1
|
Sun L, Zhao X, Tan X, Song L, Ma Z, Wang J, Lan P, Chen S, Chen G. High mobility group box-1 protein-mediated class II major histocompatibility complex transactivator superenhancers are critical for dendritic cell-trained immunity in acute-to-chronic progression of allograft rejection. Am J Transplant 2025; 25:954-968. [PMID: 39884654 DOI: 10.1016/j.ajt.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/31/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Chronic allograft rejection is mainly mediated by indirect recognition. Dendritic cells (DCs), as the major antigen-presenting cells in indirect recognition, exhibit an enhanced antigen-presenting ability in chronic rejection, but the specific mechanism is still unclear. Here, we found that pretreatment with high mobility group box-1 protein (HMGB1) in vivo can induce trained immunity in DCs. These trained DCs demonstrated an enhanced ability to present alloantigen, accelerating allograft rejection in a CTLA4-Ig-induced chronic rejection model by upregulating the expression of major histocompatibility complex (MHC)-II and class II major histocompatibility complex transactivator (CIITA) molecules. Mechanistically, we found that HMGB1 promoted the formation of superenhancers (SEs) of CIITA, epigenetically reprogramming DCs and promoting trained immunity. The SE inhibitor JQ1 reduced the expression of CIITA and MHC-II in DCs, thereby delaying the occurrence of chronic rejection. Interestingly, we identified HMGB1 as a specific inducer of SE formation in a newly named SEa region of CIITA. Targeted knockout of the CIITA's SEa region inhibited HMGB1-induced trained immunity in DCs. Taken together, our data confirm that HMGB1 can induce the formation of the SEs of CIITA, promote trained immunity in DCs, and accelerate allograft rejection, thus offering a new potential target for the treatment of chronic rejection.
Collapse
Affiliation(s)
- Lingjuan Sun
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiangli Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Liu Song
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhibo Ma
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jingzeng Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China; NHC Key Laboratory of Organ Transplantation, Wuhan, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
2
|
Yao Q, Zheng X, Zhang X, Wang Y, Zhou Q, Lv J, Zheng L, Lan J, Chen W, Chen J, Chen D. METTL3 Potentiates M2 Macrophage-Driven MMT to Aggravate Renal Allograft Fibrosis via the TGF-β1/Smad3 Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412123. [PMID: 39869489 PMCID: PMC11923867 DOI: 10.1002/advs.202412123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/09/2025] [Indexed: 01/29/2025]
Abstract
METTL3, a key enzyme in N6-methyladenosine (m6A) modification, plays a crucial role in the progression of renal fibrosis, particularly in chronic active renal allograft rejection (CAR). This study explored the mechanisms by which METTL3 promotes renal allograft fibrosis, focusing on its role in the macrophage-to-myofibroblast transition (MMT). Using a comprehensive experimental approach, including TGF-β1-induced MMT cell models, METTL3 conditional knockout (METTL3 KO) mice, and renal biopsy samples from patients with CAR, the study investigates the involvement of METTL3/Smad3 axis in driving MMT and renal fibrosis during the episodes of CAR. We found that elevated m6A modification and METTL3 levels strongly correlated with enhanced MMT and increased fibrotic severity. METTL3 knockout (METTL3 KO) significantly increased the m6A modification of Smad3, decreased Smad3 expression, and inhibited M2-driven MMT. Smad3 knockdown with siRNA (siSmad3) further inhibited M2-driven MMT, while Smad3 overexpression rescued the inhibitory effects of METTL3 silencing, restoring M2-driven MMT and fibrotic tissue damage. Additionally, the METTL3 inhibitor STM2457 effectively reversed M2-driven MMT and alleviated fibrotic tissue damage in CAR. These findings highlight that METTL3 enhances M2-driven MMT in renal fibrosis during CAR by promoting the TGF-β1/Smad3 axis, suggesting that METTL3 is a promising therapeutic target for mitigating renal fibrosis in CAR.
Collapse
Affiliation(s)
- Qinfan Yao
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Xiaoxiao Zheng
- Cancer Institute of lntegrated Traditional Chinese and Western MedicineKey Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Key Laboratory of Disease‐Syndrome Integrated Cancer Prevention and TreatmentZhejiang Academy of Traditional Chinese MedicineHangzhouZhejiang310012China
| | - Xinyi Zhang
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Yucheng Wang
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Qin Zhou
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Junhao Lv
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Li Zheng
- Cancer Institute of lntegrated Traditional Chinese and Western MedicineKey Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Key Laboratory of Disease‐Syndrome Integrated Cancer Prevention and TreatmentZhejiang Academy of Traditional Chinese MedicineHangzhouZhejiang310012China
| | - Jiahua Lan
- Cancer Institute of lntegrated Traditional Chinese and Western MedicineKey Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Key Laboratory of Disease‐Syndrome Integrated Cancer Prevention and TreatmentZhejiang Academy of Traditional Chinese MedicineHangzhouZhejiang310012China
| | - Wei Chen
- Department of General SurgerySir Run‐Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal InfectionSir Run‐Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Jianghua Chen
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Dajin Chen
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| |
Collapse
|
3
|
Peng L, Wang C, Yu S, Li Q, Wu G, Lai W, Min J, Chen G. Dysregulated lipid metabolism is associated with kidney allograft fibrosis. Lipids Health Dis 2024; 23:37. [PMID: 38308271 PMCID: PMC10837934 DOI: 10.1186/s12944-024-02021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Interstitial fibrosis and tubular atrophy (IF/TA), a histologic feature of kidney allograft destruction, is linked to decreased allograft survival. The role of lipid metabolism is well-acknowledged in the area of chronic kidney diseases; however, its role in kidney allograft fibrosis is still unclarified. In this study, how lipid metabolism contributes to kidney allografts fibrosis was examined. METHODS A comprehensive bioinformatic comparison between IF/TA and normal kidney allograft in the Gene Expression Omnibus (GEO) database was conducted. Further validations through transcriptome profiling or pathological staining of human recipient biopsy samples and in rat models of kidney transplantation were performed. Additionally, the effects of enhanced lipid metabolism on changes in the fibrotic phenotype induced by TGF-β1 were examined in HK-2 cell. RESULTS In-depth analysis of the GEO dataset revealed a notable downregulation of lipid metabolism pathways in human kidney allografts with IF/TA. This decrease was associated with increased level of allograft rejection, inflammatory responses, and epithelial mesenchymal transition (EMT). Pathway enrichment analysis showed the downregulation in mitochondrial LC-fatty acid beta-oxidation, fatty acid beta-oxidation (FAO), and fatty acid biosynthesis. Dysregulated fatty acid metabolism was also observed in biopsy samples from human kidney transplants and in fibrotic rat kidney allografts. Notably, the areas affected by IF/TA had increased immune cell infiltration, during which increased EMT biomarkers and reduced CPT1A expression, a key FAO enzyme, were shown by immunohistochemistry. Moreover, under TGF-β1 induction, activating CPT1A with the compound C75 effectively inhibited migration and EMT process in HK-2 cells. CONCLUSIONS This study reveal a critical correlation between dysregulated lipid metabolism and kidney allograft fibrosis. Enhancing lipid metabolism with CPT1A agonists could be a therapeutic approach to mitigate kidney allografts fibrosis.
