1
|
Česnik AB, Švajger U. The issue of heterogeneity of MSC-based advanced therapy medicinal products-a review. Front Cell Dev Biol 2024; 12:1400347. [PMID: 39129786 PMCID: PMC11310176 DOI: 10.3389/fcell.2024.1400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Mesenchymal stromal stem cells (MSCs) possess a remarkable potential for numerous clinical applications due to their unique properties including self-renewal, immunomodulation, paracrine actions and multilineage differentiation. However, the translation of MSC-based Advanced Therapy Medicinal Products (ATMPs) into the clinic has frequently met with inconsistent outcomes. One of the suspected reasons for this issue is the inherent and extensive variability that exists among such ATMPs, which makes the interpretation of their clinical efficacy difficult to assess, as well as to compare the results of various studies. This variability stems from numerous reasons including differences in tissue sources, donor attributes, variances in manufacturing protocols, as well as modes of administration. MSCs can be isolated from various tissues including bone marrow, umbilical cord, adipose tissue and others, each with its unique phenotypic and functional characteristics. While MSCs from different sources do share common features, they also exhibit distinct gene expression profiles and functional properites. Donor-specific factors such as age, sex, body mass index, and underlying health conditions can influence MSC phenotype, morphology, differentiation potential and function. Moreover, variations in preparation of MSC products introduces additional heterogeneity as a result of cell culture media composition, presence or absence of added growth factors, use of different serum supplements and culturing techniques. Once MSC products are formulated, storage protocols play a pivotal role in its efficacy. Factors that affect cell viability include cell concentration, delivery solution and importantly, post-thawing protocols where applicable. Ensuing, differences in administration protocols can critically affect the distribution and functionallity of administered cells. As MSC-based therapies continue to advance through numerous clinical trials, implication of strategies to reduce product heterogeneity is imperative. Central to addressing these challenges is the need for precise prediction of clinical responses, which require well-defined MSC populations and harmonized assessment of their specific functions. By addressing these issues by meaningful approaches, such as, e.g., MSC pooling, the field can overcome barriers to advance towards more consistent and effective MSC-based therapies.
Collapse
Affiliation(s)
- Ana Bajc Česnik
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
| | - Urban Švajger
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Vallant N, Wolfhagen N, Sandhu B, Hamaoui K, Papalois V. Delivery of Mesenchymal Stem Cells during Hypothermic Machine Perfusion in a Translational Kidney Perfusion Study. Int J Mol Sci 2024; 25:5038. [PMID: 38732257 PMCID: PMC11084391 DOI: 10.3390/ijms25095038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
In transplantation, hypothermic machine perfusion (HMP) has been shown to be superior to static cold storage (SCS) in terms of functional outcomes. Ex vivo machine perfusion offers the possibility to deliver drugs or other active substances, such as Mesenchymal Stem Cells (MSCs), directly into an organ without affecting the recipient. MSCs are multipotent, self-renewing cells with tissue-repair capacities, and their application to ameliorate ischemia- reperfusion injury (IRI) is being investigated in several preclinical and clinical studies. The aim of this study was to introduce MSCs into a translational model of hypothermic machine perfusion and to test the efficiency and feasibility of this method. Methods: three rodent kidneys, six porcine kidneys and three human kidneys underwent HMP with 1-5 × 106 labelled MSCs within respective perfusates. Only porcine kidneys were compared to a control group of 6 kidneys undergoing HMP without MSCs, followed by mimicked reperfusion with whole blood at 37 °C for 2 h for all 12 kidneys. Reperfusion perfusate samples were analyzed for levels of NGAL and IL-β by ELISA. Functional parameters, including urinary output, oxygen consumption and creatinine clearance, were compared and found to be similar between the MSC treatment group and the control group in the porcine model. IL-1β levels were higher in perfusate and urine samples in the MSC group, with a median of 285.3 ng/mL (IQR 224.3-407.8 ng/mL) vs. 209.2 ng/mL (IQR 174.9-220.1), p = 0.51 and 105.3 ng/mL (IQR 71.03-164.7 ng/mL) vs. 307.7 ng/mL (IQR 190.9-349.6 ng/mL), p = 0.16, respectively. MSCs could be traced within the kidneys in all models using widefield microscopy after HMP. The application of Mesenchymal Stem Cells in an ex vivo hypothermic machine perfusion setting is feasible, and MSCs can be delivered into the kidney grafts during HMP. Functional parameters during mimicked reperfusion were not altered in treated kidney grafts. Changes in levels of IL-1β suggest that MSCs might have an effect on the kidney grafts, and whether this leads to a positive or a negative outcome on IRI in transplantation needs to be determined in further experiments.
Collapse
Affiliation(s)
| | | | | | | | - Vassilios Papalois
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK; (N.V.); (N.W.)
| |
Collapse
|
3
|
Li SW, Cai Y, Mao XL, He SQ, Chen YH, Yan LL, Zhou JJ, Song YQ, Ye LP, Zhou XB. The Immunomodulatory Properties of Mesenchymal Stem Cells Play a Critical Role in Inducing Immune Tolerance after Liver Transplantation. Stem Cells Int 2021; 2021:6930263. [PMID: 34531915 PMCID: PMC8440082 DOI: 10.1155/2021/6930263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/11/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022] Open
Abstract
Although liver transplantation is considered to be the best choice for patients with end-stage liver diseases, postoperative immune rejection still cannot be overlooked. Patients with liver transplantation have to take immunosuppressive drugs for a long time or even their entire lives, in which heavy economic burden and side effects caused by the drugs have become the major impediment for liver transplantation. There is a growing body of evidences indicating that mesenchymal stem cell (MSC) transplantation, a promising tool in regenerative medicine, can be used as an effective way to induce immune tolerance after liver transplantation based on their huge expansion potential and unique immunomodulatory properties. MSCs have been reported to inhibit innate immunity and adaptive immunity to induce a tolerogenic microenvironment. In in vitro studies, transplanted MSCs show plasticity in immune regulation by altering their viability, migration, differentiation, and secretion in the interactions with the surrounding host microenvironment. In this review, we aim to provide an overview of the current understanding of immunomodulatory properties of MSCs in liver transplantation, to elucidate the potential mechanisms behind MSCs regulating immune response, especially in vivo and the influence of the microenvironment, and ultimately to discuss the feasible strategies to improve the clinical prognosis of liver transplantation. Only after exhaustive understanding of potential mechanisms of the MSC immunomodulation can we improve the safety and effectiveness of MSC treatment and achieve better therapeutic effects.
Collapse
Affiliation(s)
- Shao-wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yue Cai
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Sai-qin He
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ling-ling Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jing-jing Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-qi Song
- Taizhou Hospital, Zhejiang University, Linhai, Zhejiang, China
| | - Li-ping Ye
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xian-bin Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
4
|
Lohmann S, Pool MBF, Rozenberg KM, Keller AK, Moers C, Møldrup U, Møller BK, Lignell SJM, Krag S, Sierra-Parraga JM, Lo Faro ML, Hunter J, Hoogduijn MJ, Baan CC, Leuvenink HGD, Ploeg RJ, Eijken M, Jespersen B. Mesenchymal stromal cell treatment of donor kidneys during ex vivo normothermic machine perfusion: A porcine renal autotransplantation study. Am J Transplant 2021; 21:2348-2359. [PMID: 33382194 DOI: 10.1111/ajt.16473] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/25/2023]
Abstract
Normothermic machine perfusion (NMP) of injured kidneys offers the opportunity for interventions to metabolically active organs prior to transplantation. Mesenchymal stromal cells (MSCs) can exert regenerative and anti-inflammatory effects in ischemia-reperfusion injury. The aims of this study were to evaluate the safety and feasibility of MSC treatment of kidneys during NMP using a porcine autotransplantation model, and examine potential MSC treatment-associated kidney improvements up to 14 days posttransplant. After 75 min of kidney warm ischemia, four experimental groups of n = 7 underwent 14 h of oxygenated hypothermic machine perfusion. In three groups this was followed by 240 min of NMP with infusion of vehicle, 10 million porcine, or 10 million human adipose-derived MSCs. All kidneys were autotransplanted after contralateral nephrectomy. MSC treatment did not affect perfusion hemodynamics during NMP or cause adverse effects at reperfusion, with 100% animal survival. MSCs did not affect plasma creatinine, glomerular filtration rate, neutrophil gelatinase-associated lipocalin concentrations or kidney damage assessed by histology during the 14 days, and MSCs retention was demonstrated in renal cortex. Infusing MSCs during ex vivo NMP of porcine kidneys was safe and feasible. Within the short posttransplant follow-up period, no beneficial effects of ex vivo MSC therapy could be demonstrated.
Collapse
Affiliation(s)
- Stine Lohmann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Merel B F Pool
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Anna K Keller
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Cyril Moers
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ulla Møldrup
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Bjarne K Møller
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Stina J M Lignell
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Krag
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Jesus M Sierra-Parraga
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Maria L Lo Faro
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - James Hunter
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Martin J Hoogduijn
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rutger J Ploeg
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Marco Eijken
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Jespersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Matar AJ, Crepeau RL, Mundinger GS, Cetrulo CL, Torabi R. Large Animal Models of Vascularized Composite Allotransplantation: A Review of Immune Strategies to Improve Allograft Outcomes. Front Immunol 2021; 12:664577. [PMID: 34276656 PMCID: PMC8278218 DOI: 10.3389/fimmu.2021.664577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022] Open
Abstract
Over the past twenty years, significant technical strides have been made in the area of vascularized composite tissue allotransplantation (VCA). As in solid organ transplantation, the allogeneic immune response remains a significant barrier to long-term VCA survival and function. Strategies to overcome acute and chronic rejection, minimize immunosuppression and prolong VCA survival have important clinical implications. Historically, large animals have provided a valuable model for testing the clinical translatability of immune modulating approaches in transplantation, including tolerance induction, co-stimulation blockade, cellular therapies, and ex vivo perfusion. Recently, significant advancements have been made in these arenas utilizing large animal VCA models. In this comprehensive review, we highlight recent immune strategies undertaken to improve VCA outcomes with a focus on relevant preclinical large animal models.
Collapse
Affiliation(s)
- Abraham J Matar
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Rebecca L Crepeau
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Gerhard S Mundinger
- Department of Surgery, Division of Plastic and Reconstructive Surgery, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Curtis L Cetrulo
- Department of Surgery, Division of Plastic Surgery, Massachusetts General Hospital, Boston, MA, United States.,Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States.,Shriner's Hospital for Children, Department of Plastic and Reconstructive Surgery, Boston, MA, United States
| | - Radbeh Torabi
- Department of Surgery, Division of Plastic and Reconstructive Surgery, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
6
|
Ex Vivo Mesenchymal Stem Cell Therapy to Regenerate Machine Perfused Organs. Int J Mol Sci 2021; 22:ijms22105233. [PMID: 34063399 PMCID: PMC8156338 DOI: 10.3390/ijms22105233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 01/06/2023] Open
Abstract
Transplantation represents the treatment of choice for many end-stage diseases but is limited by the shortage of healthy donor organs. Ex situ normothermic machine perfusion (NMP) has the potential to extend the donor pool by facilitating the use of marginal quality organs such as those from donors after cardiac death (DCD) and extended criteria donors (ECD). NMP provides a platform for organ quality assessment but also offers the opportunity to treat and eventually regenerate organs during the perfusion process prior to transplantation. Due to their anti-inflammatory, immunomodulatory and regenerative capacity, mesenchymal stem cells (MSCs) are considered as an interesting tool in this model system. Only a limited number of studies have reported on the use of MSCs during ex situ machine perfusion so far with a focus on feasibility and safety aspects. At this point, no clinical benefits have been conclusively demonstrated, and studies with controlled transplantation set-ups are urgently warranted to elucidate favorable effects of MSCs in order to improve organs during ex situ machine perfusion.
