1
|
Ranjbaran H, Mohammadi Jobani B, Amirfakhrian E, Alizadeh‐Navaei R. Efficacy of mesenchymal stem cell therapy on glucose levels in type 2 diabetes mellitus: A systematic review and meta-analysis. J Diabetes Investig 2021; 12:803-810. [PMID: 32926576 PMCID: PMC8089007 DOI: 10.1111/jdi.13404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 08/13/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023] Open
Abstract
AIMS/INTRODUCTION In recent years, mesenchymal cellular therapies have received much attention in the treatment of diabetes. In this meta-analysis, we aimed to evaluate the efficacy of mesenchymal stem cell therapy in type 2 diabetes mellitus patients. MATERIALS AND METHODS A comprehensive literature search was carried out using PubMed, Scopus, Web of Science and Central databases. A total of 1,721 articles were identified, from which nine full-text clinical trials were qualified to enter the current meta-analysis. The assessment groups included patients with type 2 diabetes, and levels of C-peptide, glycosylated hemoglobin and insulin dose were analyzed before and after mesenchymal stem cell infusion. Data analysis was carried out in Stata version 11, and the Jadad Score Scale was applied for quality assessment. RESULTS Changes in levels of C-peptide after mesenchymal stem cell therapy were: standardized mean difference 0.20, 95% confidence interval -0.61 to 1.00, glycosylated hemoglobin levels were: standardized mean difference -1.45, 95% confidence interval -2.10 to -0.79 and insulin dose were: standardized mean difference -1.40, 95% confidence interval -2.88 to 0.09. CONCLUSIONS This meta-analysis of prospective studies showed associations between mesenchymal stem cell therapy and control of glucose level in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Hossein Ranjbaran
- Immunogenetics Research Center, Non‐communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
| | - Bahareh Mohammadi Jobani
- Pediatric Urology Research CenterDepartment of Pediatric Urology, Children’s Hospital Medical CenterTehran University of Medical SciencesTehranIran
| | - Elham Amirfakhrian
- Hemoglobinopathy InstituteMazandaran University of Medical SciencesSariMazandaranIran
| | - Reza Alizadeh‐Navaei
- Gastrointestinal Cancer Research Center, Non‐communicable Diseases InstituteMazandaran University of Medical SciencesSariIran
| |
Collapse
|
2
|
Brandhorst H, Brandhorst D, Abraham A, Acreman S, Schive SW, Scholz H, Johnson PR. Proteomic Profiling Reveals the Ambivalent Character of the Mesenchymal Stem Cell Secretome: Assessing the Effect of Preconditioned Media on Isolated Human Islets. Cell Transplant 2020; 29:963689720952332. [PMID: 33150790 PMCID: PMC7784517 DOI: 10.1177/0963689720952332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022] Open
Abstract
Previous studies in rodents have indicated that function and survival of transplanted islets can be substantially improved by mesenchymal stem cells (MSC). The few human islet studies to date have confirmed these findings but have not determined whether physical contact between MSC and islets is required or whether the benefit to islets results from MSC-secreted proteins. This study aimed to investigate the protective capacity of MSC-preconditioned media for human islets. MSC were cultured for 2 or 5 days in normoxia or hypoxia before harvesting the cell-depleted media for human islet culture in normoxia or hypoxia for 6-8 or 3-4 days, respectively. To characterize MSC-preconditioned media, proteomic secretome profiling was performed to identify angiogenesis- and inflammation-related proteins. A protective effect of MSC-preconditioned media on survival and in vitro function of hypoxic human islets was observed irrespective of the atmosphere used for MSC preconditioning. Islet morphology changed markedly when media from hypoxic MSC were used for culture. However, PDX-1 and insulin gene expression did not confirm a change in the genetic phenotype of these islets. Proteomic profiling of preconditioned media revealed the heterogenicity of the secretome comprising angiogenic and antiapoptotic as well as angiostatic or proinflammatory mediators released at an identical pattern regardless whether MSC had been cultured in normoxic or hypoxic atmosphere. These findings do not allow a clear discrimination between normoxia and hypoxia as stimulus for protective MSC capabilities but indicate an ambivalent character of the MSC angiogenesis- and inflammation-related secretome. Nevertheless, culture of human islets in acellular MSC-preconditioned media resulted in improved morphological and functional islet integrity suggesting a disbalance in favor of protective factors. Further approaches should aim to eliminate potentially detrimental factors to enable the production of advanced clinical grade islet culture media with higher protective qualities.
