1
|
Jin J, Yue L, Du M, Geng F, Gao X, Zhou Y, Lu Q, Pan X. Molecular Hydrogen Therapy: Mechanisms, Delivery Methods, Preventive, and Therapeutic Application. MedComm (Beijing) 2025; 6:e70194. [PMID: 40297245 PMCID: PMC12035766 DOI: 10.1002/mco2.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Molecular hydrogen (H2), recognized as the smallest gas molecule, is capable of permeating cellular membranes and diffusing throughout the body. Due to its high bioavailability, H2 is considered a therapeutic gas for the treatment of various diseases. The therapeutic efficacy of hydrogen is contingent upon factors such as the administration method, duration of contact with diseased tissue, and concentration at targeted sites. H2 can be administered exogenously and is also produced endogenously within the intestinal tract. A comprehensive understanding of its delivery mechanisms and modes of action is crucial for advancing hydrogen medicine. This review highlights H₂'s mechanisms of action, summarizes its administration methods, and explores advancements in treating intestinal diseases (e.g., inflammatory bowel disease, intestinal ischemia-reperfusion, colorectal cancer). Additionally, its applications in managing other diseases are discussed. Finally, the challenges associated with its clinical application and potential solutions are explored. We propose that current delivery challenges faced by H2 can be effectively addressed through the use of nanoplatforms; furthermore, interactions between hydrogen and gut microbiota may provide insights into its mechanisms for treating intestinal diseases. Future research should explore the synergistic effects of H2 in conjunction with conventional therapies and develop personalized treatment plans to achieve precision medicine.
Collapse
Affiliation(s)
- Jiayi Jin
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Lijun Yue
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Maoru Du
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Feng Geng
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Xue Gao
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Yuming Zhou
- Department of Laboratory MedicineYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Qianqian Lu
- Department of OncologyYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Xiaohong Pan
- School of PharmacyBinzhou Medical UniversityYantaiChina
| |
Collapse
|
2
|
Zajac D, Jampolska M, Wojciechowski P. Molecular Hydrogen in the Treatment of Respiratory Diseases. Int J Mol Sci 2025; 26:4116. [PMID: 40362357 PMCID: PMC12072089 DOI: 10.3390/ijms26094116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Molecular hydrogen is gaining increasing attention as an antioxidant, anti-inflammatory, and antiapoptotic agent. Once considered an inert gas, it reveals current therapeutic potential among others in inflammatory diseases, cancer, and sports medicine, among others. The present review aims to provide a consistent summary of the findings of the last twenty years on the use of molecular hydrogen in major respiratory diseases, including allergies, asthma, COPD, pulmonary fibrosis, lung injury of various origins, as well as cancer and infections of the respiratory tract. In addition, the basic mechanisms through which molecular hydrogen exercises its biological activity on the respiratory system are described.
Collapse
Affiliation(s)
- Dominika Zajac
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.J.); (P.W.)
| | | | | |
Collapse
|
3
|
Iwaki T, Nakamura S, Wakabayashi T, Nakao Y, Htun Y, Tsuchiya T, Mitsuie T, Koyano K, Morimoto A, Fuke N, Yokota T, Kondo S, Konishi Y, Miki T, Ueno M, Iwase T, Kusaka T. Hydrogen gas inhalation ameliorates glomerular enlargement after hypoxic-ischemic insult in asphyxiated piglet model. Sci Rep 2025; 15:1677. [PMID: 39799178 PMCID: PMC11724992 DOI: 10.1038/s41598-025-85231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025] Open
Abstract
Acute kidney injury (AKI) has been reported to occur in 30-70% of asphyxiated neonates. Hydrogen (H2) gas became a major research focus in neonatal medicine after the identification of its robust antioxidative properties. However, the ability of H2 gas to ameliorate AKI is unknown. We examined histopathological injuries in the piglet renal cortex on day 5 after a hypoxic-ischemic (HI) insult and if H2 gas can alleviate kidney injuries. Twenty piglets were divided into three groups: no insult (Control, n = 6), HI insult alone (HI, n = 8), and HI insult with H2 gas ventilation (HI-H2, 2.1-2.7% for 24 h, n = 6). The total glomerular cell count was significantly higher in the HI group than in the other groups, with no difference between the HI-H2 and control groups. Proximal tubular lumen narrowing was significantly increased in the HI group versus control, but not in the HI-H2 group. In this piglet model, glomerular enlargement with an increase in glomerular cell number due to tubular lumen narrowing was observed on day 5 after HI insult. H2 gas effectively suppressed this glomerular cell increase and tubular lumen narrowing.
Collapse
Affiliation(s)
- Takuma Iwaki
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan
| | - Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan.
| | - Takayuki Wakabayashi
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan
| | - Yasuhiro Nakao
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan
| | - Yinmon Htun
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan
| | - Toui Tsuchiya
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan
| | - Tsutomu Mitsuie
- Medical Engineering Equipment Management Center, Kagawa University Hospital, Kagawa University, Kagawa, Japan
| | - Kosuke Koyano
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Aya Morimoto
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan
| | - Noriko Fuke
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan
| | - Takayuki Yokota
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan
| | - Sonoko Kondo
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan
| | - Yukihiko Konishi
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Iwase
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan
| |
Collapse
|
4
|
Hong SJ, De Souza BJ, Penberthy KK, Hwang L, Procaccini DE, Kheir JN, Bembea MM. Plasma brain-related biomarkers and potential therapeutic targets in pediatric ECMO. Neurotherapeutics 2025; 22:e00521. [PMID: 39765416 PMCID: PMC11840354 DOI: 10.1016/j.neurot.2024.e00521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a technique used to support severe cardiopulmonary failure. Its potential life-saving benefits are tempered by the significant risk for acute brain injury (ABI), from both primary pathophysiologic factors and ECMO-related complications through central nervous system cellular injury, blood-brain barrier dysfunction (BBB), systemic inflammation and neuroinflammation, and coagulopathy. Plasma biomarkers are an emerging tool used to stratify risk for and diagnose ABI, and prognosticate neurofunctional outcomes. Components of the neurovascular unit have been rational targets for this inquiry in ECMO. Central nervous system (CNS) neuronal and astroglial cellular-derived neuron-specific enolase (NSE), tau, glial fibrillary acidic protein (GFAP) and S100β elevations have been detected in ABI and are associated with poorer outcomes. Evidence of BBB breakdown through peripheral blood detection of CNS cellular components NSE, GFAP, and S100β, as well as evidence of elevated BBB components vWF and PDGFRβ are associated with higher mortality and worse neurofunctional outcomes. Higher concentrations of pro-inflammatory cytokines (IL-1β, IL-6, IFN-γ, TNF-α) are associated with abnormal neuroimaging, and proteomic expression panels reveal different coagulation and inflammatory responses. Abnormal coagulation profiles are common in ECMO with ongoing studies attempting to describe specific abnormalities either being causal or associated with neurologic outcomes; vWF has shown some promise. Understanding these mechanisms of injury through biomarker analysis supports potential neuroprotective strategies such as individualized blood pressure targets, judicious hypercarbia and hypoxemia correction, and immunomodulation (inhaled hydrogen and N-acetylcysteine). Further research continues to elucidate the role of biomarkers as predictors, prognosticators, and therapeutic targets.
Collapse
Affiliation(s)
- Sue J Hong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bradley J De Souza
- Department of Critical Care Medicine, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kristen K Penberthy
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lisa Hwang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - John N Kheir
- Department of Cardiology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Melania M Bembea
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Li L, Xu Z, Ni H, Meng Y, Xu Y, Xu H, Zheng Y, Zhang Y, Xue G, Shang Y. Hydrogen-rich water alleviates asthma airway inflammation by modulating tryptophan metabolism and activating aryl hydrocarbon receptor via gut microbiota regulation. Free Radic Biol Med 2024; 224:50-61. [PMID: 39147072 DOI: 10.1016/j.freeradbiomed.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Hydrogen-rich water (HRW) is a beverage containing a high concentration of hydrogen that has been researched for its antioxidant, anti-apoptotic, and anti-inflammatory properties in asthma. This study investigates the potential therapeutic impact of HRW on the gut-lung axis. Using 16S rRNA and serum metabolomics, we examined changes in gut microbiota and serum metabolites in asthmatic mice after HRW intervention, followed by validation experiments. The findings revealed that HRW influenced gut microbiota by increasing Ligilactobacillus and Bifidobacterium abundance and enhancing the presence of indole-3-acetic acid (IAA), a microbially derived serum metabolite. Both in vivo and in vitro experiments showed that HRW's protective effects against airway inflammation in asthmatic mice may be linked to the gut microbiota, with IAA potentially playing a role in reducing asthmatic airway inflammation through the aryl hydrocarbon receptors (AhR) signaling pathway. In summary, HRW can modify gut microbiota, increase Bifidobacterium abundance, elevate microbial-derived IAA levels, and activate AhR, which could potentially alleviate inflammation in asthma.
Collapse
Affiliation(s)
- Li Li
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Ziqian Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Haoran Ni
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yesong Meng
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yongzhuang Xu
- Department of General Practice, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Hao Xu
- Department of General Practice, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yuyang Zheng
- Department of General Practice, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yi Zhang
- Department of General Practice, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Geng Xue
- Department of Medical Genetics, College of Basic Medical Sciences, Naval Military Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Yan Shang
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China; Department of General Practice, Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Military Medical University (Second Military Medical University), Shanghai, 200433, China.
| |
Collapse
|
6
|
Zuo Y, Wang J, Gong Z, Wang Y, Wang Q, Yang X, Liu F, Liu T. Hydrogen Protects Mitochondrial Function by Increasing the Expression of PGC-1α and Ameliorating Myocardial Ischaemia-Reperfusion Injury. J Cell Mol Med 2024; 28:e70236. [PMID: 39601332 PMCID: PMC11600203 DOI: 10.1111/jcmm.70236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
To investigate the application of H2 to alleviate cardiac ischaemia-reperfusion (I/R) injury in a PGC-1α-dependent manner. A rat in vitro myocardial I/R injury model was used, Western blot was used to detect the expression levels of apoptosis markers (Bax, cleaved caspase-3, Bcl2), inflammatory factors (IL-1β, TNF-α), mitochondrial fission (DRP1, MFF) and mitochondrial fusion (MFN1, MFN2, OPA1). HE staining was used to observe the effect of H2 on the myocardial tissue structure injured by I/R. Transmission electron microscopy (TEM) was used to observe the changes in the mitochondrial structure of myocardial tissue after I/R injury. Real-time quantitative PCR (qPCR) was used to detect the expression of PGC-1α in the myocardial tissue of rats after I/R injury and H2 treatment. H2 increases the expression level of PGC-1α, while the deletion of PGC-1α inhibited the therapeutic effect of H2. H2 can improve the changes of the myocardial tissue and mitochondrial structure caused by I/R injury. H2 treatment effectively inhibited the inflammatory response, and the loss of PGC-1α could inhibit the therapeutic effect of H2. The application of H2 can alleviate myocardial I/R injury, and the loss of PGC-1α weakens the protective effect of H2 on the I/R heart.
