1
|
Rolsdorph LÅ, Reikvam H. New cytomegalovirus antiviral therapy: unlocking future prospects in treating cytomegalovirus-induced hemophagocytic lymphohistiocytosis. Expert Opin Pharmacother 2025; 26:231-234. [PMID: 39825859 DOI: 10.1080/14656566.2025.2456586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/20/2025]
Affiliation(s)
| | - Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Myeloid Blood Cancer, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Xia J, Kantipudi S, Striebich CC, Henao-Martinez AF, Manoharan N, Palestine AG, Reddy AK. Cytomegalovirus chronic retinal necrosis with ganciclovir resistance: a case report. J Ophthalmic Inflamm Infect 2024; 14:50. [PMID: 39377839 PMCID: PMC11461363 DOI: 10.1186/s12348-024-00434-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Cytomegalovirus (CMV) chronic retinal necrosis (CRN) is a rare viral retinal infection that occurs in mildly immunocompromised people. It shares some features with both acute retinal necrosis and CMV retinitis. It is typically treated with combination intravitreal and systemic ganciclovir. We discuss the management of a case of CMV CRN with ganciclovir resistance. CASE PRESENTATION An 80-year-old female presented with one month of blurry vision in the left eye. She was being treated with abatacept, methotrexate, and prednisone for rheumatoid arthritis. Examination revealed anterior chamber and vitreous cell along with peripheral retinal whitening. Fluorescein angiogram showed diffuse retinal non-perfusion. Aqueous fluid PCR testing returned positive for CMV. The retinitis was initially controlled with oral and intravitreal ganciclovir, but then recurred and progressed despite these therapies. Ganciclovir resistance was suspected and the patient was switched to intravitreal foscarnet injections, along with oral letermovir and leflunomide, which lead to resolution of the retinitis. The patient has now continued with letermovir and leflunomide for approximately 2.5 years without reactivation of the retinitis or need for further intravitreal anti-viral injections and with adequate control of her rheumatoid arthritis. CONCLUSION The incidence of CMV CRN may increase in the future as the use of non-cytotoxic immunosuppressive therapies that result in relatively mild immunosuppression also increases. Treatment with ganciclovir is effective but frequently leads to resistance, as in our case. In this situation, combination therapy with letermovir and leflunomide, particularly in the setting of rheumatoid arthritis where leflunomide can also have an anti-inflammatory effect, can be considered.
Collapse
Affiliation(s)
- Julia Xia
- Department of Ophthalmology, University of Colorado School of Medicine, 1675 Aurora Court, F731, Aurora, CO, 80045, USA
| | - Sanjana Kantipudi
- Department of Ophthalmology, University of Colorado School of Medicine, 1675 Aurora Court, F731, Aurora, CO, 80045, USA
| | - Christopher C Striebich
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrés F Henao-Martinez
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Niranjan Manoharan
- Department of Ophthalmology, University of Colorado School of Medicine, 1675 Aurora Court, F731, Aurora, CO, 80045, USA
| | - Alan G Palestine
- Department of Ophthalmology, University of Colorado School of Medicine, 1675 Aurora Court, F731, Aurora, CO, 80045, USA
| | - Amit K Reddy
- Department of Ophthalmology, University of Colorado School of Medicine, 1675 Aurora Court, F731, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Pham JH, Razonable RR. Management of resistant and refractory cytomegalovirus infections after transplantation. Expert Rev Anti Infect Ther 2024; 22:855-866. [PMID: 39225411 DOI: 10.1080/14787210.2024.2399647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Cytomegalovirus (CMV) is a classic opportunistic infection in transplant recipients. Treatment-refractory CMV infections are of concern, with growing identification of strains that have developed genetic mutations which confer resistance to standard antiviral therapy. Resistant and refractory CMV infections are associated with worse patient outcomes, prolonged hospitalization, and increased healthcare costs. AREAS COVERED This article provides a comprehensive practical overview of resistant and refractory CMV infections in transplant recipients. We review the updated definitions for these infections, antiviral pharmacology, mechanisms of drug resistance, diagnostic workup, management strategies, and host-related factors including immune optimization. EXPERT OPINION Resistant and refractory CMV infections are a significant contributor to post-transplant morbidity and mortality. This is likely the result of a combination of prolonged antiviral exposure and active viral replication in the setting of intensive pharmacologic immunosuppression. Successful control of resistant and refractory infections in transplant recipients requires a combination of immunomodulatory optimization and appropriate antiviral drug choice with sufficient treatment duration.
Collapse
Affiliation(s)
- Justin H Pham
- Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Gourin C, Alain S, Hantz S. Anti-CMV therapy, what next? A systematic review. Front Microbiol 2023; 14:1321116. [PMID: 38053548 PMCID: PMC10694278 DOI: 10.3389/fmicb.2023.1321116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) is one of the main causes of serious complications in immunocompromised patients and after congenital infection. There are currently drugs available to treat HCMV infection, targeting viral polymerase, whose use is complicated by toxicity and the emergence of resistance. Maribavir and letermovir are the latest antivirals to have been developed with other targets. The approval of letermovir represents an important innovation for CMV prevention in hematopoietic stem cell transplant recipients, whereas maribavir allowed improving the management of refractory or resistant infections in transplant recipients. However, in case of multidrug resistance or for the prevention and treatment of congenital CMV infection, finding new antivirals or molecules able to inhibit CMV replication with the lowest toxicity remains a critical need. This review presents a range of molecules known to be effective against HCMV. Molecules with a direct action against HCMV include brincidofovir, cyclopropavir and anti-terminase benzimidazole analogs. Artemisinin derivatives, quercetin and baicalein, and anti-cyclooxygenase-2 are derived from natural molecules and are generally used for different indications. Although they have demonstrated indirect anti-CMV activity, few clinical studies were performed with these compounds. Immunomodulating molecules such as leflunomide and everolimus have also demonstrated indirect antiviral activity against HCMV and could be an interesting complement to antiviral therapy. The efficacy of anti-CMV immunoglobulins are discussed in CMV congenital infection and in association with direct antiviral therapy in heart transplanted patients. All molecules are described, with their mode of action against HCMV, preclinical tests, clinical studies and possible resistance. All these molecules have shown anti-HCMV potential as monotherapy or in combination with others. These new approaches could be interesting to validate in clinical trials.
Collapse
Affiliation(s)
- Claire Gourin
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
| | - Sophie Alain
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses, Limoges, France
| | - Sébastien Hantz
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses, Limoges, France
| |
Collapse
|
5
|
Walti CS, Khanna N, Avery RK, Helanterä I. New Treatment Options for Refractory/Resistant CMV Infection. Transpl Int 2023; 36:11785. [PMID: 37901297 PMCID: PMC10600348 DOI: 10.3389/ti.2023.11785] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
Despite advances in monitoring and treatment, cytomegalovirus (CMV) infections remain one of the most common complications after solid organ transplantation (SOT). CMV infection may fail to respond to standard first- and second-line antiviral therapies with or without the presence of antiviral resistance to these therapies. This failure to respond after 14 days of appropriate treatment is referred to as "resistant/refractory CMV." Limited data on refractory CMV without antiviral resistance are available. Reported rates of resistant CMV are up to 18% in SOT recipients treated for CMV. Therapeutic options for treating these infections are limited due to the toxicity of the agent used or transplant-related complications. This is often the challenge with conventional agents such as ganciclovir, foscarnet and cidofovir. Recent introduction of new CMV agents including maribavir and letermovir as well as the use of adoptive T cell therapy may improve the outcome of these difficult-to-treat infections in SOT recipients. In this expert review, we focus on new treatment options for resistant/refractory CMV infection and disease in SOT recipients, with an emphasis on maribavir, letermovir, and adoptive T cell therapy.
Collapse
Affiliation(s)
- Carla Simone Walti
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Biomedicine and Clinical Research, University and University Hospital of Basel, Basel, Switzerland
| | - Nina Khanna
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Biomedicine and Clinical Research, University and University Hospital of Basel, Basel, Switzerland
| | - Robin K. Avery
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Ilkka Helanterä
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Hume J, Sweeney EL, Lowry K, Fraser C, Clark JE, Whiley DM, Irwin AD. Cytomegalovirus in children undergoing haematopoietic stem cell transplantation: a diagnostic and therapeutic approach to antiviral resistance. Front Pediatr 2023; 11:1180392. [PMID: 37325366 PMCID: PMC10267881 DOI: 10.3389/fped.2023.1180392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous virus which causes a mild illness in healthy individuals. In immunocompromised individuals, such as children receiving haematopoietic stem cell transplantation, CMV can reactivate, causing serious disease and increasing the risk of death. CMV can be effectively treated with antiviral drugs, but antiviral resistance is an increasingly common complication. Available therapies are associated with adverse effects such as bone marrow suppression and renal impairment, making the choice of appropriate treatment challenging. New agents are emerging and require evaluation in children to establish their role. This review will discuss established and emerging diagnostic tools and treatment options for CMV, including antiviral resistant CMV, in children undergoing haematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Jocelyn Hume
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Brisbane, QLD, Australia
| | - Emma L. Sweeney
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kym Lowry
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Chris Fraser
- Blood and Bone Marrow Transplant Program, Queensland Children’s Hospital, Brisbane, QLD, Australia
| | - Julia E. Clark
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD, Australia
| | - David M. Whiley
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Brisbane, QLD, Australia
| | - Adam D. Irwin
- The University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Zheng K, Chen Y, Liu S, He C, Yang Y, Wu D, Wang L, Li M, Zeng X, Zhang F. Leflunomide: Traditional immunosuppressant with concurrent antiviral effects. Int J Rheum Dis 2023; 26:195-209. [PMID: 36371788 DOI: 10.1111/1756-185x.14491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2022]
Abstract
Leflunomide is a classic disease-modifying anti-rheumatic drug that is widely used to treat autoimmune diseases. Studies also show its antiviral effects in in vitro and/or in vivo experiments. Considering glucocorticoids, immunosuppressants and newly emerged antibodies commonly used in autoimmune diseases and autoinflammatory disorders bring risk of infection such as viral infection, leflunomide with combination of anti-viral and immunosuppressive features to maintain the balance between infection and anti-inflammation are attractive. Here we summarize the actions and mechanisms of leflunomide in immunoregulatory and antiviral effects.
