695787 DOI: 10.1097/tp.0000000000000632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Bronchiolitis obliterans syndrome is caused by a fibroproliferative process in lung allografts resulting in irreversible damage. In this study, we induced obliterative bronchiolitis and studied the contribution of regulatory T cells to its development in immune-deficient mice receiving heterotopic porcine bronchus transplants, and major histocompatibility complex-mismatched porcine peripheral blood mononuclear cell. Furthermore, we aimed to corroborate our findings in a humanized mouse model. METHODS Heterotopic bronchus transplantation was performed in 33 NOD.rag(−/−)γc(−/−) mice, using miniature pigs as tissue donors.The recipient mice then either received saline (negative control), unsorted MHC-mismatched PBMC (positive control), PBMC enriched with CD4(+)CD25(high) cells or PBMC depleted of CD4(+)CD25(high) cells for reconstitution. The results were validated in 28 NOD.rag(−/−)γc(−/−) mice undergoing heterotopic human bronchus transplantation and reconstitution with allogeneic human PBMC. RESULTS Histological lesions similar to those typical for obliterative bronchiolitis developed in vivo after reconstitution with allogeneic PBMC and were more severe in animals engrafted with PBMC depleted of CD4(+)CD25(high) cells. In contrast, the group reconstituted with PBMC enriched with CD4(+)CD25(high) cells showed well-preserved histology. The results of the humanized model confirmed those obtained in the porcinized model. CONCLUSIONS In conclusion, both porcinized and humanized mouse models of heterotopic subcutaneous bronchus transplantation imitate the in vivo development of bronchiolitis obliterans syndrome-like lesions and reveal its sensitivity to T-cell regulation.
Collapse
|
38
|
Hu H, Zhu X, Joshi S, Lu L, Xia CQ, Patel JM. Thioredoxin priming prolongs lung allograft survival by promoting immune tolerance. PLoS One 2015; 10:e0124705. [PMID: 25933390 PMCID: PMC4416780 DOI: 10.1371/journal.pone.0124705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/07/2015] [Indexed: 01/05/2023] Open
Abstract
Tolerance to allograft antigen is the major challenge and final goal of transplant medicine. Our previous study demonstrated that thioredoxin-1 (Trx) priming of donor lung significantly protected allogeneic lung graft. To determine whether Trx priming of donor lung inhibits allograft rejection, extends allograft survival and induces immune tolerance, orthotopic left lung transplantation was performed from Lewis to Sprague-Dawley rats without immunosuppression. Donor lungs were primed with Trx at 4°C for 4 hr prior to transplantation. After up to 37 days post-transplantation, allograft lung morphology, recipient T cell and humoral alloantigen-specific immune responses were examined. We found that Trx-primed lungs exhibited much reduced acute rejection and associated lung injuries resulting in loss of graft functional area at 5-37 days post-transplant in contrast to the control groups. CD4+ T cells from the recipients with Trx-primed grafts responded to the stimulation of dendritic cells (DCs) of donor origin, in contrast to DCs from the third party, with significantly reduced proliferation. Consistent with above findings, we observed that CD4+Foxp3+ regulatory T cells in spleen cells from the recipients with Trx-primed grafts were significantly increased compared to controls, and CD4+ T cells from the recipients with Trx-primed grafts produced much higher levels of immunosuppressive cytokine, IL-10 when stimulated with allogeneic donor DCs. In addition, humoral immune tolerance was also induced as there was no significant increase levels of serum antibodies against donor antigens in Trx-lung recipients when re-challenged with allogeneic donor antigens. Our results demonstrate that one-time Trx-priming of donor lung grafts prior to transplantation significantly prolongs the survival of the grafts through inducing or promoting cellular and humoral alloantigen-specific immune tolerance, which might be associated with the induction of immunosuppressive regulatory T cells.
