1
|
Li RL, Kang S. Rewriting cellular fate: epigenetic interventions in obesity and cellular programming. Mol Med 2024; 30:169. [PMID: 39390356 PMCID: PMC11465847 DOI: 10.1186/s10020-024-00944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
External constraints, such as development, disease, and environment, can induce changes in epigenomic patterns that may profoundly impact the health trajectory of fetuses and neonates into adulthood, influencing conditions like obesity. Epigenetic modifications encompass processes including DNA methylation, covalent histone modifications, and RNA-mediated regulation. Beyond forward cellular differentiation (cell programming), terminally differentiated cells are reverted to a pluripotent or even totipotent state, that is, cellular reprogramming. Epigenetic modulators facilitate or erase histone and DNA modifications both in vivo and in vitro during programming and reprogramming. Noticeably, obesity is a complex metabolic disorder driven by both genetic and environmental factors. Increasing evidence suggests that epigenetic modifications play a critical role in the regulation of gene expression involved in adipogenesis, energy homeostasis, and metabolic pathways. Hence, we discuss the mechanisms by which epigenetic interventions influence obesity, focusing on DNA methylation, histone modifications, and non-coding RNAs. We also analyze the methodologies that have been pivotal in uncovering these epigenetic regulations, i.e., Large-scale screening has been instrumental in identifying genes and pathways susceptible to epigenetic control, particularly in the context of adipogenesis and metabolic homeostasis; Single-cell RNA sequencing (scRNA-seq) provides a high-resolution view of gene expression patterns at the individual cell level, revealing the heterogeneity and dynamics of epigenetic regulation during cellular differentiation and reprogramming; Chromatin immunoprecipitation (ChIP) assays, focused on candidate genes, have been crucial for characterizing histone modifications and transcription factor binding at specific genomic loci, thereby elucidating the epigenetic mechanisms that govern cellular programming; Somatic cell nuclear transfer (SCNT) and cell fusion techniques have been employed to study the epigenetic reprogramming accompanying cloning and the generation of hybrid cells with pluripotent characteristics, etc. These approaches have been instrumental in identifying specific epigenetic marks and pathways implicated in obesity, providing a foundation for developing targeted therapeutic interventions. Understanding the dynamic interplay between epigenetic regulation and cellular programming is crucial for advancing mechanism and clinical management of obesity.
Collapse
Affiliation(s)
- Rui-Lin Li
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Jimo Road 150, Shanghai, 200120, China
| | - Sheng Kang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Jimo Road 150, Shanghai, 200120, China.
| |
Collapse
|
2
|
Abdelrahman Z, Maxwell AP, McKnight AJ. Genetic and Epigenetic Associations with Post-Transplant Diabetes Mellitus. Genes (Basel) 2024; 15:503. [PMID: 38674437 PMCID: PMC11050138 DOI: 10.3390/genes15040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Post-transplant diabetes mellitus (PTDM) is a common complication of solid organ transplantation. PTDM prevalence varies due to different diabetes definitions. Consensus guidelines for the diagnosis of PTDM have been published based on random blood glucose levels, glycated hemoglobin (HbA1c), and oral glucose tolerance test (OGTT). The task of diagnosing PTDM continues to pose challenges, given the potential for diabetes to manifest at different time points after transplantation, thus demanding constant clinical vigilance and repeated testing. Interpreting HbA1c levels can be challenging after renal transplantation. Pre-transplant risk factors for PTDM include obesity, sedentary lifestyle, family history of diabetes, ethnicity (e.g., African-Caribbean or South Asian ancestry), and genetic risk factors. Risk factors for PTDM include immunosuppressive drugs, weight gain, hepatitis C, and cytomegalovirus infection. There is also emerging evidence that genetic and epigenetic variation in the organ transplant recipient may influence the risk of developing PTDM. This review outlines many known risk factors for PTDM and details some of the pathways, genetic variants, and epigenetic features associated with PTDM. Improved understanding of established and emerging risk factors may help identify people at risk of developing PTDM and may reduce the risk of developing PTDM or improve the management of this complication of organ transplantation.
Collapse
Affiliation(s)
- Zeinab Abdelrahman
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK; (Z.A.); (A.P.M.)
| | - Alexander Peter Maxwell
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK; (Z.A.); (A.P.M.)
- Regional Nephrology Unit, Belfast City Hospital, Belfast BT9 7AB, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK; (Z.A.); (A.P.M.)