Collapse
|
7
|
Mesenchymal stromal cells for corneal transplantation: Literature review and suggestions for successful clinical trials. Ocul Surf 2021; 20:185-194. [PMID: 33607323 PMCID: PMC9878990 DOI: 10.1016/j.jtos.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/28/2023]
Abstract
Corneal transplantation is a routine procedure for patients with corneal blindness. Despite the streamlining of surgical techniques and deeper understanding of the cellular and molecular pathways mediating rejection, corticosteroids are still the main immunosuppressive regimen in corneal transplantation, and the 15-year survival of corneal transplants remains as low as 50%, which is poorer than that for most solid organ transplants. Recently, mesenchymal stromal cells (MSCs) with unique regenerative and immune-modulating properties have emerged as a promising cell therapy to promote transplant tolerance, minimize the use of immunosuppressants, and prevent chronic rejection. Here, we review the literature on preclinical studies of MSCs for corneal transplantation and summarize the key findings from clinical trials with MSCs in solid organ transplantation. Finally, we highlight current issues and challenges regarding MSC therapies and suggest strategies for safe and effective MSC-based therapies in clinical transplantation.
Collapse
|
8
|
Andres AM, Stringa P, Talayero P, Santamaria M, García-Arranz M, García Gómez-Heras S, Largo-Aramburu C, Aras-Lopez RM, Vallejo-Cremades MT, Guerra Pastrián L, Vega L, Encinas JL, Lopez-Santamaria M, Hernández-Oliveros F. Graft infusion of adipose-derived mesenchymal stromal cells to prevent rejection in experimental intestinal transplantation: A feasibility study. Clin Transplant 2021; 35:e14226. [PMID: 33465824 DOI: 10.1111/ctr.14226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/30/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) have been proposed as a promising complement to standard immunosuppression in solid organ transplantation because of their immunomodulatory properties. The present work addresses the role of adipose-derived MSC (Ad-MSC) in an experimental model of acute rejection in small bowel transplantation (SBT). MATERIAL/METHODS Heterotopic allogeneic SBT was performed. A single dose of 1.5x106 Ad-MSC was intra-arterially delivered just before graft reperfusion. Animals were divided into CONTROL (CTRL), CONTROL+Ad-MSC (CTRL_MSC), tacrolimus (TAC), and TAC+Ad-MSC (TAC_MSC) groups. Each Ad-MSC groups was subdivided in autologous and allogeneic third-party groups. RESULTS Rejection rate and severity were similar in MSC-treated and untreated animals. CTRL_MSC animals showed a decrease in macrophages, T-cell (CD4, CD8, and Foxp3 subsets) and B-cell counts in the graft compared with CTRL, this decrease was attenuated in TAC_MSC animals. Pro- and anti-inflammatory cytokines and some chemokines and growth factors increased in CTRL_MSC animals, especially in the allogeneic group, whereas milder changes were seen in the TAC groups. CONCLUSION Ad-MSC did not prevent rejection when administered just before reperfusion. However, they showed immunomodulatory effects that could be relevant for a longer-term outcome. Interference between tacrolimus and the MSC effects should be addressed in further studies.
Collapse
Affiliation(s)
- Ane M Andres
- Pediatric Surgery Department, La Paz University Hospital, Madrid, Spain.,Idipaz Institute, La Paz University Hospital, Madrid, Spain.,TransplantChild ERN, Idipaz Institute, La Paz University Hospital, Madrid, Spain
| | - Pablo Stringa
- Institute for Immunological and Physiopathological Studies (IIFP-CONICET-UNLP), National University of La Plata, Buenos Aires, Argentina
| | - Paloma Talayero
- Immunology Department, 12 de Octubre University Hospital, Madrid, Spain.,imas12 Research Institute, 12 de Octubre University Hospital, Madrid, Spain
| | - Monica Santamaria
- Experimental Transplant Department, Alfonso X University, Madrid, Spain
| | | | | | | | - Rosa M Aras-Lopez
- Research Institute, Idipaz Institute, La Paz University Hospital, Madrid, Spain
| | | | | | - Luz Vega
- Health Research Institute, Fundación Jimenez Diaz, Madrid, Spain
| | - Jose Luis Encinas
- Pediatric Surgery Department, La Paz University Hospital, Madrid, Spain
| | | | - Francisco Hernández-Oliveros
- TransplantChild ERN, Idipaz Institute, La Paz University Hospital, Madrid, Spain.,Health Research Institute, Fundación Jimenez Diaz, Madrid, Spain.,Pediatric Surgery Department EOC TransplantChild ERN, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
9
|
Vallant N, Sandhu B, Hamaoui K, Prendecki M, Pusey C, Papalois V. Immunomodulatory Properties of Mesenchymal Stromal Cells Can Vary in Genetically Modified Rats. Int J Mol Sci 2021; 22:1181. [PMID: 33504032 PMCID: PMC7865849 DOI: 10.3390/ijms22031181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 11/24/2022] Open
Abstract
Mesenchymal Stromal Cells (MSC) have been shown to exhibit immuno-modulatory and regenerative properties at sites of inflammation. In solid organ transplantation (SOT), administration of MSCs might lead to an alleviation of ischemia-reperfusion injury and a reduction of rejection episodes. Previous reports have suggested 'MSC-preconditioning' of macrophages to be partly responsible for the beneficial effects. Whether this results from direct cell-cell interactions (e.g., MSC trans-differentiation at sites of damage), or from paracrine mechanisms, remains unclear. Immunosuppressive capacities of MSCs from donors of different age and from genetically modified donor animals, often used for in-vivo experiments, have so far not been investigated. We conducted an in vitro study to compare paracrine effects of supernatants from MSCs extracted from young and old wild-type Wystar-Kyoto rats (WKY-wt), as well as young and old WKY donor rats positive for the expression of green fluorescent protein (WKY-GFP), on bone marrow derived macrophages (BMDM). Expression levels of Mannose receptor 1 (Mrc-1), Tumor necrosis factor α (TNFα), inducible NO synthase (iNos) and Interleukin-10 (IL-10) in BMDMs after treatment with different MSC supernatants were compared by performance of quantitative PCR. We observed different expression patterns of inflammatory markers within BMDMs, depending on age and genotype of origin for MSC supernatants. This must be taken into consideration for preclinical and clinical studies, for which MSCs will be used to treat transplant patients, aiming to mitigate inflammatory and allo-responses.
Collapse
Affiliation(s)
- Natalie Vallant
- Department of Transplant Surgery, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (B.S.); (K.H.); (M.P.); (C.P.); (V.P.)
| | | | | | | | | | | |
Collapse
|
10
|
Cai S, Chandraker A. Cell Therapy in Solid Organ Transplantation. Curr Gene Ther 2020; 19:71-80. [PMID: 31161989 DOI: 10.2174/1566523219666190603103840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/23/2019] [Indexed: 12/28/2022]
Abstract
Transplantation is the only cure for end-stage organ failure. Current immunosuppressive drugs have two major limitations: 1) non antigen specificity, which increases the risk of cancer and infection diseases, and 2) chronic toxicity. Cell therapy appears to be an innovative and promising strategy to minimize the use of immunosuppression in transplantation and to improve long-term graft survival. Preclinical studies have shown efficacy and safety of using various suppressor cells, such as regulatory T cells, regulatory B cells and tolerogenic dendritic cells. Recent clinical trials using cellbased therapies in solid organ transplantation also hold out the promise of improving efficacy. In this review, we will briefly go over the rejection process, current immunosuppressive drugs, and the potential therapeutic use of regulatory cells in transplantation.
Collapse
Affiliation(s)
- Songjie Cai
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, United States
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, United States
| |
Collapse
|
11
|
Lanzoni G, Linetsky E, Correa D, Alvarez RA, Marttos A, Hirani K, Cayetano SM, Castro JG, Paidas MJ, Efantis Potter J, Xu X, Glassberg M, Tan J, Patel AN, Goldstein B, Kenyon NS, Baidal D, Alejandro R, Vianna R, Ruiz P, Caplan AI, Ricordi C. Umbilical Cord-derived Mesenchymal Stem Cells for COVID-19 Patients with Acute Respiratory Distress Syndrome (ARDS). CELLR4-- REPAIR, REPLACEMENT, REGENERATION, & REPROGRAMMING 2020; 8. [PMID: 34164564 DOI: 10.32113/cellr4_20204_2839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The coronavirus SARS-CoV-2 is cause of a global pandemic of a pneumonia-like disease termed Coronavirus Disease 2019 (COVID-19). COVID-19 presents a high mortality rate, estimated at 3.4%. More than 1 out of 4 hospitalized COVID-19 patients require admission to an Intensive Care Unit (ICU) for respiratory support, and a large proportion of these ICU-COVID-19 patients, between 17% and 46%, have died. In these patients COVID-19 infection causes an inflammatory response in the lungs that can progress to inflammation with cytokine storm, Acute Lung Injury (ALI), Acute Respiratory Distress Syndrome (ARDS), thromboembolic events, disseminated intravascular coagulation, organ failure, and death. Mesenchymal Stem Cells (MSCs) are potent immunomodulatory cells that recognize sites of injury, limit effector T cell reactions, and positively modulate regulatory cell populations. MSCs also stimulate local tissue regeneration via paracrine effects inducing angiogenic, anti-fibrotic and remodeling responses. MSCs can be derived in large number from the Umbilical Cord (UC). UC-MSCs, utilized in the allogeneic setting, have demonstrated safety and efficacy in clinical trials for a number of disease conditions including inflammatory and immune-based diseases. UC-MSCs have been shown to inhibit inflammation and fibrosis in the lungs and have been utilized to treat patients with severe COVID-19 in pilot, uncontrolled clinical trials, that reported promising results. UC-MSCs processed at our facility have been authorized by the FDA for clinical trials in patients with an Alzheimer's Disease, and in patients with Type 1 Diabetes (T1D). We hypothesize that UC-MSC will also exert beneficial therapeutic effects in COVID-19 patients with cytokine storm and ARDS. We propose an early phase controlled, randomized clinical trial in COVID-19 patients with ALI/ARDS. Subjects in the treatment group will be treated with two doses of UC-MSC (l00 × 106 cells). The first dose will be infused within 24 hours following study enrollment. A second dose will be administered 72 ± 6 hours after the first infusion. Subject in the control group will receive infusion of vehicle (DPBS supplemented with 1% HSA and 70 U/kg unfractionated Heparin, delivered IV) following the same timeline. Subjects will be evaluated daily during the first 6 days, then at 14, 28, 60, and 90 days following enrollment (see Schedule of Assessment for time window details). Safety will be determined by adverse events (AEs) and serious adverse events (SAEs) during the follow-up period. Efficacy will be defined by clinical outcomes, as well as a variety of pulmonary, biochemical and immunological tests. Success of the current study will provide a framework for larger controlled, randomized clinical trials and a means of accelerating a possible solution for this urgent but unmet medical need. The proposed early phase clinical trial will be performed at the University of Miami (UM), in the facilities of the Diabetes Research Institute (DRI), UHealth Intensive Care Unit (ICU) and the Clinical Translational Research Site (CTRS) at the University of Miami Miller School of Medicine and at the Jackson Memorial Hospital (JMH).