Collapse
Affiliation(s)
- Heide Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Daniel Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Anju Abraham
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Samuel Acreman
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Simen W. Schive
- Department of Transplantation Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Hanne Scholz
- Department of Transplantation Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Paul R.V. Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Laporte C, Tubbs E, Cristante J, Gauchez AS, Pesenti S, Lamarche F, Cottet-Rousselle C, Garrel C, Moisan A, Moulis JM, Fontaine E, Benhamou PY, Lablanche S. Human mesenchymal stem cells improve rat islet functionality under cytokine stress with combined upregulation of heme oxygenase-1 and ferritin. Stem Cell Res Ther 2019; 10:85. [PMID: 30867050 PMCID: PMC6416979 DOI: 10.1186/s13287-019-1190-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 12/15/2022] Open
Abstract
Background Islets of Langerhans transplantation is a promising therapy for type 1 diabetes mellitus, but this technique is compromised by transplantation stresses including inflammation. In other tissues, co-transplantation with mesenchymal stem cells has been shown to reduce damage by improving anti-inflammatory and anti-oxidant defences. Therefore, we probed the protection afforded by bone marrow mesenchymal stem cells to islets under pro-inflammatory cytokine stress. Methods In order to evaluate the cytoprotective potential of mesenchymal stem cells on rat islets, co-cultures were exposed to the interleukin-1, tumour necrosis factor α and interferon γ cocktail for 24 h. Islet viability and functionality tests were performed. Reactive oxygen species and malondialdehyde were measured. Expression of stress-inducible genes acting as anti-oxidants and detoxifiers, such as superoxide dismutases 1 and 2, NAD(P)H quinone oxidoreductase 1, heme oxygenase-1 and ferritin H, was compared to non-stressed cells, and the corresponding proteins were measured. Data were analysed by a two-way ANOVA followed by a Holm-Sidak post hoc analysis. Results Exposure of rat islets to cytokines induces a reduction in islet viability and functionality concomitant with an oxidative status shift with an increase of cytosolic ROS production. Mesenchymal stem cells did not significantly increase rat islet viability under exposure to cytokines but protected islets from the loss of insulin secretion. A drastic reduction of the antioxidant factors heme oxygenase-1 and ferritin H protein levels was observed in islets exposed to the cytokine cocktail with a prevention of this effect by the presence of mesenchymal stem cells. Conclusions Our data evidenced that MSCs are able to preserve islet insulin secretion through a modulation of the oxidative imbalance mediated by heme and iron via heme oxygenase-1 and ferritin in a context of cytokine exposure. Electronic supplementary material The online version of this article (10.1186/s13287-019-1190-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camille Laporte
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, BP 53, F-38041, Grenoble Cedex, France.