Collapse
Affiliation(s)
- Hanbo Hu
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida 32608, United States of America
| | - Xiaoyan Zhu
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida 32608, United States of America
| | - Sunil Joshi
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32608, United States of America
| | - Li Lu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32608, United States of America
- Research Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida 32608, United States of America
| | - Chang-Qing Xia
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32608, United States of America
- * E-mail: (JMP); (CQX)
| | - Jawaharlal M. Patel
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida 32608, United States of America
- Research Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida 32608, United States of America
- * E-mail: (JMP); (CQX)
| |
Collapse
|
39
|
Krustrup D, Iversen M, Martinussen T, Schultz HHL, Andersen CB. The number of FoxP3+ cells in transbronchial lung allograft biopsies does not predict bronchiolitis obliterans syndrome within the first five years after transplantation. Clin Transplant 2015; 29:179-84. [DOI: 10.1111/ctr.12502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Dorrit Krustrup
- Department of Pathology; Copenhagen University Hospital; Rigshospitalet Denmark
| | - Martin Iversen
- The Heart and Lung Transplantation Unit; Copenhagen University Hospital; Rigshospitalet Denmark
| | - Torben Martinussen
- Department of Biostatistics; University of Copenhagen; Copenhagen Denmark
| | - Hans Henrik L. Schultz
- The Heart and Lung Transplantation Unit; Copenhagen University Hospital; Rigshospitalet Denmark
| | - Claus B. Andersen
- Department of Pathology; Copenhagen University Hospital; Rigshospitalet Denmark
| |
Collapse
|
40
|
Regulatory T Cells Contribute to the Recovery of Acute Lung Injury by Upregulating Tim-3. Inflammation 2014; 38:1267-72. [DOI: 10.1007/s10753-014-0096-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Pesenacker AM, Broady R, Levings MK. Control of tissue-localized immune responses by human regulatory T cells. Eur J Immunol 2014; 45:333-43. [PMID: 25378065 DOI: 10.1002/eji.201344205] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/30/2014] [Accepted: 10/31/2014] [Indexed: 12/25/2022]
Abstract
Treg cells control immune responses to self and nonharmful foreign antigens. Emerging data from animal models indicate that Treg cells function in both secondary lymphoid organs and tissues, and that these different microenvironments may contain specialized subsets of Treg cells with distinct mechanisms of action. The design of therapies for the restoration of tissue-localized immune homeostasis is dependent upon understanding how local immune responses are influenced by Treg cells in health versus disease. Here we review the current state of knowledge about human Treg cells in four locations: the skin, lung, intestine, and joint. Despite the distinct biology of these tissues, there are commonalities in the biology of their resident Treg cells, including phenotypic and functional differences from circulating Treg cells, and the presence of cytokine-producing (e.g. IL-17(+)) FOXP3(+) cells. We also highlight the challenges to studying tissue Treg cells in humans, and opportunities to use new technologies for the detailed analysis of Treg cells at the single-cell level. As emerging biological therapies are increasingly targeted toward tissue-specific effects, it is critical to understand their potential impact on local immune regulation.
Collapse
Affiliation(s)
- Anne M Pesenacker
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Child & Family Research Institute, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
42
|
Radhakrishnan SV, Palaniyandi S, Mueller G, Miklos S, Hager M, Spacenko E, Karlsson FJ, Huber E, Kittan NA, Hildebrandt GC. Preventive azithromycin treatment reduces noninfectious lung injury and acute graft-versus-host disease in a murine model of allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2014; 21:30-8. [PMID: 25445642 DOI: 10.1016/j.bbmt.2014.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/26/2014] [Indexed: 11/17/2022]
Abstract
Noninfectious lung injury and acute graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT) are associated with significant morbidity and mortality. Azithromycin is widely used in allogeneic HCT recipients for pulmonary chronic GVHD, although current data appear controversial. We induced GVHD and noninfectious lung injury in lethally irradiated B6D2F1 mice by transplanting bone marrow and splenic T cells from allogeneic C57BL/6 mice. Experimental groups were treated with oral azithromycin starting on day 14 until the end of week 6 or week 14 after transplantation. Azithromycin treatment resulted in improved survival and decreased lung injury; the latter characterized by improved pulmonary function, reduced peribronchial and perivascular inflammatory cell infiltrates along with diminished collagen deposition, and a decrease in lung cytokine and chemokine expression. Azithromycin also improved intestinal GVHD but did not affect liver GVHD at week 6 early after transplantation. At week 14, azithromycin decreased liver GVHD but had no effect on intestinal GVHD. In vitro, allogeneic antigen-presenting cell (APC)- dependent T cell proliferation and cytokine production were suppressed by azithromycin and inversely correlated with relative regulatory T cell (Treg) expansion, whereas no effect was seen when T cell proliferation occurred APC independently through CD3/CD28-stimulation. Further, azithromycin reduced alloreactive T cell expansion but increased Treg expansion in vivo with corresponding downregulation of MHC II on CD11c(+) dendritic cells. These results demonstrate that preventive administration of azithromycin can reduce the severity of acute GVHD and noninfectious lung injury after allo-HCT, supporting further investigation in clinical trials.