Collapse
Affiliation(s)
- Yue Zuo
- Heart CenterThe First Hospital of Tsinghua UniversityBeijingChina
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Jiawei Wang
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Zhexuan Gong
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Yulong Wang
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Qiang Wang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Xueyang Yang
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Fulin Liu
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Tongtong Liu
- Affiliated Hospital of Hebei UniversityBaodingChina
| |
Collapse
|
7
|
Xu M, Wu G, You Q, Chen X. The Landscape of Smart Biomaterial-Based Hydrogen Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401310. [PMID: 39166484 PMCID: PMC11497043 DOI: 10.1002/advs.202401310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/19/2024] [Indexed: 08/23/2024]
Abstract
Hydrogen (H2) therapy is an emerging, novel, and safe therapeutic modality that uses molecular hydrogen for effective treatment. However, the impact of H2 therapy is limited because hydrogen molecules predominantly depend on the systemic administration of H2 gas, which cannot accumulate at the lesion site with high concentration, thus leading to limited targeting and utilization. Biomaterials are developed to specifically deliver H2 and control its release. In this review, the development process, stimuli-responsive release strategies, and potential therapeutic mechanisms of biomaterial-based H2 therapy are summarized. H2 therapy. Specifically, the produced H2 from biomaterials not only can scavenge free radicals, such as reactive oxygen species (ROS) and lipid peroxidation (LPO), but also can inhibit the danger factors of initiating diseases, including pro-inflammatory cytokines, adenosine triphosphate (ATP), and heat shock protein (HSP). In addition, the released H2 can further act as signal molecules to regulate key pathways for disease treatment. The current opportunities and challenges of H2-based therapy are discussed, and the future research directions of biomaterial-based H2 therapy for clinical applications are emphasized.
Collapse
Affiliation(s)
- Min Xu
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Gege Wu
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Qing You
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| |
Collapse
|
8
|
Kura B, Slezak J. The Protective Role of Molecular Hydrogen in Ischemia/Reperfusion Injury. Int J Mol Sci 2024; 25:7884. [PMID: 39063126 PMCID: PMC11276695 DOI: 10.3390/ijms25147884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemia/reperfusion injury (IRI) represents a significant contributor to morbidity and mortality associated with various clinical conditions, including acute coronary syndrome, stroke, and organ transplantation. During ischemia, a profound hypoxic insult develops, resulting in cellular dysfunction and tissue damage. Paradoxically, reperfusion can exacerbate this injury through the generation of reactive oxygen species and the induction of inflammatory cascades. The extensive clinical sequelae of IRI necessitate the development of therapeutic strategies to mitigate its deleterious effects. This has become a cornerstone of ongoing research efforts in both basic and translational science. This review examines the use of molecular hydrogen for IRI in different organs and explores the underlying mechanisms of its action. Molecular hydrogen is a selective antioxidant with anti-inflammatory, cytoprotective, and signal-modulatory properties. It has been shown to be effective at mitigating IRI in different models, including heart failure, cerebral stroke, transplantation, and surgical interventions. Hydrogen reduces IRI via different mechanisms, like the suppression of oxidative stress and inflammation, the enhancement of ATP production, decreasing calcium overload, regulating cell death, etc. Further research is still needed to integrate the use of molecular hydrogen into clinical practice.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| | | |
Collapse
|
9
|
Hayashi M, Obara H, Matsuda S, Homma K, Sasaki J, Matsubara K, Higuchi M, Sano M, Masugi Y, Kitagawa Y. Protective Effects of Hydrogen Gas Inhalation for Hindlimb Ischaemia-Reperfusion Injury in a Mouse Model. Eur J Vasc Endovasc Surg 2024; 68:120-128. [PMID: 38301869 DOI: 10.1016/j.ejvs.2024.01.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/14/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
OBJECTIVE Ischaemia-reperfusion (I/R) injury is a severe post-operative complication that triggers an inflammatory response and causes severe damage. Hydrogen gas has anti-oxidant and anti-apoptotic properties and has been shown to be safe in humans. The study aimed to investigate whether hydrogen gas protects against skeletal muscle I/R injury. METHODS Experimental basic research using mice. A total of 160 eight to 10 week old albino laboratory bred strain of house mice (25.8 ± 0.68 g) were used in this study. The mice were cable tied to the hindlimb under anaesthesia and then placed in an anaesthesia box filled with air and 2% isoflurane (control group); 80 mice were additionally subjected to 1.3% hydrogen gas in this mix (hydrogen group). After two hours, the cable ties were removed to initiate reperfusion, and hydrogen inhalation lasted for six hours in the hydrogen group. After six hours, the mice were taken out of the box and kept in cages under standard conditions until time for observation at 16 different time points after reperfusion: zero, two, four, six, eight, and 10 hours and one, two, three, four, five, six, seven, 14, 21, and 28 days. Five mice were sacrificed using excess anaesthesia at each time point, and the bilateral hindlimb tissues were harvested. The inflammatory effects of the I/R injury were assessed by evaluating serum interleukin-6 concentrations using enzyme linked immunosorbent assay, as well as histological and immunohistochemical analyses. Untreated mice with I/R injury were used as controls. RESULTS Hydrogen gas showed protective effects associated with a reduction in inflammatory cell infiltration (neutrophils, macrophages, and lymphocytes), a reduced area of damaged muscle, maintenance of normal muscle cells, and replacement of damaged muscle cells with neoplastic myocytes. CONCLUSION Inhalation of hydrogen gas had a protective effect against hindlimb I/R injury in mice, in part by reducing inflammatory cell infiltration and in part by preserving normal muscle cells.
Collapse
Affiliation(s)
- Masanori Hayashi
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Hideaki Obara
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Japan.
| | - Sachiko Matsuda
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Koichiro Homma
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Junichi Sasaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Kentaro Matsubara
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Makoto Higuchi
- Ogino Memorial Laboratory, Nihon Kohden Corporation, Tokorozawa, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Japan
| |
Collapse
|
10
|
Liu Y, Li X, Sun T, Li T, Li Q. Pyroptosis in myocardial ischemia/reperfusion and its therapeutic implications. Eur J Pharmacol 2024; 971:176464. [PMID: 38461908 DOI: 10.1016/j.ejphar.2024.176464] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Ischemic heart disease, a prevalent cardiovascular disease with global significance, is associated with substantial morbidity. Timely and successful reperfusion is crucial for reducing infarct size and enhancing clinical outcomes. However, reperfusion may induce additional myocardium injury, manifesting as myocardial ischemia/reperfusion (MI/R) injury. Pyroptosis is a regulated cell death pathway, the signaling pathway of which is activated during MI/R injury. In this process, the inflammasomes are triggered, initiating the cleavage of gasdermin proteins and pro-interleukins, which results in the formation of membrane pores and the maturation and secretion of inflammatory cytokines. Numerous preclinical evidence underscores the pivotal role of pyroptosis in MI/R injury. Inhibiting pyroptosis is cardioprotective against MI/R injury. Although certain agents exhibiting promise in preclinical studies for attenuating MI/R injury through inhibiting pyroptosis have been identified, the suitability of these compounds for clinical trials remains untested. This review comprehensively summarizes the recent developments in this field, with a specific emphasis on the impact of pyroptosis on MI/R injury. Deciphering these findings not only sheds light on new disease mechanisms but also paves the way for innovative treatments. And then the exploration of the latest advances in compounds that inhibit pyroptosis in MI/R is discussed, which aims to provide insights into potential therapeutic strategies and identify avenues for future research in the pursuit of effective clinical interventions.
Collapse
Affiliation(s)
- Yin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Xi Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Tingting Sun
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Tao Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Mitochondria and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| | - Qian Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Jia R, Zhu G, Zhao R, Li T, Jiang W, Cui X. Hydrogen treatment reduces electroencephalographic activity and neuronal death in rats with refractory status epilepticus by inhibiting membrane NR2B phosphorylation and oxidative stress. J Int Med Res 2024; 52:3000605241235589. [PMID: 38546233 PMCID: PMC10981235 DOI: 10.1177/03000605241235589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/09/2024] [Indexed: 04/01/2024] Open
Abstract
OBJECTIVE To investigate the effects of hydrogen therapy on epileptic seizures in rats with refractory status epilepticus and the underlying mechanisms. METHODS Status epilepticus was induced using pilocarpine. The effects of hydrogen treatment on epilepsy severity in model rats were then monitored using Racine scores and electroencephalography (EEG), followed by western blot of plasma membrane N-methyl-D-aspartate receptor subtype 2B (NR2B) and phosphorylated NR2B expression. We also generated a cellular epilepsy model using Mg2+-free medium and used polymerase chain reaction to investigate the neuroprotective effects of hydrogen. RESULTS There were no significant differences in Racine scores between the hydrogen and control groups. EEG amplitudes were lower in the hydrogen treatment group than in the control group. In epilepsy model rats, hippocampal cell membrane NR2B expression and phosphorylation increased gradually over time. Although hippocampal cell membrane NR2B expression was not significantly different between the two groups, NR2B phosphorylation levels were significantly lower in the hydrogen group. Hydrogen treatment also increased superoxide dismutase, mitochondrial (SOD2) expression. CONCLUSIONS Hydrogen treatment reduced EEG amplitudes and NR2B phosphorylation; it also decreased neuronal death by reducing oxidative stress. Hydrogen may thus be a potential treatment for refractory status epilepticus by inhibiting membrane NR2B phosphorylation and oxidative stress.
Collapse
Affiliation(s)
- Ruihua Jia
- Department of Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Gemin Zhu
- Department of Neurology, Xi’an Central Hospital, Xi’an, China
| | - Rui Zhao
- Department of Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaoli Cui
- Department of Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
12
|
Obara T, Naito H, Nojima T, Hirayama T, Hongo T, Ageta K, Aokage T, Hisamura M, Yumoto T, Nakao A. Hydrogen in Transplantation: Potential Applications and Therapeutic Implications. Biomedicines 2024; 12:118. [PMID: 38255223 PMCID: PMC10813693 DOI: 10.3390/biomedicines12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Hydrogen gas, renowned for its antioxidant properties, has emerged as a novel therapeutic agent with applications across various medical domains, positioning it as a potential adjunct therapy in transplantation. Beyond its antioxidative properties, hydrogen also exerts anti-inflammatory effects by modulating pro-inflammatory cytokines and signaling pathways. Furthermore, hydrogen's capacity to activate cytoprotective pathways bolsters cellular resilience against stressors. In recent decades, significant advancements have been made in the critical medical procedure of transplantation. However, persistent challenges such as ischemia-reperfusion injury (IRI) and graft rejection continue to hinder transplant success rates. This comprehensive review explores the potential applications and therapeutic implications of hydrogen in transplantation, shedding light on its role in mitigating IRI, improving graft survival, and modulating immune responses. Through a meticulous analysis encompassing both preclinical and clinical studies, we aim to provide valuable insights into the promising utility of hydrogen as a complementary therapy in transplantation.
Collapse
Affiliation(s)
| | - Hiromichi Naito
- Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (T.O.); (T.N.); (T.H.); (T.H.); (K.A.); (T.A.); (M.H.); (T.Y.); (A.N.)