Collapse
Affiliation(s)
- Kunyu Zheng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Yiran Chen
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Suying Liu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Chengmei He
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Yunjiao Yang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Di Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital (PUMCH), Beijing, China
| |
Collapse
|
8
|
Yue Y, Meng L, Ling J, Fan L, Zhang Y, Hu Y, Chang AH, Hu S. Natural killer cell infusion for cytomegalovirus infection in pediatric patients with Wiskott-Aldrich syndrome following cord blood transplantation: A case report and literature review. Front Med (Lausanne) 2022; 9:988847. [PMID: 36300184 PMCID: PMC9588986 DOI: 10.3389/fmed.2022.988847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
NK cells have important functions in resisting cytomegalovirus infection, as they proliferate after viral infection and have certain immunological memory. Here, we report infusion of haploid donor-derived natural killer cells to treat two pediatric patients with Wiskott-Aldrich syndrome (WAS) who were infected with cytomegalovirus after cord blood transplantation (CBT), which successfully cleared the viral infection in both patients.
Collapse
Affiliation(s)
- Yongwei Yue
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Lijun Meng
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jing Ling
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Liyan Fan
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Yanlei Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China,Shanghai YaKe Biotechnology Ltd., Shanghai, China
| | - Yixin Hu
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Alex H. Chang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China,Shanghai YaKe Biotechnology Ltd., Shanghai, China,*Correspondence: Alex H. Chang
| | - Shaoyan Hu
- Department of Hematology & Oncology, Children's Hospital of Soochow University, Suzhou, China,Shaoyan Hu
| |
Collapse
|
9
|
Hiskey L, Madigan T, Ristagno EH, Razonable RR, Ferdjallah A. Prevention and management of human cytomegalovirus in pediatric HSCT recipients: A review. Front Pediatr 2022; 10:1039938. [PMID: 36507142 PMCID: PMC9727199 DOI: 10.3389/fped.2022.1039938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Cytomegalovirus (CMV), like other herpesviruses, has the unique ability to establish latent infection with subsequent reactivation during periods of stress and immunosuppression. Herpesviruses cause potentially devastating disease, particularly in hematopoietic stem cell transplant (HSCT) recipients. CMV is especially of concern in HSCT recipients given the high community seroprevalence, high risk of reactivation and high risk of transmission from HSCT donors to recipients causing primary infection after transplantation. The risk of CMV infection and severity of CMV disease varies depending on the underlying disease of the HSCT recipient, donor and recipient CMV status prior to HSCT, type of conditioning therapy in preparation for HSCT, allogeneic versus autologous HSCT, donor graft source, timing of infection in relation to HSCT, and other patient comorbidities. Different strategies exist for prevention (e.g., preemptive therapy vs. universal prophylaxis) as well as management of CMV disease (e.g., antiviral therapy, augmenting immune reconstitution, cytotoxic T-cell therapy). The purpose of this narrative review is to discuss diagnosis, prevention, and management of CMV infection and disease at different stages of HSCT, including key points illustrated through presentations of complex cases and difficult clinical scenarios. Traditional and novel strategies for CMV management will be discussed in the context of these unique clinical cases.
Collapse
Affiliation(s)
- Lisa Hiskey
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Theresa Madigan
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Elizabeth H Ristagno
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Raymund R Razonable
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, United States
| | - Asmaa Ferdjallah
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
10
|
Yong MK, Shigle TL, Kim YJ, Carpenter PA, Chemaly RF, Papanicolaou GA. American Society for Transplantation and Cellular Therapy Series: #4 - Cytomegalovirus treatment and management of resistant or refractory infections after hematopoietic cell transplantation. Transplant Cell Ther 2021; 27:957-967. [PMID: 34560310 DOI: 10.1016/j.jtct.2021.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
The Practice Guidelines Committee of the American Society of Transplantation and Cellular Therapy (ASTCT) partnered with its Transpl. Infect. Dis. Special Interest Group (TID-SIG) to update its 2009 compendium-style infectious disease guidelines for hematopoietic cell transplantation (HCT). A new approach was employed with the goal of better serving clinical providers by publishing each standalone topic in the infectious diseases series as a concise format of frequently asked questions (FAQ), tables, and figures. Adult and pediatric infectious diseases and HCT content experts developed and answered FAQs. Topics were finalized with harmonized recommendations that were made by assigning an A through E strength of recommendation paired with a level of supporting evidence graded I through III. The fourth topic in the series focuses on the management and treatment of cytomegalovirus (CMV) resistant and refractory infections. The diagnosis, definitions of resistant and refractory CMV, risk factors, virological genotypes and treatment algorithms are reviewed.
Collapse
Affiliation(s)
- Michelle K Yong
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3000, Australia; Department of Infectious Diseases, Royal Melbourne Hospital, Melbourne Victoria, 3050, Australia.
| | - Terri Lynn Shigle
- Division of Pharmacy, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Yae-Jean Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Centre, Seattle, WA, USA
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, & Employee Health, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Genovefa A Papanicolaou
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
11
|
Santhanakrishnan K, Yonan N, Iyer K, Callan P, Al-Aloul M, Venkateswaran R. Management of ganciclovir resistance cytomegalovirus infection with CMV hyperimmune globulin and leflunomide in seven cardiothoracic transplant recipients and literature review. Transpl Infect Dis 2021; 24:e13733. [PMID: 34534396 DOI: 10.1111/tid.13733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/31/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022]
Abstract
Cytomegalovirus (CMV) disease caused by genetically resistant CMV poses a major challenge in solid organ transplant recipients, and the development of resistance is associated with increased morbidity and mortality. Antiviral resistance affects 5%-12% of patients following ganciclovir (GCV) therapy, but is more common in individuals with specific underlying risk factors. These include the CMV D+R- serostatus, type of transplanted organ, dose and duration of (Val)GCV ([V]GCV) prophylaxis, peak viral loads, and the intensity of immunosuppressive therapy. Guideline recommendations for the management of GCV resistance (GanR) in solid organ transplant recipients are based on expert opinion as there is a lack of data from controlled trials. Second-line options to treat GanR include foscarnet (FOS) and cidofovir (CDV), but these drugs are often poorly tolerated due to high rates of toxicity, such as renal dysfunction and neutropenia. Here, we report seven cardiothoracic transplant recipients with GCV resistance CMV infection from our centre treated with CMV immunoglobulin (CMVIG) +/- leflunomide (LEF) and reviewed the literature on the use of these agents in this therapeutic setting.