| |
Collapse
|
3
|
Smyth LJ, Kerr KR, Kilner J, McGill ÁE, Maxwell AP, McKnight AJ. Longitudinal Epigenome-Wide Analysis of Kidney Transplant Recipients Pretransplant and Posttransplant. Kidney Int Rep 2023; 8:330-340. [PMID: 36815102 PMCID: PMC9939425 DOI: 10.1016/j.ekir.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Kidney transplantation remains the gold standard of treatment for end-stage renal disease (ESRD), with improved patient outcomes compared with dialysis. Epigenome-Wide Association Analysis (EWAS) of DNA methylation may identify markers that contribute to an individual's risk of adverse transplant outcomes, yet only a limited number of EWAS have been conducted in kidney transplant recipients. This EWAS aimed to interrogate the methylation profile of a kidney transplant recipient cohort with minimal posttransplant complications, exploring differences in samples pretransplant and posttransplant. Methods We compared differentially methylated cytosine-phosphate-guanine sites (dmCpGs) in samples derived from peripheral blood mononuclear cells of the same kidney transplant recipients, collected both pretransplant and posttransplant (N = 154), using the Infinium MethylationEPIC microarray (Illumina, San Diego, CA). Recipients received kidneys from deceased donors and had a mean of 17 years of follow-up. Results Five top-ranked dmCpGs were significantly different at false discovery rate (FDR) adjusted P ≤ 9 × 10-8; cg23597162 within JAZF1, cg25187293 within BTNL8, cg17944885, located between ZNF788P and ZNF625-ZNF20, cg14655917 located between ASB4 and PDK4 and cg09839120 located between GIMAP6 and EIF2AP3. Conclusion Five dmCpGs were identified at the generally accepted EWAS critical significance level of FDR adjusted P (P FDRadj) ≤ 9 × 10-8, including cg23597162 (within JAZF1) and cg17944885, which have prior associations with chronic kidney disease (CKD). Comparing individuals with no evidence of posttransplant complications (N = 105) demonstrated that 693,555 CpGs (89.57%) did not display any significant difference in methylation (P FDRadj ≥ 0.05), thereby this study establishes an important reference for future epigenetic studies that seek to identify markers of posttransplant complications.
Collapse
Affiliation(s)
- Laura J. Smyth
- Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, UK
| | - Katie R. Kerr
- Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, UK
| | - Jill Kilner
- Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, UK
| | - Áine E. McGill
- Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, UK
| | - Alexander P. Maxwell
- Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
4
|
Rysz J, Franczyk B, Rysz-Górzyńska M, Gluba-Brzózka A. Are Alterations in DNA Methylation Related to CKD Development? Int J Mol Sci 2022; 23:7108. [PMID: 35806113 PMCID: PMC9267048 DOI: 10.3390/ijms23137108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/29/2022] Open
Abstract
The modifications in genomic DNA methylation are involved in the regulation of normal and pathological cellular processes. The epigenetic regulation stimulates biological plasticity as an adaptive response to variations in environmental factors. The role of epigenetic changes is vital for the development of some diseases, including atherogenesis, cancers, and chronic kidney disease (CKD). The results of studies presented in this review have suggested that altered DNA methylation can modulate the expression of pro-inflammatory and pro-fibrotic genes, as well those essential for kidney development and function, thus stimulating renal disease progression. Abnormally increased homocysteine, hypoxia, and inflammation have been suggested to alter epigenetic regulation of gene expression in CKD. Studies of renal samples have demonstrated the relationship between variations in DNA methylation and fibrosis and variations in estimated glomerular filtration rate (eGFR) in human CKD. The unravelling of the genetic-epigenetic profile would enhance our understanding of processes underlying the development of CKD. The understanding of multifaceted relationship between DNA methylation, genes expression, and disease development and progression could improve the ability to identify individuals at risk of CKD and enable the choice of appropriate disease management.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Magdalena Rysz-Górzyńska
- Department of Otolaryngology, Laryngological Oncology, Audiology and Phoniatrics, Medical Univesity of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland;
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| |
Collapse
|
5
|
Cristoferi I, Giacon TA, Boer K, van Baardwijk M, Neri F, Campisi M, Kimenai HJAN, Clahsen-van Groningen MC, Pavanello S, Furian L, Minnee RC. The applications of DNA methylation as a biomarker in kidney transplantation: a systematic review. Clin Epigenetics 2022; 14:20. [PMID: 35130936 PMCID: PMC8822833 DOI: 10.1186/s13148-022-01241-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Although kidney transplantation improves patient survival and quality of life, long-term results are hampered by both immune- and non-immune-mediated complications. Current biomarkers of post-transplant complications, such as allograft rejection, chronic renal allograft dysfunction, and cutaneous squamous cell carcinoma, have a suboptimal predictive value. DNA methylation is an epigenetic modification that directly affects gene expression and plays an important role in processes such as ischemia/reperfusion injury, fibrosis, and alloreactive immune response. Novel techniques can quickly assess the DNA methylation status of multiple loci in different cell types, allowing a deep and interesting study of cells' activity and function. Therefore, DNA methylation has the potential to become an important biomarker for prediction and monitoring in kidney transplantation. PURPOSE OF THE STUDY The aim of this study was to evaluate the role of DNA methylation as a potential biomarker of graft survival and complications development in kidney transplantation. MATERIAL AND METHODS: A systematic review of several databases has been conducted. The Newcastle-Ottawa scale and the Jadad scale have been used to assess the risk of bias for observational and randomized studies, respectively. RESULTS Twenty articles reporting on DNA methylation as a biomarker for kidney transplantation were included, all using DNA methylation for prediction and monitoring. DNA methylation pattern alterations in cells isolated from different tissues, such as kidney biopsies, urine, and blood, have been associated with ischemia-reperfusion injury and chronic renal allograft dysfunction. These alterations occurred in different and specific loci. DNA methylation status has also proved to be important for immune response modulation, having a crucial role in regulatory T cell definition and activity. Research also focused on a better understanding of the role of this epigenetic modification assessment for regulatory T cells isolation and expansion for future tolerance induction-oriented therapies. CONCLUSIONS Studies included in this review are heterogeneous in study design, biological samples, and outcome. More coordinated investigations are needed to affirm DNA methylation as a clinically relevant biomarker important for prevention, monitoring, and intervention.