Collapse
Affiliation(s)
- G Lanzoni
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - E Linetsky
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - D Correa
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - R A Alvarez
- University of Miami Health System and Jackson Health System, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - A Marttos
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,University of Miami Health System and Jackson Health System, Miami, FL, USA
| | - K Hirani
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - S Messinger Cayetano
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J G Castro
- University of Miami Health System and Jackson Health System, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - M J Paidas
- University of Miami Health System and Jackson Health System, Miami, FL, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J Efantis Potter
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - X Xu
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - M Glassberg
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - J Tan
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | - A N Patel
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.,HCA Research Institute, Nashville, TN, USA
| | - B Goldstein
- Department of Head and Neck Surgery and Communication Sciences, Duke University, Durham, NC, USA
| | - N S Kenyon
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - D Baidal
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - R Alejandro
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - R Vianna
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,University of Miami Health System and Jackson Health System, Miami, FL, USA.,Miami Transplant Institute, Jackson Health System, Miami, FL, USA
| | - P Ruiz
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,University of Miami Health System and Jackson Health System, Miami, FL, USA.,Miami Transplant Institute, Jackson Health System, Miami, FL, USA
| | - A I Caplan
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - C Ricordi
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,University of Miami Health System and Jackson Health System, Miami, FL, USA
| |
Collapse
|
12
|
Bowles AC, Ishahak MM, Glover SJ, Correa D, Agarwal A. Evaluating Vascularization of Heterotopic Islet Constructs for Type 1 Diabetes Using an In Vitro Platform. Integr Biol (Camb) 2020; 11:331-341. [PMID: 31724717 DOI: 10.1093/intbio/zyz027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes (T1D) results from the autoimmune destruction of β-cells within the pancreatic islets of Langerhans. Clinical islet transplantation from healthy donors is proposed to ameliorate symptoms, improve quality of life, and enhance the life span of afflicted T1D patients. However, post-transplant outcomes are dependent on the survival of the transplanted islets, which relies on the engraftment of the islets with the recipient's vasculature among other factors. Treatment strategies to improve engraftment include combining islets with supporting cells including endothelial cells (EC) and mesenchymal stem cells (MSC), dynamic cells capable of robust immunomodulatory and vasculogenic effects. In this study, we developed an in vitro model of transplantation to investigate the cellular mechanisms that enhance rapid vascularization of heterotopic islet constructs. Self-assembled vascular beds of fluorescently stained EC served as reproducible in vitro transplantation sites. Heterotopic islet constructs composed of islets, EC, and MSC were transferred to vascular beds for modeling transplantation. Time-lapsed imaging was performed for analysis of the vascular bed remodeling for parameters of neo-vascularization. Moreover, sampling of media following modeled transplantation showed secretory profiles that were correlated with imaging analyses as well as with islet function using glucose-stimulated insulin secretion. Together, evidence revealed that heterotopic constructs consisting of islets, EC, and MSC exhibited the most rapid recruitment and robust branching of cells from the vascular beds suggesting enhanced neo-vascularization compared to islets alone and control constructs. Together, this evidence supports a promising cell transplantation strategy for T1D and also demonstrates a valuable tool for rapidly investigating candidate cellular therapies for transplantation.
Collapse
Affiliation(s)
- Annie C Bowles
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami, Miami, FL, USA.,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miami, FL, USA
| | - Matthew M Ishahak
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami, Miami, FL, USA
| | - Samuel J Glover
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Diego Correa
- DJTMF Biomedical Nanotechnology Institute at the University of Miami, Miami, FL, USA.,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miami, FL, USA
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami, Miami, FL, USA.,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
13
|
Hoogduijn MJ, Montserrat N, van der Laan LJW, Dazzi F, Perico N, Kastrup J, Gilbo N, Ploeg RJ, Roobrouck V, Casiraghi F, Johnson CL, Franquesa M, Dahlke MH, Massey E, Hosgood S, Reinders MEJ. The emergence of regenerative medicine in organ transplantation: 1st European Cell Therapy and Organ Regeneration Section meeting. Transpl Int 2020; 33:833-840. [PMID: 32237237 PMCID: PMC7497223 DOI: 10.1111/tri.13608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022]
Abstract
Regenerative medicine is emerging as a novel field in organ transplantation. In September 2019, the European Cell Therapy and Organ Regeneration Section (ECTORS) of the European Society for Organ Transplantation (ESOT) held its first meeting to discuss the state‐of‐the‐art of regenerative medicine in organ transplantation. The present article highlights the key areas of interest and major advances in this multidisciplinary field in organ regeneration and discusses its implications for the future of organ transplantation.
Collapse
Affiliation(s)
- Martin J Hoogduijn
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Francesco Dazzi
- School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Norberto Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Jens Kastrup
- Cardiology Stem Cell Center, Rigshospitalet University Hospital Copenhagen, Copenhagen, Denmark
| | - Nicholas Gilbo
- Lab of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Rutger J Ploeg
- Nuffield Department of Surgical Sciences and Oxford Transplant Centre, University of Oxford and Oxford University Hospitals NHS Trust, Oxford, UK
| | | | | | - Christian L Johnson
- Institute for Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marcella Franquesa
- REMAR-IVECAT Group, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Marc H Dahlke
- Department of Surgery, Robert-Bosch-Health-Campus, Stuttgart, Germany
| | - Emma Massey
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sarah Hosgood
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Marlies E J Reinders
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 16:204-224. [PMID: 32071924 PMCID: PMC7012781 DOI: 10.1016/j.omtm.2020.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs) possess several fairly unique properties that, when combined, make them ideally suited for cellular-based immunotherapy and as vehicles for gene and drug delivery for a wide range of diseases and disorders. Key among these are: (1) their relative ease of isolation from a variety of tissues; (2) the ability to be expanded in culture without a loss of functionality, a property that varies to some degree with tissue source; (3) they are relatively immune-inert, perhaps obviating the need for precise donor/recipient matching; (4) they possess potent immunomodulatory functions that can be tailored by so-called licensing in vitro and in vivo; (5) the efficiency with which they can be modified with viral-based vectors; and (6) their almost uncanny ability to selectively home to damaged tissues, tumors, and metastases following systemic administration. In this review, we summarize the latest research in the immunological properties of MSCs, their use as immunomodulatory/anti-inflammatory agents, methods for licensing MSCs to customize their immunological profile, and their use as vehicles for transferring both therapeutic genes in genetic disease and drugs and genes designed to destroy tumor cells.
Collapse
|
15
|
You Y, Wen DG, Gong JP, Liu ZJ. Research Status of Mesenchymal Stem Cells in Liver Transplantation. Cell Transplant 2019; 28:1490-1506. [PMID: 31512503 PMCID: PMC6923564 DOI: 10.1177/0963689719874786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liver transplantation has been deemed the best choice for end-stage liver disease
patients but immune rejection after surgery is still a serious problem. Patients have to
take immunosuppressive drugs for a long time after liver transplantation, and this often
leads to many side effects. Mesenchymal stem cells (MSCs) gradually became of interest to
researchers because of their powerful immunomodulatory effects. In the past, a large
number of in vitro and in vivo studies have demonstrated the great potential of MSCs for
participation in posttransplant immunomodulation. In addition, MSCs also have properties
that may potentially benefit patients undergoing liver transplantation. This article aims
to provide an overview of the current understanding of the immunomodulation achieved by
the application of MSCs in liver transplantation, to discuss the problems that may be
encountered when using MSCs in clinical practice, and to describe some of the underlying
capabilities of MSCs in liver transplantation. Cell–cell contact, soluble molecules, and
exosomes have been suggested to be critical approaches to MSCs’ immunoregulation in vitro;
however, the exact mechanism, especially in vivo, is still unclear. In recent years, the
clinical safety of MSCs has been proven by a series of clinical trials. The obstacles to
the clinical application of MSCs are decreasing, but large sample clinical trials
involving MSCs are still needed to further study their clinical effects.
Collapse
Affiliation(s)
- Yu You
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China.,Yu You and Di-guang Wen are equal contributors and co-first authors of this article
| | - Di-Guang Wen
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China.,Yu You and Di-guang Wen are equal contributors and co-first authors of this article
| | - Jian-Ping Gong
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China
| | - Zuo-Jin Liu
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
16
|
Pool M, Eertman T, Sierra Parraga J, 't Hart N, Roemeling-van Rhijn M, Eijken M, Jespersen B, Reinders M, Hoogduijn M, Ploeg R, Leuvenink H, Moers C. Infusing Mesenchymal Stromal Cells into Porcine Kidneys during Normothermic Machine Perfusion: Intact MSCs Can Be Traced and Localised to Glomeruli. Int J Mol Sci 2019; 20:ijms20143607. [PMID: 31340593 PMCID: PMC6678394 DOI: 10.3390/ijms20143607] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Normothermic machine perfusion (NMP) of kidneys offers the opportunity to perform active interventions, such as the addition of mesenchymal stromal cells (MSCs), to an isolated organ prior to transplantation. The purpose of this study was to determine whether administering MSCs to kidneys during NMP is feasible, what the effect of NMP is on MSCs and whether intact MSCs are retained in the kidney and to which structures they home. Viable porcine kidneys were obtained from a slaughterhouse. Kidneys were machine perfused during 7 h at 37 °C. After 1 h of perfusion either 0, 105, 106 or 107 human adipose tissue derived MSCs were added. Additional ex vivo perfusions were conducted with fluorescent pre-labelled bone-marrow derived MSCs to assess localisation and survival of MSCs during NMP. After NMP, intact MSCs were detected by immunohistochemistry in the lumen of glomerular capillaries, but only in the 107 MSC group. The experiments with fluorescent pre-labelled MSCs showed that only a minority of glomeruli were positive for infused MSCs and most of these glomeruli contained multiple MSCs. Flow cytometry showed that the number of infused MSCs in the perfusion circuit steeply declined during NMP to approximately 10%. In conclusion, the number of circulating MSCs in the perfusate decreases rapidly in time and after NMP only a small portion of the MSCs are intact and these appear to be clustered in a minority of glomeruli.