Collapse
Affiliation(s)
- Karthik Santhanakrishnan
- Transplant Department, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Nizar Yonan
- Transplant Department, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Kapil Iyer
- Transplant Department, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Paul Callan
- Transplant Department, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Mohamed Al-Aloul
- Transplant Department, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rajamiyer Venkateswaran
- Transplant Department, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
12
|
Saeed H, Thoendel M, Razonable RR. Individualized management of cytomegalovirus in solid organ transplant recipients. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1964951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Huma Saeed
- Division of Infectious Diseases, Department of Medicine and the William J Von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, United States
| | - Matthew Thoendel
- Division of Infectious Diseases, Department of Medicine and the William J Von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, United States
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Medicine and the William J Von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
13
|
Wang Q, Guo H, Li Y, Jian X, Hou X, Zhong N, Fei J, Su D, Bian Z, Zhang Y, Hu Y, Sun Y, Yu X, Li Y, Jiang B, Li Y, Qin F, Wu Y, Gao Y, Hu Z. Efficacy and Safety of Leflunomide for Refractory COVID-19: A Pilot Study. Front Pharmacol 2021; 12:581833. [PMID: 34276351 PMCID: PMC8284962 DOI: 10.3389/fphar.2021.581833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may persist in patients with coronavirus disease 2019 (COVID-19) despite receiving standard care. Methods: In this pilot study of hospitalized adult patients (≥18 years of age), with radiologically confirmed pneumonia who were SARS-CoV-2 positive for more than 28 days despite standard care, were assigned to receive standard of care (SOC, grp I) or leflunomide + SOC (grp 2). After 2 weeks, grp 1 and grp 2 patients who continued to be SARS-CoV-2-positive received leflunomide for 14 days while continuing SOC. The primary outcomes were the rate of and time to SARS-CoV-2 clearance and the 14-day and 30-day hospital discharge rate. Results: 12 patients were enrolled in grp 1 and 15 patients were in grp 2. The 14 days SARS-CoV-2 viral clearance rate was 80.0% (12/15) for grp 2 patients receiving leflunomide vs. 16.7% for grp 1 patients (2/12) (p = 0.002). By day 14, the median time to SARS-CoV-2 clearance was 6.0 days (range 1–12, IQR 1–12) for grp 2 patients. In grp 1, two patients converted to viral negative on days 1 and 6 (p = 0.002). The 14-day discharge rate was 73.3% (11/15) for the grp 2 vs. 8.3% (1/12) for grp 1 (p = 0.001). The 30 days discharge rate was 100% (15/15) for the grp 2 vs. 66.7% (8/12) for grp 1. No severe adverse events or deaths were reported. Conclusion: Leflunomide may improve the SARS-CoV-2 clearance rate and discharge rate in patients with refractory COVID-19. The tolerability of the 14–28 days course of treatment with leflunomide is acceptable. These preliminary observations need to be verified by a large sample size and randomized controlled trial.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Nephrology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Haipeng Guo
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Li
- Department of Respirology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangdong Jian
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ning Zhong
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianchun Fei
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dezhen Su
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhouyan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Department of Respirology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingying Hu
- Department of Quality Control, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Sun
- Department of Nephropathy, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xueyuan Yu
- Department of Nephropathy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Li
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bei Jiang
- Department of Nephropathy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Li
- Department of Nephropathy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengping Qin
- Department of Nephropathy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingying Wu
- Department of Nephropathy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanxia Gao
- Department of Nephrology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Zhao Hu
- Department of Nephropathy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
14
|
Zhou X, Jin N, Chen B. Human cytomegalovirus infection: A considerable issue following allogeneic hematopoietic stem cell transplantation. Oncol Lett 2021; 21:318. [PMID: 33692850 PMCID: PMC7933754 DOI: 10.3892/ol.2021.12579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Cytomegalovirus (CMV) is an opportunistic virus, whereby recipients are most susceptible following allogeneic hematopoietic stem cell transplantation (allo-HSCT). With the development of novel immunosuppressive agents and antiviral drugs, accompanied with the widespread application of prophylaxis and preemptive treatment, significant developments have been made in transplant recipients with human (H)CMV infection. However, HCMV remains an important cause of short- and long-term morbidity and mortality in transplant recipients. The present review summarizes the molecular mechanism and risk factors of HCMV reactivation following allo-HSCT, the diagnosis of CMV infection following allo-HSCT, prophylaxis and treatment of HCMV infection, and future perspectives. All relevant literature were retrieved from PubMed and have been reviewed.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Nan Jin
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
15
|
Limaye AP, Babu TM, Boeckh M. Progress and Challenges in the Prevention, Diagnosis, and Management of Cytomegalovirus Infection in Transplantation. Clin Microbiol Rev 2020; 34:34/1/e00043-19. [PMID: 33115722 PMCID: PMC7920732 DOI: 10.1128/cmr.00043-19] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hosts with compromised or naive immune systems, such as individuals living with HIV/AIDS, transplant recipients, and fetuses, are at the highest risk for complications from cytomegalovirus (CMV) infection. Despite substantial progress in prevention, diagnostics, and treatment, CMV continues to negatively impact both solid-organ transplant (SOT) and hematologic cell transplant (HCT) recipients. In this article, we summarize important developments in the field over the past 10 years and highlight new approaches and remaining challenges to the optimal control of CMV infection and disease in transplant settings.
Collapse
Affiliation(s)
- Ajit P Limaye
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Tara M Babu
- Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
- Department of Infectious Diseases, Overlake Medical Center, Bellevue, Washington, USA
| | - Michael Boeckh
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
16
|
Al-Horani RA, Kar S. Potential Anti-SARS-CoV-2 Therapeutics That Target the Post-Entry Stages of the Viral Life Cycle: A Comprehensive Review. Viruses 2020; 12:E1092. [PMID: 32993173 PMCID: PMC7600245 DOI: 10.3390/v12101092] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic continues to challenge health care systems around the world. Scientists and pharmaceutical companies have promptly responded by advancing potential therapeutics into clinical trials at an exponential rate. Initial encouraging results have been realized using remdesivir and dexamethasone. Yet, the research continues so as to identify better clinically relevant therapeutics that act either as prophylactics to prevent the infection or as treatments to limit the severity of COVID-19 and substantially decrease the mortality rate. Previously, we reviewed the potential therapeutics in clinical trials that block the early stage of the viral life cycle. In this review, we summarize potential anti-COVID-19 therapeutics that block/inhibit the post-entry stages of the viral life cycle. The review presents not only the chemical structures and mechanisms of the potential therapeutics under clinical investigation, i.e., listed in clinicaltrials.gov, but it also describes the relevant results of clinical trials. Their anti-inflammatory/immune-modulatory effects are also described. The reviewed therapeutics include small molecules, polypeptides, and monoclonal antibodies. At the molecular level, the therapeutics target viral proteins or processes that facilitate the post-entry stages of the viral infection. Frequent targets are the viral RNA-dependent RNA polymerase (RdRp) and the viral proteases such as papain-like protease (PLpro) and main protease (Mpro). Overall, we aim at presenting up-to-date details of anti-COVID-19 therapeutics so as to catalyze their potential effective use in fighting the pandemic.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | | |
Collapse
|
17
|
Muehler A, Kohlhof H, Groeppel M, Vitt D. The Selective Oral Immunomodulator Vidofludimus in Patients with Active Rheumatoid Arthritis: Safety Results from the COMPONENT Study. Drugs R D 2020; 19:351-366. [PMID: 31621054 PMCID: PMC6890621 DOI: 10.1007/s40268-019-00286-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The dihydroorotate dehydrogenase (DHODH) inhibitors leflunomide and teriflunomide are immunomodulatory agents approved to treat rheumatoid arthritis (RA) and multiple sclerosis, respectively, and are actively being investigated as therapeutic agents for other immune-related diseases; however, both structurally related compounds have a number of potentially serious adverse effects. Vidofludimus, a new selective second-generation DHODH inhibitor, is chemically distinct from leflunomide/teriflunomide and appears to exhibit a distinct safety profile. OBJECTIVE The aim of the COMPONENT study was to assess the efficacy, safety, and pharmacokinetics of vidofludimus in the treatment of patients with active RA on a background therapy of methotrexate. This report focuses solely on the safety results of the COMPONENT trial. METHODS Patients received once-daily oral vidofludimus (N = 122) or placebo (N = 119) along with their standard of care methotrexate treatment for 13 weeks. Efficacy endpoints were assessed. Safety parameters were monitored throughout treatment and at follow-up. Plasma concentrations of vidofludimus were measured. RESULTS The primary efficacy endpoint, American College of Rheumatology 20 (ACR20) responder rate at 13 weeks, demonstrated numerical superiority in the treatment group compared with placebo; however, it did not reach statistical significance. Nonetheless, the COMPONENT study yielded important safety and pharmacokinetic data that could provide important information regarding the use of vidofludimus in other clinical trials, not only for RA but also for other autoimmune diseases. A safety profile for vidofludimus similar to placebo was obtained in this RA patient population. This includes similar rates of the adverse events of diarrhea, alopecia, neutropenia, and elevated liver enzymes, all of which are known drug-related adverse events reported for leflunomide and teriflunomide. A potential pharmacokinetic interaction between vidofludimus and methotrexate was observed. CONCLUSIONS Vidofludimus demonstrated a positive safety profile, making it a promising candidate for the treatment of a variety of immune-related diseases. TRIAL REGISTRATIONS ClinicalTrials.gov identifier: NCT01010581.
Collapse
Affiliation(s)
- Andreas Muehler
- Immunic AG, Am Klopferspitz 19, 82152, Martinsried, Germany.
| | - Hella Kohlhof
- Immunic AG, Am Klopferspitz 19, 82152, Martinsried, Germany
| | | | - Daniel Vitt
- Immunic AG, Am Klopferspitz 19, 82152, Martinsried, Germany
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW CMV DNA polymerase inhibitors such as ganciclovir and foscarnet have dramatically reduced the burden of CMV infection in the HCT recipient. However, their use is often limited by toxicities and resistance. Agents with novel mechanisms and favorable toxicity profiles are critically needed. We review recent developments in CMV antivirals and immune-based approaches to mitigating CMV infection. RECENT FINDINGS Letermovir, an inhibitor of the CMV terminase complex, was approved in 2017 for primary CMV prophylaxis in adult seropositive allogeneic HCT recipients. Maribavir, an inhibitor of the CMV UL97 kinase, is currently in two phase 3 treatment studies. Adoptive immunotherapy using third-party T cells has proven safe and effective in preliminary studies. Vaccine development continues, with several promising candidates currently under study. No longer limited to DNA polymerase inhibitors, the prevention and treatment of CMV infections in the HCT recipient is a rapidly evolving field which should translate into improvements in CMV-related outcomes.
Collapse
Affiliation(s)
- Morgan Hakki
- Division of Infectious Diseases, Department of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail code L457, Portland, OR, 97239, USA.
| |
Collapse
|
19
|
Mullane KM. Human Cytomegalovirus Prophylaxis and Treatment in Lung Transplantation in the Current Era. CURRENT PULMONOLOGY REPORTS 2020. [DOI: 10.1007/s13665-020-00246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Razonable RR, Humar A. Cytomegalovirus in solid organ transplant recipients-Guidelines of the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13512. [PMID: 30817026 DOI: 10.1111/ctr.13512] [Citation(s) in RCA: 459] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022]
Abstract
Cytomegalovirus (CMV) is one of the most common opportunistic infections that affect the outcome of solid organ transplantation. This updated guideline from the American Society of Transplantation Infectious Diseases Community of Practice provides evidence-based and expert recommendations for screening, diagnosis, prevention, and treatment of CMV in solid organ transplant recipients. CMV serology to detect immunoglobulin G remains as the standard method for pretransplant screening of donors and transplant candidates. Antiviral prophylaxis and preemptive therapy are the mainstays of CMV prevention. The lack of a widely applicable viral load threshold for diagnosis and preemptive therapy is highlighted, as a result of variability of CMV nucleic acid testing, even in the contemporary era when calibrators are standardized. Valganciclovir and intravenous ganciclovir remain as drugs of choice for CMV management. Strategies for managing drug-resistant CMV infection are presented. There is an increasing use of CMV-specific cell-mediated immune assays to stratify the risk of CMV infection after solid organ transplantation, but their role in optimizing CMV prevention and treatment efforts has yet to be demonstrated. Specific issues related to pediatric transplant recipients are discussed.