Collapse
Affiliation(s)
- Iacopo Cristoferi
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands.
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands.
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands.
| | - Tommaso Antonio Giacon
- Kidney and Pancreas Transplantation Unit, Department of Surgical, Oncological and Gastroenterological Sciences, Padua University Hospital, Via Giustiniani 2, 35128, Padua, Italy
- Occupational Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University, Via Giustiniani 2, 35128, Padua, Italy
- Environmental and Respiratory Physiology Laboratory, Department of Biomedical Sciences, Padua University, Via Marzolo 3, 35131, Padua, Italy
- Institute of Anaesthesia and Intensive Care, Department of Medicine - DIMED, Padua University Hospital, Via Cesare Battisti 267, 35128, Padua, Italy
| | - Karin Boer
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Myrthe van Baardwijk
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| | - Flavia Neri
- Kidney and Pancreas Transplantation Unit, Department of Surgical, Oncological and Gastroenterological Sciences, Padua University Hospital, Via Giustiniani 2, 35128, Padua, Italy
| | - Manuela Campisi
- Occupational Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University, Via Giustiniani 2, 35128, Padua, Italy
| | - Hendrikus J A N Kimenai
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| | - Marian C Clahsen-van Groningen
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University, Via Giustiniani 2, 35128, Padua, Italy
| | - Lucrezia Furian
- Kidney and Pancreas Transplantation Unit, Department of Surgical, Oncological and Gastroenterological Sciences, Padua University Hospital, Via Giustiniani 2, 35128, Padua, Italy
| | - Robert C Minnee
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Chen J, Huang Y, Hui Q, Mathur R, Gwinn M, So-Armah K, Freiberg MS, Justice AC, Xu K, Marconi VC, Sun YV. Epigenetic Associations With Estimated Glomerular Filtration Rate Among Men With Human Immunodeficiency Virus Infection. Clin Infect Dis 2021; 70:667-673. [PMID: 30893429 DOI: 10.1093/cid/ciz240] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND People living with human immunodeficiency virus (HIV) infection have higher risk for chronic kidney disease (CKD), defined by a reduced estimated glomerular filtration rate (eGFR). Previous studies have implicated epigenetic changes related to CKD; however, the mechanism of HIV-related CKD has not been thoroughly investigated. METHODS We conducted an epigenome-wide association study of eGFR among 567 HIV-positive and 117 HIV-negative male participants in the Veterans Aging Cohort Study to identify epigenetic signatures of kidney function. RESULTS By surveying more than 400 000 cytosine guanine dinucleotide (CpG) sites measured from peripheral blood mononuclear cells, we identified 15 sites that were significantly associated with eGFR (false discovery rate Q value < 0.05) among HIV-positive participants. The most significant CpG sites, located at MAD1L1, TSNARE1/BAI1, and LTV1, were all negatively associated with eGFR (cg06329547, P = 5.25 × 10-9; cg23281907, P = 1.37 × 10-8; cg18368637, P = 5.17 × 10-8). We also replicated previously reported eGFR-associated CpG sites including cg17944885 (P = 2.5 × 10-5) located between ZNF788 and ZNF20 on chromosome 19 in the pooled population. CONCLUSIONS In this study we uncovered novel epigenetic associations with kidney function among people living with HIV and suggest potential epigenetic mechanisms linked with HIV-related CKD risk.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Yunfeng Huang
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Qin Hui
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Raina Mathur
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Marta Gwinn
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | | | - Matthew S Freiberg
- Cardiovascular Medicine Division, Vanderbilt University School of Medicine and Tennessee Valley Healthcare System, Nashville
| | - Amy C Justice
- Connecticut Veteran Health System, West Haven.,Yale University School of Medicine, New Haven
| | - Ke Xu
- Connecticut Veteran Health System, West Haven.,Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Vincent C Marconi
- Hubert Department of Global Health, Rollins School of Public Health.,Division of Infectious Diseases, Emory University School of Medicine, Atlanta.,Atlanta Veterans Affairs Healthcare System, Decatur
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Healthcare System, Decatur.,Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
7
|
Hwang JW, Lee NK, Yang JH, Son HJ, Bang SI, Chang JW, Na DL. A Comparison of Immune Responses Exerted Following Syngeneic, Allogeneic, and Xenogeneic Transplantation of Mesenchymal Stem Cells into the Mouse Brain. Int J Mol Sci 2020; 21:ijms21093052. [PMID: 32357509 PMCID: PMC7246520 DOI: 10.3390/ijms21093052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/22/2020] [Accepted: 04/23/2020] [Indexed: 12/23/2022] Open
Abstract
Due to their multifactorial aspects, mesenchymal stem cells (MSCs) have been widely established as an attractive and potential candidate for the treatment of a multitude of diseases. A substantial number of studies advocate that MSCs are poorly immunogenic. In several studies, however, immune responses were observed following injections of xenogeneic donor MSCs. In this study, the aim was to examine differences in immune responses exerted based on transplantations of xenogeneic, syngeneic, and allogeneic MSCs in the wild-type mouse brain. Xenogeneic, allogeneic, and syngeneic MSCs were intracerebrally injected into C57BL/6 mice. Mice were sacrificed one week following transplantation. Based on immunohistochemical (IHC) analysis, leukocytes and neutrophils were expressed at the injection sites in the following order (highest to lowest) xenogeneic, allogeneic, and syngeneic. In contrast, microglia and macrophages were expressed in the following order (highest to lowest): syngeneic, allogeneic, and xenogeneic. Residual human MSCs in the mouse brain were barely detected after seven days. Although the discrepancy between leukocytes versus macrophages/microglia infiltration should be resolved, our results overall argue against the previous notions that MSCs are poorly immunogenic and that modulation of immune responses is a prerequisite for preclinical and clinical studies in MSC therapy of central nervous system diseases.