Collapse
Affiliation(s)
- Merel Pool
- Department of Surgery-Organ Donation and Transplantation, University Medical Center, 9713 GZ Groningen, The Netherlands.
| | - Tim Eertman
- Department of Surgery-Organ Donation and Transplantation, University Medical Center, 9713 GZ Groningen, The Netherlands
| | - Jesus Sierra Parraga
- Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Nils 't Hart
- Department of Pathology, University Medical Center, 9713 GZ Groningen, The Netherlands
| | | | - Marco Eijken
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Bente Jespersen
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Marlies Reinders
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martin Hoogduijn
- Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Rutger Ploeg
- Department of Surgery-Organ Donation and Transplantation, University Medical Center, 9713 GZ Groningen, The Netherlands
- Oxford Transplant Centre, University of Oxford, OX3 7LJ Oxford, UK
| | - Henri Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center, 9713 GZ Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
17
|
Yu Y, Wang D, Li H, Fan J, Liu Y, Zhao X, Wu J, Jing X. Mesenchymal stem cells derived from induced pluripotent stem cells play a key role in immunomodulation during cardiopulmonary resuscitation. Brain Res 2019; 1720:146293. [PMID: 31201814 DOI: 10.1016/j.brainres.2019.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND/AIMS Previous in vitro experiments have demonstrated the immunomodulatory functions of mesenchymal stem cells derived from induced pluripotent stem cells (iPSC-MSCs) in brain injury. We have tried to further understand these functions by investigating the neuroprotective effects of iPSC-MSCs in a rat model of cardiac arrest (CA). METHODS CA was induced in adult Sprague-Dawley rats by transcutaneous electrical epicardium stimulation. The rats were divided into four groups. In a separate cohort of sham operation animals, iPSC-MSCs or PBS was infused via the femoral vein after restoration of spontaneous circulation. Survival was evaluated every 2 h until 24 h after CA. Markers of classically activated macrophages (M1) and alternatively activated (M2) macrophages were assessed by qPCR and western blot analysis, and the gene expression profiles of the macrophages were studied in order to identify differentially expressed proteins. RESULTS The 24-h survival rate was significantly different between the CPR group and iPSC-MSC group (P = 0.033). Additionally, a significant number of mRNAs were differentially expressed between the iPSC-MSC and PBS group. Compared with the sham operation group, both M1 (27/29) and M2 (2/29) mRNAs showed a significant increase in expression in the CPR group, while only M2 (22) mRNAs showed a significant increase in expression in the iPSC-MSC group. Western blotting analysis showed that the expression of Arg-1 and CD14 (M2 macrophage markers) was increased in the iPSC-MSC group (P < 0.05), while CD86 and iNOS (M1 macrophage markers) expression was increased in the CPR group (P < 0.05). CONCLUSION IPSC-MSCs, which play a key role in immunomodulation, downregulate the level of M1 macrophages and upregulate the level of M2 macrophages after CA.
Collapse
Affiliation(s)
- Yi Yu
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, China; Department of Emergency, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Dongping Wang
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Hui Li
- Department of Emergency, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Jinjin Fan
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yujie Liu
- Department of Breast Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiang Zhao
- Department of Emergency, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Junlin Wu
- Department of Emergency, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xiaoli Jing
- Department of Emergency, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
18
|
Erpicum P, Weekers L, Detry O, Bonvoisin C, Delbouille MH, Grégoire C, Baudoux E, Briquet A, Lechanteur C, Maggipinto G, Somja J, Pottel H, Baron F, Jouret F, Beguin Y. Infusion of third-party mesenchymal stromal cells after kidney transplantation: a phase I-II, open-label, clinical study. Kidney Int 2019; 95:693-707. [DOI: 10.1016/j.kint.2018.08.046] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/25/2018] [Accepted: 08/23/2018] [Indexed: 02/08/2023]
|
19
|
Immunohematology Mesenchymal Stromal Cell-based Therapy: From Research to Clinic. Appl Immunohistochem Mol Morphol 2019; 26:e26-e43. [PMID: 29271793 DOI: 10.1097/pai.0000000000000629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mesenchymal stromal cells (MSC) are nonhematopoietic cells that can be isolated from several adult and fetal tissues. MSC present specific features as the capacity to support hematopoiesis and to regulate immune response. Thus, the use of MSC as a cell therapeutic product in the field of immune-hematology is of great importance. In this review, we focused on human MSC and discussed their immune-hematologic properties and their translation toward therapeutic clinical applications. Thus, these features hold great promise for cell-based therapy and are of important relevance for the field.
Collapse
|
20
|
Pinto Filho S, Dalmolin F, Pillat M, Graça D, Borges L, Rosa M, Danesi C, Maciel R, Veiga M, Dullius A, Pippi N. Análises macroscópica e histopatológica do alotransplante parcial de vesícula urinária com células-tronco mesenquimais alogênicas derivadas do tecido adiposo em coelhos. ARQ BRAS MED VET ZOO 2018. [DOI: 10.1590/1678-4162-9952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
RESUMO O número de transplantes de órgãos e tecidos em humanos e animais tem crescido significativamente nos últimos anos, principalmente após o advento de técnicas modernas e mais seguras indutoras de imunossupressão. Objetiva-se com o presente estudo avaliar macro e microscopicamente o alotransplante parcial de bexiga a fresco em coelhos, utilizando como agente imunomodulador células-tronco mesenquimais derivadas do tecido adiposo (ADSC) alogênicas. Foram utilizados 25 coelhos, sendo um deles macho e doador das ADSCs, e os outros 24 eram fêmeas, submetidas a alotransplante parcial de bexiga, tratadas com ciclosporina (GCi) ou células-tronco mesenquimais (GCe). Conclui-se que o GCe teve melhor aceitação histológica do implante em relação ao GCi aos 30 dias de avaliação.
Collapse
Affiliation(s)
| | - F. Dalmolin
- Universidade Federal da Fronteira Sul, Brazil
| | | | - D.L. Graça
- Universidade Federal de Santa Maria, Brazil
| | - L. Borges
- Universidade Federal de Santa Maria, Brazil
| | - M.P. Rosa
- Universidade Federal de Santa Maria, Brazil
| | | | | | - M.L. Veiga
- Universidade Federal de Santa Maria, Brazil
| | | | - N.L. Pippi
- Universidade Federal de Santa Maria, Brazil
| |
Collapse
|
21
|
Carty F, Corbett JM, Cunha JPMCM, Reading JL, Tree TIM, Ting AE, Stubblefield SR, English K. Multipotent Adult Progenitor Cells Suppress T Cell Activation in In Vivo Models of Homeostatic Proliferation in a Prostaglandin E2-Dependent Manner. Front Immunol 2018; 9:645. [PMID: 29740426 PMCID: PMC5925221 DOI: 10.3389/fimmu.2018.00645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/14/2018] [Indexed: 12/14/2022] Open
Abstract
Lymphodepletion strategies are used in the setting of transplantation (including bone marrow, hematopoietic cell, and solid organ) to create space or to prevent allograft rejection and graft versus host disease. Following lymphodepletion, there is an excess of IL-7 available, and T cells that escape depletion respond to this cytokine undergoing accelerated proliferation. Moreover, this environment promotes the skew of T cells to a Th1 pro-inflammatory phenotype. Existing immunosuppressive regimens fail to control this homeostatic proliferative (HP) response, and thus the development of strategies to successfully control HP while sparing T cell reconstitution (providing a functioning immune system) represents a significant unmet need in patients requiring lymphodepletion. Multipotent adult progenitor cells (MAPC®) have the capacity to control T cell proliferation and Th1 cytokine production. Herein, this study shows that MAPC cells suppressed anti-thymocyte globulin-induced cytokine production but spared T cell reconstitution in a pre-clinical model of lymphodepletion. Importantly, MAPC cells administered intraperitoneally were efficacious in suppressing interferon-γ production and in promoting the expansion of regulatory T cells in the lymph nodes. MAPC cells administered intraperitoneally accumulated in the omentum but were not present in the spleen suggesting a role for soluble factors. MAPC cells suppressed lymphopenia-induced cytokine production in a prostaglandin E2-dependent manner. This study suggests that MAPC cell therapy may be useful as a novel strategy to target lymphopenia-induced pathogenic T cell responses in lymphodepleted patients.
Collapse
Affiliation(s)
- Fiona Carty
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, Ireland
| | - Jennifer M Corbett
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, Ireland
| | | | - James L Reading
- Department of Immunobiology, King's College London, London, United Kingdom
| | - Timothy I M Tree
- Department of Immunobiology, King's College London, London, United Kingdom
| | | | | | - Karen English
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
22
|
Sun Q, Huang Z, Han F, Zhao M, Cao R, Zhao D, Hong L, Na N, Li H, Miao B, Hu J, Meng F, Peng Y, Sun Q. Allogeneic mesenchymal stem cells as induction therapy are safe and feasible in renal allografts: pilot results of a multicenter randomized controlled trial. J Transl Med 2018. [PMID: 29514693 PMCID: PMC5842532 DOI: 10.1186/s12967-018-1422-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Kidneys from deceased donors are being used to meet the growing need for grafts. However, delayed graft function (DGF) and acute rejection incidences are high, leading to adverse effects on graft outcomes. Optimal induction intervention should include both renal structure injury repair and immune response suppression. Mesenchymal stem cells (MSCs) with potent anti-inflammatory, regenerative, and immune-modulatory properties are considered a candidate to prevent DGF and acute rejection in renal transplantation. Thus, this prospective multicenter paired study aimed to assess the clinical value of allogeneic MSCs as induction therapy to prevent both DGF and acute rejection in deceased donor renal transplantation. METHODS Forty-two renal allograft recipients were recruited and divided into trial and control groups. The trial group (21 cases) received 2 × 106/kg human umbilical-cord-derived MSCs (UC-MSCs) via the peripheral vein before renal transplantation, and 5 × 106 cells via the renal artery during the surgical procedure. All recipients received standard induction therapy. Incidences of DGF and biopsy-proven acute rejection were recorded postoperatively and severe postoperative complications were assessed. Graft and recipient survivals were also evaluated. RESULTS Treatment with UC-MSCs achieved comparable graft and recipient survivals with non-MSC treatment (P = 0.97 and 0.15, respectively). No increase in postoperative complications, including DGF and acute rejection, were observed (incidence of DGF: 9.5% in the MSC group versus 33.3% in the non-MSC group, P = 0.13; Incidence of acute rejection: 14.3% versus 4.8%, P = 0.61). Equal postoperative estimated glomerular filtration rates were found between the two groups (P = 0.88). All patients tolerated the MSCs infusion without adverse clinical effects. Additionally, a multiprobe fluorescence in situ hybridization assay revealed that UC-MSCs administered via the renal artery were absent from the recipient's biopsy sample. CONCLUSIONS Umbilical-cord-derived MSCs can be used as clinically feasible and safe induction therapy. Adequate timing and frequency of UC-MSCs administration may have a significant effect on graft and recipient outcomes. Trial registration NCT02490020 . Registered on June 29 2015.
Collapse
Affiliation(s)
- Qipeng Sun
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Zhengyu Huang
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Fei Han
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Ming Zhao
- Department of Renal Transplantation, Zhujiang Hospital, Southern Medical University, Gongye Road 253, Guangzhou, 510280, People's Republic of China
| | - Ronghua Cao
- Department of Renal Transplantation, The Second Affiliated Hospital, Guangzhou Traditional Chinese Medicine University, Inner Ring Road 55, University City, Guangzhou, 510280, People's Republic of China
| | - Daqiang Zhao
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Liangqing Hong
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Ning Na
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Heng Li
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Bin Miao
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China
| | - Jianmin Hu
- Department of Renal Transplantation, Zhujiang Hospital, Southern Medical University, Gongye Road 253, Guangzhou, 510280, People's Republic of China
| | - Fanhang Meng
- Department of Renal Transplantation, The Second Affiliated Hospital, Guangzhou Traditional Chinese Medicine University, Inner Ring Road 55, University City, Guangzhou, 510280, People's Republic of China
| | - Yanwen Peng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Tianhe Road 600, Guangzhou, 510630, People's Republic of China
| | - Qiquan Sun
- Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Kaichuang Road 2693, Huangpu District, Guangzhou, 510530, People's Republic of China.
| |
Collapse
|
23
|
Abstract
Over the past century, solid organ transplantation has been improved both at a surgical and postoperative level. However, despite the improvement in efficiency, safety, and survival, we are still far from obtaining full acceptance of all kinds of allograft in the absence of concomitant treatments. Today, transplanted patients are treated with immunosuppressive drugs (IS) to minimize immunological response in order to prevent graft rejection. Nevertheless, the lack of specificity of IS leads to an increase in the risk of cancer and infections. At this point, cell therapies have been shown as a novel promising resource to minimize the use of IS in transplantation. The main strength of cell therapy is the opportunity to generate allograft-specific tolerance, promoting in this way long-term allograft survival. Among several other regulatory cell types, tolerogenic monocyte-derived dendritic cells (Tol-MoDCs) appear to be an interesting candidate for cell therapy due to their ability to perform specific antigen presentation and to polarize immune response to immunotolerance. In this review, we describe the characteristics and the mechanisms of action of both human Tol-MoDCs and rodent tolerogenic bone marrow-derived DCs (Tol-BMDCs). Furthermore, studies performed in transplantation models in rodents and non-human primates corroborate the potential of Tol-BMDCs for immunoregulation. In consequence, Tol-MoDCs have been recently evaluated in sundry clinical trials in autoimmune diseases and shown to be safe. In addition to autoimmune diseases clinical trials, Tol-MoDC is currently used in the first phase I/II clinical trials in transplantation. Translation of Tol-MoDCs to clinical application in transplantation will also be discussed in this review.