Collapse
Affiliation(s)
- Linjie Peng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- The First Affiliated Hospital, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University, Guangzhou, China
| | - Chang Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- The First Affiliated Hospital, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University, Guangzhou, China
| | - Shuangjin Yu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- The First Affiliated Hospital, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University, Guangzhou, China
| | - Qihao Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- The First Affiliated Hospital, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University, Guangzhou, China
| | - Guobin Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- The First Affiliated Hospital, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University, Guangzhou, China
| | - Weijie Lai
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- The First Affiliated Hospital, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University, Guangzhou, China
| | - Jianliang Min
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- The First Affiliated Hospital, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University, Guangzhou, China
| | - Guodong Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- The First Affiliated Hospital, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Sadozai H, Rojas-Luengas V, Farrokhi K, Moshkelgosha S, Guo Q, He W, Li A, Zhang J, Chua C, Ferri D, Mian M, Adeyi O, Seidman M, Gorczynski RM, Juvet S, Atkins H, Levy GA, Chruscinski A. Congenic hematopoietic stem cell transplantation promotes survival of heart allografts in murine models of acute and chronic rejection. Clin Exp Immunol 2023; 213:138-154. [PMID: 37004176 PMCID: PMC10324556 DOI: 10.1093/cei/uxad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/19/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The ability to induce tolerance would be a major advance in the field of solid organ transplantation. Here, we investigated whether autologous (congenic) hematopoietic stem cell transplantation (HSCT) could promote tolerance to heart allografts in mice. In an acute rejection model, fully MHC-mismatched BALB/c hearts were heterotopically transplanted into C57BL/6 (CD45.2) mice. One week later, recipient mice were lethally irradiated and reconstituted with congenic B6 CD45.1 Lin-Sca1+ckit+ cells. Recipient mice received a 14-day course of rapamycin both to prevent rejection and to expand regulatory T cells (Tregs). Heart allografts in both untreated and rapamycin-treated recipients that did not undergo HSCT were rejected within 33 days (median survival time = 8 days for untreated recipients, median survival time = 32 days for rapamycin-treated recipients), whereas allografts in HSCT-treated recipients had a median survival time of 55 days (P < 0.001 vs. both untreated and rapamycin-treated recipients). Enhanced allograft survival following HSCT was associated with increased intragraft Foxp3+ Tregs, reduced intragraft B cells, and reduced serum donor-specific antibodies. In a chronic rejection model, Bm12 hearts were transplanted into C57BL/6 (CD45.2) mice, and congenic HSCT was performed two weeks following heart transplantation. HSCT led to enhanced survival of allografts (median survival time = 70 days vs. median survival time = 28 days in untreated recipients, P < 0.01). Increased allograft survival post-HSCT was associated with prevention of autoantibody development and absence of vasculopathy. These data support the concept that autologous HSCT can promote immune tolerance in the setting of allotransplantation. Further studies to optimize HSCT protocols should be performed before this procedure is adopted clinically.
Collapse
Affiliation(s)
- Hassan Sadozai
- Center for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Rojas-Luengas
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Kaveh Farrokhi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Qinli Guo
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Wei He
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Angela Li
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jianhua Zhang
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Conan Chua
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Dario Ferri
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Muhtashim Mian
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Oyedele Adeyi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Seidman
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Reginald M Gorczynski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Juvet
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Harold Atkins
- Division of Hematology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Gary A Levy
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Andrzej Chruscinski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Tseng HT, Lin YW, Huang CY, Shih CM, Tsai YT, Liu CW, Tsai CS, Lin FY. Animal Models for Heart Transplantation Focusing on the Pathological Conditions. Biomedicines 2023; 11:biomedicines11051414. [PMID: 37239085 DOI: 10.3390/biomedicines11051414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Cardiac transplant recipients face many complications due to transplant rejection. Scientists must conduct animal experiments to study disease onset mechanisms and develop countermeasures. Therefore, many animal models have been developed for research topics including immunopathology of graft rejection, immunosuppressive therapies, anastomotic techniques, and graft preservation techniques. Small experimental animals include rodents, rabbits, and guinea pigs. They have a high metabolic rate, high reproductive rate, small size for easy handling, and low cost. Additionally, they have genetically modified strains for pathological mechanisms research; however, there is a lacuna, as these research results rarely translate directly to clinical applications. Large animals, including canines, pigs, and non-human primates, have anatomical structures and physiological states that are similar to those of humans; therefore, they are often used to validate the results obtained from small animal studies and directly speculate on the feasibility of applying these results in clinical practice. Before 2023, PubMed Central® at the United States National Institute of Health's National Library of Medicine was used for literature searches on the animal models for heart transplantation focusing on the pathological conditions. Unpublished reports and abstracts from conferences were excluded from this review article. We discussed the applications of small- and large-animal models in heart transplantation-related studies. This review article aimed to provide researchers with a complete understanding of animal models for heart transplantation by focusing on the pathological conditions created by each model.
Collapse
Affiliation(s)
- Horng-Ta Tseng
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Wen Lin
- Institute of Oral Biology, National Yang Ming Chiao Tung University (Yangming Campus), Taipei 112304, Taiwan
| | - Chun-Yao Huang
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Ming Shih
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Ting Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, Defense Medical Center, Taipei 11490, Taiwan
| | - Chen-Wei Liu
- Department of Basic Medical Science, College of Medicine, University of Arizona, Phoenix, AZ 85721, USA
| | - Chien-Sung Tsai
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Surgery, Tri-Service General Hospital, Defense Medical Center, Taipei 11490, Taiwan
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Feng-Yen Lin
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
6
|
Kanemitsu E, Zhao X, Iwaisako K, Inoue A, Takeuchi A, Yagi S, Masumoto H, Ohara H, Hosokawa M, Awaya T, Aoki J, Hatano E, Uemoto S, Hagiwara M. Antagonist of sphingosine 1-phosphate receptor 3 reduces cold injury of rat donor hearts for transplantation. Transl Res 2022; 255:26-36. [PMID: 36347491 DOI: 10.1016/j.trsl.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
Cold storage is widely used to preserve an organ for transplantation; however, a long duration of cold storage negatively impacts graft function. Unfortunately, the mechanisms underlying cold exposure remain unclear. Based on the sphingosine-1-phosphate (S1P) signal involved in cold tolerance in hibernating mammals, we hypothesized that S1P signal blockage reduces damage from cold storage. We used an in vitro cold storage and rewarming model to evaluate cold injury and investigated the relationship between cold injury and S1P signal. Compounds affecting S1P receptors (S1PR) were screened for their protective effect in this model and its inhibitory effect on S1PRs was measured using the NanoLuc Binary Technology (NanoBiT)-β-arrestin recruitment assays. The effects of a potent antagonist were examined via heterotopic abdominal rat heart transplantation. The heart grafts were transplanted after 24-hour preservation and evaluated on day 7 after transplantation. Cold injury increased depending on the cold storage time and was induced by S1P. The most potent antagonist strongly suppressed cold injury consistent with the effect of S1P deprivation in vitro. In vivo, this antagonist enabled 24-hour preservation, and drastically improved the beating score, cardiac size, and serological markers. Pathological analysis revealed that it suppressed the interstitial edema, inflammatory cell infiltration, myocyte lesion, TUNEL-positive cell death, and fibrosis. In conclusion, S1PR3 antagonist reduced cold injury, extended the cold preservation time, and improved graft viability. Cold preservation strategies via S1P signaling may have clinical applications in organ preservation for transplantation and contribute to an increase in the donor pool.