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Iwata H, Katoh T, Truong SK, Sato T, Kawashima S, Mimuro S, Nakajima Y. Hydrogen attenuates endothelial glycocalyx damage associated with partial cardiopulmonary bypass in rats. PLoS One 2023; 18:e0295862. [PMID: 38113214 PMCID: PMC10729991 DOI: 10.1371/journal.pone.0295862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Cardiopulmonary bypass (CPB) causes systemic inflammation and endothelial glycocalyx damage. Hydrogen has anti-oxidant and anti-inflammatory properties; therefore, we hypothesized that hydrogen would alleviate endothelial glycocalyx damage caused by CPB. Twenty-eight male Sprague-Dawley rats were randomly divided into four groups (n = 7 per group), as follows: sham, control, 2% hydrogen, and 4% hydrogen. The rats were subjected to 90 minutes of partial CPB followed by 120 minutes of observation. In the hydrogen groups, hydrogen was administered via the ventilator and artificial lung during CPB, and via the ventilator for 60 minutes after CPB. After observation, blood collection, lung extraction, and perfusion fixation were performed, and the heart, lung, and brain endothelial glycocalyx thickness was measured by electron microscopy. The serum syndecan-1 concentration, a glycocalyx component, in the 4% hydrogen group (5.7 ± 4.4 pg/mL) was lower than in the control (19.5 ± 6.6 pg/mL) and 2% hydrogen (19.8 ± 5.0 pg/mL) groups (P < 0.001 for each), but it was not significantly different from the sham group (6.2 ± 4.0 pg/mL, P = 0.999). The endothelial glycocalyces of the heart and lung in the 4% hydrogen group were thicker than in the control group. The 4% hydrogen group had lower inflammatory cytokine concentrations (interleukin-1β and tumor necrosis factor-α) in serum and lung tissue, as well as a lower serum malondialdehyde concentration, than the control group. The 2% hydrogen group showed no significant difference in the serum syndecan-1 concentration compared with the control group. However, non-significant decreases in serum and lung tissue inflammatory cytokine concentrations, as well as in serum malondialdehyde concentration, were observed. Administration of 4% hydrogen via artificial and autologous lungs attenuated endothelial glycocalyx damage caused by partial CPB in rats, which might be mediated by the anti-inflammatory and anti-oxidant properties of hydrogen.
Collapse
Affiliation(s)
- Hiroki Iwata
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takasumi Katoh
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Sang Kien Truong
- Department of Anesthesiology and Surgical Critical Care, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Tsunehisa Sato
- Institute for Physiological Sciences, Justus-Liebig-University, Giessen, Germany
| | - Shingo Kawashima
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Soichiro Mimuro
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshiki Nakajima
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
14
|
Song J, Chen Q, Xu S, Gou Y, Guo Y, Jia C, Zhao C, Zhang Z, Li B, Zhao Y, Ji E. Hydrogen Attenuates Chronic Intermittent Hypoxia-Induced Cardiac Hypertrophy by Regulating Iron Metabolism. Curr Issues Mol Biol 2023; 45:10193-10210. [PMID: 38132482 PMCID: PMC10742465 DOI: 10.3390/cimb45120636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
The present study aimed to investigate the impact of hydrogen (H2) on chronic intermittent hypoxia (CIH)-induced cardiac hypertrophy in mice by modulating iron metabolism. C57BL/6N mice were randomly allocated into four groups: control (Con), CIH, CIH + H2, and H2. The mice were exposed to CIH (21-5% FiO2, 3 min/cycle, 8 h/d), and received inhalation of a hydrogen-oxygen mixture (2 h/d) for 5 weeks. Cardiac and mitochondrial function, levels of reactive oxygen species (ROS), and iron levels were evaluated. The H9C2 cell line was subjected to intermittent hypoxia (IH) and treated with H2. Firstly, we found H2 had a notable impact on cardiac hypertrophy, ameliorated pathological alterations and mitochondrial morphology induced by CIH (p < 0.05). Secondly, H2 exhibited a suppressive effect on oxidative injury by decreasing levels of inducible nitric oxide synthase (i-NOS) (p < 0.05) and 4-hydroxynonenal (4-HNE) (p < 0.01). Thirdly, H2 demonstrated a significant reduction in iron levels within myocardial cells through the upregulation of ferroportin 1 (FPN1) proteins (p < 0.01) and the downregulation of transferrin receptor 1 (TfR1), divalent metal transporter 1 with iron-responsive element (DMT1(+ire)), and ferritin light chain (FTL) mRNA or proteins (p < 0.05). Simultaneously, H2 exhibited the ability to decrease the levels of Fe2+ and ROS in H9C2 cells exposed to IH (p < 0.05). Moreover, H2 mediated the expression of hepcidin, hypoxia-inducible factor-1α (HIF-1α) (p < 0.01), and iron regulatory proteins (IRPs), which might be involved in the regulation of iron-related transporter proteins. These results suggested that H2 may be beneficial in preventing cardiac hypertrophy, a condition associated with reduced iron toxicity.
Collapse
Affiliation(s)
- Jixian Song
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Qi Chen
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Shan Xu
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050013, China
| | - Yujing Gou
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yajing Guo
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Cuiling Jia
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Chenbing Zhao
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Zhi Zhang
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Boliang Li
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yashuo Zhao
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050013, China
| | - Ensheng Ji
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
15
|
Cheng D, Long J, Zhao L, Liu J. Hydrogen: A Rising Star in Gas Medicine as a Mitochondria-Targeting Nutrient via Activating Keap1-Nrf2 Antioxidant System. Antioxidants (Basel) 2023; 12:2062. [PMID: 38136182 PMCID: PMC10740752 DOI: 10.3390/antiox12122062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The gas molecules O2, NO, H2S, CO, and CH4, have been increasingly used for medical purposes. Other than these gas molecules, H2 is the smallest diatomic molecule in nature and has become a rising star in gas medicine in the past few decades. As a non-toxic and easily accessible gas, H2 has shown preventive and therapeutic effects on various diseases of the respiratory, cardiovascular, central nervous system, and other systems, but the mechanisms are still unclear and even controversial, especially the mechanism of H2 as a selective radical scavenger. Mitochondria are the main organelles regulating energy metabolism in living organisms as well as the main organelle of reactive oxygen species' generation and targeting. We propose that the protective role of H2 may be mainly dependent on its unique ability to penetrate every aspect of cells to regulate mitochondrial homeostasis by activating the Keap1-Nrf2 phase II antioxidant system rather than its direct free radical scavenging activity. In this review, we summarize the protective effects and focus on the mechanism of H2 as a mitochondria-targeting nutrient by activating the Keap1-Nrf2 system in different disease models. In addition, we wish to provide a more rational theoretical support for the medical applications of hydrogen.
Collapse
Affiliation(s)
- Danyu Cheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.C.); (J.L.)
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.C.); (J.L.)
| | - Lin Zhao
- Cardiometabolic Innovation Center, Ministry of Education, Department of Cardiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (D.C.); (J.L.)
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| |
Collapse
|
16
|
Matsui Y, Kanou T, Matsui T, Fukui E, Kimura T, Ose N, Funaki S, Shintani Y. Protective Effect of Calpain Inhibition During Cold Ischemia on Ischemia-reperfusion Injury After Lung Transplantation. Transplantation 2023; 107:1945-1954. [PMID: 36648297 DOI: 10.1097/tp.0000000000004515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Necroptosis, one of the types of regulated necrosis, causes ischemia-reperfusion (IR) lung injury. N-acetyl-leucyl-leucyl-norleucinal (ALLN), a calpain inhibitor, is known to attenuate necroptosis and apoptosis, and the purpose of this study was to evaluate the protective effect of ALLN during cold ischemia against IR injury in a rat lung transplant model. METHODS Male Lewis rats (250-350 g) were divided into 3 groups: sham group (n = 4), nontransplantation; control group (n = 8), transplantation with IR lung injury; and ALLN group (n = 8), transplantation with IR lung injury/ALLN. Rats in the sham group underwent a simple thoracotomy, and the remaining 2 groups of rats underwent an orthotopic left lung transplant. Cold ischemic time was 15 h. After 2 h of reperfusion, physiological function, inflammatory cytokine expression, pathway activation, and the degrees of necroptosis and apoptosis were evaluated. RESULTS Lung gas exchange (PaO 2 /FiO 2 ) was significantly better, and pulmonary edema was significantly improved in the ALLN group compared with the control group ( P = 0.0009, P = 0.0014). Plasma expression of interleukin-1β was significantly lower in the ALLN group than in the control group ( P = 0.0313). The proportion of necroptotic and apoptotic cells was significantly lower in the ALLN group than in the control group ( P = 0.0009), whereas the proportion of apoptotic cells remained unchanged ( P = 0.372); therefore, the calpain inhibitor was thought to suppress necroptosis. CONCLUSIONS The administration of ALLN during cold ischemia appears to improve IR lung injury in a lung transplant animal model via the inhibition of necroptosis.
Collapse
Affiliation(s)
- Yuuki Matsui
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Kanou
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takahiro Matsui
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eriko Fukui
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toru Kimura
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Naoko Ose
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
17
|
Ageta K, Hirayama T, Aokage T, Seya M, Meng Y, Nojima T, Yamamoto H, Obara T, Nakao A, Yumoto T, Tsukahara K, Naito H. Hydrogen inhalation attenuates lung contusion after blunt chest trauma in mice. Surgery 2023; 174:343-349. [PMID: 37210236 PMCID: PMC10193194 DOI: 10.1016/j.surg.2023.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 04/09/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Lung contusion caused by blunt chest trauma evokes a severe inflammatory reaction in the pulmonary parenchyma that may be associated with acute respiratory distress syndrome. Although hydrogen gas has antioxidant and anti-inflammatory effects and is protective against multiple types of lung injury at safe concentrations, the effects of inhaled hydrogen gas on blunt lung injury have not been previously investigated. Therefore, using a mouse model, we tested the hypothesis that hydrogen inhalation after chest trauma would reduce pulmonary inflammation and acute lung injury associated with lung contusion. METHODS Inbred male C57BL/6 mice were randomly divided into 3 groups: sham with air inhalation, lung contusion with air inhalation, and lung contusion with 1.3% hydrogen inhalation. Experimental lung contusion was induced using a highly reproducible and standardized apparatus. Immediately after induction of lung contusion, mice were placed in a chamber exposed to 1.3% hydrogen gas in the air. Histopathological analysis and real-time polymerase chain reaction in lung tissue and blood gas analysis were performed 6 hours after contusion. RESULTS Histopathological examination of the lung tissue after contusion revealed perivascular/intra-alveolar hemorrhage, perivascular/interstitial leukocyte infiltration, and interstitial/intra-alveolar edema. These histological changes and the extent of lung contusion, as determined by computed tomography, were significantly mitigated by hydrogen inhalation. Hydrogen inhalation also significantly reduced inflammatory cytokine and chemokine mRNA levels and improved oxygenation. CONCLUSION Hydrogen inhalation therapy significantly mitigated inflammatory responses associated with lung contusion in mice. Hydrogen inhalation therapy may be a supplemental therapeutic strategy for treating lung contusion.
Collapse
Affiliation(s)
- Kohei Ageta
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Takahiro Hirayama
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Toshiyuki Aokage
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Mizuki Seya
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Ying Meng
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Tsuyoshi Nojima
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Hirotsugu Yamamoto
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Takafumi Obara
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Atsunori Nakao
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Tetsuya Yumoto
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Kohei Tsukahara
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Hiromichi Naito
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences.
| |
Collapse
|
18
|
Ma T, Yang L, Zhang B, Lv X, Gong F, Yang W. Hydrogen inhalation enhances autophagy via the AMPK/mTOR pathway, thereby attenuating doxorubicin-induced cardiac injury. Int Immunopharmacol 2023; 119:110071. [PMID: 37080067 DOI: 10.1016/j.intimp.2023.110071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
AIMS Doxorubicin is a drug widely used in clinical cancer treatment, but severe cardiotoxicity limits its clinical application. Autophagy disorder is an important factor in the mechanism of doxorubicin-induced cardiac injury. As the smallest molecule in nature, hydrogen has various biological effects such as anti-oxidation, anti-apoptosis and regulation of autophagy. Hydrogen therapy is currently considered to be an emerging therapeutic method, but the effect and mechanism of hydrogen on doxorubicin-induced myocardial injury have not been determined. The purpose of this study was to investigate the protective effect of hydrogen inhalation on doxorubicin-induced chronic myocardial injury and its effect and mechanism on autophagy. METHODS In this study, we established a chronic heart injury model by intraperitoneal injection of doxorubicin in rats for 30 days, accumulating 20 mg/kg. The effect of hydrogen inhalation on the cardiac function in rats was explored by echocardiography, Elisa, and H&E staining. To clarify the influence of autophagy, we detected the expression of LC3 and related autophagy proteins in vivo and in vitro by immunofluorescence and western blot.In order to further explore the mechanism of autophagy, we added pathway inhibitors and used western blot to preliminarily investigate the protective effect of hydrogen inhalation on myocardial injury caused by doxorubicin. RESULTS Hydrogen inhalation can improve doxorubicin-induced cardiac function decline and pathological structural abnormalities in rats. It was confirmed by immunofluorescence that hydrogen treatment could restore the expression of autophagy marker protein LC3 (microtubule-associated protein 1 light chain 3) in cardiomyocytes reduced by doxorubicin, while reducing cardiomyocyte apoptosis. Mechanistically, Western blot results consistently showed that hydrogen treatment up-regulated the ratio of p-AMPK (phosphorylated AMP-dependent protein kinase) to AMPK and down-regulated p-mTOR (phosphorylated mammalian target of rapamycin) and mTOR ratio. CONCLUSIONS These results suggest that hydrogen inhalation can activate autophagy through the AMPK/mTOR pathway and protect against myocardial injury induced by doxorubicin. Hydrogen inhalation therapy may be a potential treatment for doxorubicin-induced myocardial injury.