Collapse
Affiliation(s)
- Eros Marín
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Nephrologie (ITUN), CHU Nantes, Nantes, France
| | - Maria Cristina Cuturi
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Nephrologie (ITUN), CHU Nantes, Nantes, France
| | - Aurélie Moreau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Nephrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
24
|
de Witte SFH, Luk F, Sierra Parraga JM, Gargesha M, Merino A, Korevaar SS, Shankar AS, O'Flynn L, Elliman SJ, Roy D, Betjes MGH, Newsome PN, Baan CC, Hoogduijn MJ. Immunomodulation By Therapeutic Mesenchymal Stromal Cells (MSC) Is Triggered Through Phagocytosis of MSC By Monocytic Cells. Stem Cells 2018; 36:602-615. [PMID: 29341339 DOI: 10.1002/stem.2779] [Citation(s) in RCA: 364] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/15/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem or stromal cells (MSC) are under investigation as a potential immunotherapy. MSC are usually administered via intravenous infusion, after which they are trapped in the lungs and die and disappear within a day. The fate of MSC after their disappearance from the lungs is unknown and it is unclear how MSC realize their immunomodulatory effects in their short lifespan. We examined immunological mechanisms determining the fate of infused MSC and the immunomodulatory response associated with it. Tracking viable and dead human umbilical cord MSC (ucMSC) in mice using Qtracker beads (contained in viable cells) and Hoechst33342 (staining all cells) revealed that viable ucMSC were present in the lungs immediately after infusion. Twenty-four hours later, the majority of ucMSC were dead and found in the lungs and liver where they were contained in monocytic cells of predominantly non-classical Ly6Clow phenotype. Monocytes containing ucMSC were also detected systemically. In vitro experiments confirmed that human CD14++ /CD16- classical monocytes polarized toward a non-classical CD14++ CD16+ CD206+ phenotype after phagocytosis of ucMSC and expressed programmed death ligand-1 and IL-10, while TNF-α was reduced. ucMSC-primed monocytes induced Foxp3+ regulatory T cell formation in mixed lymphocyte reactions. These results demonstrate that infused MSC are rapidly phagocytosed by monocytes, which subsequently migrate from the lungs to other body sites. Phagocytosis of ucMSC induces phenotypical and functional changes in monocytes, which subsequently modulate cells of the adaptive immune system. It can be concluded that monocytes play a crucial role in mediating, distributing, and transferring the immunomodulatory effect of MSC. Stem Cells 2018;36:602-615.
Collapse
Affiliation(s)
- Samantha F H de Witte
- Rotterdam Transplant Group, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Franka Luk
- Rotterdam Transplant Group, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Jesus M Sierra Parraga
- Rotterdam Transplant Group, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Ana Merino
- Rotterdam Transplant Group, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Sander S Korevaar
- Rotterdam Transplant Group, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anusha S Shankar
- Rotterdam Transplant Group, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | - Michiel G H Betjes
- Rotterdam Transplant Group, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Philip N Newsome
- National Institute for Health Research Liver Biomedical Research Unit at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Carla C Baan
- Rotterdam Transplant Group, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Martin J Hoogduijn
- Rotterdam Transplant Group, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Keller CA, Gonwa TA, Hodge DO, Hei DJ, Centanni JM, Zubair AC. Feasibility, Safety, and Tolerance of Mesenchymal Stem Cell Therapy for Obstructive Chronic Lung Allograft Dysfunction. Stem Cells Transl Med 2018; 7:161-167. [PMID: 29322685 PMCID: PMC5788872 DOI: 10.1002/sctm.17-0198] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
Feasibility, tolerance, and safety of intravenous infusions of allogeneic mesenchymal stem cell (MSC) therapy in lung transplant recipients with bronchiolitis obliterans syndrome (BOS) are not well established. MSCs were manufactured, cryopreserved, transported to our facility, thawed, and infused into nine recipients with moderate BOS (average drop in forced expiratory volume in 1 second was 56.8% ± 3.2% from post‐transplant peak) who were refractory to standard therapy and not candidates for retransplant. Cells were viable and sterile prior to infusion. Patients received a single infusion of either 1 (n = 3), 2 (n = 3), or 4 (n = 3) million MSCs per kg. Patients were medically evaluated before; during; and at 24 hours, 1 week, and 1 month after infusion for evidence of infusion‐related adverse events and tolerance of therapy. Vital signs, pulmonary function test results, Borg Dyspnea Index, and routine laboratory data were recorded. Vital signs and O2 saturation did not significantly change during or up to 2 hours after MSC infusion. There were no significant changes in gas exchange variables, pulmonary function test results, or laboratory values at 1, 7, and 30 days postinfusion compared with preinfusion values. Infusion of MSCs in patients with BOS was feasible, safe, and well tolerated and did not produce any significant adverse changes in clinical, functional, or laboratory variables during or up to 30 days after infusion. Manufacturing, transport, and administration of intravenous, allogeneic bone marrow‐derived MSCs in doses from 1 to 4 million MSCs per kg is safe in lung transplant recipients with BOS. Stem Cells Translational Medicine2018;7:161–167
Collapse
Affiliation(s)
- Cesar Ariel Keller
- Division of Transplant Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | | | - David Orel Hodge
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Abba Chedi Zubair
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
26
|
|
27
|
Mesenchymal Stromal Cell Therapy: After the Gold Rush. Transplantation 2017; 102:7-8. [PMID: 28858990 DOI: 10.1097/tp.0000000000001932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Erpicum P, Rowart P, Poma L, Krzesinski JM, Detry O, Jouret F. Administration of mesenchymal stromal cells before renal ischemia/reperfusion attenuates kidney injury and may modulate renal lipid metabolism in rats. Sci Rep 2017; 7:8687. [PMID: 28819187 PMCID: PMC5561049 DOI: 10.1038/s41598-017-08726-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/17/2017] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stromal cells (MSC) have been demonstrated to attenuate renal ischemia/reperfusion (I/R) damage in rodent models. The mechanisms of such nephro-protection remain largely unknown. Furthermore, the optimal timing of MSC administration has been poorly investigated. Here, we compare the impact of MSC injection 7 days before (MSCD - 7) versus 1 day after (MSCD + 1) renal I/R in rats. Control groups received equivalent volumes of saline at similar time-points (SD - 7 and SD + 1). Right nephrectomy was performed, and left renal ischemia lasted 45 min. After 48-hour reperfusion, we observed significantly improved renal function parameters, reduced apoptotic index and neutrophil/macrophage infiltration in kidney parenchyma, and lower expression of tubular damage markers and pro-inflammatory cytokines in MSCD - 7 in comparison to MSCD + 1 and saline control groups. Next, comparative high-throughput RNA sequencing of MSCD - 7 vs. SD - 7 non-ischemic right kidneys highlighted significant down-regulation of fatty acid biosynthesis and up-regulation of PPAR-α pathway. Such a preferential regulation towards lipid catabolism was associated with decreased levels of lipid peroxidation products, i.e. malondialdehyde and 4-hydroxy-2-nonenal, in MSCD - 7 versus SD - 7 ischemic kidneys. Our findings suggest that MSC pretreatment may exert protective effects against renal I/R by modulating lipid metabolism in rats.
Collapse
Affiliation(s)
- Pauline Erpicum
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium.,Division of Nephrology, University of Liège Hospital (ULg CHU), Liège, Belgium
| | - Pascal Rowart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Laurence Poma
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Jean-Marie Krzesinski
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium.,Division of Nephrology, University of Liège Hospital (ULg CHU), Liège, Belgium
| | - Olivier Detry
- Department of Abdominal Surgery and Transplantation, University of Liège Hospital (ULg CHU), Liège, Belgium.,Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), CREDEC Unit, University of Liège, Liège, Belgium
| | - François Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium. .,Division of Nephrology, University of Liège Hospital (ULg CHU), Liège, Belgium.
| |
Collapse
|
29
|
Contreras-Kallens P, Terraza C, Oyarce K, Gajardo T, Campos-Mora M, Barroilhet MT, Álvarez C, Fuentes R, Figueroa F, Khoury M, Pino-Lagos K. Mesenchymal stem cells and their immunosuppressive role in transplantation tolerance. Ann N Y Acad Sci 2017; 1417:35-56. [PMID: 28700815 DOI: 10.1111/nyas.13364] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/13/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022]
Abstract
Since they were first described, mesenchymal stem cells (MSCs) have been shown to have important effector mechanisms and the potential for use in cell therapy. A great deal of research has been focused on unveiling how MSCs contribute to anti-inflammatory responses, including describing several cell populations involved and identifying soluble and other effector molecules. In this review, we discuss some of the contemporary evidence for use of MSCs in the field of immune tolerance, with a special emphasis on transplantation. Although considerable effort has been devoted to understanding the biological function of MSCs, additional resources are required to clarify the mechanisms of their induction of immune tolerance, which will undoubtedly lead to improved clinical outcomes for MSC-based therapies.
Collapse
Affiliation(s)
- Pamina Contreras-Kallens
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Claudia Terraza
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Karina Oyarce
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Tania Gajardo
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Mauricio Campos-Mora
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - María Teresa Barroilhet
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Carla Álvarez
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Ricardo Fuentes
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Fernando Figueroa
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Karina Pino-Lagos
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
30
|
Mesenchymal Stromal Cells Accelerate Epithelial Tight Junction Assembly via the AMP-Activated Protein Kinase Pathway, Independently of Liver Kinase B1. Stem Cells Int 2017; 2017:9717353. [PMID: 28781597 PMCID: PMC5525096 DOI: 10.1155/2017/9717353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/21/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) are fibroblast-like multipotent cells capable of tissue-repair properties. Given the essentiality of tight junctions (TJ) in epithelial integrity, we hypothesized that MSC modulate TJ formation, via the AMP-activated kinase (AMPK) pathway. Liver kinase-β1 (LKB1) and Ca2+-calmodulin-dependent protein kinase kinase (CaMKK) represent the main kinases that activate AMPK. METHODS The in vitro Ca2+ switch from 5 μM to 1.8 mM was performed using epithelial Madin-Darby canine kidney (MDCK) cells cultured alone or cocultured with rat bone marrow-derived MSC or preexposed to MSC-conditioned medium. TJ assembly was measured by assessing ZO-1 relocation to cell-cell contacts. Experiments were conducted using MDCK stably expressing short-hairpin-RNA (shRNA) against LKB1 or luciferase (LUC, as controls). Compound STO-609 (50 μM) was used as CaMKK inhibitor. RESULTS Following Ca2+ switch, ZO-1 relocation and phosphorylation/activation of AMPK were significantly higher in MDCK/MSC compared to MDCK. No difference in AMPK phosphorylation was observed between LKB1-shRNA and Luc-shRNA MDCK following Ca2+ switch. Conversely, incubation with STO-609 prior to Ca2+ switch prevented AMPK phosphorylation and ZO-1 relocation. MSC-conditioned medium slightly but significantly increased AMPK activation and accelerated TJ-associated distribution of ZO-1 post Ca2+ switch in comparison to regular medium. CONCLUSIONS MSC modulate the assembly of epithelial TJ, via the CaMKK/AMPK pathway independently of LKB1.