Collapse
Affiliation(s)
- Eisho Kanemitsu
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiangdong Zhao
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Iwaisako
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Akihide Takeuchi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Developmental Biology and Functional Genomics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shintaro Yagi
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hidetoshi Masumoto
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Hiroaki Ohara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoyasu Hosokawa
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonari Awaya
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Etsuro Hatano
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Far-Infrared Therapy Decreases Orthotopic Allograft Transplantation Vasculopathy. Biomedicines 2022; 10:biomedicines10051089. [PMID: 35625826 PMCID: PMC9139124 DOI: 10.3390/biomedicines10051089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Orthotopic allograft transplantation (OAT) is a major strategy for solid heart and kidney failure. However, the recipient’s immunity-induced chronic rejection induces OAT vasculopathy that results in donor organ failure. With the exception of immunosuppressive agents, there are currently no specific means to inhibit the occurrence of OAT vasculopathy. On the other hand, far-infrared (FIR) therapy uses low-power electromagnetic waves given by FIR, with a wavelength of 3–25 μm, to improve human physiological functions. Previous studies have shown that FIR therapy can effectively inhibit inflammation. It has also been widely used in adjuvant therapy for various clinical diseases, especially cardiovascular diseases, in recent years. Thus, we used this study to explore the feasibility of FIR in preventing OAT vasculopathy. In this study, the model of transplantation of an aorta graft from PVG/Seac rat to ACI/NKyo rat, and in vitro model of human endothelial progenitor cells (EPCs) was used. In this report, we presented that FIR therapy decreased the serious of vasculopathy in OAT-recipient ACI/NKyo rats via inhibiting proliferation of smooth muscle cells, accumulation of collagen, and infiltration of fibroblast in the vessel wall; humoral and cell-mediated immune responses were decreased in the spleen. The production of inflammatory proteins/cytokines also decreased in the plasma. Additionally, FIR therapy presented higher mobilization and circulating EPC levels associated with vessel repair in OAT-recipient ACI/NKyo rats. In vitro studies demonstrated that the underlying mechanisms of FIR therapy inhibiting OAT vasculopathy may be associated with the inhibition of the Smad2-Slug axis endothelial mesenchymal transition (EndoMT). Thus, FIR therapy may be the strategy to prevent chronic rejection-induced vasculopathy.
Collapse
|
8
|
Schaefer AK, Kiss A, Oszwald A, Nagel F, Acar E, Aliabadi-Zuckermann A, Hackl M, Zuckermann A, Kain R, Jakubowski A, Ferdinandy P, Hallström S, Podesser BK. Single Donor Infusion of S-Nitroso-Human-Serum-Albumin Attenuates Cardiac Isograft Fibrosis and Preserves Myocardial Micro-RNA-126-3p in a Murine Heterotopic Heart Transplant Model. Transpl Int 2022; 35:10057. [PMID: 35497886 PMCID: PMC9045410 DOI: 10.3389/ti.2022.10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
Objectives: Cold ischemia and subsequent reperfusion injury are non-immunologic cornerstones in the development of graft injury after heart transplantation. The nitric oxide donor S-nitroso-human-serum-albumin (S-NO-HSA) is known to attenuate myocardial ischemia-reperfusion (I/R)-injury. We assessed whether donor preservation with S-NO-HSA affects isograft injury and myocardial expression of GATA2 as well as miR-126-3p, which are considered protective against vascular and endothelial injury. Methods: Donor C57BL/6 mice received intravenous (0.1 μmol/kg/h) S-NO-HSA (n = 12), or 0.9% saline (control, n = 11) for 20 min. Donor hearts were stored in cold histidine-tryptophan-α-ketoglutarate-N solution for 12 h and underwent heterotopic, isogenic transplantation, except 5 hearts of each group, which were analysed immediately after preservation. Fibrosis was quantified and expression of GATA2 and miR-126-3p assessed by RT-qPCR after 60 days or immediately after preservation. Results: Fibrosis was significantly reduced in the S-NO-HSA group (6.47% ± 1.76 vs. 11.52% ± 2.16; p = 0.0023; 12 h-S-NO-HSA-hHTX vs. 12 h-control-hHTX). Expression of miR-126-3p was downregulated in all hearts after ischemia compared to native myocardium, but the effect was significantly attenuated when donors received S-NO-HSA (1 ± 0.27 vs. 0.33 ± 0.31; p = 0.0187; 12 h-S-NO-HSA-hHTX vs. 12 h-control-hHTX; normalized expression to U6 snRNA). Conclusion: Donor pre-treatment with S-NO-HSA lead to reduced fibrosis and preservation of myocardial miR-126-3p and GATA2 levels in murine cardiac isografts 60 days after transplantation.
Collapse
Affiliation(s)
- Anne-Kristin Schaefer
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria.,Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - André Oszwald
- Department of Pathology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Felix Nagel
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Eylem Acar
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | | | | - Andreas Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Andrzej Jakubowski
- Department of Pharmacology, Jagiellonian University Medical College, Kraków, Poland.,Department of Anesthesiology and Intensive Care, Małopolska Orthopedic and Rehabilitation Hospital, Kraków, Poland
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Seth Hallström
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Hall BM, Hall RM, Tran GT, Robinson CM, Wilcox PL, Rakesh PK, Wang C, Sharland AF, Verma ND, Hodgkinson SJ. Interleukin-5 (IL-5) Therapy Prevents Allograft Rejection by Promoting CD4 +CD25 + Ts2 Regulatory Cells That Are Antigen-Specific and Express IL-5 Receptor. Front Immunol 2021; 12:714838. [PMID: 34912327 PMCID: PMC8667344 DOI: 10.3389/fimmu.2021.714838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/01/2021] [Indexed: 12/26/2022] Open
Abstract
CD4+CD25+Foxp3+T cell population is heterogenous and contains three major sub-groups. First, thymus derived T regulatory cells (tTreg) that are naïve/resting. Second, activated/memory Treg that are produced by activation of tTreg by antigen and cytokines. Third, effector lineage CD4+CD25+T cells generated from CD4+CD25- T cells' activation by antigen to transiently express CD25 and Foxp3. We have shown that freshly isolated CD4+CD25+T cells are activated by specific alloantigen and IL-4, not IL-2, to Ts2 cells that express the IL-5 receptor alpha. Ts2 cells are more potent than naïve/resting tTreg in suppressing specific alloimmunity. Here, we showed rIL-5 promoted further activation of Ts2 cells to Th2-like Treg, that expressed foxp3, irf4, gata3 and il5. In vivo, we studied the effects of rIL-5 treatment on Lewis heart allograft survival in F344 rats. Host CD4+CD25+T cells were assessed by FACS, in mixed lymphocyte culture and by RT-PCR to examine mRNA of Ts2 or Th2-like Treg markers. rIL-5 treatment given 7 days after transplantation reduced the severity of rejection and all grafts survived ≥60d whereas sham treated rats fully rejected by day 31 (p<0.01). Treatment with anti-CD25 or anti-IL-4 monoclonal antibody abolished the benefits of treatment with rIL-5 and accelerated rejection. After 10d treatment with rIL-5, hosts' CD4+CD25+ cells expressed more Il5ra and responded to specific donor Lewis but not self. Enriched CD4+CD25+ cells from rIL-5 treated rats with allografts surviving >60 days proliferated to specific donor only when rIL-5 was present and did not proliferate to self or third party. These cells had more mRNA for molecules expressed by Th2-like Treg including Irf4, gata3 and Il5. These findings were consistent with IL-5 treatment preventing rejection by activation of Ts2 cells and Th2-like Treg.