Collapse
Affiliation(s)
- Tianjiao Ma
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Lei Yang
- Department of Urinary Surgery, The First Hospital of Harbin, Harbin 150010, China
| | - Binmei Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xin Lv
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, 150001, China
| | - Feifei Gong
- Department of Imaging, Chest Hospital of Harbin, 150056, China
| | - Wei Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
19
|
Okazaki K, Nakamura S, Koyano K, Konishi Y, Kondo M, Kusaka T. Neonatal asphyxia as an inflammatory disease: Reactive oxygen species and cytokines. Front Pediatr 2023; 11:1070743. [PMID: 36776908 PMCID: PMC9911547 DOI: 10.3389/fped.2023.1070743] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Neonatologists resuscitate asphyxiated neonates by every available means, including positive ventilation, oxygen therapy, and drugs. Asphyxiated neonates sometimes present symptoms that mimic those of inflammation, such as fever and edema. The main pathophysiology of the asphyxia is inflammation caused by hypoxic-ischemic reperfusion. At birth or in the perinatal period, neonates may suffer several, hypoxic insults, which can activate inflammatory cells and inflammatory mediator production leading to the release of larger quantities of reactive oxygen species (ROS). This in turn triggers the production of oxygen stress-induced high mobility group box-1 (HMGB-1), an endogenous damage-associated molecular patterns (DAMPs) protein bound to toll-like receptor (TLR) -4, which activates nuclear factor-kappa B (NF-κB), resulting in the production of excess inflammatory mediators. ROS and inflammatory mediators are produced not only in activated inflammatory cells but also in non-immune cells, such as endothelial cells. Hypothermia inhibits pro-inflammatory mediators. A combination therapy of hypothermia and medications, such as erythropoietin and melatonin, is attracting attention now. These medications have both anti-oxidant and anti-inflammatory effects. As the inflammatory response and oxidative stress play a critical role in the pathophysiology of neonatal asphyxia, these drugs may contribute to improving patient outcomes.
Collapse
Affiliation(s)
- Kaoru Okazaki
- Department of Neonatology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kosuke Koyano
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yukihiko Konishi
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Masatoshi Kondo
- Department of Neonatology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
20
|
Liu Y, Zhang J, Zhang D, Yu P, Zhang J, Yu S. Research Progress on the Role of Pyroptosis in Myocardial Ischemia-Reperfusion Injury. Cells 2022; 11:cells11203271. [PMID: 36291138 PMCID: PMC9601171 DOI: 10.3390/cells11203271] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) results in the aggravation of myocardial injury caused by rapid recanalization of the ischemic myocardium. In the past few years, there is a growing interest in investigating the complex pathophysiological mechanism of MIRI for the identification of effective targets and drugs to alleviate MIRI. Currently, pyroptosis, a type of inflammatory programmed death, has received greater attention. It is involved in the MIRI development in combination with other mechanisms of MIRI, such as oxidative stress, calcium overload, necroptosis, and apoptosis, thereby forming an intertwined association between different pathways that affect MIRI by regulating common pathway molecules. This review describes the pyroptosis mechanism in MIRI and its relationship with other mechanisms, and also highlights non-coding RNAs and non-cardiomyocytes as regulators of cardiomyocyte pyroptosis by mediating associated pathways or proteins to participate in the initiation and development of MIRI. The research progress on novel small molecule drugs, clinical drugs, traditional Chinese medicine, etc. for regulating pyroptosis can play a crucial role in effective MIRI alleviation. When compared to research on other mature mechanisms, the research studies on pyroptosis in MIRI are inadequate. Although many related protective drugs have been identified, these drugs generally lack clinical applications. It is necessary to further explore and verify these drugs to expand their applications in clinical setting. Early inhibition of MIRI by targeted regulation of pyroptosis is a key concern that needs to be addressed in future studies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330000, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330000, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Jun Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330000, China
| | - Shuchun Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330000, China
- Correspondence:
| |
Collapse
|
21
|
Yin H, Feng Y, Duan Y, Ma S, Guo Z, Wei Y. Hydrogen gas alleviates lipopolysaccharide-induced acute lung injury and inflammatory response in mice. J Inflamm (Lond) 2022; 19:16. [PMID: 36253774 PMCID: PMC9575233 DOI: 10.1186/s12950-022-00314-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Background Chronic inflammation and oxidant/antioxidant imbalance are two main pathological features associated with lipopolysaccharide (LPS)-induced acute lung injury (ALI). The following study investigated the protective role of hydrogen (H2), a gaseous molecule without known toxicity, in LPS-induced lung injury in mice and explored its potential molecular mechanisms. Methods Mice were randomly divided into three groups: H2 control group, LPS group, and LPS + H2 group. The mice were euthanized at the indicated time points, and the specimens were collected. The 72 h survival rates, cytokines contents, pathological changes, expression of Toll-like receptor 4 (TLR4), and oxidative stress indicators were analyzed. Moreover, under different culture conditions, RAW 264.7 mouse macrophages were used to investigate the potential molecular mechanisms of H2 in vitro. Cells were divided into the following groups: PBS group, LPS group, and LPS + H2 group. The cell viability, intracellular ROS, cytokines, and expression of TLR4 and nuclear factor kappa-B (NF-κB) were observed. Results Hydrogen inhalation increased the survival rate to 80%, reduced LPS-induced lung damage, and decreased inflammatory cytokine release in LPS mice. Besides, H2 showed remarked anti-oxidative activity to reduce the MDA and NO contents in the lung. In vitro data further indicated that H2 down-regulates the levels of ROS, NO, TNF-α, IL-6, and IL-1β in LPS-stimulated macrophages and inhibits the expression of TLR4 and the activation of nuclear factor kappa-B (NF-κB). Conclusion Hydrogen gas alleviates lipopolysaccharide-induced acute lung injury and inflammatory response most probably through the TLR4-NF-κB pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12950-022-00314-x.
Collapse
Affiliation(s)
- Hongling Yin
- grid.24516.340000000123704535Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Yajing Feng
- grid.24516.340000000123704535Department of Center ICU, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Yi Duan
- grid.24516.340000000123704535Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Shaolin Ma
- grid.24516.340000000123704535Department of Critical Care Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Zhongliang Guo
- grid.452753.20000 0004 1799 2798Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Youzhen Wei
- grid.24516.340000000123704535Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| |
Collapse
|
22
|
Obara T, Yamamoto H, Aokage T, Igawa T, Nojima T, Hirayama T, Seya M, Ishikawa-Aoyama M, Nakao A, Motterlini R, Naito H. Luminal Administration of a Water-soluble Carbon Monoxide-releasing Molecule (CORM-3) Mitigates Ischemia/Reperfusion Injury in Rats Following Intestinal Transplantation. Transplantation 2022; 106:1365-1375. [PMID: 34966108 PMCID: PMC9213078 DOI: 10.1097/tp.0000000000004007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The protective effects of carbon monoxide (CO) against ischemia/reperfusion (IR) injury during organ transplantation have been extensively investigated. Likewise, CO-releasing molecules (CORMs) are known to exert a variety of pharmacological activities via liberation of controlled amounts of CO in organs. Therefore, we hypothesized that intraluminal administration of water-soluble CORM-3 during cold storage of intestinal grafts would provide protective effects against IR injury. METHODS Orthotopic syngeneic intestinal transplantation was performed in Lewis rats following 6 h of cold preservation in Ringer solution or University of Wisconsin solution. Saline containing CORM-3 (100 µmol/L) or its inactive counterpart (iCORM-3) was intraluminally introduced in the intestinal graft before cold preservation. RESULTS Histopathological analysis of untreated and iCORM-3-treated grafts revealed a similar erosion and blunting of the intestinal villi. These changes in the mucosa structure were significantly attenuated by intraluminal administration of CORM-3. Intestinal mucosa damage caused by IR injury led to considerable deterioration of gut barrier function 3 h postreperfusion. CORM-3 significantly inhibited upregulation of proinflammatory mRNA levels, ameliorated intestinal morphological changes, and improved graft blood flow and mucosal barrier function. Additionally, CORM-3-treated grafts increased recipient survival rates. Pharmacological blockade of soluble guanylyl cyclase activity significantly reversed the protective effects conferred by CORM-3, indicating that CO partially mediates its therapeutic actions via soluble guanylyl cyclase activation. CONCLUSIONS Our study demonstrates that luminally delivered CORM-3 provides beneficial effects in cold-stored rat small intestinal grafts and could be an attractive therapeutic application of CO in the clinical setting of organ preservation and transplantation.
Collapse
Affiliation(s)
- Takafumi Obara
- Department of Emergency, Critical Care, and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hirotsugu Yamamoto
- Department of Emergency, Critical Care, and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshiyuki Aokage
- Department of Emergency, Critical Care, and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takuro Igawa
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tsuyoshi Nojima
- Department of Emergency, Critical Care, and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takahiro Hirayama
- Department of Emergency, Critical Care, and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mizuki Seya
- Department of Emergency, Critical Care, and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Michiko Ishikawa-Aoyama
- Department of Emergency, Disaster and Critical Care Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Atsunori Nakao
- Department of Emergency, Critical Care, and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | - Hiromichi Naito
- Department of Emergency, Critical Care, and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
23
|
Mu Q, Lv K, Yu J, Chu S, Zhang L, Kong L, Zhang L, Tian Y, Jia X, Liu B, Wei Y, Yang N. Hydrogen Repairs LPS-Induced Endothelial Progenitor Cells Injury via PI3K/AKT/eNOS Pathway. Front Pharmacol 2022; 13:894812. [PMID: 35645804 PMCID: PMC9133378 DOI: 10.3389/fphar.2022.894812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Endotoxins and other harmful substances may cause an increase in permeability in endothelial cells (ECs) monolayers, as well as ECs shrinkage and death to induce lung damage. Lipopolysaccharide (LPS) can impair endothelial progenitor cells (EPCs) functions, including proliferation, migration, and tube formation. EPCs can migrate to the damaged area, differentiate into ECs, and participate in vascular repair, which improves pulmonary capillary endothelial dysfunction and maintains the integrity of the endothelial barrier. Hydrogen (H2) contributes to the repairment of lung injury and the damage of ECs. We therefore speculate that H2 protects the EPCs against LPS-induced damage, and it's mechanism will be explored. The bone marrow-derived EPCs from ICR Mice were treated with LPS to establish a damaged model. Then EPCs were incubated with H2, and treated with PI3K inhibitor LY294002 and endothelial nitric oxide synthase (eNOS) inhibitor L-NAME. MTT assay, transwell assay and tube formation assay were used to detect the proliferation, migration and angiogenesis of EPCs. The expression levels of target proteins were detected by Western blot. Results found that H2 repaired EPCs proliferation, migration and tube formation functions damaged by LPS. LY294002 and L-NAME significantly inhibited the repaired effect of H2 on LPS-induced dysfunctions of EPCs. H2 also restored levels of phosphor-AKT (p-AKT), eNOS and phosphor-eNOS (p-eNOS) suppressed by LPS. LY294002 significantly inhibited the increase of p-AKT and eNOS and p-eNOS expression exposed by H2. L-NAME significantly inhibited the increase of eNOS and p-eNOS expression induced by H2. H2 repairs the dysfunctions of EPCs induced by LPS, which is mediated by PI3K/AKT/eNOS signaling pathway.