Collapse
|
31
|
Infusion of mesenchymal stromal cells after deceased liver transplantation: A phase I-II, open-label, clinical study. J Hepatol 2017; 67:47-55. [PMID: 28284916 DOI: 10.1016/j.jhep.2017.03.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Mesenchymal stromal cell (MSC) infusion could be a means to establish tolerance in solid organ recipients. The aim of this prospective, controlled, phase I study was to evaluate the feasibility, safety and tolerability of a single infusion of MSCs in liver transplant recipients. METHODS Ten liver transplant recipients under standard immunosuppression received 1.5-3×106/kg third-party unrelated MSCs on postoperative day 3±2, and were prospectively compared to a control group of ten liver transplant recipients. As primary endpoints, MSC infusion toxicity was evaluated, and infectious and cancerous complications were prospectively recorded until month 12 in both groups. As secondary endpoints, rejection rate, month-6 graft biopsies, and peripheral blood lymphocyte phenotyping were compared. Progressive immunosuppression weaning was attempted from month 6 to 12 in MSC recipients. RESULTS No variation in vital parameters or cytokine release syndrome could be detected during and after MSC infusion. No patient developed impairment of organ functions (including liver graft function) following MSC infusion. No increased rate of opportunistic infection or de novo cancer was detected. As secondary endpoints, there was no difference in overall rates of rejection or graft survival. Month-6 biopsies did not demonstrate a difference between groups in the evaluation of rejection according to the Banff criteria, in the fibrosis score or in immunohistochemistry (including Tregs). No difference in peripheral blood lymphocyte typing could be detected. The immunosuppression weaning in MSC recipients was not successful. CONCLUSIONS No side effect of MSC infusion at day 3 after liver transplant could be detected, but this infusion did not promote tolerance. This study opens the way for further MSC or Treg-based trials in liver transplant recipients. LAY SUMMARY Therapy with mesenchymal stromal cells (MSCs) has been proposed as a means to improve results of solid organ transplantation. One of the potential MSC role could be to induce tolerance after liver transplantation, i.e. allowing the cessation of several medications with severe side effects. This study is the first-in-man use of MSC therapy in ten liver transplant recipients. This study did not show toxicity after a single MSC infusion but it was not sufficient to allow withdrawal of immunosuppression. CLINICAL TRIAL REGISTRATION NUMBER Eudract: # 2011-001822-81, ClinicalTrials.gov: # NCT 01429038.
Collapse
|
32
|
Sierra-Parraga JM, Eijken M, Hunter J, Moers C, Leuvenink H, Møller B, Ploeg RJ, Baan CC, Jespersen B, Hoogduijn MJ. Mesenchymal Stromal Cells as Anti-Inflammatory and Regenerative Mediators for Donor Kidneys During Normothermic Machine Perfusion. Stem Cells Dev 2017; 26:1162-1170. [PMID: 28557562 DOI: 10.1089/scd.2017.0030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is great demand for transplant kidneys for the treatment of end-stage kidney disease patients. To expand the donor pool, organs from older and comorbid brain death donors, so-called expanded criteria donors (ECD), as well as donation after circulatory death donors, are considered for transplantation. However, the quality of these organs may be inferior to standard donor organs. A major issue affecting graft function and survival is ischemia/reperfusion injury, which particularly affects kidneys from deceased donors. The development of hypothermic machine perfusion has been introduced in kidney transplantation as a preservation technique and has improved outcomes in ECD and marginal organs compared to static cold storage. Normothermic machine perfusion (NMP) is the most recent evolution of perfusion technology and allows assessment of the donor organ before transplantation. The possibility to control the content of the perfusion fluid offers opportunities for damage control and reparative therapies during machine perfusion. Mesenchymal stromal cells (MSC) have been demonstrated to possess potent regenerative properties via the release of paracrine effectors. The combination of NMP and MSC administration at the same time is a promising procedure in the field of transplantation. Therefore, the MePEP consortium has been created to study this novel modality of treatment in preparation for human trials. MePEP aims to assess the therapeutic effects of MSC administered ex vivo by NMP in the mechanisms of injury and repair in a porcine kidney autotransplantation model.
Collapse
Affiliation(s)
- Jesus Maria Sierra-Parraga
- 1 Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center , Rotterdam, the Netherlands
| | - Marco Eijken
- 2 Institute of Clinical Medicine, Department of Medicine and Nephrology C, Aarhus University , Aarhus, Denmark
| | - James Hunter
- 3 Nuffield Department of Surgical Sciences, Oxford Biomedical Research Centre, University of Oxford , Oxford, United Kingdom
| | - Cyril Moers
- 4 Department of Surgery-Organ Donation and Transplantation, University of Medical Center Groningen , Groningen, the Netherlands
| | - Henri Leuvenink
- 4 Department of Surgery-Organ Donation and Transplantation, University of Medical Center Groningen , Groningen, the Netherlands
| | - Bjarne Møller
- 5 Department of Clinical Immunology, Aarhus University Hospital , Aarhus, Denmark
| | - Rutger J Ploeg
- 3 Nuffield Department of Surgical Sciences, Oxford Biomedical Research Centre, University of Oxford , Oxford, United Kingdom
| | - Carla C Baan
- 1 Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center , Rotterdam, the Netherlands
| | - Bente Jespersen
- 6 Department of Renal Medicine, Aarhus University Hospital , Aarhus, Denmark
| | - Martin J Hoogduijn
- 1 Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center , Rotterdam, the Netherlands
| |
Collapse
|
33
|
Gautier SV, Shagidulin MY, Onishchenko NA, Iljinsky IM, Sevastianov VI. Influence of matrix nature on the functional efficacy of biomedical cell product for the regeneration of damaged liver (experimental model of acute liver failure). RUSSIAN JOURNAL OF TRANSPLANTOLOGY AND ARTIFICIAL ORGANS 2017. [DOI: 10.15825/1995-1191-2017-2-78-89] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aim. A comparative analysis of the functional efficacy of biomedical cell products (BMCP) for the regeneration of damaged liver based on biopolymer scaffolded porous and hydrogel matrices was performed on the experimental model of acute liver failure. Materials and methods. Matrices allowed for clinical use were employed for BMCP in the form of a sponge made from biopolymer nanostructured composite material (BNCM) based on a highly purified bacterial copolymers of poly (β-hydroxybutyrate-co-β-oxyvalerate) and polyethylene glycol and a hydrogel matrix from biopolymer microheterogeneous collagen-containing hydrogel (BMCH). Cellular component of BMCP was represented by liver cells and multipotent mesenchymal bone marrow stem cells. The functional efficacy of BMCP for the regeneration of damaged liver was evaluated on the experimental model of acute liver failure in Wistar rats (n = 40) via biochemical, morphological, and immunohistochemical methods. Results. When BMCP was implanted to regenerate the damaged liver on the basis of the scaffolded BNCM or hydrogel BMCH matrices, the lethality in rats with acute liver failure was absent; while in control it was 66.6%. Restoration of the activity of cytolytic enzyme levels and protein-synthetic liver function began on day 9 after modeling acute liver failure, in contrast to the control group, where recovery occurred only by days 18–21. Both matrices maintained the viability and functional activity of liver cells up to 90 days with the formation of blood vessels in BMCP. The obtained data confirm that scaffolded BNCM matrix and hydrogel BMCH matrix retain for a long time (up to 90 days) the vital activity of the adherent cells in the BMCP composition, which allows using them to correct acute liver failure. At the same time, hydrogel matrix due to the presence of bioactive components contributes to the creation of the best conditions for adhesion and cell activity which accelerate the regeneration processes in the damaged liver compared to BMCP on scaffolded matrix. Conclusion. A statistically significant difference was found between the functional efficacy of the BMCP studied based on BNCM and BMCH matrices. BMCP based on hydrogel BMCH matrix was more effective for the regeneration of damaged liver.
Collapse
Affiliation(s)
- S. V. Gautier
- V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation; I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation
| | - M. Yu. Shagidulin
- V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation; I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation
| | - N. A. Onishchenko
- V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation
| | - I. M. Iljinsky
- V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation; I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation
| | - V. I. Sevastianov
- V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs of the Ministry of Healthcare of the Russian Federation
| |
Collapse
|
34
|
Aging of bone marrow- and umbilical cord-derived mesenchymal stromal cells during expansion. Cytotherapy 2017; 19:798-807. [PMID: 28462821 DOI: 10.1016/j.jcyt.2017.03.071] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are used as experimental immunotherapy. Extensive culture expansion is necessary to obtain clinically relevant cell numbers, although the impact on MSCs stability and function is unclear. This study investigated the effects of long-term in vitro expansion on the stability and function of MSCs. METHODS Human bone marrow-derived (bmMSCs) and umbilical cord-derived (ucMSCs) MSCs were in vitro expanded. During expansion, their proliferative capacity was examined. At passages 4, 8 and 12, analyses were performed to investigate the ploidy, metabolic stability, telomere length and immunophenotype. In addition, their potential to suppress lymphocyte proliferation and susceptibility to natural killer cell lysis was examined. RESULTS BmMSCs and ucMSCs showed decreasing proliferative capacity over time, while their telomere lengths and mitochondrial activity remained stable. Percentage of aneuploidy in cultures was unchanged after expansion. Furthermore, expression of MSC markers and markers associated with stress or aging remained unchanged. Reduced capacity to suppress CD4 and CD8 T-cell proliferation was observed for passage 8 and 12 bmMSCs and ucMSCs. Finally, susceptibility of bmMSCs and ucMSCs to NK-cell lysis remained stable. CONCLUSIONS We showed that after long-term expansion, phenotype of bmMSCs and ucMSCs remains stable and cells exhibit similar immunogenic properties compared with lower passage cells. However, immunosuppressive properties of MSCs are reduced. These findings reveal the consequences of application of higher passage MSCs in the clinic, which will help increase the yield of therapeutic MSCs but may interfere with their efficacy.