Collapse
Affiliation(s)
- Jung Won Hwang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Na Kyung Lee
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Je Hoon Yang
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Hyo Jin Son
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Sa Ik Bang
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Jong Wook Chang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- R&D Center, ENCell Co. Ltd., Seoul 06072, Korea
- Correspondence: (J.W.C.); (D.L.N.); Tel.: +82-2-3410-3687 (J.W.C.); +82-2-3410-3591 (D.L.N.); Fax: +82-2-3410-0052 (D.L.N.)
| | - Duk L. Na
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06072, Korea
- Correspondence: (J.W.C.); (D.L.N.); Tel.: +82-2-3410-3687 (J.W.C.); +82-2-3410-3591 (D.L.N.); Fax: +82-2-3410-0052 (D.L.N.)
| |
Collapse
|
8
|
Stenger PL, Vidal-Dupiol J, Reisser C, Planes S, Ky CL. Colour plasticity in the shells and pearls of animal graft model Pinctada margaritifera assessed by HSV colour quantification. Sci Rep 2019; 9:7520. [PMID: 31101851 PMCID: PMC6525208 DOI: 10.1038/s41598-019-43777-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/01/2019] [Indexed: 01/24/2023] Open
Abstract
The bivalve Pinctada margaritifera has the capacity to produce the most varied and colourful pearls in the world. Colour expression in the inner shell is under combined genetic and environmental control and is correlated with the colour of pearls produced when the same individual is used as a graft donor. One major limitation when studying colour phenotypes is grader subjectivity, which leads to inconsistent colour qualification and quantification. Through the use of HSV (Hue Saturation Value) colour space, we created an R package named 'ImaginR' to characterise inner shell colour variations in P. margaritifera. Using a machine-learning protocol with a training dataset, ImaginR was able to reassign individual oysters and pearls to predefined human-based phenotype categories. We then tested the package on samples obtained in an experiment testing the effects of donor conditioning depth on the colour of the donor inner shell and colour of the pearls harvested from recipients following grafting and 20 months of culture in situ. These analyses successfully detected donor shell colour modifications due to depth-related plasticity and the maintenance of these modifications through to the harvested pearls. Besides its potential interest for standardization in the pearl industry, this new method is relevant to other research projects using biological models.
Collapse
Affiliation(s)
- Pierre-Louis Stenger
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre Ifremer du Pacifique, BP 49, 98725, Tahiti, French Polynesia
| | - Jérémie Vidal-Dupiol
- IFREMER, UMR 5244 IHPE, University Perpignan Via Domitia, CNRS, University Montpellier, F-34095, Montpellier, France
| | - Céline Reisser
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre Ifremer du Pacifique, BP 49, 98725, Tahiti, French Polynesia
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Labex Corail, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
| | - Chin-Long Ky
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre Ifremer du Pacifique, BP 49, 98725, Tahiti, French Polynesia.
| |
Collapse
|
9
|
Unveiling the Role of DNA Methylation in Kidney Transplantation: Novel Perspectives toward Biomarker Identification. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1602539. [PMID: 30766879 PMCID: PMC6350635 DOI: 10.1155/2019/1602539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/30/2018] [Indexed: 12/13/2022]
Abstract
The burden of chronic kidney disease is dramatically rising, making it a major public health concern worldwide. Kidney transplantation is now the best treatment for patients with end-stage renal disease. Although kidney transplantation may improve survival and quality of life, its long-term results are hampered by immune- and/or non-immune-mediated complications. Thus, the identification of transplanted patients with a higher risk of posttransplant complications has become a big challenge for public health. However, current biomarkers of posttransplant complications have a poor predictive value, rising the need to explore novel approaches for the management of transplant patient. In this review we summarize the emerging literature about DNA methylation in kidney transplant complications, in order to highlight its perspectives toward biomarker identification. In the forthcoming future the monitoring of DNA methylation in kidney transplant patients could become a plausible strategy toward the prevention and/or treatment of kidney transplant complications.