Collapse
Affiliation(s)
- Sabarinath Venniyil Radhakrishnan
- Department of Internal Medicine, Louisiana State University Health Sciences Center, Shreveport, Shreveport, Louisiana; Division of Hematology and Hematologic Malignancies, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Senthilnathan Palaniyandi
- Division of Hematology and Hematologic Malignancies, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah; Division of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, Feist-Weiller Cancer Center, Shreveport, Louisiana
| | - Gunnar Mueller
- Division of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | - Sandra Miklos
- Division of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | - Max Hager
- Division of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | - Elena Spacenko
- Division of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | - Fridrik J Karlsson
- Division of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, Feist-Weiller Cancer Center, Shreveport, Louisiana
| | - Elisabeth Huber
- Department of Pathology, University of Regensburg, Regensburg, Germany
| | - Nicolai A Kittan
- Division of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, Feist-Weiller Cancer Center, Shreveport, Louisiana
| | - Gerhard C Hildebrandt
- Division of Hematology and Hematologic Malignancies, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah; Division of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, Feist-Weiller Cancer Center, Shreveport, Louisiana.
| |
Collapse
|
43
|
White SR, Floreth T, Liao C, Bhorade SM. Association of soluble HLA-G with acute rejection episodes and early development of bronchiolitis obliterans in lung transplantation. PLoS One 2014; 9:e103643. [PMID: 25068264 PMCID: PMC4113443 DOI: 10.1371/journal.pone.0103643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 07/04/2014] [Indexed: 12/25/2022] Open
Abstract
Lung transplantation has evolved into a life-saving therapy for select patients with end-stage lung diseases. However, long-term survival remains limited because of bronchiolitis obliterans syndrome (BOS). Soluble HLA-G, a mediator of adaptive immunity that modulates regulatory T cells and certain classes of effector T cells, may be a useful marker of survival free of BOS. We conducted a retrospective, single-center, pilot review of 38 lung transplant recipients who underwent collection of serum and bronchoalveolar lavage fluid 3, 6 and 12 months after transplantation, and compared soluble HLA-G concentrations in each to the presence of type A rejection and lymphocytic bronchiolitis in the first 12 months and to the presence of BOS at 24 months after transplantation. Lung soluble HLA-G concentrations were directly related to the presence of type A rejection but not to lymphocytic bronchiolitis. Our data demonstrate that soluble HLA-G concentrations in bronchoalveolar lavage but not in serum correlates with the number of acute rejection episodes in the first 12 months after lung transplantation, and thus may be a reactive marker of rejection.
Collapse
Affiliation(s)
- Steven R. White
- Departments of Medicine and Health Studies, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Timothy Floreth
- Departments of Medicine and Health Studies, University of Chicago, Chicago, Illinois, United States of America
| | - Chuanhong Liao
- Departments of Medicine and Health Studies, University of Chicago, Chicago, Illinois, United States of America
| | - Sangeeta M. Bhorade
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
44
|
Berastegui C, Román J, Monforte V, Bravo C, López-Meseguer M, Montero MÁ, Culebras M, Gómez-Ollés S, Román A. Biomarkers of pulmonary rejection. Transplant Proc 2014; 45:3163-9. [PMID: 24182778 DOI: 10.1016/j.transproceed.2013.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/06/2013] [Accepted: 06/28/2013] [Indexed: 01/22/2023]
Abstract
Immunologic complications after lung transplantation (LT) include acute cellular rejection (ACR), antibody-mediated rejection (AMR), and most forms of chronic allograft dysfunction (CAD). ACR is an inflammatory process in which the reaction is mediated by the T-cell population. Most episodes of ACR fully recover with treatment, but repeated bouts are considered to be a risk factor for CAD. Biomarker cytokines interleukin (IL)-10, IL-15, IL-6, CCL5, CCR2 and IFNγ may play significant roles in this complication. Formerly bronchiolitis obliterans syndrome (BOS) or chronic rejection or most forms of CAD were considered to be immunologic complications not amenable therapeutic measures. CAD, the main limitation for long-term survival in LT, is characterized histologically by airway epithelial cell apoptosis and luminal fibrosis in the respiratory bronchioles causing airflow obstruction and, in some cases, lung parenchymal affectations causing restrictive lung disease. Several biomarkers have been studied in CAD, IL-6, IL-8, IL-17, IL-23, IL-13, IFN γ, and TGF β cytokines, pH, bile acid, and tripsine of gastroesophageal reflux and toll-like receptors of innate immunity. Herein we have reviewed the literature of biomarkers involved in lung rejection.