Collapse
Affiliation(s)
- Bruce M Hall
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Rachael M Hall
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Giang T Tran
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Catherine M Robinson
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Paul L Wilcox
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Prateek K Rakesh
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Chuanmin Wang
- Transplantation Immunobiology Group, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Alexandra F Sharland
- Transplantation Immunobiology Group, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nirupama D Verma
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Suzanne J Hodgkinson
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
10
|
Transferring Plasmon Effect on a Biological System: Expression of Biological Polymers in Chronic Rejection and Inflammatory Rat Model. Polymers (Basel) 2021; 13:polym13111827. [PMID: 34072966 PMCID: PMC8199201 DOI: 10.3390/polym13111827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023] Open
Abstract
The plasmon-activated water (PAW) that reduces hydrogen bonds is made of deionized reverse osmosis water (ROW). However, compared with ROW, PAW has a significantly higher diffusion coefficient and electron transfer rate constant in electrochemical reactions. PAW has a boiling point of 97 °C and specific heat of0.94; the energy of PAW is also 1121 J/mol higher than ordinary water. The greater the force of hydrogen bonds between H2O, the larger the volume of the H2O cluster, and the easier it is to lose the original characteristics. The hydrogen bonding force of PAW is weak, so the volume of its cluster is small, and it exists in a state very close to a single H2O. PAW has a high permeability and diffusion rate, which can improve the needs of biological applications and meet the dependence of biological organisms on H2O when performing physiological functions. PAW can successfully remove free radicals, and efficiently reduce lipopolysaccharide (LPS)-induced monocytes to release nitric oxide. PAW can induce expression of the antioxidant gene Nrf2 in human gingival fibroblasts, lower amyloid burden in mice with Alzheimer’s disease, and decrease metastasis in mice grafted with Lewis lung carcinoma cells. Because the transferring plasmon effect may improve the abnormality of physiological activity in a biological system, we aimed to evaluate the influence of PAW on orthotopic allograft transplantation (OAT)-induced vasculopathy in this study. Here, we demonstrated that daily intake of PAW lowered the progression of vasculopathy in OAT-recipient ACI/NKyo rats by inhibiting collagen accumulation, proliferation of smooth muscle cells and fibroblasts, and T lymphocyte infiltration in the vessel wall. The results showed reduced T and B lymphocytes, plasma cells, and macrophage activation in the spleen of the OAT-recipient ACI/NKyo rats that were administered PAW. In contrast to the control group, the OAT-recipient ACI/NKyo rats that were administered PAW exhibited higher mobilization and levels of circulating endothelial progenitor cells associated with vessel repair. We use the transferring plasmon effect to adjust and maintain the biochemical properties of water, and to meet the biochemical demand of organisms. Therefore, this study highlights the therapeutic roles of PAW and provides more biomedical applicability for the transferring plasmon effect.
Collapse
|
11
|
Dipeptidyl Peptidase-4 Inhibitor Decreases Allograft Vasculopathy Via Regulating the Functions of Endothelial Progenitor Cells in Normoglycemic Rats. Cardiovasc Drugs Ther 2020; 35:1111-1127. [PMID: 32623597 DOI: 10.1007/s10557-020-07013-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Chronic rejection induces the occurrence of orthotopic allograft transplantation (OAT) vasculopathy, which results in failure of the donor organ. Numerous studies have demonstrated that in addition to regulating blood sugar homeostasis, dipeptidyl peptidase-4 (DPP-4) inhibitors can also provide efficacious therapeutic and protective effects against cardiovascular diseases. However, their effects on OAT-induced vasculopathy remain unknown. Thus, the aim of this study was to investigate the direct effects of sitagliptin on OAT vasculopathy in vivo and in vitro. METHODS The PVG/Seac rat thoracic aorta graft to ACI/NKyo rat abdominal aorta model was used to explore the effects of sitagliptin on vasculopathy. Human endothelial progenitor cells (EPCs) were used to investigate the possible underlying mechanisms. RESULTS We demonstrated that sitagliptin decreases vasculopathy in OAT ACI/NKyo rats. Treatment with sitagliptin decreased BNP and HMGB1 levels, increased GLP-1 activity and stromal cell-derived factor 1α (SDF-1α) expression, elevated the number of circulating EPCs, and improved the differentiation possibility of mononuclear cells to EPCs ex vivo. However, in vitro studies showed that recombinant B-type natriuretic peptide (BNP) and high mobility group box 1 (HMGB1) impaired EPC function, whereas these phenomena were reversed by glucagon-like peptide 1 (GLP-1) receptor agonist treatment. CONCLUSIONS We suggest that the mechanisms underlying sitagliptin-mediated inhibition of OAT vasculopathy probably occur through a direct increase in GLP-1 activity. In addition to the GLP-1-dependent pathway, sitagliptin may regulate SDF-1α levels and EPC function to reduce OAT-induced vascular injury. This study may provide new prevention and treatment strategies for DPP-4 inhibitors in chronic rejection-induced vasculopathy.
Collapse
|
12
|
Puscz F, Dadras M, Dermietzel A, Jacobsen F, Lehnhardt M, Behr B, Hirsch T, Kueckelhaus M. A chronic rejection model and potential biomarkers for vascularized composite allotransplantation. PLoS One 2020; 15:e0235266. [PMID: 32589662 PMCID: PMC7319338 DOI: 10.1371/journal.pone.0235266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chronic rejection remains the Achilles heel in vascularized composite allotransplantation. Animal models to specifically study chronic rejection in vascularized composite allotransplantation do not exist so far. However, there are established rat models to study chronic rejection in solid organ transplantation such as allogeneic transplantation between the rat strains Lewis and Fischer344. Thus, we initiated this study to investigate the applicability of hindlimb transplantation between these strains to imitate chronic rejection in vascularized composite allotransplantation and identify potential markers. METHODS Allogeneic hindlimb transplantation were performed between Lewis (recipient) and Fischer344 (donor) rats with either constant immunosuppression or a high dose immunosuppressive bolus only in case of acute skin rejections. Histology, immunohistochemistry, microarray and qPCR analysis were used to detect changes in skin and muscle at postoperative day 100. RESULTS We were able to demonstrate significant intimal proliferation, infiltration of CD68 and CD4 positive cells, up-regulation of inflammatory cytokines and initiation of muscular fibrosis in the chronic rejection group. Microarray analysis and subsequent qPCR identified CXC ligands 9-11 as potential markers of chronic rejection. CONCLUSIONS The Fischer344 to Lewis hindlimb transplantation model may represent a new option to study chronic rejection in vascularized composite allotransplantation in an experimental setting. CXC ligands 9-11 deserve further research to investigate their role as chronic rejection markers.