Collapse
|
10
|
Xu T, Wang C, Shen J, Tong P, O’Keefe R. Ablation of Dnmt3b in chondrocytes suppresses cell maturation during embryonic development. J Cell Biochem 2018; 119:5852-5863. [PMID: 29637597 PMCID: PMC5993586 DOI: 10.1002/jcb.26775] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/31/2018] [Indexed: 12/18/2022]
Abstract
DNA methylation is a major mode of epigenetic regulation in the mammalian genome and is essential for embryonic development. The three catalytic DNA methyltransferases (Dnmts), Dnmt1, Dnmt3a, and Dnmt3b, catalyze the methylation of cytosine. Dnmt3b is highly expressed in chondrocytes and global knockout of Dnmt3b led to skeletal deformations and embryonic lethality, suggesting an essential role of Dnmt3b in endochondral bone formation. To further define the role of Dnmt3b in skeletal development, Dnmt3b was deleted in Col2 positive chondrocyte lineage cells. Both axial and appendicular skeletal size were reduced and bone mineralization was delayed in Col2Cre+ ;Dnmt3bf/f (Dnmt3bCol2 ) mice at E14.5 and E18.5. While Alcian Blue Hematoxylin/Orange G (ABH/OG) staining showed normal chondrocyte columns in control growth plates, the length of hypertrophic chondrocyte zone and type X collagen expression were decreased in E18.5 growth plates from Dnmt3bCol2 mice. TUNEL and PCNA staining demonstrated that the delay in chondrocyte maturation observed in the Dnmt3bCol2 growth plates was not secondary to altered chondrocyte apoptosis or proliferation. Complementary in vitro experiments were performed on primary sternal chondrocytes isolated from control and Dnmt3bCol2 mice. Gene expression studies confirmed delayed terminal maturation as Mmp13 and Col10a1 expression was down-regulated in Dnmt3bCol2 chondrocytes. In addition, alkaline phosphatase (ALP) and Alizarin Red staining confirmed that Dnmt3b deletion in chondrocytes delays in vitro chondrocyte hypertrophic differentiation and matrix mineralization. Mechanistically, Dnmt3b gene deletion resulted in decreased BMP signaling through reduction of Smad1 phosphorylation. These findings show that epigenetic factor, Dnmt3b is necessary for normal chondrocyte hypertrophic maturation and limb development.
Collapse
Affiliation(s)
- Taotao Xu
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cuicui Wang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110
| | - Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Regis O’Keefe
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110
| |
Collapse
|
11
|
Wanner N, Bechtel-Walz W. Epigenetics of kidney disease. Cell Tissue Res 2017; 369:75-92. [PMID: 28286899 DOI: 10.1007/s00441-017-2588-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/15/2017] [Indexed: 02/06/2023]
Abstract
DNA methylation and histone modifications determine renal programming and the development and progression of renal disease. The identification of the way in which the renal cell epigenome is altered by environmental modifiers driving the onset and progression of renal diseases has extended our understanding of the pathophysiology of kidney disease progression. In this review, we focus on current knowledge concerning the implications of epigenetic modifications during renal disease from early development to chronic kidney disease progression including renal fibrosis, diabetic nephropathy and the translational potential of identifying new biomarkers and treatments for the prevention and therapy of chronic kidney disease and end-stage kidney disease.
Collapse
Affiliation(s)
- Nicola Wanner
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Center for Systems Biology (ZBSA), Albert-Ludwigs-University, Freiburg, Germany. .,Renal Division, University Hospital Freiburg, Breisacher Strasse 66, 79106, Freiburg, Germany.
| | - Wibke Bechtel-Walz
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Renal Division, University Hospital Freiburg, Breisacher Strasse 66, 79106, Freiburg, Germany.
| |
Collapse
|
12
|
Abstract
Ever since the discovery of the major histocompatibility complex, scientific and clinical understanding in the field of transplantation has been advanced through genetic and genomic studies. Candidate-gene approaches and recent genome-wide association studies (GWAS) have enabled a deeper understanding of the complex interplay of the donor-recipient interactions that lead to transplant tolerance or rejection. Genetic analysis in transplantation, when linked to demographic and clinical outcomes, has the potential to drive personalized medicine by enabling individualized risk stratification and immunosuppression through the identification of variants associated with immune-mediated complications, post-transplant disease or alterations in drug-metabolizing genes.