Collapse
Affiliation(s)
| | - Atul Humar
- University Health Network, Toronto, Ontario, Canada.,Transplant Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
The Third International Consensus Guidelines on the Management of Cytomegalovirus in Solid-organ Transplantation. Transplantation 2019; 102:900-931. [PMID: 29596116 DOI: 10.1097/tp.0000000000002191] [Citation(s) in RCA: 804] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite recent advances, cytomegalovirus (CMV) infections remain one of the most common complications affecting solid organ transplant recipients, conveying higher risks of complications, graft loss, morbidity, and mortality. Research in the field and development of prior consensus guidelines supported by The Transplantation Society has allowed a more standardized approach to CMV management. An international multidisciplinary panel of experts was convened to expand and revise evidence and expert opinion-based consensus guidelines on CMV management including prevention, treatment, diagnostics, immunology, drug resistance, and pediatric issues. Highlights include advances in molecular and immunologic diagnostics, improved understanding of diagnostic thresholds, optimized methods of prevention, advances in the use of novel antiviral therapies and certain immunosuppressive agents, and more savvy approaches to treatment resistant/refractory disease. The following report summarizes the updated recommendations.
Collapse
|
22
|
Fishman JA, Costa SF, Alexander BD. Infection in Kidney Transplant Recipients. KIDNEY TRANSPLANTATION - PRINCIPLES AND PRACTICE 2019. [PMCID: PMC7152057 DOI: 10.1016/b978-0-323-53186-3.00031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In organ transplant recipients, impaired inflammatory responses suppress the clinical and radiologic findings of infection. The possible etiologies of infection are diverse, ranging from common bacterial and viral pathogens that affect the entire community to opportunistic pathogens that cause invasive disease only in immunocompromised hosts. Antimicrobial therapies required to treat established infection are often complex, with accompanying risks for drug toxicities and drug interactions with the immunosuppressive agents used to maintain graft function. Rapid and specific diagnosis is essential for successful therapy. The risk of serious infections in the organ transplant patient is largely determined by the interaction between two factors: the patient’s epidemiologic exposures and the patient’s net state of immunosuppression. The epidemiology of infection includes environmental exposures and nosocomial infections, organisms derived from donor tissues, and latent infections from the recipient activated with immunosuppression. The net state of immune suppression is a conceptual framework that measures those factors contributing to risk for infection: the dose, duration, and temporal sequence of immunosuppressive drugs; the presence of foreign bodies or injuries to mucocutaneous barriers; neutropenia; metabolic abnormalities including diabetes; devitalized tissues, hematomas, or effusions postsurgery; and infection with immunomodulating viruses. Multiple factors are present in each host. A timeline exists to aid in the development of a differential diagnosis for infection. The timeline for each patient is altered by changes in prophylaxis and immunosuppressive drugs. For common infections, new microbiologic assays, often nucleic acid based, are useful in the diagnosis and management of opportunistic infections.
Collapse
|
23
|
Wang E, Jan AS, Doan VP, Ferguson JB, Yeh JC. Leflunomide therapy for refractory cytomegalovirus infections in hematopoietic stem cell transplant recipients. J Oncol Pharm Pract 2018; 25:1731-1737. [PMID: 30170516 DOI: 10.1177/1078155218796188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Currently, there are no prospective, randomized trials analyzing leflunomide for the treatment of cytomegalovirus infection or disease in allogeneic stem cell transplant patients. OBJECTIVE The primary objective of this case series was to determine the clinical and virological responses of utilizing leflunomide as therapy for refractory cytomegalovirus infections, unresponsive to first-line therapy in allogeneic stem cell transplant patients. Additionally, patient and leflunomide specific characteristics were identified and determined in this descriptive case series. METHODS This is a single-center, case series of adult allogeneic stem cell transplant patients with refractory cytomegalovirus infections receiving leflunomide between 1 January 2005 and 31 March 2015. RESULTS A total of 14 patients with refractory cytomegalovirus infections received leflunomide. All patients received concurrent anti-cytomegalovirus therapy. Nine of 13 patients tested positive for phosphotransferase UL97 and/or viral DNA polymerase UL54 genotype mutations. Nine patients achieved a virological response with undetectable cytomegalovirus titers. Of the 13 patients with teriflunomide serum levels, eight patients maintained levels >40 micrograms/milliliter (mcg/mL). Common adverse effects were pancytopenia (n = 8) and elevated liver function tests (n = 4). CONCLUSIONS Despite current strategies, refractory or recurrent cytomegalovirus infection and disease remain a clinical challenge to treat in the stem cell transplant patient population. Leflunomide used in combination with other concomitant therapies use for refractory cytomegalovirus infection in clinical practice may be a safe and effective option in the allogeneic stem cell transplant patient population.
Collapse
Affiliation(s)
- Emily Wang
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Anna S Jan
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Vi P Doan
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Jill B Ferguson
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Jason C Yeh
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
24
|
Martin S, Chiramel AI, Schmidt ML, Chen YC, Whitt N, Watt A, Dunham EC, Shifflett K, Traeger S, Leske A, Buehler E, Martellaro C, Brandt J, Wendt L, Müller A, Peitsch S, Best SM, Stech J, Finke S, Römer-Oberdörfer A, Groseth A, Feldmann H, Hoenen T. A genome-wide siRNA screen identifies a druggable host pathway essential for the Ebola virus life cycle. Genome Med 2018; 10:58. [PMID: 30081931 PMCID: PMC6090742 DOI: 10.1186/s13073-018-0570-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/13/2018] [Indexed: 01/01/2023] Open
Abstract
Background The 2014–2016 Ebola virus (EBOV) outbreak in West Africa highlighted the need for improved therapeutic options against this virus. Approaches targeting host factors/pathways essential for the virus are advantageous because they can potentially target a wide range of viruses, including newly emerging ones and because the development of resistance is less likely than when targeting the virus directly. However, systematic approaches for screening host factors important for EBOV have been hampered by the necessity to work with this virus at biosafety level 4 (BSL4). Methods In order to identify host factors involved in the EBOV life cycle, we performed a genome-wide siRNA screen comprising 64,755 individual siRNAs against 21,566 human genes to assess their activity in EBOV genome replication and transcription. As a screening platform, we used reverse genetics-based life cycle modelling systems that recapitulate these processes without the need for a BSL4 laboratory. Results Among others, we identified the de novo pyrimidine synthesis pathway as an essential host pathway for EBOV genome replication and transcription, and confirmed this using infectious EBOV under BSL4 conditions. An FDA-approved drug targeting this pathway showed antiviral activity against infectious EBOV, as well as other non-segmented negative-sense RNA viruses. Conclusions This study provides a minable data set for every human gene regarding its role in EBOV genome replication and transcription, shows that an FDA-approved drug targeting one of the identified pathways is highly efficacious in vitro, and demonstrates the power of life cycle modelling systems for conducting genome-wide host factor screens for BSL4 viruses. Electronic supplementary material The online version of this article (10.1186/s13073-018-0570-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Scott Martin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA.,Present address: Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Abhilash I Chiramel
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Marie Luisa Schmidt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Yu-Chi Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Nadia Whitt
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Ari Watt
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Eric C Dunham
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Kyle Shifflett
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Shelby Traeger
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Anne Leske
- Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Eugen Buehler
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Cynthia Martellaro
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Janine Brandt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Andreas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Stephanie Peitsch
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Sonja M Best
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Jürgen Stech
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Angela Römer-Oberdörfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Allison Groseth
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA.,Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Thomas Hoenen
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA. .,Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
25
|
Abstract
Purpose of review To review the epidemiology, diagnosis, and management of cytomegalovirus retinitis (CMVR) in the post-combined antiretroviral era (cART) era. Recent findings Although cART has dramatically reduced CMVR incidence and morbidity in the HIV population, CMVR continues to cause significant vision loss in both HIV and non-HIV patients, especially amongst patients without immune reconstitution. Advances in imaging including ultra-widefield fundus and autofluorescence imaging, optical coherence tomography, and adaptive optics may reflect CMVR activity; however, the diagnosis remains a clinical one. There have been minimal advances in therapy, with several agents no longer available due to market concerns. Summary Despite reduced incidence and morbidity in the post-cART HIV population, CMVR continues to cause vision loss amongst HIV and non-HIV patients. Diagnosis remains primarily clinical, and therapy centers upon immune reconstitution along with systemic and/or intravitreal antivirals. Further studies are necessary to determine whether advanced imaging can influence management, and whether novel antiviral agents or adoptive immune transfer have a role in treatment of drug-resistance CMVR.
Collapse
|
26
|
Respiratory Viruses and Other Relevant Viral Infections in the Lung Transplant Recipient. LUNG TRANSPLANTATION 2018. [PMCID: PMC7123387 DOI: 10.1007/978-3-319-91184-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
As advances occur in surgical technique, postoperative care, and immunosuppressive therapy, the rate of mortality in the early postoperative period following lung transplantation continues to decline. With the improvements in immediate and early posttransplant mortality, infections and their sequel as well as rejection and chronic allograft dysfunction are increasingly a major cause of posttransplant mortality. This chapter will focus on infections by respiratory viruses and other viral infections relevant to lung transplantation, including data regarding the link between viral infections and allograft dysfunction.