| | - Emily Tubbs
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, BP 53, F-38041, Grenoble Cedex, France
| | - Justine Cristante
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, BP 53, F-38041, Grenoble Cedex, France.,Grenoble University Hospital, Grenoble, France
| | - Anne-Sophie Gauchez
- Biology Institute, Grenoble Alpes University Hospital, CS 10217, 38043, Grenoble Cedex 9, France
| | - Sandra Pesenti
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69600, Oullins, France
| | - Frédéric Lamarche
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, BP 53, F-38041, Grenoble Cedex, France
| | - Cécile Cottet-Rousselle
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, BP 53, F-38041, Grenoble Cedex, France
| | - Catherine Garrel
- Biology Institute, Grenoble Alpes University Hospital, CS 10217, 38043, Grenoble Cedex 9, France
| | - Anaick Moisan
- Cell Therapy and Engineering Unit, EFS Auvergne-Rhône-Alpes, 464 Route de lancey - La Bâtie, 38330, Saint Ismier, France
| | - Jean-Marc Moulis
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, BP 53, F-38041, Grenoble Cedex, France.,CEA-Grenoble, Bioscience and Biotechnology Institute (BIG), 38054, Grenoble, France
| | - Eric Fontaine
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, BP 53, F-38041, Grenoble Cedex, France.,Grenoble University Hospital, Grenoble, France
| | - Pierre-Yves Benhamou
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, BP 53, F-38041, Grenoble Cedex, France.,Grenoble University Hospital, Grenoble, France
| | - Sandrine Lablanche
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, BP 53, F-38041, Grenoble Cedex, France.,Grenoble University Hospital, Grenoble, France
| |
Collapse
|
4
|
Kumar N, Joisher H, Ganguly A. Polymeric Scaffolds for Pancreatic Tissue Engineering: A Review. Rev Diabet Stud 2018; 14:334-353. [PMID: 29590227 PMCID: PMC6230446 DOI: 10.1900/rds.2017.14.334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/17/2022] Open
Abstract
In recent years, there has been an alarming increase in the incidence of diabetes, with one in every eleven individuals worldwide suffering from this debilitating disease. As the available treatment options fail to reduce disease progression, novel avenues such as the bioartificial pancreas are being given serious consideration. In the past decade, the research focus has shifted towards the field of tissue engineering, which helps to design biological substitutes for repair and replacement of non-functional or damaged organs. Scaffolds constitute an integral part of tissue engineering; they have been shown to mimic the native extracellular matrix, thereby supporting cell viability and proliferation. This review offers a novel compilation of the recent advances in polymeric scaffolds, which are used for pancreatic tissue engineering. Furthermore, in this article, the design strategies for bioartificial pancreatic constructs and their future applications in cell-based therapy are discussed.
Collapse
Affiliation(s)
| | | | - Anasuya Ganguly
- Department of Biological Sciences, BITS-Pilani, K.K Birla Goa Campus, Goa, India 403726
| |
Collapse
|
5
|
Liu Z, Hu W, He T, Dai Y, Hara H, Bottino R, Cooper DKC, Cai Z, Mou L. Pig-to-Primate Islet Xenotransplantation: Past, Present, and Future. Cell Transplant 2017; 26:925-947. [PMID: 28155815 PMCID: PMC5657750 DOI: 10.3727/096368917x694859] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/21/2017] [Indexed: 12/17/2022] Open
Abstract
Islet allotransplantation results in increasing success in treating type 1 diabetes, but the shortage of deceased human donor pancreata limits progress. Islet xenotransplantation, using pigs as a source of islets, is a promising approach to overcome this limitation. The greatest obstacle is the primate immune/inflammatory response to the porcine (pig) islets, which may take the form of rapid early graft rejection (the instant blood-mediated inflammatory reaction) or T-cell-mediated rejection. These problems are being resolved by the genetic engineering of the source pigs combined with improved immunosuppressive therapy. The results of pig-to-diabetic nonhuman primate islet xenotransplantation are steadily improving, with insulin independence being achieved for periods >1 year. An alternative approach is to isolate islets within a micro- or macroencapsulation device aimed at protecting them from the human recipient's immune response. Clinical trials using this approach are currently underway. This review focuses on the major aspects of pig-to-primate islet xenotransplantation and its potential for treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Zhengzhao Liu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Wenbao Hu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Tian He
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hidetaka Hara
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| | - David K. C. Cooper
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
6
|
Hayward JA, Ellis CE, Seeberger K, Lee T, Salama B, Mulet-Sierra A, Kuppan P, Adesida A, Korbutt GS. Cotransplantation of Mesenchymal Stem Cells With Neonatal Porcine Islets Improve Graft Function in Diabetic Mice. Diabetes 2017; 66:1312-1321. [PMID: 28246290 DOI: 10.2337/db16-1068] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/19/2017] [Indexed: 11/13/2022]
Abstract
Mesenchymal stem cells (MSCs) possess immunoregulatory, anti-inflammatory, and proangiogenic properties and, therefore, have the potential to improve islet engraftment and survival. We assessed the effect human bone marrow-derived MSCs have on neonatal porcine islets (NPIs) in vitro and determined islet engraftment and metabolic outcomes when cotransplanted in a mouse model. NPIs cocultured with MSCs had greater cellular insulin content and increased glucose-stimulated insulin secretion. NPIs were cotransplanted with or without MSCs in diabetic B6.129S7-Rag1tm1Mom/J mice. Blood glucose and weight were monitored until reversal of diabetes; mice were then given an oral glucose tolerance test. Islet grafts were assessed for the degree of vascularization and total cellular insulin content. Cotransplantation of NPIs and MSCs resulted in significantly earlier normoglycemia and vascularization, improved glucose tolerance, and increased insulin content. One experiment conducted with MSCs from a donor with an autoimmune disorder had no positive effects on transplant outcomes. Cotransplantation of human MSCs with NPIs demonstrated a beneficial metabolic effect likely as a result of earlier islet vascularization and improved islet engraftment. In addition, donor pathology of MSCs can influence the functional capacity of MSCs.