Collapse
Affiliation(s)
- Joshua Y C Yang
- Division of Transplant Surgery, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, USA
| | - Minnie M Sarwal
- Division of Transplant Surgery, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, USA
| |
Collapse
|
13
|
Boer K, de Wit LEA, Peters FS, Hesselink DA, Hofland LJ, Betjes MGH, Looman CWN, Baan CC. Variations in DNA methylation of interferon gamma and programmed death 1 in allograft rejection after kidney transplantation. Clin Epigenetics 2016; 8:116. [PMID: 27891189 PMCID: PMC5112717 DOI: 10.1186/s13148-016-0288-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023] Open
Abstract
Background The role of DNA methylation in the regulation of the anti-donor-directed immune response after organ transplantation is unknown. Here, we studied the methylation of two mediators of the immune response: the pro-inflammatory cytokine interferon γ (IFNγ) and the inhibitory receptor programmed death 1 (PD1) in naïve and memory CD8+ T cell subsets in kidney transplant recipients receiving immunosuppressive medication. Both recipients experiencing an episode of acute allograft rejection (rejectors) as well as recipients without rejection (non-rejectors) were included. Results CpGs in the promoter regions of both IFNγ and PD1 were significantly (p < 0.001) higher methylated in the naïve CD8+ T cells compared to the memory T cell subsets. The methylation status of both IFNγ and PD1 inversely correlated with the percentage of IFNγ or PD1-producing cells. Before transplantation, the methylation status of both IFNγ and PD1 was not significantly different from healthy donors. At 3 months after transplantation, irrespective of rejection and subsequent anti-rejection therapy, the IFNy methylation was significantly higher in the differentiated effector memory CD45RA+ (EMRA) CD8+ T cells (p = 0.01) whereas the PD1 methylation was significantly higher in all memory CD8+ T cell subsets (CD27+ memory; p = 0.02: CD27− memory; p = 0.02: EMRA; p = 0.002). Comparing the increase in methylation in the first 3 months after transplantation between rejectors and non-rejectors demonstrated a significantly more prominent increase in the PD1 methylation in the CD27− memory CD8+ T cells in rejectors (increase in rejectors 14%, increase in non-rejectors 1.9%, p = 0.04). The increase in DNA methylation in the other memory CD8+ T cells was not significantly different between rejectors and non-rejectors. At 12 months after transplantation, the methylation of both IFNγ and PD1 returned to baseline levels. Conclusions The DNA methylation of both IFNγ and PD1 increases the first 3 months after transplantation in memory CD8+ T cells in kidney transplant recipients. This increase was irrespective of a rejection episode indicating that general factors of the kidney transplantation procedure, including the use of immunosuppressive medication, contribute to these variations in DNA methylation.
Collapse
Affiliation(s)
- Karin Boer
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Room Na520, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - L Elly A de Wit
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Room Na520, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Fleur S Peters
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Room Na520, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Room Na520, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Leo J Hofland
- Department of Internal Medicine, Section Endocrinology, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michiel G H Betjes
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Room Na520, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Caspar W N Looman
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Room Na520, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
14
|
Picascia A, Grimaldi V, Napoli C. From HLA typing to anti-HLA antibody detection and beyond: The road ahead. Transplant Rev (Orlando) 2016; 30:187-94. [DOI: 10.1016/j.trre.2016.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/07/2016] [Accepted: 07/22/2016] [Indexed: 01/27/2023]
|
15
|
Clinical potential of DNA methylation in organ transplantation. J Heart Lung Transplant 2016; 35:843-50. [DOI: 10.1016/j.healun.2016.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/18/2016] [Accepted: 02/26/2016] [Indexed: 01/17/2023] Open
|
16
|
Epigenetics in Kidney Transplantation: Current Evidence, Predictions, and Future Research Directions. Transplantation 2016; 100:23-38. [PMID: 26356174 DOI: 10.1097/tp.0000000000000878] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications are changes to the genome that occur without any alteration in DNA sequence. These changes include cytosine methylation of DNA at cytosine-phosphate diester-guanine dinucleotides, histone modifications, microRNA interactions, and chromatin remodeling complexes. Epigenetic modifications may exert their effect independently or complementary to genetic variants and have the potential to modify gene expression. These modifications are dynamic, potentially heritable, and can be induced by environmental stimuli or drugs. There is emerging evidence that epigenetics play an important role in health and disease. However, the impact of epigenetic modifications on the outcomes of kidney transplantation is currently poorly understood and deserves further exploration. Kidney transplantation is the best treatment option for end-stage renal disease, but allograft loss remains a significant challenge that leads to increased morbidity and return to dialysis. Epigenetic modifications may influence the activation, proliferation, and differentiation of the immune cells, and therefore may have a critical role in the host immune response to the allograft and its outcome. The epigenome of the donor may also impact kidney graft survival, especially those epigenetic modifications associated with early transplant stressors (e.g., cold ischemia time) and donor aging. In the present review, we discuss evidence supporting the role of epigenetic modifications in ischemia-reperfusion injury, host immune response to the graft, and graft response to injury as potential new tools for the diagnosis and prediction of graft function, and new therapeutic targets for improving outcomes of kidney transplantation.