Collapse
Affiliation(s)
- Qingjie Mu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- University of Health and Rehabilitation Sciences, Qingdao, China
| | - Kaixuan Lv
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Jielun Yu
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
- Medical Laboratory Animal Center, Weifang Medical University, Weifang, China
- Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Weifang, China
| | - Shangmin Chu
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Lichun Zhang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Lingyu Kong
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Linlin Zhang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Yan Tian
- Research Center of Translational Medicine Shanghai East Hospital, Tongji University, Shanghai, China
| | - Xiaopeng Jia
- Shandong Qilu Stem Cell Engineering Co., Jinan, China
| | - Benhong Liu
- Department of Respiratory, Dongying People's Hospital, Dongying, China
| | - Youzhen Wei
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Nana Yang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
- Medical Laboratory Animal Center, Weifang Medical University, Weifang, China
- Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Weifang, China
| |
Collapse
|
24
|
Zou R, Nie C, Pan S, Wang B, Hong X, Xi S, Bai J, Yu M, Liu J, Yang W. Co-administration of hydrogen and metformin exerts cardioprotective effects by inhibiting pyroptosis and fibrosis in diabetic cardiomyopathy. Free Radic Biol Med 2022; 183:35-50. [PMID: 35304269 DOI: 10.1016/j.freeradbiomed.2022.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 12/28/2022]
Abstract
Hydrogen is a novel medical gas with several properties, including anti-oxidative, anti-inflammatory, anti-apoptotic, anti-allergic, and energy metabolism stimulating properties. Hydrogen therapy has been proven effective in the treatment of myocardial ischemia, myocardial infarction, and ischemia-reperfusion injury. Diabetic cardiomyopathy (DCM) is a serious cardiovascular complication of long-term chronic diabetes that is linked to increased heart failure and arrhythmia morbidity. The effect of hydrogen on the pathogenesis of DCM is yet to be determined. Metformin is a well-known pharmacological agent for the treatment of diabetes; however, the application of large doses of the drug is limited by its side effects. Therefore, this highlights the importance of developing novel therapies against DCM. In this regard, we investigated the effect of hydrogen on DCM and the mechanisms that underlie it. Furthermore, we also assessed the efficacy of co-administration of metformin and hydrogen. In this study, we found that hydrogen improved cardiac dysfunction and abnormal morphological structure in streptozotocin-induced diabetic mice. As a mechanism, it was confirmed that hydrogen mediated its action by reducing pyroptosis via inhibition of the AMPK/mTOR/NLRP3 signaling pathway and ameliorating fibrosis via inhibition of the TGF-β1/Smad signaling pathway. Furthermore, our findings suggested that co-administration of hydrogen and metformin shows potent protective effects, as evidenced by increased survival rates, reduced fasting blood glucose, and decreased cell injury when compared to a single application of metformin. In conclusion, our study demonstrated that hydrogen inhalation attenuates DCM by reducing pyroptosis and fibrosis and that hydrogen can be combined with metformin to exhibit a more potent cardioprotective effect in DCM.
Collapse
Affiliation(s)
- Rentong Zou
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Chaoqun Nie
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Shuang Pan
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Bin Wang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Xiaojian Hong
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Shuiqing Xi
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Juncai Bai
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Mengshu Yu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Jiaren Liu
- Department of Clinical Lab, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Wei Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|
25
|
Zhang Y, Zhang J, Fu Z. Molecular hydrogen is a potential protective agent in the management of acute lung injury. Mol Med 2022; 28:27. [PMID: 35240982 PMCID: PMC8892414 DOI: 10.1186/s10020-022-00455-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome, which is a more severe form of ALI, are life-threatening clinical syndromes observed in critically ill patients. Treatment methods to alleviate the pathogenesis of ALI have improved to a great extent at present. Although the efficacy of these therapies is limited, their relevance has increased remarkably with the ongoing pandemic caused by the novel coronavirus disease 2019 (COVID-19), which causes severe respiratory distress syndrome. Several studies have demonstrated the preventive and therapeutic effects of molecular hydrogen in the various diseases. The biological effects of molecular hydrogen mainly involve anti-inflammation, antioxidation, and autophagy and cell death modulation. This review focuses on the potential therapeutic effects of molecular hydrogen on ALI and its underlying mechanisms and aims to provide a theoretical basis for the clinical treatment of ALI and COVID-19.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004 People’s Republic of China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004 People’s Republic of China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004 People’s Republic of China
| |
Collapse
|
26
|
Abstract
Molecular hydrogen exerts biological effects on nearly all organs. It has anti-oxidative, anti-inflammatory, and anti-aging effects and contributes to the regulation of autophagy and cell death. As the primary organ for gas exchange, the lungs are constantly exposed to various harmful environmental irritants. Short- or long-term exposure to these harmful substances often results in lung injury, causing respiratory and lung diseases. Acute and chronic respiratory diseases have high rates of morbidity and mortality and have become a major public health concern worldwide. For example, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. An increasing number of studies have revealed that hydrogen may protect the lungs from diverse diseases, including acute lung injury, chronic obstructive pulmonary disease, asthma, lung cancer, pulmonary arterial hypertension, and pulmonary fibrosis. In this review, we highlight the multiple functions of hydrogen and the mechanisms underlying its protective effects in various lung diseases, with a focus on its roles in disease pathogenesis and clinical significance.
Collapse
Affiliation(s)
- Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
27
|
Hydrogen: Potential Applications in Solid Organ Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6659310. [PMID: 34868455 PMCID: PMC8635874 DOI: 10.1155/2021/6659310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 10/13/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
Ischemia reperfusion injury (IRI) in organ transplantation has always been an important hotspot in organ protection. Hydrogen, as an antioxidant, has been shown to have anti-inflammatory, antioxidant, and antiapoptotic effects. In this paper, the protective effect of hydrogen against IRI in organ transplantation has been reviewed to provide clues for future clinical studies.
Collapse
|
28
|
Shogenova LV, Truong TT, Kryukova NO, Yusupkhodzhaeva KA, Pozdnyakova DD, Kim TG, Chernyak AV, Kalmanova ЕN, Medvedev OS, Kuropatkina TA, Varfolomeev SD, Ryabokon AM, Svitich OА, Kostinov MP, Kunio I, Hiroki M, Chuchalin AG. Hydrogen inhalation in rehabilitation program of the medical staff recovered from COVID-19. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-2986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Active hydrogen inhalation (H(H2O)m) has powerful antioxidant and antiapoptotic effects. In recent years, it has been used in a number of experimental and clinical studies.Aim. To study the safety and effectiveness of inhalation of the “active form of hydrogen” (AFV;(H(H2O)m)) in the rehabilitation program of coronavirus disease 2019 (COVID-19) survivors during the recovery period.Material and methods. This randomized controlled parallel prospective study included 60 COVID-19 survivors with post-COVID-19 syndrome (ICD-10: U09.9) during the recovery period, with clinical manifestations of chronic fatigue syndrome (CFS), who received standard therapy in accordance with the management protocol of patients with CFS (ICD-10: G93.3): physiotherapy and medication therapy with drugs containing magnesium, B vitamins and L-carnitine. The patients were divided into 2 groups. The experimental group (n=30) included patients who received hydrogen inhalation for 90 minutes every day during 10 days (SUISONIA hydrogen inhalation device, Japan). The control group (n=30) consisted of patients who received standard therapy. In both groups, patients were comparable in sex and mean age: in the experimental group — 53 (22; 70) years, in the control group — 51 (25; 70) years. Biological markers of systemic inflammation, oxygen transport, lactate metabolism, intrapulmonary shunting, 6-minute walk test, and vascular endothelial function were determined in all patients on the 1st and 10th days of follow-up.Results. In the experimental group, a decrease in following parameters was revealed: stiffness index (SI), from 8,8±1,8 to 6,8±1,5 (p<0,0001); ALT, from 24,0±12,7 to 20,22±10,61 U/L (p<0,001); venous blood lactate, from 2,5±0,8 to 1,5±1,0 mmol/L (p<0,001); capillary blood lactate, from 2,9±0,8 to 2,0±0,8 mmol/L (p<0,0001); estimated pulmonary shunt fraction (Qs/Qt, Berggren equation, 1942) from 8,98±5,7 to 5,34±3,2 (p<0,01); white blood cells, from 6,64±1,57 to 5,92±1,32 109/L. In addition, we revealed an increase in the refractive index (RI) from 46,67±13,26% to 63,32±13,44% (p<0,0001), minimum blood oxygen saturation (SpO2) from 92,25±2,9 to 94,25±1, 56% (p<0,05), direct bilirubin from 2,99±1,41 to 3,39±1,34 pmol/L (p<0,01), partial oxygen tension (PvO2) from 26,9±5,0 to 34,8±5,6 mm Hg (p<0,0001), venous oxygen saturation (SvO2) from 51,8±020,6 to 61,1±018,1% (p<0,05), partial capillary oxygen tension (PcO2) from 48,7±15,4 to 63,8±21,2 mm Hg (p<0,01), capillary oxygen saturation (ScO2) from 82,2±4,2 to 86,2±4,8% (p<0,01), distance in 6 minute walk test from 429±45,0 to 569±60 m.Conclusion. Inhalation therapy with H(H2O)m in the rehabilitation program of COVID-19 survivors during the recovery period is a safe and highly effective method. Manifestations of silent hypoxemia and endothelial dysfunction decreased, while exercise tolerance increased. As for laboratory tests, a decrease in the white blood cell count, estimated pulmonary shunt fraction and lactate content parameters was revealed.