Collapse
Affiliation(s)
- Julie A Hayward
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Cara E Ellis
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Seeberger
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Timothy Lee
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Bassem Salama
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | | - Purushothaman Kuppan
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Adetola Adesida
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Gregory S Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Ilgun H, Kim JW, Luo L. Adult Stem Cells and Diabetes Therapy. JOURNAL OF STEM CELL RESEARCH AND TRANSPLANTATION 2015; 2:1020. [PMID: 27123495 PMCID: PMC4844026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The World Health Organization estimates that diabetes will be the fourth most prevalent disease by 2050. Developing a new therapy for diabetes is a challenge for researchers and clinicians in field. Many medications are being used for treatment of diabetes however with no conclusive and effective results therefore alternative therapies are required. Stem cell therapy is a promising tool for diabetes therapy, and it has involved embryonic stem cells, adult stem cells, and pluripotent stem cells. In this review, we focus on adult stem cells, especial human bone marrow stem cells (BM) for diabetes therapy, its history, and current development. We discuss prospects for future diabetes therapy such as induced pluripotent stem cells which have popularity in stem cell research area.
Collapse
Affiliation(s)
- Handenur Ilgun
- Department of Internal Medicine, Roger Williams Hospital, Boston University School of Medicine, Providence, RI, USA; Sifa University School of Medicine, Izmir, Turkey
| | - Joseph William Kim
- Department of Internal Medicine, Roger Williams Hospital, Boston University School of Medicine, Providence, RI, USA
| | - LuGuang Luo
- Department of Internal Medicine, Roger Williams Hospital, Boston University School of Medicine, Providence, RI, USA
| |
Collapse
|
8
|
Kim JW, Luo JZ, Luo L. The Biochemical Cascades of the Human Pancreatic β-Cells: The Role of MicroRNAs. JOURNAL OF BIOANALYSIS & BIOMEDICINE 2015; 7:e133. [PMID: 28503255 PMCID: PMC5426857 DOI: 10.4172/1948-593x.1000e133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diabetes mellitus is a disease that poses a burden to the health care system due to its prevalence and chronic nature. Understanding β cell pathophysiology may lead to future therapeutic options for diabetes mellitus type 1 and 2. MicroRNAs (MiR) fine-tune β cell biochemical cascades through specific protein targets. This review argues that miRs may play a critical role in human islet β cell biology and are potential candidates for a new pharmacological strategy. We have reviewed and presented how miRs fine tune four biochemical cascades in islet β cells: glucose stimulated insulin secretion, β cell replication, apoptosis, and development. Only studies that examine human pancreatic islets either in vitro or in vivo are included. The unveiling role of miR pathways in regulating human islet β cell biology could open the door for diagnostic and therapeutic methods for diabetes mellitus prevention and therapy.