Collapse
|
17
|
Feng T, Li D, Wang H, Zhuang J, Liu F, Bao Q, Lei Y, Chen W, Zhang X, Xu X, Sun H, You Q, Guo X. Novel 5-carboxy-8-HQ based histone demethylase JMJD2A inhibitors: Introduction of an additional carboxyl group at the C-2 position of quinoline. Eur J Med Chem 2015; 105:145-55. [DOI: 10.1016/j.ejmech.2015.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 09/05/2015] [Accepted: 09/08/2015] [Indexed: 01/22/2023]
|
18
|
Hoffmann T, Minor T. New strategies and concepts in organ preservation. Eur Surg Res 2014; 54:114-26. [PMID: 25472712 DOI: 10.1159/000369455] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/28/2014] [Indexed: 11/19/2022]
Abstract
Organ transplantation is still affected by a notable degree of preservation-associated ischemia and reperfusion injury, which can seriously hamper early graft function. The increasing extension of the criteria for donor organ acceptance, especially for organs that have suffered from periods of warm ischemic injury prior to graft retrieval, results in even higher demands on preserving these ischemia-sensitive grafts. Growing attention is thus directed towards more dynamic preservation methods instead of simple static storage. Particularly in grafts that are retrieved after cardiac standstill of the donor, provision of oxygen to enable some kind of regenerative metabolism appears to be desirable, although the optimal temperature for oxygenated preservation/revitalization is still under debate. Hybrid solutions, comprising conventional cold storage for ease of graft procurement and transportation together with more sophisticated 'in-house' reconditioning protocols after arrival at the implantation clinic, might help to minimize graft injury during the critical transition from preservation to reperfusion.
Collapse
Affiliation(s)
- Tanja Hoffmann
- Surgical Research Division, Clinic of Surgery, University of Bonn, Bonn, Germany
| | | |
Collapse
|
19
|
|
20
|
Smyth LJ, Duffy S, Maxwell AP, McKnight AJ. Genetic and epigenetic factors influencing chronic kidney disease. Am J Physiol Renal Physiol 2014; 307:F757-76. [PMID: 25080522 DOI: 10.1152/ajprenal.00306.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic kidney disease (CKD) has become a serious public health problem because of its associated morbidity, premature mortality, and attendant healthcare costs. The rising number of persons with CKD is linked with the aging population structure and an increased prevalence of diabetes, hypertension, and obesity. There is an inherited risk associated with developing CKD, as evidenced by familial clustering and differing prevalence rates across ethnic groups. Previous studies to determine the inherited risk factors for CKD rarely identified genetic variants that were robustly replicated. However, improvements in genotyping technologies and analytic methods are now helping to identify promising genetic loci aided by international collaboration and multiconsortia efforts. More recently, epigenetic modifications have been proposed to play a role in both the inherited susceptibility to CKD and, importantly, to explain how the environment dynamically interacts with the genome to alter an individual's disease risk. Genome-wide, epigenome-wide, and whole transcriptome studies have been performed, and optimal approaches for integrative analysis are being developed. This review summarizes recent research and the current status of genetic and epigenetic risk factors influencing CKD using population-based information.
Collapse
Affiliation(s)
- L J Smyth
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - S Duffy
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - A P Maxwell
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - A J McKnight
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| |
Collapse
|
21
|
McKnight AJ, McKay GJ, Maxwell AP. Genetic and epigenetic risk factors for diabetic kidney disease. Adv Chronic Kidney Dis 2014; 21:287-96. [PMID: 24780457 DOI: 10.1053/j.ackd.2014.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/10/2014] [Indexed: 12/22/2022]
Abstract
Diabetes is increasing at daunting rates worldwide, and approximately 40% of affected individuals will develop kidney complications. Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease, and there are significant healthcare costs providing appropriate renal replacement therapies to affected individuals. For several decades, investigators have sought to discover inherited risk factors and biomarkers for DKD. In recent years, advances in high-throughput laboratory techniques and computational analyses, coupled with the establishment of multicenter consortia, have helped to identify genetic loci that are replicated across multiple populations. Several genome-wide association studies (GWAS) have been conducted for DKD with further meta-analysis of GWAS and comprehensive "single gene" meta-analyses now published. Despite these efforts, much of the inherited predisposition to DKD remains unexplained. Meta-analyses and integrated-omics pathway studies are being used to help elucidate underlying genetic risks. Epigenetic phenomena are increasingly recognized as important drivers of disease risk, and several epigenome-wide association studies have now been completed. This review describes key findings and ongoing genetic and epigenetic initiatives for DKD.
Collapse
Affiliation(s)
- Amy Jayne McKnight
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom.
| | - Gareth J McKay
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - Alexander P Maxwell
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
22
|
Phelan PJ, Conlon PJ, Sparks MA. Genetic determinants of renal transplant outcome: where do we stand? J Nephrol 2014; 27:247-56. [DOI: 10.1007/s40620-014-0053-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/05/2013] [Indexed: 01/07/2023]
|
23
|
Smyth LJ, McKay GJ, Maxwell AP, McKnight AJ. DNA hypermethylation and DNA hypomethylation is present at different loci in chronic kidney disease. Epigenetics 2013; 9:366-76. [PMID: 24253112 DOI: 10.4161/epi.27161] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic risk factors for chronic kidney disease (CKD) are being identified through international collaborations. By comparison, epigenetic risk factors for CKD have only recently been considered using population-based approaches. DNA methylation is a major epigenetic modification that is associated with complex diseases, so we investigated methylome-wide loci for association with CKD. A total of 485,577 unique features were evaluated in 255 individuals with CKD (cases) and 152 individuals without evidence of renal disease (controls). Following stringent quality control, raw data were quantile normalized and β values calculated to reflect the methylation status at each site. The difference in methylation status was evaluated between cases and controls with resultant P values adjusted for multiple testing. Genes with significantly increased and decreased levels of DNA methylation were considered for biological relevance by functional enrichment analysis using KEGG pathways in Partek Genomics Suite. Twenty-three genes, where more than one CpG per loci was identified with Padjusted<10(-8), demonstrated significant methylation changes associated with CKD and additional support for these associated loci was sought from published literature. Strong biological candidates for CKD that showed statistically significant differential methylation include CUX1, ELMO1, FKBP5, INHBA-AS1, PTPRN2, and PRKAG2 genes; several genes are differentially methylated in kidney tissue and RNA-seq supports a functional role for differential methylation in ELMO1 and PRKAG2 genes. This study reports the largest, most comprehensive, genome-wide quantitative evaluation of DNA methylation for association with CKD. Evidence confirming methylation sites influence development of CKD would stimulate research to identify epigenetic therapies that might be clinically useful for CKD.