Collapse
|
35
|
Zhang YC, Liu W, Fu BS, Wang GY, Li HB, Yi HM, Jiang N, Wang G, Zhang J, Yi SH, Li H, Zhang Q, Yang Y, Chen GH. Therapeutic potentials of umbilical cord-derived mesenchymal stromal cells for ischemic-type biliary lesions following liver transplantation. Cytotherapy 2017; 19:194-199. [PMID: 27964826 DOI: 10.1016/j.jcyt.2016.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Ischemic-type biliary lesions are severe, graft-threatening complications after orthotopic liver transplantation, and a novel and efficient therapeutic strategy is urgently needed. Due to the immunosuppressive and regenerative properties, mesenchymal stromal cells (MSCs) could be an interesting candidate. METHODS We initiated safety and efficacy of human umbilical cord-derived MSC (UC-MSC) transfusions for patients with ischemic-type biliary lesions after liver transplantation. From January 2013 to June 2014, 12 ischemic-type biliary lesions patients were recruited as the MSCs group in this phase I, prospective, single-center clinical study. Patients in this group received six doses of UC-MSCs (about 1.0 × 106 MSCs per kilogram body weight through peripheral intravenous infusion). The traditional therapeutic protocol was applied during October 2003 to December 2012 in 70 ischemic-type biliary lesions patients who were treated as the control group. Liver function tests, the need for interventional therapies and graft survival rate were chosen to evaluate the therapeutic efficacy of MSC treatment. Adverse events were closely monitored up to 2 years after MSC transfusions. RESULTS No significant MSC-related adverse events were observed during the trial. Compared with baseline, the levels of total bilirubin, γ-glutamyl transferase and alkaline phosphatase were decreased after UC-MSC treatment at week 20 and week 48. Interventional therapies were performed in 64.3% (45/70) of patients in the control group and 33.3% (4/12) of patients in the MSCs groups. MSC therapy significantly decreased the need for interventional therapies (P = 0.046). The 1- and 2-year graft survival rates were higher in the MSCs group (100% and 83.3%, respectively) than in the control group (72.9% and 68.6%, respectively). CONCLUSIONS The UC-MSC transfusions are clinically safe and short-term favorable, which may become a novel treatment for patients with ischemic-type biliary lesions after liver transplantation.
Collapse
Affiliation(s)
- Ying-Cai Zhang
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Cell-Gene Therapy Translational Medicine Research Center, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Liu
- Guangdong Province Key Laboratory of Hepatology Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bin-Sheng Fu
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guo-Ying Wang
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hai-Bo Li
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hui-Min Yi
- Department of Surgery Intensive Care Unit, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Nan Jiang
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Genshu Wang
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jian Zhang
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shu-Hong Yi
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hua Li
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qi Zhang
- Cell-Gene Therapy Translational Medicine Research Center, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Guangdong Province Key Laboratory of Hepatology Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Yang Yang
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Gui-Hua Chen
- Department of Liver Surgery and Liver Transplantation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
36
|
|
37
|
Mesenchymal stromal cells for immunoregulation after liver transplantation. Curr Opin Organ Transplant 2016; 21:541-549. [DOI: 10.1097/mot.0000000000000361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
38
|
|
39
|
Mesenchymal Stem Cells Enhance Nerve Regeneration in a Rat Sciatic Nerve Repair and Hindlimb Transplant Model. Sci Rep 2016; 6:31306. [PMID: 27510321 PMCID: PMC4980673 DOI: 10.1038/srep31306] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/18/2016] [Indexed: 01/16/2023] Open
Abstract
This study investigates the efficacy of local and intravenous mesenchymal stem cell (MSC) administration to augment neuroregeneration in both a sciatic nerve cut-and-repair and rat hindlimb transplant model. Bone marrow-derived MSCs were harvested and purified from Brown-Norway (BN) rats. Sciatic nerve transections and repairs were performed in three groups of Lewis (LEW) rats: negative controls (n = 4), local MSCs (epineural) injection (n = 4), and systemic MSCs (intravenous) injection (n = 4). Syngeneic (LEW-LEW) (n = 4) and allogeneic (BN-LEW) (n = 4) hindlimb transplants were performed and assessed for neuroregeneration after local or systemic MSC treatment. Rats undergoing sciatic nerve cut-and-repair and treated with either local or systemic injection of MSCs had significant improvement in the speed of recovery of compound muscle action potential amplitudes and axon counts when compared with negative controls. Similarly, rats undergoing allogeneic hindlimb transplants treated with local injection of MSCs exhibited significantly increased axon counts. Similarly, systemic MSC treatment resulted in improved nerve regeneration following allogeneic hindlimb transplants. Systemic administration had a more pronounced effect on electromotor recovery while local injection was more effective at increasing fiber counts, suggesting different targets of action. Local and systemic MSC injections significantly improve the pace and degree of nerve regeneration after nerve injury and hindlimb transplantation.
Collapse
|
40
|
Luk F, de Witte SFH, Korevaar SS, Roemeling-van Rhijn M, Franquesa M, Strini T, van den Engel S, Gargesha M, Roy D, Dor FJMF, Horwitz EM, de Bruin RWF, Betjes MGH, Baan CC, Hoogduijn MJ. Inactivated Mesenchymal Stem Cells Maintain Immunomodulatory Capacity. Stem Cells Dev 2016; 25:1342-54. [PMID: 27349989 DOI: 10.1089/scd.2016.0068] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSC) are studied as a cell therapeutic agent for treatment of various immune diseases. However, therapy with living culture-expanded cells comes with safety concerns. Furthermore, development of effective MSC immunotherapy is hampered by lack of knowledge of the mechanisms of action and the therapeutic components of MSC. Such knowledge allows better identification of diseases that are responsive to MSC treatment, optimization of the MSC product, and development of therapy based on functional components of MSC. To close in on the components that carry the therapeutic immunomodulatory activity of MSC, we generated MSC that were unable to respond to inflammatory signals or secrete immunomodulatory factors, but preserved their cellular integrity [heat-inactivated MSC (HI-MSC)]. Secretome-deficient HI-MSC and control MSC showed the same biodistribution and persistence after infusion in mice with ischemic kidney injury. Both control and HI-MSC induced mild inflammatory responses in healthy mice and dramatic increases in interleukin-10, and reductions in interferon gamma levels in sepsis mice. In vitro experiments showed that opposite to control MSC, HI-MSC lacked the capability to suppress T-cell proliferation or induce regulatory B-cell formation. However, both HI-MSC and control MSC modulated monocyte function in response to lipopolysaccharides. The results of this study demonstrate that, in particular disease models, the immunomodulatory effect of MSC does not depend on their secretome or active cross-talk with immune cells, but on recognition of MSC by monocytic cells. These findings provide a new view on MSC-induced immunomodulation and help identify key components of the therapeutic effects of MSC.
Collapse
Affiliation(s)
- Franka Luk
- 1 Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Samantha F H de Witte
- 1 Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Sander S Korevaar
- 1 Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | | | - Marcella Franquesa
- 1 Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Tanja Strini
- 1 Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Sandra van den Engel
- 3 Transplant Surgery, Department of Surgery, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | | | | | - Frank J M F Dor
- 3 Transplant Surgery, Department of Surgery, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Edwin M Horwitz
- 5 The Research Institute and Division of Hematology/Oncology/BMT, Nationwide Children's Hospital , Columbus, Ohio
| | - Ron W F de Bruin
- 3 Transplant Surgery, Department of Surgery, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Michiel G H Betjes
- 1 Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Carla C Baan
- 1 Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Martin J Hoogduijn
- 1 Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| |
Collapse
|
41
|
Pan H, Gazarian A, Dubernard JM, Belot A, Michallet MC, Michallet M. Transplant Tolerance Induction in Newborn Infants: Mechanisms, Advantages, and Potential Strategies. Front Immunol 2016; 7:116. [PMID: 27092138 PMCID: PMC4823304 DOI: 10.3389/fimmu.2016.00116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/14/2016] [Indexed: 12/26/2022] Open
Abstract
Although several tolerance induction protocols have been successfully implemented in adult renal transplantation, no tolerance induction approach has, as yet, been defined for solid organ transplantations in young infants. Pediatric transplant recipients have a pressing demand for the elaboration of tolerance induction regimens. Indeed, since they display a longer survival time, they are exposed to a higher level of risks linked to long-term immunosuppression (IS) and to chronic rejection. Interestingly, central tolerance induction may be of great interest in newborns, because of their immunological immaturity and the important role of the thymus at this early stage in life. The present review aims to clarify mechanisms and strategies of tolerance induction in these immunologically premature recipients. We first introduce the discovery and mechanisms of neonatal tolerance in murine experimental models and subsequently analyze tolerance induction in human newborn infants. Hematopoietic mixed chimerism in neonates is also discussed based on in utero hematopoietic stem cell (HSC) transplant studies. Then, we review the recent advances in tolerance induction approaches in adults, including the infusion of HSCs associated with less toxic conditioning regimens, regulatory T cells/facilitating cells/mesenchymal stem cells transplantation, costimulatory blockade, and thymus manipulation. Finally, IS withdrawal in pediatric solid organ transplant is discussed. In conclusion, the establishment of transplant tolerance induction in infants is promising and deserves further investigations. Future studies could focus on the selection of patients, on less toxic conditioning regimens, and on biomarkers for IS minimization or withdrawal.
Collapse
Affiliation(s)
- Hua Pan
- Chair of Transplantation, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l'Etoile, France; Plastic and Reconstructive Surgery Department, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Aram Gazarian
- Chair of Transplantation, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l'Etoile, France; Department of Hand Surgery, Clinique du Parc, Lyon, France
| | - Jean-Michel Dubernard
- Chair of Transplantation, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l'Etoile, France; Department of Transplantation, Hôpital Edouard Herriot, Lyon, France
| | - Alexandre Belot
- International Center for Infectiology Research (CIRI), Université de Lyon , Lyon , France
| | - Marie-Cécile Michallet
- Chair of Transplantation, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l'Etoile, France; Cancer Research Center Lyon (CRCL), UMR INSERM 1052 CNRS 5286, Centre Leon Berard, Lyon, France
| | - Mauricette Michallet
- Chair of Transplantation, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l'Etoile, France; Department of Hematology, Centre Hospitalier Lyon-Sud, Pierre Benite, France
| |
Collapse
|
42
|
Shalev-Malul G, Soler DC, Ting AE, Lehman NA, Barnboym E, McCormick TS, Anthony DD, Lazarus HM, Caplan AI, Breitman M, Singer NG. Development of a Functional Biomarker for Use in Cell-Based Therapy Studies in Seropositive Rheumatoid Arthritis. Stem Cells Transl Med 2016; 5:628-31. [PMID: 27025689 PMCID: PMC4835254 DOI: 10.5966/sctm.2015-0299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/18/2016] [Indexed: 12/22/2022] Open
Abstract
This study tested the hypothesis that an ex vivo T-cell suppression assay could estimate response to novel cell-based therapy for rheumatoid arthritis (RA). Results showed multipotent adult progenitor cell products suppressed RA effector T cells. The study demonstrated the feasibility of using suppressor assays to detect biological effects of cell-based therapy in RA and suggests these effects are dose-dependent. Cell-based therapy has potential therapeutic value in autoimmune diseases such as rheumatoid arthritis (RA). In RA, reduction of disease activity has been associated with improvement in the function of regulatory T cells (Treg) and attenuated responses of proinflammatory effector T cells (Teff). Mesenchymal stem cells (MSCs) and related multipotent adult progenitor cells (MAPC) have strong anti-inflammatory and immunomodulatory properties and may be able to “reset” the immune system to a pre-RA state. MAPC are MSC-like cells that are slightly earlier in lineage, have greater expansion capacity, and can be used as “off-the-shelf” therapy. Assessment of cell-based therapy to treat arthritis and related diseases is limited by the lack of available biological correlates that can be measured early on and indicate treatment response. We set out to develop a functional measure that could be used ex vivo as a biomarker of response. We were able to demonstrate that MAPC products could inhibit Teff responses from patients with active RA and that Treg from RA patients suppressed Teff. This assay used ex vivo can be used with MAPC or Treg alone or in combination and reflects the overall level of Teff suppression. Use of a novel functional biomarker as an exploratory endpoint in trials of cell-based therapy should be of value to detect biological outcomes at a point prior to the time that clinical response might be observed. Significance Therapy with mesenchymal stem cells and related multipotent adult progenitor cells is immune modifying in a variety of diseases. There is interest in using cell-based therapy in rheumatoid arthritis (RA) to induce tolerance and “reset” the immune system to its pre-RA state. In a clinical trial, it should be known as soon as possible if there is a chance of response. A biomarker has been developed that permits measurement of the effects of cell-based therapy on effector T cell function.