Collapse
Affiliation(s)
- C Berastegui
- Respiratory Department, Institute of Research, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Krustrup D, Iversen M, Martinussen T, Andersen CB. Time elapsed after transplantation influences the relationship between the number of regulatory T cells in lung allograft biopsies and subsequent acute rejection episodes. Transpl Immunol 2014; 31:42-7. [PMID: 24801207 DOI: 10.1016/j.trim.2014.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/19/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Regulatory T lymphocytes (Tregs) play an important role in acute rejection after lung transplantation. However, the importance of the time elapsed after transplantation on the Treg response requires further investigation. We aim to evaluate the change over time in the frequency of Tregs in lung allograft biopsies and to assess how Tregs relate to simultaneous and subsequent acute cellular rejection. MATERIALS AND METHODS A total of 258 biopsy samples obtained 0.5, 1, 3, 12 and 24 months after transplantation from 58 consecutive lung transplant patients were included. The biopsies were scored for acute rejection according to the ISHLT criteria (A0-A4) and immunohistochemically stained with antibodies against FoxP3. RESULTS There was a tendency for a decrease in the number of Tregs/mm2 with time. However, the previous levels of Tregs/mm2 did not have any significant effect on future levels of Tregs/mm2. For biopsies taken 0.5 and 1 month after transplantation, a significant correlation between Tregs/mm2 and the degree of acute rejection was found, and logistic regression analysis using updated values for Tregs/mm2 showed a significant relationship between Tregs/mm2 at 2 weeks and an A-score≥2 after 1 and 3 months. At later time points, this correlation disappeared. DISCUSSION AND CONCLUSION Our data indicate that the time elapsed after transplantation is an important parameter influencing the Treg response after lung transplantation. This observation is in accordance with studies indicating a narrow therapeutic window for induction of tolerance by specifically targeting T-cells. The results also indirectly indicate that Tregs early after transplantation could have an impact on the long-term outcome.
Collapse
Affiliation(s)
- Dorrit Krustrup
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Denmark.
| | - Martin Iversen
- The Heart and Lung Transplantation Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| | | | - Claus B Andersen
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Denmark
| |
Collapse
|
46
|
Greenland JR, Jewell NP, Gottschall M, Trivedi NN, Kukreja J, Hays SR, Singer JP, Golden JA, Caughey GH. Bronchoalveolar lavage cell immunophenotyping facilitates diagnosis of lung allograft rejection. Am J Transplant 2014; 14:831-40. [PMID: 24512389 PMCID: PMC4300200 DOI: 10.1111/ajt.12630] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/21/2013] [Accepted: 10/25/2013] [Indexed: 01/25/2023]
Abstract
Supplementary methods to identify acute rejection and to distinguish rejection from infection may improve clinical outcomes for lung allograft recipients. We hypothesized that distinct bronchoalveolar lavage (BAL) cell profiles are associated with rejection and infection. We retrospectively compared 2939 BAL cell counts and immunophenotypes against concomitantly obtained transbronchial biopsies and microbiologic studies. We randomly assigned 317 subjects to a derivation or validation cohort. BAL samples were classified into four groups: infection, rejection grade ≥A1, both or neither. We employed generalized estimating equation and survival modeling to identify clinical predictors of rejection and infection. We found that CD25(+) and natural killer cell percentages identified a twofold increased odds of rejection compared to either the infection or the neither infection nor rejection groups. Also, monocytes, lymphocytes and eosinophil percentages were independently associated with rejection. A four-predictor scoring system had high negative predictive value (96-98%) for grade ≥A2 rejection, predicted future rejection in the validation cohort and predicted increased risk of bronchiolitis obliterans syndrome in otherwise benign samples. In conclusion, BAL cell immunophenotyping discriminates between infection and acute rejection and predicts future outcomes in lung transplant recipients. Although it cannot replace histopathology, immunophenotyping may be a clinically useful adjunct.