Collapse
|
27
|
Frange P, Leruez-Ville M. Maribavir, brincidofovir and letermovir: Efficacy and safety of new antiviral drugs for treating cytomegalovirus infections. Med Mal Infect 2018; 48:495-502. [PMID: 29650261 DOI: 10.1016/j.medmal.2018.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/22/2017] [Accepted: 03/16/2018] [Indexed: 12/15/2022]
Abstract
Cytomegalovirus (CMV) infection is a common complication in immunocompromised patients, especially after hematopoietic stem cell or solid organ transplantation. Therapeutic antiviral options [(val)ganciclovir, foscarnet, cidofovir] are still limited and can expose to severe toxicities. Moreover, prolonged antiviral drug exposure and ongoing viral replication are key factors in the development of antiviral drug resistance. After many years of few tangible advances in terms of new antiviral drugs, we are now experiencing an exciting period characterized by a series of phase III clinical trials incorporating three novel agents: maribavir, brincidofovir, and letermovir. This article summarizes the current state of the prevention and treatment of CMV infections as well as data of investigational drugs in clinical development.
Collapse
Affiliation(s)
- P Frange
- Laboratoire de microbiologie clinique, hôpital Necker-Enfants-Malades, Assistance publique-Hôpitaux de Paris (AP-HP), 149, rue de Sèvres, 75015 Paris, France; Unité d'immunologie, hématologie et rhumatologie pédiatriques, hôpital Necker-Enfants-Malades, AP-HP, 149, rue de Sèvres, 75015 Paris, France; EA7327, université Paris Descartes, Sorbonne Paris Cité, 12, rue de l'École-de-Médecine, 75006 Paris, France.
| | - M Leruez-Ville
- Laboratoire de microbiologie clinique, hôpital Necker-Enfants-Malades, Assistance publique-Hôpitaux de Paris (AP-HP), 149, rue de Sèvres, 75015 Paris, France; EA7328, université Paris Descartes, Sorbonne Paris Cité, 12, rue de l'École-de-Médecine, 75006 Paris, France; CNR cytomégalovirus, laboratoire associé, 149, rue de Sèvres, 75015 Paris, France
| |
Collapse
|
28
|
Sepúlveda CS, García CC, Damonte EB. Antiviral activity of A771726, the active metabolite of leflunomide, against Junín virus. J Med Virol 2018; 90:819-827. [PMID: 29315647 DOI: 10.1002/jmv.25024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/24/2017] [Indexed: 12/20/2022]
Abstract
The aim of this study was to investigate the effect of A771726, the active metabolite of leflunomide, (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad against the infection with Junín virus (JUNV), agent of Argentine hemorrhagic fever (AHF). The treatment with non-cytotoxic concentrations of A771726 of Vero and A549 cells infected with JUNV inhibited virus replication in a dose-dependent manner, as determined by virus yield reduction assay. The antiviral effectiveness of A771726 was not importantly affected by the multiplicity of infection and the virus strain. Moreover, the combination of A771726 and ribavirin had a significantly more potent antiviral activity than each single drug treatment. Mechanistic studies showed that the main action of A771726 is exerted before 6 h of JUNV infection. Accordingly, inhibition of viral RNA synthesis was detected in treated infected cells by real time RT-PCR. The exogenous addition of uridine or orotic acid produced a partial reversal of the inhibitory effect of A771726 on infective virus production whereas a total reversion was detected on JUNV RNA synthesis, probably by restoration of the enzymatic activity of dihydroorotate dehydrogenase (DHODH) and the intracellular pyrimidine pools. In conclusion, these results suggest that the antiviral target would be viral RNA synthesis through pyrimidine depletion, but any other effect of the compound on JUNV infection cannot be excluded. This study opens the possibility of the therapeutic application of a wide spectrum host-targeted compound alone or in combination with ribavirin to combat AHF as well as other human pathogenic arenaviruses.
Collapse
Affiliation(s)
- Claudia S Sepúlveda
- Laboratorio de Virología, Departamento de Química Biológica-IQUIBICEN (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cybele C García
- Laboratorio de Virología, Departamento de Química Biológica-IQUIBICEN (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Elsa B Damonte
- Laboratorio de Virología, Departamento de Química Biológica-IQUIBICEN (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
29
|
Epidemiology and Outcome of Ganciclovir-Resistant Cytomegalovirus Infection After Solid Organ Transplantation: A Single Transplant Center Experience in Thailand. Transplant Proc 2018; 49:1048-1052. [PMID: 28583524 DOI: 10.1016/j.transproceed.2017.03.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Data on drug-resistant cytomegalovirus (CMV) infection in solid organ transplantation (SOT) are not often reported from resource-limited settings. We aimed to investigate the epidemiology and outcomes of this infection in SOT recipients at our institution. METHODS This was a retrospective study conducted from January 2012 to May 2015. We included all SOT recipients who were suspected for drug-resistant CMV infection. Genotypic assay for UL97 gene mutation was analyzed by real-time polymerase chain reaction. Patients were reviewed for demographic data, clinical presentation, virologic data, treatment, and outcomes. RESULTS The population consisted of 18 (12 kidney, 6 liver) SOT recipients with a median age of 20 years (interquartile range [IQR], 1-49); 44% were male. Anti-CMV resistance testing was analyzed at a median time of 23 days (IQR, 14-33) after initiation of anti-CMV therapy with a median CMV load of log 3.79 copies/mL (IQR, 3.37-4.58). During a median period of 2 years (IQR, 1-3), 6 SOT recipients were identified with UL97 gene mutation in codon 460, conferring ganciclovir (GCV) resistance. Patients with UL97 gene mutation had a longer mean duration of CMV DNAemia compared with those without mutation (263 vs 107 days; P = .04). All patients received high-dose GCV. Two patients received foscarnet and cidofovir. Two patients died (non-CMV-related), and 4 patients developed opportunistic infections other than CMV. CONCLUSIONS GCV-resistant CMV infection in SOT recipients is an emerging clinical problem in resource-limited country. Those with UL97 mutation CMV infection have prolonged duration of CMV DNAemia. Clinicians should be aware of this condition when caring for SOT recipients.
Collapse
|
30
|
Silva JT, Pérez-González V, Lopez-Medrano F, Alonso-Moralejo R, Fernández-Ruiz M, San-Juan R, Brañas P, Folgueira MD, Aguado JM, de Pablo-Gafas A. Experience with leflunomide as treatment and as secondary prophylaxis for cytomegalovirus infection in lung transplant recipients: A case series and review of the literature. Clin Transplant 2017; 32. [PMID: 29226391 DOI: 10.1111/ctr.13176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Data concerning the use of leflunomide-a drug approved for rheumatoid arthritis with in vitro anticytomegalovirus (CMV) activity-in lung transplant (LT) recipients are scarce. AIMS To report the use of leflunomide in LT recipients diagnosed with CMV infection/disease. MATERIAL AND METHODS We performed a single-center retrospective study including LT recipients who received leflunomide for CMV infection or as secondary prophylaxis after viremia clearance. We also conducted a full systematic PubMed search until June 30, 2017. RESULTS We identified 5 LT recipients in our center plus 7 patients reported in the literature. All patients had previously received ganciclovir (GCV) and foscarnet (FOS), with drug-induced adverse effects described in 6 recipients (50%). Antiviral resistance mutations were observed in 8 patients (66.7%). Leflunomide was prescribed for CMV infection in 9 of 12 patients (75%) and as secondary prophylaxis in 3 patients (25%). Initial decrease of CMV viremia after starting leflunomide was observed in 7 of 9 recipients (77.7%), although this response was only transient in 2 patients. Long-term suppression of CMV viremia was reported in 7 of 12 patients (58.3%). In 3 recipients (25%), leflunomide was discontinued due to adverse effects. DISCUSSION Our study has some limitations, such as the small number of patients included, its retrospective nature, and absence of leflunomide drug monitoring in serum. Notwithstanding, in our experience, leflunomide proved to be particularly effective as an anti-CMV secondary prophylaxis treatment and for clearing low-grade viremia. Moreover, leflunomide combined with a short course of GCV or intravitreal FOS also proved to be very effective in some patients. CONCLUSION Leflunomide, alone or in combination, could be an effective treatment in selected LT recipients with GCV-resistant CMV infection and as secondary prophylaxis. Further studies are necessary.
Collapse
Affiliation(s)
- Jose Tiago Silva
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Virginia Pérez-González
- Department of Respiratory Medicine, Unit of Lung Transplantation, Hospital Universitario "12 de Octubre", Madrid, Spain
| | - Francisco Lopez-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Rodrigo Alonso-Moralejo
- Department of Respiratory Medicine, Unit of Lung Transplantation, Hospital Universitario "12 de Octubre", Madrid, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Rafael San-Juan
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Patricia Brañas
- Department of Microbiology, Hospital Universitario "12 de Octubre", Madrid, Spain
| | | | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Alicia de Pablo-Gafas
- Department of Respiratory Medicine, Unit of Lung Transplantation, Hospital Universitario "12 de Octubre", Madrid, Spain
| |
Collapse
|
31
|
Rolling KE, Jorgenson MR, Descourouez JL, Mandelbrot DA, Redfield RR, Smith JA. Ganciclovir-Resistant Cytomegalovirus Infection in Abdominal Solid Organ Transplant Recipients: Case Series and Review of the Literature. Pharmacotherapy 2017; 37:1258-1271. [PMID: 28699311 DOI: 10.1002/phar.1987] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ganciclovir-resistant cytomegalovirus (GR-CMV) is emerging as a significant infection in the abdominal transplant population. GR-CMV is difficult to manage, and treatment options are limited. We report a descriptive case series of 15 patients who had documented GR-CMV at our center and review the literature on treatment of GR-CMV. The first case in this series was detected in 2012; the majority of cases occurred after January 1, 2014, with approximately 50% occurring in 2015. UL97 and UL54 viral genome mutations were present in 100% and 40% of CMV-infected patients, respectively. GR-CMV infection occurred ≤ 1 year posttransplantation in 11 patients (73%). All patients experienced dose reduction of valganciclovir (the oral prodrug of ganciclovir) before the development of GR-CMV. Initial treatment for GR-CMV included a variety of regimens, all including reduction in maintenance immunosuppression. Of the 6 patients with detectable GR-CMV by polymerase chain reaction (PCR) who were discharged without GR-CMV treatment and had a length of stay (LOS) less than 14 days, 83% were subsequently readmitted for treatment of GR-CMV within 2 months (60% in < 20 days); none received leflunomide. Of six patients with a LOS ≥ 14 days, 80% had CMV PCR below quantification on hospital discharge, and only one patient was readmitted in less than 20 days; 83% received leflunomide. Following GR-CMV, there was a 50% rejection incidence, 27% graft loss, and 20% mortality. For patients with more than three admissions for GR-CMV treatment, 100% had a major complication: 60% rejection, 20% graft loss, and 40% mortality. Common clinical characteristics of patients with GR-CMV included high-risk serostatus, lymphocyte depletion, and history of valganciclovir dose reduction. Overall, outcomes were poor. It appears that hospital readmission rate was reduced when CMV was treated to negativity with an initial treatment regimen of reduced immunosuppression, foscarnet, intravenous immunoglobulins, and leflunomide.