Collapse
Affiliation(s)
- Flemming Puscz
- Department of Plastic Surgery, Burn Centre, BG University Hospital Bergmannsheil, Bochum, Germany
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Mehran Dadras
- Department of Plastic Surgery, Burn Centre, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Alexander Dermietzel
- Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide, Muenster, Germany
| | - Frank Jacobsen
- Department of Plastic Surgery, Burn Centre, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, Burn Centre, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, Burn Centre, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Tobias Hirsch
- Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide, Muenster, Germany
| | - Maximilian Kueckelhaus
- Division of Plastic Surgery, Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Fachklinik Hornheide, Muenster, Germany
| |
Collapse
|
13
|
Minami K, Bae S, Uehara H, Zhao C, Lee D, Iske J, Fanger MW, Reder J, Morrison I, Azuma H, Wiens A, Van Keuren E, Houser B, El-Khal A, Kang PM, Tullius SG. Targeting of intragraft reactive oxygen species by APP-103, a novel polymer product, mitigates ischemia/reperfusion injury and promotes the survival of renal transplants. Am J Transplant 2020; 20:1527-1537. [PMID: 31991042 PMCID: PMC8609414 DOI: 10.1111/ajt.15794] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 01/25/2023]
Abstract
Inflammatory responses associated with ischemia/reperfusion injury (IRI) play a central role in alloimmunity and transplant outcomes. A key event driving these inflammatory responses is the burst of reactive oxygen species (ROS), with hydrogen peroxide (H2 O2 ) as the most abundant form that occurs as a result of surgical implantation of the donor organ. Here, we used a syngeneic rat renal transplant and IRI model to evaluate the therapeutic properties of APP-103, a polyoxalate-based copolymer molecule containing vanillyl alcohol (VA) that exhibits high sensitivity and specificity toward the production of H2 O2 . We show that APP-103 is safe, and that it effectively promotes kidney function following IRI and survival of renal transplants. APP-103 reduces tissue injury and IRI-associated inflammatory responses in models of both warm ischemia (kidney clamping) and prolonged cold ischemia (syngeneic renal transplant). Mechanistically, we demonstrate that APP-103 exerts protective effects by specifically targeting the production of ROS. Our data introduce APP-103 as a novel, nontoxic, and site-activating therapeutic approach that effectively ameliorates the consequences of IRI in solid organ transplantation.
Collapse
Affiliation(s)
- Koichiro Minami
- Division of Transplant Surgery, Brigham and Women’s Hospital, Boston, MA, Harvard Medical School, Boston, MA, U.S.A.; U.S.A.;,Department of Urology, Osaka Medical College, Takatsuki-city, Osaka Japan
| | - Soochan Bae
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, U.S.A
| | - Hirofumi Uehara
- Division of Transplant Surgery, Brigham and Women’s Hospital, Boston, MA, Harvard Medical School, Boston, MA, U.S.A.; U.S.A.;,Department of Urology, Osaka Medical College, Takatsuki-city, Osaka Japan
| | - Chen Zhao
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington DC 20057, U.S.A
| | - Dongwon Lee
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea
| | - Jasper Iske
- Division of Transplant Surgery, Brigham and Women’s Hospital, Boston, MA, Harvard Medical School, Boston, MA, U.S.A.; U.S.A.;,Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Lower Saxony, Germany
| | | | - Jake Reder
- Celdara Medical, LLC, Lebanon, NH, U.S.A
| | | | - Haruhito Azuma
- Department of Urology, Osaka Medical College, Takatsuki-city, Osaka Japan
| | - Astrid Wiens
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA. USA
| | - Edward Van Keuren
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington DC 20057, U.S.A
| | | | - Abdala El-Khal
- Division of Transplant Surgery, Brigham and Women’s Hospital, Boston, MA, Harvard Medical School, Boston, MA, U.S.A.; U.S.A.;,Department of Urology, Osaka Medical College, Takatsuki-city, Osaka Japan
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, U.S.A
| | - Stefan G. Tullius
- Division of Transplant Surgery, Brigham and Women’s Hospital, Boston, MA, Harvard Medical School, Boston, MA, U.S.A.; U.S.A.;,Department of Urology, Osaka Medical College, Takatsuki-city, Osaka Japan
| |
Collapse
|
14
|
Normothermic machine perfusion of ischaemically damaged porcine kidneys with autologous, allogeneic porcine and human red blood cells. PLoS One 2020; 15:e0229566. [PMID: 32155167 PMCID: PMC7064242 DOI: 10.1371/journal.pone.0229566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/09/2020] [Indexed: 01/01/2023] Open
Abstract
In porcine kidney auto-transplant models, red blood cells (RBCs) are required for ex-vivo normothermic machine perfusion (NMP). As large quantities of RBCs are needed for NMP, utilising autologous RBCs would imply lethal exsanguination of the pig that is donor and recipient-to-be in the same experiment. The purpose of this study was to determine if an isolated porcine kidney can also be perfused with allogeneic porcine or human RBCs instead. Porcine kidneys, autologous and allogeneic blood were obtained from a local slaughterhouse. Human RBCs (O-pos), were provided by our transfusion laboratory. Warm ischaemia time was standardised at 20 minutes and subsequent hypothermic machine perfusion lasted 1.5–2.5 hours. Next, kidneys underwent NMP at 37°C during 7 hours with Williams' Medium E and washed, leukocyte depleted RBCs of either autologous, allogeneic, or human origin (n = 5 per group). During perfusion all kidneys were functional and produced urine. No macroscopic adverse reactions were observed. Creatinine clearance during NMP was significantly higher in the human RBC group in comparison with the allogeneic group (P = 0.049) but not compared to the autologous group. The concentration of albumin in the urine was significantly higher in the human RBC group (P <0.001) compared to the autologous and allogeneic RBC group. Injury marker aspartate aminotransferase was significantly higher in the human RBC group in comparison with the allogeneic group (P = 0.040) but not in comparison with the autologous group. Renal histology revealed glomerular and tubular damage in all groups. Signs of pathological hyperfiltration and microvascular injury were only observed in the human RBC group. In conclusion, perfusion of porcine kidneys with RBCs of different origin proved technically feasible. However, laboratory analysis and histology revealed more damage in the human RBC group compared to the other two groups. These results indicate that the use of allogeneic RBCs is preferable to human RBCs in a situation where autologous RBCs cannot be used for NMP.
Collapse
|
15
|
Kollar B, Kamat P, Klein H, Waldner M, Schweizer R, Plock J. The Significance of Vascular Alterations in Acute and Chronic Rejection for Vascularized Composite Allotransplantation. J Vasc Res 2019; 56:163-180. [DOI: 10.1159/000500958] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/14/2019] [Indexed: 11/19/2022] Open
|
16
|
|
17
|
Costello R, Kissenpfennig A, Martins PN, McDaid J. Development of transplant immunosuppressive agents - considerations in the use of animal models. Expert Opin Drug Discov 2018; 13:1041-1053. [PMID: 30332905 DOI: 10.1080/17460441.2018.1535589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION The development of all immunosuppressant agents to date has involved the experimental use of large and small animal models. Over the last half-century, immunosuppressive drugs have extended the lives of transplant patients worldwide. However, the use of animal models in the development of these drugs is not perfect, and this has brought to light a number of issues including idiosyncratic reactions that are found in animal models but not in humans. The 2006 highly publicized case of the 'elephant man' TGN 1412 drug trial highlights the importance of being cogent of the limitations of animal models. Areas covered: This review covers the utility and limitations of the use of animal models for the development of immunosuppressant agents. This includes both large and small animal models, particularly rodent models in the transplant setting. Expert opinion: The use of animal models represents a critical stage in the development of immunosuppressive drugs. Limitations include physiological differences to humans; this is especially true of immunologically naïve lab rodents with small memory cell populations. Toxic drug levels may differ widely between species. Animal models are also costly and raise ethical concerns. However, there is currently no way to recreate the complex environment of the human immune system purely in vitro.