Collapse
Affiliation(s)
- JR Greenland
- Department of Medicine, University of California at San Francisco, CA 94143,Medical Service, Veterans Affairs Medical Center, San Francisco, CA 94121
| | - NP Jewell
- Division of Biostatistics, University of California, Berkeley, CA, 94720
| | - M Gottschall
- Department of Pathology, University of California at San Francisco, CA 94143
| | - NN Trivedi
- Department of Medicine, University of California at San Francisco, CA 94143,Medical Service, Veterans Affairs Medical Center, San Francisco, CA 94121
| | - J Kukreja
- Department of Surgery, University of California at San Francisco, CA 94143
| | - SR Hays
- Department of Medicine, University of California at San Francisco, CA 94143
| | - JP Singer
- Department of Medicine, University of California at San Francisco, CA 94143
| | - JA Golden
- Department of Medicine, University of California at San Francisco, CA 94143
| | - GH Caughey
- Department of Medicine, University of California at San Francisco, CA 94143,Cardiovascular Research Institute, University of California at San Francisco, CA 94143,Medical Service, Veterans Affairs Medical Center, San Francisco, CA 94121
| |
Collapse
|
47
|
Increased numbers of circulating CD8 effector memory T cells before transplantation enhance the risk of acute rejection in lung transplant recipients. PLoS One 2013; 8:e80601. [PMID: 24236187 PMCID: PMC3827433 DOI: 10.1371/journal.pone.0080601] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/04/2013] [Indexed: 12/24/2022] Open
Abstract
The effector and regulatory T cell subpopulations involved in the development of acute rejection episodes in lung transplantation remain to be elucidated. Twenty-seven lung transplant candidates were prospectively monitored before transplantation and within the first year post-transplantation. Regulatory, Th17, memory and naïve T cells were measured in peripheral blood of lung transplant recipients by flow cytometry. No association of acute rejection with number of peripheral regulatory T cells and Th17 cells was found. However, effector memory subsets in acute rejection patients were increased during the first two months post-transplant. Interestingly, patients waiting for lung transplant with levels of CD8+ effector memory T cells over 185 cells/mm3 had a significant increased risk of rejection [OR: 5.62 (95% CI: 1.08-29.37), p=0.04]. In multivariate analysis adjusted for age and gender the odds ratio for rejection was: OR: 5.89 (95% CI: 1.08-32.24), p=0.04. These data suggest a correlation between acute rejection and effector memory T cells in lung transplant recipients. The measurement of peripheral blood CD8+ effector memory T cells prior to lung transplant may define patients at high risk of acute lung rejection.
Collapse
|
48
|
Krustrup D, Madsen CB, Iversen M, Engelholm L, Ryder LP, Andersen CB. The number of regulatory T cells in transbronchial lung allograft biopsies is related to FoxP3 mRNA levels in bronchoalveolar lavage fluid and to the degree of acute cellular rejection. Transpl Immunol 2013; 29:71-5. [PMID: 23969200 DOI: 10.1016/j.trim.2013.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/09/2013] [Accepted: 08/11/2013] [Indexed: 01/20/2023]
Abstract
BACKGROUND The transcription factor Forkhead Box P3 (FoxP3) is a marker of regulatory T cells (Tregs) - a subset of T cells known to suppress a wide range of immune responses. These cells are considered to be pivotal for the induction of tolerance to donor antigens in human allografts. We aimed to correlate the number of lymphocytes expressing FoxP3 in transbronchial biopsies from lung allografts with the FoxP3 expression in bronchoalveolar lavage fluid (BALF). In addition, we aimed to correlate the number of FoxP3+ cells in transbronchial biopsies with the degree of acute cellular rejection in lung allografts. MATERIALS AND METHODS The expression of FoxP3 was evaluated using immunohistochemical staining in 40 lung allograft biopsies obtained from 23 patients. The number of Tregs was related to the FoxP3 mRNA levels as determined using qRT-PCR in corresponding BALF samples from the same patients. Furthermore, the number of Tregs was related to the degree of acute allograft rejection (according to ISHLT criteria, A0-A4). RESULTS Regression analysis showed a significant concordance between the number of Tregs in lung tissue and the level of FoxP3 mRNA relative to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA levels in BALF (n=40, p=0.0001). In addition, we found a significant increase in the number of Tregs during acute allograft rejections of grades A2 and higher (median: 32.6Tregs/mm(2)) when compared to those of grades A1 and A0 (median: 4.9Tregs/mm(2)) (p=0.0002). DISCUSSION AND CONCLUSION The association between the distribution of Tregs in transbronchial biopsies and the level of FoxP3 mRNA in BALF indicates that assessment of FoxP3 mRNA in BALF is a reliable non-invasive method for evaluating the number of Tregs in lung tissue. Furthermore, the association between the number of Tregs in lung tissue and the degree of acute cellular rejection shows that Tregs are recruited to the site of inflammation and may be involved in the regulation of acute rejection. Thus, Tregs may play a role in the cellular processes that affect lung allograft outcome.