Collapse
Affiliation(s)
| | - Margaret R Jorgenson
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Jillian L Descourouez
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Didier A Mandelbrot
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Robert R Redfield
- Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Jeannina A Smith
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| |
Collapse
|
32
|
Lilleri D, Gerna G. Strategies to control human cytomegalovirus infection in adult hematopoietic stem cell transplant recipients. Immunotherapy 2017; 8:1135-49. [PMID: 27485084 DOI: 10.2217/imt-2015-0028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human cytomegalovirus (HCMV) represents the major viral complication after hematopoietic stem cell transplantation. HCMV infection may be controlled by the reconstituting immune system and remain subclinical or can lead to severe systemic and/or organ disease (mainly pneumonia and gastroenteritis) when immune reconstitution is delayed or impaired. In order to prevent the occurrence of HCMV disease, a prompt diagnosis of HCMV infection is mandatory. The adoption of pre-emptive therapy strategies guided by virological monitoring dramatically reduced the occurrence of HCMV disease. However, late-onset end-organ disease may occur in some patients with apparent immune reconstitution. In the near future, introduction of immunological monitoring and immunotherapies could markedly improve management of HCMV infection.
Collapse
Affiliation(s)
- Daniele Lilleri
- Laboratori Sperimentali di Ricerca-Area Trapiantologica, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.,Università della Svizzera Italiana, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Giuseppe Gerna
- Laboratori Sperimentali di Ricerca-Area Trapiantologica, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
33
|
Kassar R, Chang J, Chan AW, Lilly LB, Al Habeeb A, Rotstein C. Leflunomide for the treatment of trichodysplasia spinulosa in a liver transplant recipient. Transpl Infect Dis 2017; 19. [PMID: 28326649 DOI: 10.1111/tid.12702] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/30/2016] [Accepted: 01/08/2017] [Indexed: 11/27/2022]
Abstract
Trichodysplasia spinulosa (TS) is a rare dermatologic complication associated with the immunosuppressive therapy used in solid organ transplantation. The distinctive clinical manifestation of this condition is spiny follicular papules on the face, ears, extremities, and trunk. Histopathologically, abnormally maturing hair follicles with hyperkeratotic material are noted. The condition is produced by the trichodysplasia spinulosa-associated polyomavirus. Treatment of this condition in the past has entailed a reduction in immunosuppression, topical agents such as cidofovir or retinoids, or oral valganciclovir. Herein, we report a case of generalized TS treated successfully with leflunomide.
Collapse
Affiliation(s)
- Rawan Kassar
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Multi-organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - Janis Chang
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Multi-organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - An-Wen Chan
- Multi-organ Transplant Program, University Health Network, Toronto, ON, Canada.,Division of Dermatology, Department of Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Leslie B Lilly
- Liver Transplant Program, University Health Network, Toronto General Hospital, Toronto, ON, Canada
| | - Ayman Al Habeeb
- Department of Pathology, University Health Network, Toronto, ON, Canada
| | - Coleman Rotstein
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Multi-organ Transplant Program, University Health Network, Toronto, ON, Canada
| |
Collapse
|
34
|
Port AD, Orlin A, Kiss S, Patel S, D'Amico DJ, Gupta MP. Cytomegalovirus Retinitis: A Review. J Ocul Pharmacol Ther 2017; 33:224-234. [DOI: 10.1089/jop.2016.0140] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Alexander D. Port
- Department of Ophthalmology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| | - Anton Orlin
- Department of Ophthalmology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| | - Szilard Kiss
- Department of Ophthalmology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| | - Sarju Patel
- Department of Ophthalmology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| | - Donald J. D'Amico
- Department of Ophthalmology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| | - Mrinali P. Gupta
- Department of Ophthalmology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| |
Collapse
|
35
|
Arav-Boger R. Is drug repurposing the answer for cytomegalovirus treatment or prevention? Future Virol 2017. [DOI: 10.2217/fvl-2016-0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Medical progress has placed cytomegalovirus (CMV) as one of the most important viral pathogens for which treatment is limited and a vaccine is not yet available. The limited treatment options for CMV triggered efforts to discover new antivirals. Drug screening raised hope but also uncertainties as to whether drug repurposing may be a practical approach for infectious diseases in general and CMV in particular. I summarize here several of such agents as well as an approach to advance repurposing for CMV therapy.
Collapse
Affiliation(s)
- Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
36
|
Bowman LJ, Melaragno JI, Brennan DC. Letermovir for the management of cytomegalovirus infection. Expert Opin Investig Drugs 2016; 26:235-241. [PMID: 27998189 DOI: 10.1080/13543784.2017.1274733] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Cytomegalovirus (CMV) is a major cause of morbidity and mortality in immunocompromised patients. Available antivirals are fraught with adverse effects and risk for the development of CMV resistance. Letermovir is a novel antiviral in the late stages of drug development for the treatment and prevention of CMV. Areas covered: A MEDLINE search of the MeSH terms 'letermovir,' 'cytomegalovirus,' 'hematopoietic stem cell transplant,' and 'solid organ transplant,' was last conducted on 15 August 2016. Articles were selected on the basis of their contribution to current knowledge about letermovir. Expert opinion: Letermovir's mechanism of action, pharmacokinetic and pharmacodynamic profile, and favorable efficacy and safety make it an attractive option for both the prevention and treatment of CMV in immunocompromised patients. The lack of cross-resistance with other antivirals and the absence of myelosuppression are two prominent characteristics of letermovir that could support broad use of this product following FDA-approval. One major limitation is its lack of activity against other herpesviruses, which are commonly seen in immunocompromised hosts. We believe that with additional clinical efficacy data, this medication could emerge as a primary option for the prevention and treatment of CMV in the immunocompromised patient population.
Collapse
Affiliation(s)
- Lyndsey J Bowman
- a Department of Pharmacy , Tampa General Hospital , Tampa , FL , USA
| | | | - Daniel C Brennan
- c Division of Nephrology , Washington University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
37
|
Successful oral treatment of Ganciclovir resistant cytomegalovirus with Maribavir in the context of primary immunodeficiency: First case report and review. J Clin Virol 2016; 87:12-16. [PMID: 27987421 DOI: 10.1016/j.jcv.2016.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/23/2016] [Accepted: 12/11/2016] [Indexed: 11/22/2022]
|
38
|
How I treat resistant cytomegalovirus infection in hematopoietic cell transplantation recipients. Blood 2016; 128:2624-2636. [PMID: 27760756 DOI: 10.1182/blood-2016-06-688432] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022] Open
Abstract
Cytomegalovirus (CMV) infection is a significant complication in hematopoietic cell transplantation (HCT) recipients. Four antiviral drugs are used for preventing or treating CMV: ganciclovir, valganciclovir, foscarnet, and cidofovir. With prolonged and repeated use of these drugs, CMV can become resistant to standard therapy, resulting in increased morbidity and mortality, especially in HCT recipients. Antiviral drug resistance should be suspected when CMV viremia (DNAemia or antigenemia) fails to improve or continue to increase after 2 weeks of appropriately dosed and delivered antiviral therapy. CMV resistance is diagnosed by detecting specific genetic mutations. UL97 mutations confer resistance to ganciclovir and valganciclovir, and a UL54 mutation confers multidrug resistance. Risk factors for resistance include prolonged or previous anti-CMV drug exposure or inadequate dosing, absorption, or bioavailability. Host risk factors include type of HCT and degree of immunosuppression. Depending on the genotyping results, multiple strategies can be adopted to treat resistant CMV infections, albeit no randomized clinical trials exist so far, after reducing immunosuppression (if possible): ganciclovir dose escalation, ganciclovir and foscarnet combination, and adjunct therapy such as CMV-specific cytotoxic T-lymphocyte infusions. Novel therapies such as maribavir, brincidofovir, and letermovir should be further studied for treatment of resistant CMV.