Collapse
Affiliation(s)
- Russell Costello
- a Wellcome Wolfson Institute for Experimental Medicine , Queen's University , Belfast , UK
| | - Adrien Kissenpfennig
- a Wellcome Wolfson Institute for Experimental Medicine , Queen's University , Belfast , UK
| | - Paulo N Martins
- b Department of Surgery, Division of Transplantation, UMass Memorial Medical Center , University of Massachusetts , Worchester , MA , USA
| | - James McDaid
- c Department of Transplant Surgery , City Hospital , Belfast , UK
| |
Collapse
|
18
|
Prevention of chronic renal allograft rejection by AS2553627, a novel JAK inhibitor, in a rat transplantation model. Transpl Immunol 2017; 46:14-20. [PMID: 28988984 DOI: 10.1016/j.trim.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Janus kinase (JAK) inhibitors are thought to be promising candidates to aid renal transplantation. However, the effectiveness of JAK inhibitors against features of chronic rejection, including interstitial fibrosis/tubular atrophy (IF/TA) and glomerulosclerosis, has not been elucidated. Here, we investigated the effect of AS2553627, a novel JAK inhibitor, on the development of chronic rejection in rat renal transplantation. METHODS Lewis (LEW) to Brown Norway (BN) rat renal transplantation was performed. Tacrolimus (TAC) at 0.1mg/kg was administered intramuscularly once a day for 10 consecutive days starting on the day of transplantation (days 0 to 9) to prevent initial acute rejection. After discontinuation of TAC treatment from days 10 to 28, AS2553627 (1 and 10mg/kg) was orally administered with TAC. At 13weeks after renal transplantation, grafts were harvested for histopathological and mRNA analysis. Creatinine and donor-specific antibodies were measured from plasma samples. Urinary protein and kidney injury markers were also evaluated. RESULTS AS2553627 in combination with TAC exhibited low plasma creatinine and a marked decrease in urinary protein and kidney injury markers, such as tissue inhibitor of metalloproteinase-1 and kidney injury molecule-1. At 13weeks, histopathological analysis revealed that AS2553627 treatment inhibited glomerulosclerosis and IF/TA. In addition, upregulation of cell surface markers, fibrosis/epithelial-mesenchymal transition and inflammation-related genes were reduced by the combination of AS2553672 and TAC, particularly CD8 and IL-6 mRNAs, indicating that AS2553627 prevented cell infiltration and inflammation in renal allografts. CONCLUSIONS These results indicate the therapeutic potential of JAK inhibitors in chronic rejection progression, and suggest that AS2553627 is a promising agent to improve long-term graft survival after renal transplantation.
Collapse
|
19
|
Heterotopic Abdominal Rat Heart Transplantation as a Model to Investigate Volume Dependency of Myocardial Remodeling. Transplantation 2017; 101:498-505. [PMID: 27906830 DOI: 10.1097/tp.0000000000001585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Heterotopic abdominal rat heart transplantation has been extensively used to investigate ischemic-reperfusion injury, immunological consequences during heart transplantations and also to study remodeling of the myocardium due to volume unloading. We provide a unique review on the latter and present a summary of the experimental studies on rat heart transplantation to illustrate changes that occur to the myocardium due to volume unloading. We divided the literature based on whether normal or failing rat heart models were used. This analysis may provide a basis to understand the physiological effects of mechanical circulatory support therapy.
Collapse
|
20
|
Ladak SS, Ward C, Ali S. The potential role of microRNAs in lung allograft rejection. J Heart Lung Transplant 2016; 35:550-9. [DOI: 10.1016/j.healun.2016.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/18/2016] [Accepted: 03/21/2016] [Indexed: 01/13/2023] Open
|
21
|
Kueckelhaus M, Turk M, Kumamaru KK, Wo L, Bueno EM, Lian CG, Alhefzi M, Aycart MA, Fischer S, De Girolami U, Murphy GF, Rybicki FJ, Pomahac B. Transformation of Face Transplants: Volumetric and Morphologic Graft Changes Resemble Aging After Facial Allotransplantation. Am J Transplant 2016; 16:968-78. [PMID: 26639618 DOI: 10.1111/ajt.13544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/03/2015] [Accepted: 09/18/2015] [Indexed: 01/25/2023]
Abstract
Facial allotransplantation restores normal anatomy to severely disfigured faces. Although >30 such operations performed worldwide have yielded promising short-term results, data on long-term outcomes remain scarce. Three full-face transplant recipients were followed for 40 months. Severe changes in volume and composition of the facial allografts were noted. Data from computed tomography performed 6, 18 and 36 months after transplantation were processed to separate allograft from recipient tissues and further into bone, fat and nonfat soft tissues. Skin and muscle biopsies underwent diagnostic evaluation. All three facial allografts sustained significant volume loss (mean 19.55%) between 6 and 36 months after transplant. Bone and nonfat soft tissue volumes decreased significantly over time (17.22% between months 6 and 18 and 25.56% between months 6 and 36, respectively), whereas fat did not. Histological evaluations showed atrophy of muscle fibers. Volumetric and morphometric changes in facial allografts have not been reported previously. The transformation of facial allografts in this study resembled aging through volume loss but differed substantially from regular aging. These findings have implications for risk-benefit assessment, donor selection and measures counteracting muscle and bone atrophy. Superior long-term outcomes of facial allotransplantation will be crucial to advance toward future clinical routine.
Collapse
Affiliation(s)
- M Kueckelhaus
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - M Turk
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - K K Kumamaru
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - L Wo
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - E M Bueno
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - C G Lian
- Division of Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - M Alhefzi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - M A Aycart
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - S Fischer
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Plastic Surgery, BG University Hospital Ludwigshafen, Heidelberg University, Ludwigshafen, Germany
| | - U De Girolami
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - G F Murphy
- Division of Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - F J Rybicki
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - B Pomahac
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
22
|
Adams AB, Kitchens WH, Newell KA. Experimental models in discovery and translational studies. Transpl Immunol 2015. [DOI: 10.1002/9781119072997.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Monocytic Tissue Transglutaminase in a Rat Model for Reversible Acute Rejection and Chronic Renal Allograft Injury. Mediators Inflamm 2015; 2015:429653. [PMID: 26063971 PMCID: PMC4431319 DOI: 10.1155/2015/429653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/01/2015] [Accepted: 04/01/2015] [Indexed: 11/17/2022] Open
Abstract
Acute rejection is a major risk factor for chronic allograft injury (CAI). Blood leukocytes interacting with allograft endothelial cells during acute rejection were suggested to contribute to the still enigmatic pathogenesis of CAI. We hypothesize that tissue transglutaminase (Tgm2), a multifunctional protein and established marker of M2 macrophages, is involved in acute and chronic graft rejection. We focus on leukocytes accumulating in blood vessels of rat renal allografts (Fischer-344 to Lewis), an established model for reversible acute rejection and CAI. Monocytes in graft blood vessels overexpress Tgm2 when acute rejection peaks on day 9 after transplantation. Concomitantly, caspase-3 is activated, suggesting that Tgm2 expression is linked to apoptosis. After resolution of acute rejection on day 42, leukocytic Tgm2 levels are lower and activated caspase-3 does not differ among isografts and allografts. Cystamine was applied for 4 weeks after transplantation to inhibit extracellular transglutaminase activity, which did, however, not reduce CAI in the long run. In conclusion, this is the first report on Tgm2 expression by monocytes in vivo. Tgm2 may be involved in leukocytic apoptosis and thus in reversion of acute rejection. However, our data do not support a role of extracellular transglutaminase activity as a factor triggering CAI during self-limiting acute rejection.