Collapse
Affiliation(s)
- Gali Shalev-Malul
- Division of Rheumatology, MetroHealth Medical Center, Cleveland, Ohio, USA
| | - David C Soler
- Department of Dermatology, University Hospitals Case Medical Center, Cleveland, Ohio, USA The Murdough Family Center for Psoriasis, Cleveland, Ohio, USA
| | | | | | - Emma Barnboym
- Division of Rheumatology, MetroHealth Medical Center, Cleveland, Ohio, USA
| | - Thomas S McCormick
- Department of Dermatology, University Hospitals Case Medical Center, Cleveland, Ohio, USA The Murdough Family Center for Psoriasis, Cleveland, Ohio, USA Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Donald D Anthony
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA Divisions of Rheumatology, University Hospitals Case Medical Center, Cleveland, Ohio, USA Division of Infectious Disease, University Hospitals Case Medical Center, Cleveland, Ohio, USA Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Hillard M Lazarus
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA Divison of Hematology Oncology, University Hospitals Case Medical Center, Cleveland, Ohio, USA Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Arnold I Caplan
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Maya Breitman
- Division of Rheumatology, MetroHealth Medical Center, Cleveland, Ohio, USA Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Nora G Singer
- Division of Rheumatology, MetroHealth Medical Center, Cleveland, Ohio, USA Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
43
|
Enhancement of the immunoregulatory potency of mesenchymal stromal cells by treatment with immunosuppressive drugs. Cytotherapy 2016; 17:1188-99. [PMID: 26276002 DOI: 10.1016/j.jcyt.2015.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/29/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND AIMS Multipotent mesenchymal stromal cells (MSCs) are distinguished by their ability to differentiate into a number of stromal derivatives of interest for regenerative medicine, but they also have immunoregulatory properties that are being tested in a number of clinical settings. METHODS We show that brief incubations with rapamycin, everolimus, FK506 or cyclosporine A increase the immunosuppressive potency of MSCs and other cell types. RESULTS The treated MSCs are up to 5-fold more potent at inhibiting the induced proliferation of T lymphocytes in vitro. We show that this effect probably is due to adsorption of the drug by the MSCs during pre-treatment, with subsequent diffusion into co-cultures at concentrations sufficient to inhibit T-cell proliferation. MSCs contain measurable amounts of rapamycin after a 15-min exposure, and the potentiating effect is blocked by a neutralizing antibody to the drug. With the use of a pre-clinical model of acute graft-versus-host disease, we demonstrate that a low dose of rapamycin-treated but not untreated umbilical cord-derived MSCs significantly inhibit the onset of disease. CONCLUSIONS The use of treated MSCs may achieve clinical end points not reached with untreated MSCs and allow for infusion of fewer cells to reduce costs and minimize potential side effects.
Collapse
|
44
|
Reinders MEJ, Dreyer GJ, Bank JR, Roelofs H, Heidt S, Roelen DL, Zandvliet ML, Huurman VAL, Fibbe WE, van Kooten C, Claas FHJ, Rabelink TJ, de Fijter JW. Safety of allogeneic bone marrow derived mesenchymal stromal cell therapy in renal transplant recipients: the neptune study. J Transl Med 2015; 13:344. [PMID: 26537851 PMCID: PMC4632480 DOI: 10.1186/s12967-015-0700-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/16/2015] [Indexed: 01/05/2023] Open
Abstract
Background Mesenchymal stromal cells (MSC) may serve as an attractive therapy in renal transplantation due to their immunosuppressive and reparative properties. While most studies have used autologous MSCs, allogeneic MSCs offer the advantage of immediate availability for clinical use. This is of major importance for indications where instant treatment is needed, for example allograft rejection or calcineurin inhibitor toxicity. Clinical studies using allogeneic MSCs are limited in number. Although these studies showed no adverse reactions, allogeneic MSCs could possibly elicit an anti-donor immune response, which may increase the incidence of rejection and impact the allograft survival in the long term. These safety issues should be addressed before further studies are planned with allogeneic MSCs in the solid organ transplant setting. Methods/design 10 renal allograft recipients, 18–75 years old, will be included in this clinical phase Ib, open label, single center study. Patients will receive two doses of 1.5 × 106 per/kg body weight allogeneic bone marrow derived MSCs intravenously, at 25 and 26 weeks after transplantation, when immune suppression levels are reduced. The primary end point of this study is safety by assessing biopsy proven acute rejection (BPAR)/graft loss after MSC treatment. Secondary end points, all measured before and after MSC infusions, include: comparison of fibrosis in renal biopsy by quantitative Sirius Red scoring; de novo HLA antibody development and extensive immune monitoring; renal function measured by cGFR and iohexol clearance; CMV and BK infection and other opportunistic infections. Discussion This study will provide information on the safety of allogeneic MSC infusion and its effect on the incidence of BPAR/graft loss. Trial registration: NCT02387151
Collapse
Affiliation(s)
- Marlies E J Reinders
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Geertje J Dreyer
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Jonna R Bank
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Helene Roelofs
- Department of Immuno-Haematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Sebastiaan Heidt
- Department of Immuno-Haematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Dave L Roelen
- Department of Immuno-Haematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Maarten L Zandvliet
- Department of Clinical Parmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Volkert A L Huurman
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Wim E Fibbe
- Department of Immuno-Haematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Frans H J Claas
- Department of Immuno-Haematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Ton J Rabelink
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - Johan W de Fijter
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
45
|
Safety and Efficacy Endpoints for Mesenchymal Stromal Cell Therapy in Renal Transplant Recipients. J Immunol Res 2015; 2015:391797. [PMID: 26258149 PMCID: PMC4518147 DOI: 10.1155/2015/391797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023] Open
Abstract
Despite excellent short-term graft survival after renal transplantation, the long-term graft outcome remains compromised. It has become evident that a combination of sustained alloreactivity and calcineurin-inhibitor- (CNI-) related nephrotoxicity results in fibrosis and consequently dysfunction of the graft. New immunosuppressive regimens that can minimize or eliminate side effects, while maintaining efficacy, are required to improve long-term graft survival. In this perspective mesenchymal stromal cells (MSCs) are an interesting candidate, since MSCs have immunosuppressive and regenerative properties. The first clinical trials with MSCs in renal transplantation showed safety and feasibility and displayed promising results. Recently, the first phase II studies have been started. One of the most difficult and challenging aspects in those early phase trials is to define accurate endpoints that can measure safety and efficacy of MSC treatment. Since both graft losses and acute rejection rates declined, alternative surrogate markers such as renal function, histological findings, and immunological markers are used to measure efficacy and to provide mechanistic insight. In this review, we will discuss the current status of MSCs in renal transplantation with a focus on the endpoints used in the different experimental and clinical studies.
Collapse
|
46
|
Weeder PD, van Rijn R, Porte RJ. Machine perfusion in liver transplantation as a tool to prevent non-anastomotic biliary strictures: Rationale, current evidence and future directions. J Hepatol 2015; 63:265-75. [PMID: 25770660 DOI: 10.1016/j.jhep.2015.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 02/08/2023]
Abstract
The high incidence of non-anastomotic biliary strictures (NAS) after transplantation of livers from extended criteria donors is currently a major barrier to widespread use of these organs. This review provides an update on the most recent advances in the understanding of the etiology of NAS. These new insights give reason to believe that machine perfusion can reduce the incidence of NAS after transplantation by providing more protective effects on the biliary tree during preservation of the donor liver. An overview is presented regarding the different endpoints that have been used for assessment of biliary injury and function before and after transplantation, emphasizing on methods used during machine perfusion. The wide spectrum of different approaches to machine perfusion is discussed, including the many different combinations of techniques, temperatures and perfusates at varying time points. In addition, the current understanding of the effect of machine perfusion in relation to biliary injury is reviewed. Finally, we explore directions for future research such as the application of (pharmacological) strategies during machine perfusion to further improve preservation. We stress the great potential of machine perfusion to possibly expand the donor pool by reducing the incidence of NAS in extended criteria organs.
Collapse
Affiliation(s)
- Pepijn D Weeder
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rianne van Rijn
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
47
|
|
48
|
Adams DH, Sanchez-Fueyo A, Samuel D. From immunosuppression to tolerance. J Hepatol 2015; 62:S170-85. [PMID: 25920086 DOI: 10.1016/j.jhep.2015.02.042] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/25/2015] [Accepted: 02/28/2015] [Indexed: 12/14/2022]
Abstract
The past three decades have seen liver transplantation becoming a major therapeutic approach in the management of end-stage liver diseases. This is due to the dramatic improvement in survival after liver transplantation as a consequence of the improvement of surgical and anaesthetic techniques, of post-transplant medico-surgical management and of prevention of disease recurrence and other post-transplant complications. Improved use of post-transplant immunosuppression to prevent acute and chronic rejection is a major factor in these improved results. The liver has been shown to be more tolerogenic than other organs, and matching of donor and recipients is mainly limited to ABO blood group compatibility. However, long-term immunosuppression is required to avoid severe acute and chronic rejection and graft loss. With the current immunosuppression protocols, the risk of acute rejection requiring additional therapy is 10-40% and the risk of chronic rejection is below 5%. However, the development of histological lesions in the graft in long-term survivors suggest atypical forms of graft rejection may develop as a consequence of under-immunosuppression. The backbone of immunosuppression remains calcineurin inhibitors (CNI) mostly in association with steroids in the short-term and mycophenolate mofetil or mTOR inhibitors (everolimus). The occurrence of post-transplant complications related to the immunosuppressive therapy has led to the development of new protocols aimed at protecting renal function and preventing the development of de novo cancer and of dysmetabolic syndrome. However, there is no new class of immunosuppressive drugs in the pipeline able to replace current protocols in the near future. The aim of a full immune tolerance of the graft is rarely achieved since only 20% of selected patients can be weaned successfully off immunosuppression. In the future, immunosuppression will probably be more case oriented aiming to protect the graft from rejection and at reducing the risk of disease recurrence and complications related to immunosuppressive therapy. Such approaches will include strategies aiming to promote stable long-term immunological tolerance of the liver graft.
Collapse
Affiliation(s)
- David H Adams
- Centre for Liver Research and NIHR Biomedical Research Unit in Liver Disease, University of Birmingham and Queen Elizabeth Hospital, Edgbaston Birmingham B152TT, United Kingdom
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, MRC Centre for Transplantation, King's College London, London SE5 9RS, United Kingdom
| | - Didier Samuel
- AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire; Inserm, Research Unit 1193; Université Paris-Sud, Villejuif F-94800, France.
| |
Collapse
|
49
|
New Steps in the Use of Mesenchymal Stem Cell in Solid Organ Transplantation. CURRENT TRANSPLANTATION REPORTS 2015. [DOI: 10.1007/s40472-015-0053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Luk F, de Witte SFH, Bramer WM, Baan CC, Hoogduijn MJ. Efficacy of immunotherapy with mesenchymal stem cells in man: a systematic review. Expert Rev Clin Immunol 2015; 11:617-36. [DOI: 10.1586/1744666x.2015.1029458] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|