Collapse
Affiliation(s)
| | | | | | | | | | - T. G. Kim
- Pirogov Russian National Research Medical University; D.D. Pletnev City Clinical Hospital
| | - A. V. Chernyak
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia
| | - Е. N. Kalmanova
- Pirogov Russian National Research Medical University; D.D. Pletnev City Clinical Hospital
| | | | | | - S. D. Varfolomeev
- Institute of Physicochemical Foundations of the Functioning of Neural Network and Artificial Intellegence, Lomonosov Moscow State University; N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Lomonosov Moscow State University
| | - A. M. Ryabokon
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Lomonosov Moscow State University
| | - O. А. Svitich
- I.I. Mechnikov Scientific Research Institute of Vaccines and Serums
| | - M. P. Kostinov
- I.I. Mechnikov Scientific Research Institute of Vaccines and Serums
| | | | | | | |
Collapse
|
29
|
Zheng P, Kang J, Xing E, Zheng B, Wang X, Zhou H. Lung Inflation With Hydrogen During the Cold Ischemia Phase Alleviates Lung Ischemia-Reperfusion Injury by Inhibiting Pyroptosis in Rats. Front Physiol 2021; 12:699344. [PMID: 34408660 PMCID: PMC8365359 DOI: 10.3389/fphys.2021.699344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Lung inflation with hydrogen is an effective method to protect donor lungs from lung ischemia-reperfusion injury (IRI). This study aimed to examine the effect of lung inflation with 3% hydrogen during the cold ischemia phase on pyroptosis in lung grafts of rats. Methods: Adult male Wistar rats were randomly divided into the sham group, the control group, the oxygen (O2) group, and the hydrogen (H2) group. The sham group underwent thoracotomy but no lung transplantation. In the control group, the donor lungs were deflated for 2 h. In the O2 and H2 groups, the donor lungs were inflated with 40% O2 + 60% N2 and 3% H2 + 40% O2 + 57% N2, respectively, at 10 ml/kg, and the gas was replaced every 20 min during the cold ischemia phase for 2 h. Two hours after orthotopic lung transplantation, the recipients were euthanized. Results: Compared with the control group, the O2 and H2 groups improved oxygenation indices, decreases the inflammatory response and oxidative stress, reduced lung injury, and improved pressure-volume (P-V) curves. H2 had a better protective effect than O2. Furthermore, the levels of the pyroptosis-related proteins selective nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), cysteinyl aspartate specific proteinase (caspase)-1 p20, and the N-terminal of gasdermin D (GSDMD-N) were decreased in the H2 group. Conclusion: Lung inflation with 3% hydrogen during the cold ischemia phase inhibited the inflammatory response, oxidative stress, and pyroptosis and improved the function of the graft. Inhibiting reactive oxygen species (ROS) production may be the main mechanism of the antipyroptotic effect of hydrogen.
Collapse
Affiliation(s)
- Panpan Zheng
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jiyu Kang
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Entong Xing
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Bin Zheng
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xueyao Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Huacheng Zhou
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Leiphrakpam PD, Weber HR, Ogun T, Buesing KL. Rat model of smoke inhalation-induced acute lung injury. BMJ Open Respir Res 2021; 8:8/1/e000879. [PMID: 34301712 PMCID: PMC8311342 DOI: 10.1136/bmjresp-2021-000879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/05/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a lethal disease with limited therapeutic options and an unacceptably high mortality rate. Understanding the complex pathophysiological processes involved in the development of ALI/ARDS is critical for developing novel therapeutic strategies. Smoke inhalation (SI) injury is the leading cause of morbidity and mortality in patients with burn-associated ALI/ARDS; however, to our knowledge few reliable, reproducible models are available for pure SI animal model to investigate therapeutic options for ALI/ARDS without the confounding variables introduced by cutaneous burn or other pathology. OBJECTIVE To develop a small animal model of pure SI-induced ALI and to use this model for eventual testing of novel therapeutics for ALI. METHODS Rats were exposed to smoke using a custom-made smoke generator. Peripheral oxygen saturation (SpO2), heart rate, arterial blood gas, and chest X-ray (CXR) were measured before and after SI. Wet/dry weight (W/D) ratio, lung injury score and immunohistochemical staining of cleaved caspase 3 were performed on harvested lung tissues of healthy and SI animals. RESULTS The current study demonstrates the induction of ALI in rats after SI as reflected by a significant, sustained decrease in SpO2 and the development of diffuse bilateral pulmonary infiltrates on CXR. Lung tissue of animals exposed to SI showed increased inflammation, oedema and apoptosis as reflected by the increase in W/D ratio, injury score and cleaved caspase 3 level of the harvested tissues compared with healthy animals. CONCLUSION We have successfully developed a small animal model of pure SI-induced ALI. This model is offered to the scientific community as a reliable model of isolated pulmonary SI-induced injury without the confounding variables of cutaneous injury or other systemic pathology to be used for study of novel therapeutics or other investigation.
Collapse
Affiliation(s)
| | - Hannah R Weber
- Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tobi Ogun
- Family Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Keely L Buesing
- Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
31
|
Su JC, Zhang Y, Cheng C, Zhu YN, Ye YM, Sun YK, Xiang SY, Wang Y, Liu ZB, Zhang XF. Hydrogen regulates the M1/M2 polarization of alveolar macrophages in a rat model of chronic obstructive pulmonary disease. Exp Lung Res 2021; 47:301-310. [PMID: 34282696 DOI: 10.1080/01902148.2021.1919788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is a respiratory disease with high morbidity and mortality worldwide, so far there is no ideal treatment method. Previous studies have shown that hydrogen (H2) is involved in the treatment of COPD as an antioxidant. In this study, the effect of H2 on M1/M2 polarization of alveolar macrophages in COPD rats was observed, and its anti-inflammatory mechanism was further elucidated. Methods: Twenty-four Sprague-Dawley rats were randomly divided into three groups including the control, COPD and H2 group. A rat model of COPD was established by cigarette exposure combined with lipopolysaccharide (LPS) induction. H2 therapy was administered 2 hours per day for 14 days. Lung function and pathology were assessed. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1 and IL-10 in bronchoalveolar lavage fluid (BALF) and lung tissue were measured by enzyme-linked immunosorbent assay. The mRNA, protein expression and immunoreactivity of inducible nitric oxide synthase (iNOS) and arginase (Arg)-1 in lung were observed by quantitative real-time PCR, western blot and immunohistochemistry. Results: Compared with the control rats, there were a significant decline in lung function, a marked inflammatory infiltration and pulmonary parenchymal remodeling and the increases of IL-6, TNF-α and TGF-β1 levels in BALF and lung tissue, but a lower expression of IL-10 in COPD rats. The iNOS mRNA and protein expression, as well as its optical density (OD), were increased significantly in lung tissue, while those of Arg-1 decreased significantly. H2 treatment improved the lung function and the parenchymal inflammation, reversed the increased levels of IL-6, TNF-α and TGF-β1, and the lower IL-10. Meanwhile, H2 also down-regulated the expression of iNOS, but up-regulated expression of Arg-1 in lung tissue. Conclusion: H2 reduces inflammation in the lung of COPD, which may be related to its inhibition of M1 type polarization and activation of M2 type polarization of alveolar macrophage.
Collapse
Affiliation(s)
- Jing-Chao Su
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yi Zhang
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China.,College of Acupuncture and Tuina, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chen Cheng
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China.,College of Acupuncture and Tuina, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yi-Nan Zhu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yu-Meng Ye
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yong-Kang Sun
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shui-Ying Xiang
- College of Acupuncture and Tuina, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yuan Wang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zi-Bing Liu
- College of Acupuncture and Tuina, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xin-Fang Zhang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
32
|
Kheir JN, DiNardo JA. Commentary: Hydrogen: Lightweight molecule takes on a heavyweight problem. J Thorac Cardiovasc Surg 2021; 164:e286-e287. [PMID: 34052018 DOI: 10.1016/j.jtcvs.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/25/2022]
Affiliation(s)
- John N Kheir
- Department of Cardiology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - James A DiNardo
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Mass; Department of Anaesthesia, Harvard Medical School, Boston, Mass.
| |
Collapse
|
33
|
Bajgai J, Lee KJ, Rahman MH, Fadriquela A, Kim CS. Role of Molecular Hydrogen in Skin Diseases and its Impact in Beauty. Curr Pharm Des 2021; 27:737-746. [PMID: 32981497 DOI: 10.2174/1381612826666200925124235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
In today's society, healthy skin and a beautiful appearance are considered the foundation of general well-being. The skin is the largest organ of the body and plays an important role in protecting it against various hazards such as environmental, physical, chemical, and biological hazards. These factors include mediators that lead to oxidation reactions that produce reactive oxygen/nitrogen species and additional oxidants in the skin cells. An increase in oxidants beyond the antioxidant capacity of its defense system causes oxidative stress and chronic inflammation in the body. This response can cause further disruption of collagen fibers and hinder the functioning of skin cells that may result in the development of various skin diseases including psoriasis, atopic dermatitis, and aging. In this review, we summarized the present information related to the role of oxidative stress in the pathogenesis of dermatological disorders, and its impact on physical beauty and the daily lives of patients. We also discussed how molecular hydrogen exhibits a therapeutic effect against skin diseases via its effects on oxidative stress. Furthermore, findings from this summary review indicate that molecular hydrogen might be an effective treatment modality for the prevention and treatment of skin-related illnesses.
Collapse
Affiliation(s)
- Johny Bajgai
- Department of Environmental Medical Biology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do26426, Korea
| | - Kyu-Jae Lee
- Department of Environmental Medical Biology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do26426, Korea
| | - Md Habibur Rahman
- Department of Environmental Medical Biology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do26426, Korea
| | - Ailyn Fadriquela
- Department of Environmental Medical Biology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do26426, Korea
| | - Cheol-Su Kim
- Department of Environmental Medical Biology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do26426, Korea
| |
Collapse
|
34
|
Slezak J, Kura B, LeBaron TW, Singal PK, Buday J, Barancik M. Oxidative Stress and Pathways of Molecular Hydrogen Effects in Medicine. Curr Pharm Des 2021; 27:610-625. [PMID: 32954996 DOI: 10.2174/1381612826666200821114016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/02/2020] [Indexed: 11/22/2022]
Abstract
There are many situations of excessive production of reactive oxygen species (ROS) such as radiation, ischemia/reperfusion (I/R), and inflammation. ROS contribute to and arises from numerous cellular pathologies, diseases, and aging. ROS can cause direct deleterious effects by damaging proteins, lipids, and nucleic acids as well as exert detrimental effects on several cell signaling pathways. However, ROS are important in many cellular functions. The injurious effect of excessive ROS can hypothetically be mitigated by exogenous antioxidants, but clinically this intervention is often not favorable. In contrast, molecular hydrogen provides a variety of advantages for mitigating oxidative stress due to its unique physical and chemical properties. H2 may be superior to conventional antioxidants, since it can selectively reduce ●OH radicals while preserving important ROS that are otherwise used for normal cellular signaling. Additionally, H2 exerts many biological effects, including antioxidation, anti-inflammation, anti-apoptosis, and anti-shock. H2 accomplishes these effects by indirectly regulating signal transduction and gene expression, each of which involves multiple signaling pathways and crosstalk. The Keap1-Nrf2-ARE signaling pathway, which can be activated by H2, plays a critical role in regulating cellular redox balance, metabolism, and inducing adaptive responses against cellular stress. H2 also influences the crosstalk among the regulatory mechanisms of autophagy and apoptosis, which involve MAPKs, p53, Nrf2, NF-κB, p38 MAPK, mTOR, etc. The pleiotropic effects of molecular hydrogen on various proteins, molecules and signaling pathways can at least partly explain its almost universal pluripotent therapeutic potential.
Collapse
Affiliation(s)
- Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Tyler W LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Pawan K Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Jozef Buday
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, 121 08 Prague 2, Czech Republic
| | - Miroslav Barancik
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| |
Collapse
|
35
|
Quan L, Zheng B, Zhou H. Protective effects of molecular hydrogen on lung injury from lung transplantation. Exp Biol Med (Maywood) 2021; 246:1410-1418. [PMID: 33899545 DOI: 10.1177/15353702211007084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lung grafts may experience multiple injuries during lung transplantation, such as warm ischaemia, cold ischaemia, and reperfusion injury. These injuries all contribute to primary graft dysfunction, which is a major cause of morbidity and mortality after lung transplantation. As a potential selective antioxidant, hydrogen molecule (H2) protects against post-transplant complications in animal models of multiple organ transplantation. Herein, the authors review the current literature regarding the effects of H2 on lung injury from lung transplantation. The reviewed studies showed that H2 improved the outcomes of lung transplantation by decreasing oxidative stress and inflammation at the donor and recipient phases. H2 is primarily administered via inhalation, drinking hydrogen-rich water, hydrogen-rich saline injection, or a hydrogen-rich water bath. H2 favorably modulates signal transduction and gene expression, resulting in the suppression of pro-inflammatory cytokines and excess reactive oxygen species production. Although H2 appears to be a physiological regulatory molecule with antioxidant, anti-inflammatory and anti-apoptotic properties, its exact mechanisms of action remain elusive. Taken together, accumulating experimental evidence indicates that H2 can significantly alleviate transplantation-related lung injury, mainly via inhibition of inflammatory cytokine secretion and reduction in oxidative stress through several underlying mechanisms. Further animal experiments and preliminary human clinical trials will lay the foundation for the use of H2 as a treatment in the clinic.