Collapse
|
24
|
McDaid J, Scott CJ, Kissenpfennig A, Chen H, Martins PN. The utility of animal models in developing immunosuppressive agents. Eur J Pharmacol 2015; 759:295-302. [PMID: 25814252 DOI: 10.1016/j.ejphar.2015.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/05/2015] [Accepted: 03/12/2015] [Indexed: 11/19/2022]
Abstract
The immune system comprises an integrated network of cellular interactions. Some responses are predictable, while others are more stochastic. While in vitro the outcome of stimulating a single type of cell may be stereotyped and reproducible, in vivo this is often not the case. This phenomenon often merits the use of animal models in predicting the impact of immunosuppressant drugs. A heavy burden of responsibility lies on the shoulders of the investigator when using animal models to study immunosuppressive agents. The principles of the three R׳s: refine (less suffering,), reduce (lower animal numbers) and replace (alternative in vitro assays) must be applied, as described elsewhere in this issue. Well designed animal model experiments have allowed us to develop all the immunosuppressive agents currently available for treating autoimmune disease and transplant recipients. In this review, we examine the common animal models used in developing immunosuppressive agents, focusing on drugs used in transplant surgery. Autoimmune diseases, such as multiple sclerosis, are covered elsewhere in this issue. We look at the utility and limitations of small and large animal models in measuring potency and toxicity of immunosuppressive therapies.
Collapse
Affiliation(s)
- James McDaid
- Department Transplant Surgery, City Hospital, 11th floor, Lisburn Road, BT9 7AB Belfast, UK
| | | | | | - Huifang Chen
- Laboratory of Experimental Surgery, Research Center, CHUM, Notre-Dame Hospital, University of Montreal, Quebec, Canada
| | - Paulo N Martins
- Department Surgery, Division of Transplantation, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, USA
| |
Collapse
|
25
|
Ren Z, Jiang J, Lu H, Chen X, He Y, Zhang H, Xie H, Wang W, Zheng S, Zhou L. Intestinal microbial variation may predict early acute rejection after liver transplantation in rats. Transplantation 2014; 98:844-852. [PMID: 25321166 PMCID: PMC4206351 DOI: 10.1097/tp.0000000000000334] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/29/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute rejection (AR) remains a life-threatening complication after orthotopic liver transplantation (OLT) and there are few available diagnostic biomarkers clinically for AR. This study aims to identify intestinal microbial profile and explore potential application of microbial profile as a biomarker for AR after OLT. METHODS The OLT models in rats were established. Hepatic graft histology, ultrastructure, function, and intestinal barrier function were tested. Ileocecal contents were collected for intestinal microbial analysis. RESULTS Hepatic graft suffered from the ischemia-reperfusion (I/R) injury on day 1, initial AR on day 3, and severe AR on day 7 after OLT. Real-time quantitative polymerase chain reaction results showed that genus Faecalibacterium prausnitzii and Lactobacillus were decreased, whereas Clostridium bolteae was increased during AR. Notably, cluster analysis of denaturing gradient gel electrophoresis (DGGE) profiles showed the 7AR and 3AR groups clustered together with 73.4% similarity, suggesting that intestinal microbiota was more sensitive than hepatic function in responding to AR. Microbial diversity and species richness were decreased during AR. Phylogenetic tree analysis showed that most of the decreased key bacteria belonged to phylum Firmicutes, whereas increased key bacteria belonged to phylum Bacteroidetes. Moreover, intestinal microvilli loss and tight junction damage were noted, and intestinal barrier dysfunction during AR presented a decrease of fecal secretory immunoglobulin A (sIgA) and increase of blood bacteremia, endotoxin, and tumor necrosis factor-α. CONCLUSION We dynamically detail intestinal microbial characterization and find a high sensitivity of microbial change during AR after OLT, suggesting that intestinal microbial variation may predict AR in early phase and become an assistant therapeutic target to improve rejection after OLT.
Collapse
Affiliation(s)
- Zhigang Ren
- 1 Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. 2 Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. 3 State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. 4 Correspondence to: Lin Zhou, M.D., Ph.D., First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, China. 5 Correspondence to: Shusen Zheng, M.D., Ph.D., First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Impaired selectin-dependent leukocyte recruitment induces T-cell exhaustion and prevents chronic allograft vasculopathy and rejection. Proc Natl Acad Sci U S A 2014; 111:12145-50. [PMID: 25092331 DOI: 10.1073/pnas.1303676111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Selectin-selectin ligand interactions mediate the initial steps in leukocyte migration, an integral part of immune responses. Fucosyltransferase-VII (FucT-VII), encoded by Fut7, is essential for biosynthesis of selectin ligands. In an established model of cardiac allograft vasculopathy and chronic rejection, Fut7(-/-) recipients exhibited long-term graft survival with minimal vasculopathy compared with WT controls. Graft survival was associated with CD4 T-cell exhaustion in the periphery, characterized by impaired effector cytokine production, defective proliferation, increased expression of inhibitory receptors programmed death-1 (PD-1) and T cell Ig- and mucin-domain-containing molecule-3 (Tim-3), low levels of IL-7Rα on CD4 T cells, and reduced migration of polyfunctional CD4 memory T cells to the allograft. Blocking PD-1 triggered rejection only in Fut7(-/-) recipients, whereas depleting regulatory T cells had no effect in either Fut7(-/-) or WT recipients. Adoptive transfer experiments confirmed that this CD4 T cell-exhausted phenotype is seen primarily in Fut7(-/-) CD4 T cells. These data suggest that impaired leukocyte recruitment is a novel mechanism leading to CD4 T-cell exhaustion. Our experimental system serves as an excellent model to study CD4 T-cell exhaustion as a dominant mechanism of transplant tolerance. Further, targeting FucT-VII may serve as a promising strategy to prevent chronic allograft rejection and promote tolerance.
Collapse
|
27
|
Pazetti R, Pêgo-Fernandes PM, Jatene FB. Adverse effects of immunosuppressant drugs upon airway epithelial cell and mucociliary clearance: implications for lung transplant recipients. Drugs 2014; 73:1157-69. [PMID: 23842748 DOI: 10.1007/s40265-013-0089-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Optimal post-transplantation immunosuppression is critical to the survival of the graft and the patient after lung transplantation. Immunosuppressant agents target various aspects of the immune system to maximize graft tolerance while minimizing medication toxicities and side effects. The vast majority of patients receive maintenance immunosuppressive therapy consisting of a triple-drug regimen including a calcineurin inhibitor, a cell cycle inhibitor and a corticosteroid. Although these immunosuppressant drugs are frequently used after transplantation and to control inflammatory processes, limited data are available with regard to their effects on cells other than those from the immunological system. Notably, the airway epithelial cell is of interest because it may contribute to development of bronchiolitis obliterans through production of pro-inflammatory cytokines. This review focuses the current armamentarium of immunosuppressant drugs used after lung transplantation and their main side effects upon airway epithelial cells and mucociliary clearance.