Collapse
|
39
|
Avery RK, Arav-Boger R, Marr KA, Kraus E, Shoham S, Lees L, Trollinger B, Shah P, Ambinder R, Neofytos D, Ostrander D, Forman M, Valsamakis A. Outcomes in Transplant Recipients Treated With Foscarnet for Ganciclovir-Resistant or Refractory Cytomegalovirus Infection. Transplantation 2016; 100:e74-80. [PMID: 27495775 PMCID: PMC5030152 DOI: 10.1097/tp.0000000000001418] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Antiviral-resistant or refractory cytomegalovirus (CMV) infection is challenging, and salvage therapies, foscarnet, and cidofovir, have significant toxicities. Several investigational anti-CMV agents are under development, but more information is needed on outcomes of current treatments to facilitate clinical trial design for new drugs. METHODS Records of solid organ transplant (SOT) and hematopoietic cell transplant (HCT) recipients at a single center over a 10-year period were reviewed retrospectively to characterize those who had received foscarnet treatment for ganciclovir-resistant or refractory CMV infection. Data were collected on virologic responses, mortality, and nephrotoxicity. RESULTS Of 39 patients (22 SOT, 17 HCT), 15 had documented ganciclovir resistance mutations and 11 (28%) of 39 had tissue-invasive CMV. Median duration of foscarnet was 32 days. Virologic failure occurred in 13 (33%) of 39 and relapses of viremia occurred in 31%. Mortality was 12 (31%) of 39 and was higher in HCT than SOT (P = 0.001), although ganciclovir resistance was more common in SOT (P = 0.003). Doses of ganciclovir or valganciclovir were low in 10 (26%) of 39 at some time before switching to foscarnet. Renal dysfunction occurred in 20 (51%) of 39 by end of treatment and in 7 (28%) of 25 after 6 months. CONCLUSIONS Outcomes of existing treatment for ganciclovir-resistant or refractory CMV are suboptimal, in terms of virologic clearance, renal dysfunction, and mortality. These data should provide background information for future clinical trials of newer antiviral agents.
Collapse
Affiliation(s)
- Robin K. Avery
- Division of Infectious Diseases (RKA, KAM, SS, DN, DO), Pediatric Infectious Diseases (R A-B), Nephrology (EK), Pharmacy (LL, BT), Pulmonary and Critical Care (PS), the Sidney Kimmel Cancer Center (RA), and Division of Medical Microbiology, Department of Pathology, Pathology (MF, AV), Johns Hopkins
| | - Ravit Arav-Boger
- Division of Infectious Diseases (RKA, KAM, SS, DN, DO), Pediatric Infectious Diseases (R A-B), Nephrology (EK), Pharmacy (LL, BT), Pulmonary and Critical Care (PS), the Sidney Kimmel Cancer Center (RA), and Division of Medical Microbiology, Department of Pathology, Pathology (MF, AV), Johns Hopkins
| | - Kieren A. Marr
- Division of Infectious Diseases (RKA, KAM, SS, DN, DO), Pediatric Infectious Diseases (R A-B), Nephrology (EK), Pharmacy (LL, BT), Pulmonary and Critical Care (PS), the Sidney Kimmel Cancer Center (RA), and Division of Medical Microbiology, Department of Pathology, Pathology (MF, AV), Johns Hopkins
| | - Edward Kraus
- Division of Infectious Diseases (RKA, KAM, SS, DN, DO), Pediatric Infectious Diseases (R A-B), Nephrology (EK), Pharmacy (LL, BT), Pulmonary and Critical Care (PS), the Sidney Kimmel Cancer Center (RA), and Division of Medical Microbiology, Department of Pathology, Pathology (MF, AV), Johns Hopkins
| | - Shmuel Shoham
- Division of Infectious Diseases (RKA, KAM, SS, DN, DO), Pediatric Infectious Diseases (R A-B), Nephrology (EK), Pharmacy (LL, BT), Pulmonary and Critical Care (PS), the Sidney Kimmel Cancer Center (RA), and Division of Medical Microbiology, Department of Pathology, Pathology (MF, AV), Johns Hopkins
| | - Laura Lees
- Division of Infectious Diseases (RKA, KAM, SS, DN, DO), Pediatric Infectious Diseases (R A-B), Nephrology (EK), Pharmacy (LL, BT), Pulmonary and Critical Care (PS), the Sidney Kimmel Cancer Center (RA), and Division of Medical Microbiology, Department of Pathology, Pathology (MF, AV), Johns Hopkins
| | - Brandon Trollinger
- Division of Infectious Diseases (RKA, KAM, SS, DN, DO), Pediatric Infectious Diseases (R A-B), Nephrology (EK), Pharmacy (LL, BT), Pulmonary and Critical Care (PS), the Sidney Kimmel Cancer Center (RA), and Division of Medical Microbiology, Department of Pathology, Pathology (MF, AV), Johns Hopkins
| | - Pali Shah
- Division of Infectious Diseases (RKA, KAM, SS, DN, DO), Pediatric Infectious Diseases (R A-B), Nephrology (EK), Pharmacy (LL, BT), Pulmonary and Critical Care (PS), the Sidney Kimmel Cancer Center (RA), and Division of Medical Microbiology, Department of Pathology, Pathology (MF, AV), Johns Hopkins
| | - Rich Ambinder
- Division of Infectious Diseases (RKA, KAM, SS, DN, DO), Pediatric Infectious Diseases (R A-B), Nephrology (EK), Pharmacy (LL, BT), Pulmonary and Critical Care (PS), the Sidney Kimmel Cancer Center (RA), and Division of Medical Microbiology, Department of Pathology, Pathology (MF, AV), Johns Hopkins
| | - Dionysios Neofytos
- Division of Infectious Diseases (RKA, KAM, SS, DN, DO), Pediatric Infectious Diseases (R A-B), Nephrology (EK), Pharmacy (LL, BT), Pulmonary and Critical Care (PS), the Sidney Kimmel Cancer Center (RA), and Division of Medical Microbiology, Department of Pathology, Pathology (MF, AV), Johns Hopkins
| | - Darin Ostrander
- Division of Infectious Diseases (RKA, KAM, SS, DN, DO), Pediatric Infectious Diseases (R A-B), Nephrology (EK), Pharmacy (LL, BT), Pulmonary and Critical Care (PS), the Sidney Kimmel Cancer Center (RA), and Division of Medical Microbiology, Department of Pathology, Pathology (MF, AV), Johns Hopkins
| | - Michael Forman
- Division of Infectious Diseases (RKA, KAM, SS, DN, DO), Pediatric Infectious Diseases (R A-B), Nephrology (EK), Pharmacy (LL, BT), Pulmonary and Critical Care (PS), the Sidney Kimmel Cancer Center (RA), and Division of Medical Microbiology, Department of Pathology, Pathology (MF, AV), Johns Hopkins
| | - Alexandra Valsamakis
- Division of Infectious Diseases (RKA, KAM, SS, DN, DO), Pediatric Infectious Diseases (R A-B), Nephrology (EK), Pharmacy (LL, BT), Pulmonary and Critical Care (PS), the Sidney Kimmel Cancer Center (RA), and Division of Medical Microbiology, Department of Pathology, Pathology (MF, AV), Johns Hopkins
| |
Collapse
|
40
|
El Chaer F, Mori N, Shah D, Oliver N, Wang E, Jan A, Doan V, Tverdek F, Tayar J, Ariza-Heredia E, Chemaly RF. Adjuvant and salvage therapy with leflunomide for recalcitrant cytomegalovirus infections in hematopoietic cell transplantation recipients: A case series. Antiviral Res 2016; 135:91-96. [PMID: 27594527 DOI: 10.1016/j.antiviral.2016.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Cytomegalovirus (CMV) reactivation is a clinically significant complication in hematopoietic stem cell transplant (HCT) recipients. Alternative therapy for multidrug-resistant CMV is limited and often fails. Leflunomide has been used to treat resistant CMV infections, however, data on efficacy, safety, and guidance for therapeutic drug level monitoring are lacking. In this report, we describe 3 HCT recipients with multi-drug resistant CMV infections who received leflunomide as adjuvant and salvage therapy. The therapeutic effect of leflunomide as an anti-CMV agent based on virologic responses and therapeutic drug monitoring were evaluated.
Collapse
Affiliation(s)
- Firas El Chaer
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Internal Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Nobuyoshi Mori
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dimpy Shah
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nora Oliver
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Wang
- Pharmacy Clinical Programs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Jan
- Pharmacy Clinical Programs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vi Doan
- Pharmacy Clinical Programs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank Tverdek
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Pharmacy Clinical Programs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jean Tayar
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ella Ariza-Heredia
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roy F Chemaly
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
41
|
Successful low-dose leflunomide treatment for ganciclovir-resistant cytomegalovirus infection with high-level antigenemia in a kidney transplant: A case report and literature review. J Clin Virol 2016; 82:133-138. [DOI: 10.1016/j.jcv.2016.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/13/2016] [Accepted: 07/24/2016] [Indexed: 12/29/2022]
|
42
|
Maffini E, Giaccone L, Festuccia M, Brunello L, Busca A, Bruno B. Treatment of CMV infection after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2016; 9:585-96. [PMID: 27043241 DOI: 10.1080/17474086.2016.1174571] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite a remarkable reduction in the past decades, cytomegalovirus (CMV) disease in allogeneic hematopoietic stem cell transplant (HSCT) recipients remains a feared complication, still associated with significant morbidity and mortality. Today, first line treatment of CMV infection/reactivation is still based on dated antiviral compounds Ganciclovir (GCV), Foscarnet (FOS) and Cidofovir (CDF) with their burdensome weight of side effects. Maribavir (MBV), Letermovir (LMV) and Brincidofovir (BDF) are three new promising anti-CMV drugs without myelosuppressive properties or renal toxic effects that are under investigation in randomized phase II and III trials. Adoptive T-cell therapy (ATCT) in CMV infection possesses a strong rationale, demonstrated by several proof of concept studies; its feasibility is currently under investigation by clinical trials. ATCT from third-party and naïve donors could meet the needs of HSCT recipients of seronegative donors and cord blood grafts. In selected patients such as recipients of T-cell depleted grafts, ATCT, based on CMV-specific host T-cells reconstitution kinetics, would be of value in the prophylactic and/or preemptive CMV treatment. Vaccine-immunotherapy has the difficult task to reduce the incidence of CMV reactivation/infection in highly immunocompromised HSCT patients. Newer notions on CMV biology may represent the base to flush out the Troll of transplantation.