Collapse
Affiliation(s)
- Lini Quan
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Bin Zheng
- Department of Anesthesiology, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Huacheng Zhou
- Department of Anesthesiology, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
36
|
Iida A, Naito H, Nojima T, Yumoto T, Yamada T, Fujisaki N, Nakao A, Mikane T. State-of-the-art methods for the treatment of severe hemorrhagic trauma: selective aortic arch perfusion and emergency preservation and resuscitation-what is next? Acute Med Surg 2021; 8:e641. [PMID: 33791103 PMCID: PMC7995927 DOI: 10.1002/ams2.641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 01/30/2023] Open
Abstract
Trauma is a primary cause of death globally, with non‐compressible torso hemorrhage constituting an important part of “potentially survivable trauma death.” Resuscitative endovascular balloon occlusion of the aorta has become a popular alternative to aortic cross‐clamping under emergent thoracotomy for non‐compressible torso hemorrhage in recent years, however, it alone does not improve the survival rate of patients with severe shock or traumatic cardiac arrest from non‐compressible torso hemorrhage. Development of novel advanced maneuvers is essential to improve these patients’ survival, and research on promising methods such as selective aortic arch perfusion and emergency preservation and resuscitation is ongoing. This review aimed to provide physicians in charge of severe trauma cases with a broad understanding of these novel therapeutic approaches to manage patients with severe hemorrhagic trauma, which may allow them to develop lifesaving strategies for exsanguinating trauma patients. Although there are still hurdles to overcome before their clinical application, promising research on these novel strategies is in progress, and ongoing development of synthetic red blood cells and techniques that reduce ischemia‐reperfusion injury may further maximize their effects. Both continuous proof‐of‐concept studies and translational clinical evaluations are necessary to clinically apply these hemostasis approaches to trauma patients.
Collapse
Affiliation(s)
- Atsuyoshi Iida
- Department of Emergency Medicine Japanese Red Cross Okayama Hospital 2-1-1 Aoe, Kita ward Okayama Okayama 7008607 Japan
| | - Hiromichi Naito
- Department of Emergency, Critical Care, and Disaster Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Sikatatyo Okayama Okayama 7008558 Japan
| | - Tsuyoshi Nojima
- Department of Emergency, Critical Care, and Disaster Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Sikatatyo Okayama Okayama 7008558 Japan
| | - Tetsuya Yumoto
- Department of Emergency, Critical Care, and Disaster Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Sikatatyo Okayama Okayama 7008558 Japan
| | - Taihei Yamada
- Department of Emergency, Critical Care, and Disaster Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Sikatatyo Okayama Okayama 7008558 Japan
| | - Noritomo Fujisaki
- Department of Emergency, Critical Care, and Disaster Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Sikatatyo Okayama Okayama 7008558 Japan
| | - Atsunori Nakao
- Department of Emergency, Critical Care, and Disaster Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Sikatatyo Okayama Okayama 7008558 Japan
| | - Takeshi Mikane
- Department of Emergency Medicine Japanese Red Cross Okayama Hospital 2-1-1 Aoe, Kita ward Okayama Okayama 7008607 Japan
| |
Collapse
|
37
|
Zhang L, Yu H, Tu Q, He Q, Huang N. New Approaches for Hydrogen Therapy of Various Diseases. Curr Pharm Des 2021; 27:636-649. [PMID: 33308113 DOI: 10.2174/1381612826666201211114141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
Hydrogen therapy has recently received increasing attention as an emerging and promising therapeutic technology due to its selective antioxidant property and cell energy regulatory capability in vivo. To solve the low solubility issue of hydrogen, a variety of nanomaterials and devices for hydrogen supply have recently been developed, aiming to increase the concentration of hydrogen in the specific disease site and realize controlled hydrogen release and combined treatment. In this review, we mainly focus on the latest advances in using hydrogen-generating devices and nanomaterials for hydrogen therapy. These developments include sustained release of H2, controlled release of H2, versatile modalities of synergistic therapy, etc. Also, bio-safety issues and challenges are discussed to further promote the clinical applications of hydrogen therapy and the development of hydrogen medicine.
Collapse
Affiliation(s)
- Lei Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Han Yu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qiufen Tu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qianjun He
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Nan Huang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
38
|
Nie C, Ding X, A R, Zheng M, Li Z, Pan S, Yang W. Hydrogen gas inhalation alleviates myocardial ischemia-reperfusion injury by the inhibition of oxidative stress and NLRP3-mediated pyroptosis in rats. Life Sci 2021; 272:119248. [PMID: 33621592 DOI: 10.1016/j.lfs.2021.119248] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
AIMS Reperfusion therapy is the most common and effective treatment against ischemic heart disease (IHD), but the process inflicts massive ischemia/reperfusion (I/R) injury for which no treatment exists. Notably, reperfusion after ischemia causes ischemia/reperfusion injury (IR injury) and the "no-reflow" phenomenon seriously affecting the therapeutic effects in clinical practice. The principle purpose of this study is to validate the effect of hydrogen gas on IHD and further explore the mechanism of hydrogen gas in alleviating myocardial I/R injury and no-reflow phenomenon. MATERIALS AND METHODS The rat model of myocardial ischemia-reperfusion was well established. Myocardial infarct size was evaluated by TTC & Evans blue staining. The no-reflow area and the cardiac function were assessed by thioflavin-S staining and echocardiography respectively. Microstructure and mitochondria of myocardial tissue were assessed by transmission electron microscope. Western blot and immunohistochemistry were used to evaluate the expression of NLRP3 mediated pyroptosis related proteins. The 8-OHdG, MDA and serum total ROS were used to evaluate the degree of oxidative stress. KEY FINDINGS The myocardial infarct size, no-reflow area, cardiac function, microstructure and mitochondrial morphology of I/R model rats were significantly improved after hydrogen inhalation. In addition, the expression of 8-OHdG, MDA, ROS and NLRP3 mediated pyroptosis related proteins were significantly decreased. SIGNIFICANCE We found that oxidative stress and NLRP3 mediated pyroptosis are the important mechanisms for hydrogen to alleviate myocardial I/R injury, and we also confirmed that hydrogen can significantly improve no reflow phenomenon caused by ischemia-reperfusion.
Collapse
Affiliation(s)
- Chaoqun Nie
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xue Ding
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Rong A
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China
| | - Min Zheng
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Zhenning Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Shuang Pan
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Wei Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
39
|
Barancik M, Kura B, LeBaron TW, Bolli R, Buday J, Slezak J. Molecular and Cellular Mechanisms Associated with Effects of Molecular Hydrogen in Cardiovascular and Central Nervous Systems. Antioxidants (Basel) 2020; 9:antiox9121281. [PMID: 33333951 PMCID: PMC7765453 DOI: 10.3390/antiox9121281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
The increased production of reactive oxygen species and oxidative stress are important factors contributing to the development of diseases of the cardiovascular and central nervous systems. Molecular hydrogen is recognized as an emerging therapeutic, and its positive effects in the treatment of pathologies have been documented in both experimental and clinical studies. The therapeutic potential of hydrogen is attributed to several major molecular mechanisms. This review focuses on the effects of hydrogen on the cardiovascular and central nervous systems, and summarizes current knowledge about its actions, including the regulation of redox and intracellular signaling, alterations in gene expressions, and modulation of cellular responses (e.g., autophagy, apoptosis, and tissue remodeling). We summarize the functions of hydrogen as a regulator of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated redox signaling and the association of hydrogen with mitochondria as an important target of its therapeutic action. The antioxidant functions of hydrogen are closely associated with protein kinase signaling pathways, and we discuss possible roles of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) and Wnt/β-catenin pathways, which are mediated through glycogen synthase kinase 3β and its involvement in the regulation of cellular apoptosis. Additionally, current knowledge about the role of molecular hydrogen in the modulation of autophagy and matrix metalloproteinases-mediated tissue remodeling, which are other responses to cellular stress, is summarized in this review.
Collapse
Affiliation(s)
- Miroslav Barancik
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.B.); (B.K.); (T.W.L.)
| | - Branislav Kura
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.B.); (B.K.); (T.W.L.)
- Faculty of Medicine, Institute of Physiology, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | - Tyler W. LeBaron
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.B.); (B.K.); (T.W.L.)
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
| | - Roberto Bolli
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA;
| | - Jozef Buday
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, 12108 Prague, Czech Republic;
| | - Jan Slezak
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.B.); (B.K.); (T.W.L.)
- Correspondence: ; Tel.: +42-19-03-620-181
| |
Collapse
|
40
|
Yamamoto H, Aokage T, Igawa T, Hirayama T, Seya M, Ishikawa-Aoyama M, Nojima T, Nakao A, Naito H. Luminal preloading with hydrogen-rich saline ameliorates ischemia-reperfusion injury following intestinal transplantation in rats. Pediatr Transplant 2020; 24:e13848. [PMID: 32997862 DOI: 10.1111/petr.13848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/08/2020] [Accepted: 08/24/2020] [Indexed: 02/01/2023]
Abstract
Prolonged intestinal cold storage causes considerable mucosal breakdown, which could bolster bacterial translocation and cause life-threatening infection for the transplant recipient. The intestine has an intraluminal compartment, which could be a target for intervention, but has not yet been fully investigated. Hydrogen gas exerts organ protection and has used been recently in several clinical and basic research studies on topics including intestinal transplantation. In this study, we aimed to investigate the cytoprotective efficacy of intraluminally administered hydrogen-rich saline on cold IR injury in intestinal transplantation. Isogeneic intestinal transplantation with 6 hours of cold ischemia was performed on Lewis rats. Hydrogen-rich saline (H2 concentration at 5 ppm) or normal saline was intraluminally introduced immediately before preservation. Graft intestine was excised 3 hours after reperfusion and analyzed. Histopathological analysis of control grafts revealed blunting of the villi and erosion. These mucosal changes were notably attenuated by intraluminal hydrogen. Intestinal mucosa damage caused by IR injury led to considerable deterioration of gut barrier function 3 h post-reperfusion. However, this decline in permeability was critically prevented by hydrogen treatment. IR-induced upregulation of proinflammatory cytokine mRNAs such as IL-6 was mitigated by hydrogen treatment. Western blot revealed that hydrogen treatment regulated loss of the transmembrane protein ZO-1. Hydrogen-rich saline intraluminally administered in the graft intestine modulated IR injury to transplanted intestine in rats. Successful abrogation of intestinal IR injury with a novel strategy using intraluminal hydrogen may be easily clinically applicable and will compellingly improve patient care after transplantation.