Collapse
Affiliation(s)
- Joseph W Kim
- Department of Internal Medicine, Roger Williams Hospital, Boston University School of Medicine, Providence, RI, USA
| | - John Z Luo
- Department of Internal Medicine, Roger Williams Hospital, Boston University School of Medicine, Providence, RI, USA
- Doctor’s Choice LLC, Warwick, RI, USA
| | - Luguang Luo
- Department of Internal Medicine, Roger Williams Hospital, Boston University School of Medicine, Providence, RI, USA
| |
Collapse
|
9
|
Meier RPH, Seebach JD, Morel P, Mahou R, Borot S, Giovannoni L, Parnaud G, Montanari E, Bosco D, Wandrey C, Berney T, Bühler LH, Muller YD. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow. PLoS One 2014; 9:e91268. [PMID: 24625569 PMCID: PMC3953382 DOI: 10.1371/journal.pone.0091268] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/10/2014] [Indexed: 01/19/2023] Open
Abstract
Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days (kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.
Collapse
Affiliation(s)
- Raphael P. H. Meier
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jörg D. Seebach
- Division of Clinical Immunology and Allergology, Department of Internal Medicine, University Hospital and Medical Faculty, Geneva, Switzerland
| | - Philippe Morel
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Redouan Mahou
- Institut d’Ingénierie Biologique et Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sophie Borot
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Laurianne Giovannoni
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Geraldine Parnaud
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Elisa Montanari
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Christine Wandrey
- Institut d’Ingénierie Biologique et Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Leo H. Bühler
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Yannick D. Muller
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Division of Clinical Immunology and Allergology, Department of Internal Medicine, University Hospital and Medical Faculty, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Vantyghem MC, Defrance F, Quintin D, Leroy C, Raverdi V, Prévost G, Caiazzo R, Kerr-Conte J, Glowacki F, Hazzan M, Noel C, Pattou F, Diamenord ASB, Bresson R, Bourdelle-Hego MF, Cazaubiel M, Cordonnier M, Delefosse D, Dorey F, Fayard A, Fermon C, Fontaine P, Gillot C, Haye S, Le Guillou AC, Karrouz W, Lemaire C, Lepeut M, Leroy R, Mycinski B, Parent E, Siame C, Sterkers A, Torres F, Verier-Mine O, Verlet E, Desailloud R, Dürrbach A, Godin M, Lalau JD, Lukas-Croisier C, Thervet E, Toupance O, Reznik Y, Westeel PF. Treating diabetes with islet transplantation: lessons from the past decade in Lille. DIABETES & METABOLISM 2014; 40:108-19. [PMID: 24507950 DOI: 10.1016/j.diabet.2013.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/29/2013] [Accepted: 10/07/2013] [Indexed: 01/10/2023]
Abstract
Type 1 diabetes (T1D) is due to the loss of both beta-cell insulin secretion and glucose sensing, leading to glucose variability and a lack of predictability, a daily issue for patients. Guidelines for the treatment of T1D have become stricter as results from the Diabetes Control and Complications Trial (DCCT) demonstrated the close relationship between microangiopathy and HbA1c levels. In this regard, glucometers, ambulatory continuous glucose monitoring, and subcutaneous and intraperitoneal pumps have been major developments in the management of glucose imbalance. Besides this technological approach, islet transplantation (IT) has emerged as an acceptable safe procedure with results that continue to improve. Research in the last decade of the 20th century focused on the feasibility of islet isolation and transplantation and, since 2000, the success and reproducibility of the Edmonton protocol have been proven, and the mid-term (5-year) benefit-risk ratio evaluated. Currently, a 5-year 50% rate of insulin independence can be expected, with stabilization of microangiopathy and macroangiopathy, but the possible side-effects of immunosuppressants, limited availability of islets and still limited duration of insulin independence restrict the procedure to cases of brittle diabetes in patients who are not overweight or have no associated insulin resistance. However, various prognostic factors have been identified that may extend islet graft survival and reduce the number of islet injections required; these include graft quality, autoimmunity, immunosuppressant regimen and non-specific inflammatory reactions. Finally, alternative injection sites and unlimited sources of islets are likely to make IT a routine procedure in the future.