Collapse
Affiliation(s)
- Laura J Smyth
- Nephrology Research; Centre for Public Health; Queen's University of Belfast; Belfast Northern Ireland
| | - Gareth J McKay
- Nephrology Research; Centre for Public Health; Queen's University of Belfast; Belfast Northern Ireland
| | - Alexander P Maxwell
- Nephrology Research; Centre for Public Health; Queen's University of Belfast; Belfast Northern Ireland
| | - Amy Jayne McKnight
- Nephrology Research; Centre for Public Health; Queen's University of Belfast; Belfast Northern Ireland
| |
Collapse
|
24
|
LaMere SA, Komori HK, Salomon DR. New opportunities for organ transplantation research: epigenetics is likely to be an important determinant of the host immune response. Epigenomics 2013; 5:243-6. [PMID: 23750639 DOI: 10.2217/epi.13.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
25
|
Zarebska A, Ahmetov II, Sawczyn S, Weiner AS, Kaczmarczyk M, Ficek K, Maciejewska-Karlowska A, Sawczuk M, Leonska-Duniec A, Klocek T, Voronina EN, Boyarskikh UA, Filipenko ML, Cieszczyk P. Association of theMTHFR1298A>C (rs1801131) polymorphism with speed and strength sports in Russian and Polish athletes. J Sports Sci 2013; 32:375-82. [DOI: 10.1080/02640414.2013.825731] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Feng T, Wang H, Su H, Lu H, Yu L, Zhang X, Sun H, You Q. Novel N-hydroxyfurylacrylamide-based histone deacetylase (HDAC) inhibitors with branched CAP group (Part 2). Bioorg Med Chem 2013; 21:5339-54. [DOI: 10.1016/j.bmc.2013.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 01/16/2023]
|
27
|
Suárez-Álvarez B, Baragaño Raneros A, Ortega F, López-Larrea C. Epigenetic modulation of the immune function: a potential target for tolerance. Epigenetics 2013; 8:694-702. [PMID: 23803720 PMCID: PMC3781188 DOI: 10.4161/epi.25201] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Great efforts in the field of solid organ transplantation are being devoted to identifying biomarkers that allow a transplanted patient's immune status to be established. Recently, it has been well documented that epigenetic mechanisms like DNA methylation and histone modifications regulate the expression of immune system-related genes, modifying the development of the innate and adaptive immune responses. An in-depth knowledge of these epigenetic mechanisms could modulate the immune response after transplantation and to develop new therapeutic strategies. Epigenetic modifiers, such as histone deacetylase (HDAC) inhibitors have considerable potential as anti-inflammatory and immunosuppressive agents, but their effect on transplantation has not hitherto been known. Moreover, the detection of epigenetic marks in key immune genes could be useful as biomarkers of rejection and progression among transplanted patients. Here, we describe recent discoveries concerning the epigenetic regulation of the immune system, and how this knowledge could be translated to the field of transplantation.
Collapse
|
28
|
Chandrasekharan D, Issa F, Wood KJ. Achieving operational tolerance in transplantation: how can lessons from the clinic inform research directions? Transpl Int 2013; 26:576-89. [PMID: 23517251 DOI: 10.1111/tri.12081] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/23/2012] [Accepted: 02/04/2013] [Indexed: 01/03/2023]
Abstract
Since the first solid organ transplant between the Herrick twins in 1954, transplantation immunology has sought to move away from harmful immunosuppressive regimens towards tolerogenic strategies that promote long-term graft survival. This has required a concerted multinational effort with scientists and clinicians working towards a common goal. Reports of immunosuppression-free kidney and liver allograft recipients have provided the proof-of-principle, but intentional generation of tolerance in clinical transplantation is still only achieved infrequently. Recently, there have been an increasing number of encouraging developments in the field in both experimental and clinical studies. In this article, we review the latest advances in tolerance research and consider possible future barriers and solutions in achieving reliable graft acceptance in the long term.
Collapse
Affiliation(s)
- Deepak Chandrasekharan
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
29
|
Current world literature. Curr Opin Organ Transplant 2013; 18:111-30. [PMID: 23299306 DOI: 10.1097/mot.0b013e32835daf68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|