Collapse
Affiliation(s)
- Dorrit Krustrup
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
49
|
An increased alveolar CD4 + CD25 + Foxp3 + T-regulatory cell ratio in acute respiratory distress syndrome is associated with increased 30-day mortality. Intensive Care Med 2013; 39:1743-51. [PMID: 23949701 PMCID: PMC7095258 DOI: 10.1007/s00134-013-3036-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 01/01/2023]
Abstract
Purpose Cell therapy may become an option for lung injury treatment. However, no data are available on the alveolar presence and time course of CD4+ CD25 + Foxp3 + T-regulatory lymphocyte cells (Tregs) in acute respiratory distress syndrome (ARDS). Accordingly, we (1) measured the ratio of CD4 + CD25 + Foxp3 + Tregs to all (CD4+) lymphocytes in the bronchoalveolar lavage (BAL) of ARDS patients and of control subjects without lung disease and (2) assessed their impact on 30-day mortality. Methods In a prospective study, the ratios of CD4 + CD25 + Foxp3 + T-regulatory cells to all CD4+ cells were measured (FACS) within 24 h of the patients’ ICU referral in the BAL and in the blood of 47 patients with ARDS (32 males, 15 females; mean age 44 years ±13) as well as in 8 controls undergoing elective abdominal surgery (5 men, 3 women; mean age 49 years ±4). BAL concentrations of several cytokines were also measured in ARDS patients. Results Tregs were detected in the BAL of control subjects and ARDS patients. However, the mean ratio of Tregs to all CD4+ lymphocytes was threefold greater in ARDS non-survivors (16.5 %; p = 0.025) and almost twofold greater in ARDS survivors (9.0 %; p = 0.015) compared to controls (5.9 %). Multivariate Cox regression analysis revealed the ratio of CD4 + CD25 + Foxp3 + T-regulatory lymphocytes to all CD4+ lymphocytes in the BAL to be an important and independent prognostic factor for 30-day survival (HR 6.5; 95 % CI, 1.7–25; p = 0.006). Conclusion An increased T-regulatory cell ratio in the admission BAL of patients with ARDS is an important and independent risk factor for 30-day mortality.
Collapse
|
50
|
Weigt SS, DerHovanessian A, Wallace WD, Lynch JP, Belperio JA. Bronchiolitis obliterans syndrome: the Achilles' heel of lung transplantation. Semin Respir Crit Care Med 2013; 34:336-51. [PMID: 23821508 PMCID: PMC4768744 DOI: 10.1055/s-0033-1348467] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lung transplantation is a therapeutic option for patients with end-stage pulmonary disorders. Unfortunately, chronic lung allograft dysfunction (CLAD), most commonly manifest as bronchiolitis obliterans syndrome (BOS), continues to be highly prevalent and is the major limitation to long-term survival. The pathogenesis of BOS is complex and involves alloimmune and nonalloimmune pathways. Clinically, BOS manifests as airway obstruction and dyspnea that are classically progressive and ultimately fatal; however, the course is highly variable, and distinguishable phenotypes may exist. There are few controlled studies assessing treatment efficacy, but only a minority of patients respond to current treatment modalities. Ultimately, preventive strategies may prove more effective at prolonging survival after lung transplantation, but their remains considerable debate and little data regarding the best strategies to prevent BOS. A better understanding of the risk factors and their relationship to the pathological mechanisms of chronic lung allograft rejection should lead to better pharmacological targets to prevent or treat this syndrome.
Collapse
Affiliation(s)
- S Samuel Weigt
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|