Collapse
Affiliation(s)
- Rogerio Pazetti
- Laboratory of Thoracic Surgery Research-LIM61, Department of Cardiopneumology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Avenida Doutor Arnaldo, 455, 1o. Andar, Sala 1220, Pacaembu, São Paulo, SP, 01246-000, Brazil.
| | | | | |
Collapse
|
28
|
Microarray gene expression profiling of chronic allograft nephropathy in the rat kidney transplant model. Transpl Immunol 2012; 27:75-82. [DOI: 10.1016/j.trim.2012.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 11/20/2022]
|
29
|
Zarjou A, Guo L, Sanders PW, Mannon RB, Agarwal A, George JF. A reproducible mouse model of chronic allograft nephropathy with vasculopathy. Kidney Int 2012; 82:1231-5. [PMID: 22874842 PMCID: PMC3495090 DOI: 10.1038/ki.2012.277] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
While short-term outcomes in kidney transplantation have improved dramatically, long-term survival remains a major challenge. A key component of long-term, chronic allograft injury in solid organ transplants is arteriosclerosis characterized by vascular neointimal hyperplasia and inflammation. Establishing a model of this disorder would provide a unique tool, not only to identify mechanisms of disease, but also test potential therapeutics for late graft injury. To this end, we utilized a mouse orthotopic renal transplant model in which C57BL/6J (H-2b) recipients were given either a kidney allograft from a completely mismatched Balb/cJ mouse (H-2d), or an isograft from a littermate. A unilateral nephrectomy was performed at the time of transplant followed by a contralateral nephrectomy on post-transplant day seven. Recipients were treated with daily cyclosporine subcutaneously for 14 days and then studied 8 and 12 weeks post transplantation. Renal function was significantly worse in allograft compared to isograft recipients. Moreover, the allografts had significantly more advanced tubulointerstitial fibrosis and profound vascular disease characterized by perivascular leukocytic infiltration and neointimal hyperplasia affecting the intrarenal blood vessels. Thus, we describe a feasible and reproducible murine model of intrarenal transplant arteriosclerosis useful to study allograft vasculopathy.
Collapse
Affiliation(s)
- Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Rejection is the major barrier to successful transplantation. The immune response to an allograft is an ongoing dialogue between the innate and adaptive immune system that if left unchecked will lead to the rejection of transplanted cells, tissues, or organs. Activation of elements of the innate immune system, triggered as a consequence of tissue injury sustained during cell isolation or organ retrieval and ischemia reperfusion, will initiate and amplify the adaptive response. T cells require a minimum of two signals for activation, antigen recognition, and costimulation. The activation requirements of naive T cells are more stringent than those of memory T cells. Memory T cells are present in the majority of transplant recipients as a result of heterologous immunity. The majority of B cells require help from T cells to initiate antibody production. Antibodies reactive to donor human leukocyte antigen molecules, minor histocompatibility antigens, endothelial cells, RBCs, or autoantigens can trigger or contribute to rejection early and late after transplantation. Antibody-mediated rejection triggered by alloantibody binding and complement activation is recognized increasingly as a significant contribution to graft loss. Even though one component of the immune system may dominate and lead to rejection being described in short hand as T cell or antibody mediated, it is usually multifactorial resulting from the integration of multiple mechanisms. Identifying the molecular pathways that trigger tissue injury, signal transduction and rejection facilitates the identification of targets for the development of immunosuppressive drugs.
Collapse
|
31
|
Ebner A, Poitz DM, Augstein A, Strasser RH, Deussen A. Functional, morphologic, and molecular characterization of cold storage injury. J Vasc Surg 2012; 56:189-98.e3. [PMID: 22398374 DOI: 10.1016/j.jvs.2011.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Cold storage is used to preserve tissue for later transplantation. There is particular interest in prolonging cold storage time for transplantation purposes. To date, the mechanisms that contribute to vascular dysfunction in response to cold storage are poorly understood. The present study aims to characterize cold storage injury of blood vessels on functional and molecular levels. METHODS To assess vessel function of mouse aorta, isometric force measurements were performed in a Mulvany myograph after cold storage at 4°C for various intervals. Morphologic changes were judged by histologic analysis of aortic cross-sections. To characterize cold storage-induced alterations on RNA levels, microarray analysis with subsequent polymerase chain reaction analysis was performed. RESULTS Cold storage for 2 days revealed significant impairment of vessel function with respect to potassium-induced vessel tone development and acetylcholine-induced vessel relaxation. Detailed analysis of acetylcholine-mediated vascular response using specific pharmacologic blockers revealed that calcium-activated potassium channels seem to be impaired after 2 days of cold storage. At this point, no severe histologic changes (eg, elastic fiber disruption) were visible. RNA expression of 24 genes was significantly changed due to cold storage even after 2 hours. These include genes associated with vessel tone development (prostaglandin E(3) receptor), cardiovascular function (adiponectin), electron transport chain (uncoupling protein 1), or calcium signaling (protein kinase A regulatory subunit 2b). CONCLUSIONS Long-term cold storage impairs vascular function, especially with respect to potassium signaling by calcium-dependent potassium channels. Microarray analysis confirmed impairment of pathways that are involved in calcium signaling and vascular function. Furthermore, various genes were significantly altered even after 2 hours, significantly before functional impairment was observed.
Collapse
Affiliation(s)
- Annette Ebner
- Medical Faculty Carl Gustav Carus, Department of Physiology, Dresden University of Technology, Dresden, Germany
| | | | | | | | | |
Collapse
|
32
|
Solini S, Aiello S, Cassis P, Scudeletti P, Azzollini N, Mister M, Rocchetta F, Abbate M, Pereira RL, Noris M. Prolonged cold ischemia accelerates cellular and humoral chronic rejection in a rat model of kidney allotransplantation. Transpl Int 2012; 25:347-56. [DOI: 10.1111/j.1432-2277.2011.01425.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Lahmer T, Hermans R, Schmaderer C, Chang J, Stock K, Lutz J, Heemann U, Baumann M. Mineralocorticoid Receptor Antagonism and Aldosterone Synthesis Inhibition Do Not Improve Glomerulosclerosis and Renal Interstitial Fibrosis in a Model of Chronic Kidney Allograft Injury. ACTA ACUST UNITED AC 2012; 35:561-7. [DOI: 10.1159/000339649] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 05/21/2012] [Indexed: 12/21/2022]
|
34
|
|
35
|
Contribution of large pig for renal ischemia-reperfusion and transplantation studies: the preclinical model. J Biomed Biotechnol 2011; 2011:532127. [PMID: 21403881 PMCID: PMC3051176 DOI: 10.1155/2011/532127] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/21/2010] [Accepted: 01/03/2011] [Indexed: 01/08/2023] Open
Abstract
Animal experimentation is necessary to characterize human diseases and design adequate therapeutic interventions. In renal transplantation research, the limited number of in vitro models involves a crucial role for in vivo models and particularly for the porcine model. Pig and human kidneys are anatomically similar (characterized by multilobular structure in contrast to rodent and dog kidneys unilobular). The human proximity of porcine physiology and immune systems provides a basic knowledge of graft recovery and inflammatory physiopathology through in vivo studies. In addition, pig large body size allows surgical procedures similar to humans, repeated collections of peripheral blood or renal biopsies making pigs ideal for medical training and for the assessment of preclinical technologies. However, its size is also its main drawback implying expensive housing. Nevertheless, pig models are relevant alternatives to primate models, offering promising perspectives with developments of transgenic modulation and marginal donor models facilitating data extrapolation to human conditions.
Collapse
|