Collapse
Affiliation(s)
- M-C Vantyghem
- Endocrinology and Metabolism Department, Inserm U599, Lille University Hospital, C.-Huriez Hospital, 1, rue Polonovski, 59037 Lille cedex, France; Diabetes Biotherapy, Inserm U859, Lille University Hospital, Lille, France.
| | - F Defrance
- Endocrinology and Metabolism Department, Inserm U599, Lille University Hospital, C.-Huriez Hospital, 1, rue Polonovski, 59037 Lille cedex, France
| | - D Quintin
- Endocrinology and Metabolism Department, Inserm U599, Lille University Hospital, C.-Huriez Hospital, 1, rue Polonovski, 59037 Lille cedex, France
| | - C Leroy
- Endocrinology and Metabolism Department, Inserm U599, Lille University Hospital, C.-Huriez Hospital, 1, rue Polonovski, 59037 Lille cedex, France
| | - V Raverdi
- Endocrine Surgery Department, Lille University Hospital, Lille, France
| | - G Prévost
- Endocrinology Department, Rouen University Hospital, Rouen, France
| | - R Caiazzo
- Endocrine Surgery Department, Lille University Hospital, Lille, France
| | - J Kerr-Conte
- Diabetes Biotherapy, Inserm U859, Lille University Hospital, Lille, France
| | - F Glowacki
- Nephrology Department, Lille University Hospital, Lille, France
| | - M Hazzan
- Nephrology Department, Lille University Hospital, Lille, France
| | - C Noel
- Nephrology Department, Lille University Hospital, Lille, France
| | - F Pattou
- Diabetes Biotherapy, Inserm U859, Lille University Hospital, Lille, France; Endocrine Surgery Department, Lille University Hospital, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chhabra P, Brayman KL. Overcoming barriers in clinical islet transplantation: current limitations and future prospects. Curr Probl Surg 2014; 51:49-86. [PMID: 24411187 DOI: 10.1067/j.cpsurg.2013.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Iskovich S, Goldenberg-Cohen N, Sadikov T, Yaniv I, Stein J, Askenasy N. Two distinct mechanisms mediate the involvement of bone marrow cells in islet remodeling: neogenesis of insulin-producing cells and support of islet recovery. Cell Transplant 2013; 24:879-90. [PMID: 24380400 DOI: 10.3727/096368913x676899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have recently reported that small-sized bone marrow cells (BMCs) isolated by counterflow centrifugal elutriation and depleted of lineage markers (Fr25lin(-)) have the capacity to differentiate and contribute to regeneration of injured islets. In this study, we assess some of the characteristics of these cells compared to elutriated hematopoietic progenitors (R/O) and whole BMCs in a murine model of streptozotocin-induced chemical diabetes. The GFP(bright)CD45(+) progeny of whole BMCs and R/O progenitors progressively infiltrate the pancreas with evolution of donor chimerism; are found at islet perimeter, vascular, and ductal walls; and have a modest impact on islet recovery from injury. In contrast, Fr25lin(-) cells incorporate in the islets, convert to GFP(dim)CD45(-)PDX-1(+) phenotypes, produce proinsulin, and secrete insulin with significant contribution to stabilization of glucose homeostasis. The elutriated Fr25lin(-) cells express low levels of CD45 and are negative for SCA-1 and c-kit, as removal of cells expressing these markers did not impair conversion to produce insulin. BMCs mediate two synergistic mechanisms that contribute to islet recovery from injury: support of islet remodeling by hematopoietic cells and neogenesis of insulin-producing cells from stem cells.
Collapse
Affiliation(s)
- Svetlana Iskovich
- Frankel Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Antonello Pileggi
- Diabetes Research Institute, University of Miami, Miami, Florida
- DeWitt-Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
- Department of Biomedical Engineering, University of Miami, Miami, Florida
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami, Miami, Florida
- DeWitt-Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
- Department of Biomedical Engineering, University of Miami, Miami, Florida
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Corresponding author: Camillo Ricordi,
| |
Collapse
|