Collapse
Affiliation(s)
- Enrico Maffini
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Luisa Giaccone
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Moreno Festuccia
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Lucia Brunello
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| | - Alessandro Busca
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy
| | - Benedetto Bruno
- a Department of Oncology, SSCVD Trapianto di Cellule Staminali , A.O.U. Città della Salute e della Scienza di Torino , Torino , Italy.,b Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino , Italy
| |
Collapse
|
43
|
Campos AB, Ribeiro J, Boutolleau D, Sousa H. Human cytomegalovirus antiviral drug resistance in hematopoietic stem cell transplantation: current state of the art. Rev Med Virol 2016; 26:161-82. [DOI: 10.1002/rmv.1873] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/09/2016] [Accepted: 02/01/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Ana Bela Campos
- Molecular Oncology and Viral Pathology Group (CI-IPOP); Porto Portugal
- Faculty of Medicine; University of Porto; Porto Portugal
| | - Joana Ribeiro
- Molecular Oncology and Viral Pathology Group (CI-IPOP); Porto Portugal
- Virology Service; Portuguese Oncology Institute of Porto; Porto Portugal
- Faculty of Medicine; University of Porto; Porto Portugal
| | - David Boutolleau
- Sorbonne Universités; UPMC Université Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris); Paris France
- INSERM, U1135, CIMI-Paris; Paris France
- AP-HP, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles Foix; Service de Virologie; Paris France
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group (CI-IPOP); Porto Portugal
- Virology Service; Portuguese Oncology Institute of Porto; Porto Portugal
| |
Collapse
|
44
|
Frange P, Leruez-Ville M. Traitements antiviraux de l’infection sévère à cytomégalovirus – état des lieux et perspectives. MEDECINE INTENSIVE REANIMATION 2016. [DOI: 10.1007/s13546-015-1157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Rifkin LM, Minkus CL, Pursell K, Jumroendararasame C, Goldstein DA. Utility of Leflunomide in the Treatment of Drug Resistant Cytomegalovirus Retinitis. Ocul Immunol Inflamm 2015; 25:93-96. [PMID: 26652481 DOI: 10.3109/09273948.2015.1071406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To describe leflunomide use in the treatment of drug resistant cytomegalovirus retinitis. Leflunomide has been shown to be effective in the treatment of systemic CMV viremia. METHODS Retrospective chart review of patients with CMV retinitis treated with leflunomide. RESULTS Two HIV-negative organ transplant recipients with UL 97 mutation resistant-genotype CMV were identified. Patient 1 developed CMV viremia post-kidney transplant and subsequently bilateral CMV retinitis. Retinitis progressed, despite intravitreal injection of ganciclovir and foscarnet, and IV foscarnet and oral valganciclovir. Retinitis control was achieved with the addition of oral leflunomide. Disease remained inactive for 22 months. Patient 2 developed CMV retinitis after lung transplant. Disease progressed despite intravitreal foscarnet injections and oral valganciclovir. Control of retinitis was achieved with addition of oral leflunomide, allowing cessation of intravitreal therapy. Disease remained inactive until his death. CONCLUSIONS Leflunomide may be considered as a treatment option for resistant CMV retinitis.
Collapse
Affiliation(s)
- Lana M Rifkin
- a Department of Ophthalmology , Northwestern University, Feinberg School of Medicine , Chicago , Illinois , USA
| | - Caroline L Minkus
- a Department of Ophthalmology , Northwestern University, Feinberg School of Medicine , Chicago , Illinois , USA
| | - Kenneth Pursell
- b Department of Infectious Disease , University of Chicago , Chicago , Illinois , USA
| | - Chaisiri Jumroendararasame
- a Department of Ophthalmology , Northwestern University, Feinberg School of Medicine , Chicago , Illinois , USA
| | - Debra A Goldstein
- a Department of Ophthalmology , Northwestern University, Feinberg School of Medicine , Chicago , Illinois , USA
| |
Collapse
|
46
|
Uso exitoso de maribavir en un caso de colitis por citomegalovirus farmacorresistente en un paciente receptor de un trasplante cardiaco. Rev Esp Cardiol (Engl Ed) 2015. [DOI: 10.1016/j.recesp.2015.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Zegrí Reiriz I, Gómez-Bueno M, Segovia Cubero J. Successful Use of Maribavir for Drug-resistant Cytomegalovirus Colitis in a Heart Transplant Recipient. ACTA ACUST UNITED AC 2015; 68:908-9. [PMID: 26304135 DOI: 10.1016/j.rec.2015.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/30/2015] [Indexed: 11/25/2022]
Affiliation(s)
- Isabel Zegrí Reiriz
- Servicio de Cardiología, Unidad de Trasplante Cardiaco e Insuficiencia Cardiaca Avanzada, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain.
| | - Manuel Gómez-Bueno
- Servicio de Cardiología, Unidad de Trasplante Cardiaco e Insuficiencia Cardiaca Avanzada, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Javier Segovia Cubero
- Servicio de Cardiología, Unidad de Trasplante Cardiaco e Insuficiencia Cardiaca Avanzada, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| |
Collapse
|
48
|
Chon WJ, Kadambi PV, Xu C, Becker YT, Witkowski P, Pursell K, Kane B, Josephson MA. Use of leflunomide in renal transplant recipients with ganciclovir-resistant/refractory cytomegalovirus infection: a case series from the University of Chicago. Case Rep Nephrol Dial 2015; 5:96-105. [PMID: 26000278 PMCID: PMC4427155 DOI: 10.1159/000381470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction Although antiviral prophylaxis for cytomegalovirus (CMV) is widely used, CMV infection remains common in renal transplant recipients with adverse consequences. Methods We report 5 cases of renal transplant recipients with resistant CMV infection who were successfully managed with leflunomide at the University of Chicago Medical Center. Results Five renal transplant recipients (2 simultaneous pancreas/kidney transplants, 3 deceased donor kidney transplants) were diagnosed with GCV-resistant CMV infection from 2003 to 2011. Of the 4 patients who had resistance genotype testing, 3 showed a UL97 mutation and 1 patient had a clinically resistant CMV infection. All patients received CMV prophylaxis with valganciclovir for 3 months. The number of days from the date of transplant to viremia ranged from 38 to 458 days (median 219). All 5 patients received other antiviral agents (e.g. ganciclovir, foscarnet), and in 4 patients, viremia was cleared before leflunomide was initiated as consolidation (or maintenance) therapy. Conclusion Leflunomide was well tolerated and successful in preventing recurrence of viremia in renal transplant recipients with resistant CMV infection. The beneficial effect of leflunomide in this setting warrants further investigation.
Collapse
Affiliation(s)
- W James Chon
- Section of Nephrology, University of Chicago, Chicago, Ill., USA
| | - Pradeep V Kadambi
- Division of Nephrology and Transplant Medicine, University of Arizona, Tucson, Ariz., USA
| | - Chang Xu
- Section of Nephrology, University of Chicago, Chicago, Ill., USA
| | - Yolanda T Becker
- Section of Transplant Surgery, University of Chicago, Chicago, Ill., USA
| | - Piotr Witkowski
- Section of Transplant Surgery, University of Chicago, Chicago, Ill., USA
| | - Kenneth Pursell
- Section of Infectious Disease, University of Chicago, Chicago, Ill., USA
| | - Brenna Kane
- Department of Pharmacy Services, University of Chicago, Chicago, Ill., USA
| | | |
Collapse
|
49
|
Reprint of: Recent Advances in Cytomegalovirus: An Update on Pharmacologic and Cellular Therapies. Biol Blood Marrow Transplant 2015; 21:S19-24. [DOI: 10.1016/j.bbmt.2014.12.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/03/2014] [Indexed: 12/18/2022]
|
50
|
Recent advances in cytomegalovirus: an update on pharmacologic and cellular therapies. Biol Blood Marrow Transplant 2014; 21:24-9. [PMID: 25452035 DOI: 10.1016/j.bbmt.2014.11.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/03/2014] [Indexed: 12/19/2022]
Abstract
The 2015 Tandem American Society for Blood and Marrow Transplantation/Center for International Blood and Marrow Transplant Meetings provide an opportunity to review the current status and future perspectives on therapy for cytomegalovirus (CMV) infection in the setting of hematopoietic stem cell transplantation (HSCT). After many years during which we have seen few tangible advances in terms of new antiviral drugs, we are now experiencing an exciting period of late-stage drug development, characterized by a series of phase III trials incorporating a variety of novel agents. These trials have the potential to shift our current standard therapeutic strategies, which generally involve pre-emptive therapy based on sensitive molecular surveillance, towards the prophylactic approaches we see more generally with other herpes viruses such as herpes simplex and varicella zoster. This comes at a time when the promise of extensive preclinical research has been translated into encouraging clinical responses with several cellular immunotherapy strategies, which have also been moved towards definitive late-stage clinical trials. How these approaches will be integrated with the new wave of antiviral drugs remains open to conjecture. Although most of the focus of these cellular immunotherapy studies has been on adaptive immunity, and in particular T cells, an increasing awareness of the possible role of other cellular subsets in controlling CMV infection has developed. In particular, the role of natural killer (NK) cells is being revisited, along with that of γδ T cells. Depletion of NK cells in mice results in higher titers of murine CMV in tissues and increased mortality, whereas NK cell deficiency in humans has been linked to severe CMV disease. We will review recent progress in these areas.
Collapse
|