Collapse
Affiliation(s)
- Hirotsugu Yamamoto
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Toshiyuki Aokage
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Takuro Igawa
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Takahiro Hirayama
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Mizuki Seya
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Michiko Ishikawa-Aoyama
- Department of Emergency, Disaster and Critical Care Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tsuyoshi Nojima
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Atsunori Nakao
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Hiromichi Naito
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| |
Collapse
|
41
|
Li L, Li X, Zhang Z, Liu L, Zhou Y, Liu F. Protective Mechanism and Clinical Application of Hydrogen in Myocardial Ischemia-reperfusion Injury. Pak J Biol Sci 2020; 23:103-112. [PMID: 31944068 DOI: 10.3923/pjbs.2020.103.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cardiovascular disease accounts for one-third of all deaths, with ischemic heart disease as the main cause of death. Under pathological conditions, ischemia-reperfusion injury (IRI) often occurs in tissues. Ischemic injury is mainly caused by anaerobic cell death and reperfusion which results in a wide range of inflammatory responses. These responses are able to increase tissue damage and even damage to the whole body. IRI can also aggravate the original cardiovascular disease during the treatment of cardiovascular disease. Therefore, it is particularly important to understand the mechanism of myocardial ischemia-reperfusion injury (MIRI) for clinical treatment and application. At the same time, it is necessary to find a safe, reliable and feasible method for treating MIRI to reduce the incidence of complications and mortality as well as improve the prognosis and quality of life of patients. As a selective antioxidant, hydrogen can neutralize excessive free radicals, has certain anti-apoptotic and anti-inflammatory effects and it has gradually become a focus and hotspot of preclinical and clinical research. Hydrogen has been shown to have a certain therapeutic effect on MIRI, which can provide a new therapeutic direction for the clinical treatment of myocardial ischemia-reperfusion injury. In this review, the protective mechanism and clinical application of hydrogen in myocardial ischemia-reperfusion injury is discussed.
Collapse
|
42
|
Prospects of molecular hydrogen in perioperative neuroprotection from basic research to clinical application. Curr Opin Anaesthesiol 2020; 33:655-660. [PMID: 32826628 DOI: 10.1097/aco.0000000000000915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The current systematic review summarizes recent, basic clinical achievements regarding the neuroprotective effects of molecular hydrogen in distinct central nervous system conditions. RECENT FINDINGS Perioperative neuroprotection remains a major topic of clinical anesthesia. Various gaseous molecules have previously been explored as a feasible therapeutic option in neurological disorders. Among them, molecular hydrogen, which has emerged as a novel and potential therapy for perioperative neuroprotection, has received much attention. SUMMARY Fundamental and clinical evidence supports the antioxidant, antiinflammation, antiapoptosis and mitochondrial protective effects of hydrogen in the pathophysiology of nervous system diseases. The clinically preventive and therapeutic effects of hydrogen on different neural diseases, however, remain uncertain, and the lack of support by large randomized controlled trials has delayed its clinical application.
Collapse
|
43
|
Hu Q, Zhou Y, Wu S, Wu W, Deng Y, Shao A. Molecular hydrogen: A potential radioprotective agent. Biomed Pharmacother 2020; 130:110589. [PMID: 32763820 DOI: 10.1016/j.biopha.2020.110589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, many studies have shown that hydrogen has therapeutic and preventive effects on various diseases. Its selective antioxidant properties were well noticed. Most of the ionizing radiation-induced damage is caused by hydroxyl radicals (OH) from radiolysis of H2O. Since hydrogen can mitigate such damage through multiple mechanisms, it presents noteworthy potential as a novel radio-protective agent. This review analyses possible mechanisms for hydrogen's radioprotective properties and effective delivery methods. We also look into details of vitro and vivo studies for hydrogen's radioprotective effects, and clinical practices. We conclude that hydrogen has good potential in radio-protection, with evidence that warrants greater research efforts in this field.
Collapse
Affiliation(s)
- Qiongge Hu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shijie Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Wu
- Department of Medical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
44
|
Hydrogen-rich water reduces inflammatory responses and prevents apoptosis of peripheral blood cells in healthy adults: a randomized, double-blind, controlled trial. Sci Rep 2020; 10:12130. [PMID: 32699287 PMCID: PMC7376192 DOI: 10.1038/s41598-020-68930-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
The evidence for the beneficial effects of drinking hydrogen-water (HW) is rare. We aimed to investigate the effects of HW consumption on oxidative stress and immune functions in healthy adults using systemic approaches of biochemical, cellular, and molecular nutrition. In a randomized, double-blind, placebo-controlled study, healthy adults (20–59 y) consumed either 1.5 L/d of HW (n = 20) or plain water (PW, n = 18) for 4 weeks. The changes from baseline to the 4th week in serum biological antioxidant potential (BAP), derivatives of reactive oxygen, and 8-Oxo-2′-deoxyguanosine did not differ between groups; however, in those aged ≥ 30 y, BAP increased greater in the HW group than the PW group. Apoptosis of peripheral blood mononuclear cells (PBMCs) was significantly less in the HW group. Flow cytometry analysis of CD4+, CD8+, CD20+, CD14+ and CD11b+ cells showed that the frequency of CD14+ cells decreased in the HW group. RNA-sequencing analysis of PBMCs demonstrated that the transcriptomes of the HW group were clearly distinguished from those of the PW group. Most notably, transcriptional networks of inflammatory responses and NF-κB signaling were significantly down-regulated in the HW group. These finding suggest HW increases antioxidant capacity thereby reducing inflammatory responses in healthy adults.
Collapse
|
45
|
Naito H, Nojima T, Fujisaki N, Tsukahara K, Yamamoto H, Yamada T, Aokage T, Yumoto T, Osako T, Nakao A. Therapeutic strategies for ischemia reperfusion injury in emergency medicine. Acute Med Surg 2020; 7:e501. [PMID: 32431842 PMCID: PMC7231568 DOI: 10.1002/ams2.501] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/22/2020] [Indexed: 01/13/2023] Open
Abstract
Ischemia reperfusion (IR) injury occurs when blood supply, perfusion, and concomitant reoxygenation is restored to an organ or area following an initial poor blood supply after a critical time period. Ischemia reperfusion injury contributes to mortality and morbidity in many pathological conditions in emergency medicine clinical practice, including trauma, ischemic stroke, myocardial infarction, and post‐cardiac arrest syndrome. The process of IR is multifactorial, and its pathogenesis involves several mechanisms. Reactive oxygen species are considered key molecules in reperfusion injury due to their potent oxidizing and reducing effects that directly damage cellular membranes by lipid peroxidation. In general, IR injury to an individual organ causes various pro‐inflammatory mediators to be released, which could then induce inflammation in remote organs, thereby possibly advancing the dysfunction of multiple organs. In this review, we summarize IR injury in emergency medicine. Potential therapies include pharmacological treatment, ischemic preconditioning, and the use of medical gases or vitamin therapy, which could significantly help experts develop strategies to inhibit IR injury.
Collapse
Affiliation(s)
- Hiromichi Naito
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Tsuyoshi Nojima
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Noritomo Fujisaki
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Kohei Tsukahara
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Hirotsugu Yamamoto
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Taihei Yamada
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Toshiyuki Aokage
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Tetsuya Yumoto
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Takaaki Osako
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Atsunori Nakao
- Department of Emergency, Critical Care and Disaster Medicine Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| |
Collapse
|
46
|
Molecular hydrogen protects against oxidative stress-induced RAW 264.7 macrophage cells through the activation of Nrf2 and inhibition of MAPK signaling pathway. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00074-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Hydrogen Attenuates Allergic Inflammation by Reversing Energy Metabolic Pathway Switch. Sci Rep 2020; 10:1962. [PMID: 32029879 PMCID: PMC7005324 DOI: 10.1038/s41598-020-58999-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/23/2020] [Indexed: 01/16/2023] Open
Abstract
Mechanisms mediating the protective effects of molecular hydrogen (H2) are not well understood. This study explored the possibility that H2 exerts its anti-inflammatory effect by modulating energy metabolic pathway switch. Activities of glycolytic and mitochondrial oxidative phosphorylation systems were assessed in asthmatic patients and in mouse model of allergic airway inflammation. The effects of hydrogen treatment on airway inflammation and on changes in activities of these two pathways were evaluated. Monocytes from asthmatic patients and lungs from ovalbumin-sensitized and challenged mice had increased lactate production and glycolytic enzyme activities (enhanced glycolysis), accompanied by decreased ATP production and mitochondrial respiratory chain complex I and III activities (suppressed mitochondrial oxidative phosphorylation), indicating an energy metabolic pathway switch. Treatment of ovalbumin-sensitized and challenged mice with hydrogen reversed the energy metabolic pathway switch, and mitigated airway inflammation. Hydrogen abrogated ovalbumin sensitization and challenge-induced upregulation of glycolytic enzymes and hypoxia-inducible factor-1α, and downregulation of mitochondrial respiratory chain complexes and peroxisome proliferator activated receptor-γ coactivator-1α. Hydrogen abrogated ovalbumin sensitization and challenge-induced sirtuins 1, 3, 5 and 6 downregulation. Our data demonstrates that allergic airway inflammation is associated with an energy metabolic pathway switch from oxidative phosphorylation to aerobic glycolysis. Hydrogen inhibits airway inflammation by reversing this switch. Hydrogen regulates energy metabolic reprogramming by acting at multiple levels in the energy metabolism regulation pathways.
Collapse
|
48
|
Wei B, Jiwani A. Commentary: Let's get rich-The use of hydrogen-rich solution for lung preservation. J Thorac Cardiovasc Surg 2019; 159:2119-2120. [PMID: 31672397 DOI: 10.1016/j.jtcvs.2019.09.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Benjamin Wei
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama-Birmingham Medical Center, Birmingham, Ala.
| | - Alisha Jiwani
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama-Birmingham Medical Center, Birmingham, Ala
| |
Collapse
|
49
|
Hao Y, Dong X, Liu H, Wang Y. Preconditioning with one-time hydrogen gas does not attenuate skin flap ischemia-reperfusion injury in rat models. J Plast Reconstr Aesthet Surg 2019; 72:1661-1668. [DOI: 10.1016/j.bjps.2019.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/04/2019] [Accepted: 06/09/2019] [Indexed: 12/19/2022]
|
50
|
Kobayashi E, Sano M. Organ preservation solution containing dissolved hydrogen gas from a hydrogen-absorbing alloy canister improves function of transplanted ischemic kidneys in miniature pigs. PLoS One 2019; 14:e0222863. [PMID: 31574107 PMCID: PMC6772054 DOI: 10.1371/journal.pone.0222863] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Various methods have been devised to dissolve hydrogen gas in organ preservation solutions, including use of a hydrogen gas cylinder, electrolysis, or a hydrogen-generating agent. However, these methods require considerable time and effort for preparation. We investigated a practical technique for rapidly dissolving hydrogen gas in organ preservation solutions by using a canister containing hydrogen-absorbing alloy. The efficacy of hydrogen-containing organ preservation solution created by this method was tested in a miniature pig model of kidney transplantation from donors with circulatory arrest. The time required for dissolution of hydrogen gas was only 2–3 minutes. When hydrogen gas was infused into a bag containing cold ETK organ preservation solution at a pressure of 0.06 MPa and the bag was subsequently opened to the air, the dissolved hydrogen concentration remained at 1.0 mg/L or more for 4 hours. After warm ischemic injury was induced by circulatory arrest for 30 minutes, donor kidneys were harvested and perfused for 5 minutes with hydrogen-containing cold ETK solution or hydrogen-free cold ETK solution. The perfusion rate was faster from the initial stage with hydrogen-containing cold ETK solution than with hydrogen-free ETK solution. After storage of the kidney in hydrogen-free preservation solution for 1 hour before transplantation, no urine production was observed and blood flow was not detected in the transplanted kidney at sacrifice on postoperative day 6. In contrast, after storage in hydrogen-containing preservation solution for either 1 or 4 hours, urine was detected in the bladder and blood flow was confirmed in the transplanted kidney. This method of dissolving hydrogen gas in organ preservation solution is a practical technique for potentially converting damaged organs to transplantable organs that can be used safely in any clinical setting where organs are removed from donors.
Collapse
Affiliation(s)
- Eiji Kobayashi
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
- Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan
- * E-mail:
| |
Collapse
|