1
|
Forgioni A, Watanabe M, Goto R, Harada T, Ota T, Shimamura T, Taketomi A. Anti-Inflammatory Effects of Ex Vivo-Generated Donor Antigen-Specific Immunomodulatory Cells on Pancreatic Islet Transplantation. Cell Transplant 2025; 34:9636897251317887. [PMID: 39981681 PMCID: PMC11843686 DOI: 10.1177/09636897251317887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/01/2025] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Pancreatic islet transplantation (PITx) is a promising treatment option for patients with type 1 diabetes mellitus. Previously, we demonstrated that therapy with alloantigen-specific immunomodulatory cells (IMCs) generated ex vivo in the presence of anti-CD80 and CD86 monoclonal antibodies (mAbs), successfully induced tolerance following clinical liver transplantation. To extend IMC therapy to PITx, it is crucial to address the strong inflammatory and innate immune responses that occur immediately after PITx. In this study, we investigated the efficacy of IMCs in modulating macrophage activation and mitigating inflammatory damage of pancreatic islets. IMCs were induced using mouse splenocytes in the presence of anti-mouse anti-CD80 (RM80) and anti-CD86 (GL-1) mAbs. IMCs exerted donor-specific immunosuppressive effects in a mixed lymphocyte reaction. During lipopolysaccharide (LPS) stimulation, the addition of IMCs suppressed conversion to the M1 phenotype and promoted a shift toward the M2 phenotype, particularly under direct cell-cell contact conditions. Nitric oxide production, a hallmark of M1 polarized macrophages, was significantly reduced in LPS-stimulated RAW264 macrophages by IMC treatment. These findings were associated with reduced secretion of pro-inflammatory cytokines, tumoral necrosis factor α, and interleukin-6, and increased interleukin-10 production by macrophages. IMCs effectively prevented macrophage-mediated islet destruction after 12 h of co-culture with LPS-stimulated macrophages and significantly inhibited macrophage migration toward allogeneic islets in vitro. Intraportal co-infusion of IMCs with syngeneic islets in a mouse PITx model resulted in reduced messenger RNA (mRNA) expression of pro-inflammatory cytokines in the recipient liver. Immunohistochemical staining revealed a significantly lower number of F4/80+ macrophages at the transplantation site in IMCs-treated mice. These results demonstrate that IMCs modulate macrophage polarization, promoting a shift toward the M2 phenotype and protecting islets from macrophage-mediated damage. These effects combined with its intrinsic donor antigen-specific immunosuppressive capacity make IMC therapy a promising strategy for improving outcomes after PITx.
Collapse
Affiliation(s)
- Agustina Forgioni
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Masaaki Watanabe
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| | - Ryoichi Goto
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Takuya Harada
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Takuji Ota
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Tsuyoshi Shimamura
- Department of Organ Transplantation Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Turan A, Tarique M, Zhang L, Kazmi S, Ulker V, Tedla MG, Badal D, Yolcu ES, Shirwan H. Engineering Pancreatic Islets to Transiently Codisplay on Their Surface Thrombomodulin and CD47 Immunomodulatory Proteins as a Means of Mitigating Instant Blood-Mediated Inflammatory Reaction following Intraportal Transplantation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1971-1980. [PMID: 38709159 PMCID: PMC11160431 DOI: 10.4049/jimmunol.2300743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Most pancreatic islets are destroyed immediately after intraportal transplantation by an instant blood-mediated inflammatory reaction (IBMIR) generated through activation of coagulation, complement, and proinflammatory pathways. Thus, effective mitigation of IBMIR may be contingent on the combined use of agents targeting these pathways for modulation. CD47 and thrombomodulin (TM) are two molecules with distinct functions in regulating coagulation and proinflammatory responses. We previously reported that the islet surface can be modified with biotin for transient display of novel forms of these two molecules chimeric with streptavidin (SA), that is, thrombomodulin chimeric with SA (SA-TM) and CD47 chimeric with SA (SA-CD47), as single agents with improved engraftment following intraportal transplantation. This study aimed to test whether islets can be coengineered with SA-TM and SA-CD47 molecules as a combinatorial approach to improve engraftment by inhibiting IBMIR. Mouse islets were effectively coengineered with both molecules without a detectable negative impact on their viability and metabolic function. Coengineered islets were refractory to destruction by IBMIR ex vivo and showed enhanced engraftment and sustained function in a marginal mass syngeneic intraportal transplantation model. Improved engraftment correlated with a reduction in intragraft innate immune infiltrates, particularly neutrophils and M1 macrophages. Moreover, transcripts for various intragraft procoagulatory and proinflammatory agents, including tissue factor, HMGB1 (high-mobility group box-1), IL-1β, IL-6, TNF-α, IFN-γ, and MIP-1α, were significantly reduced in coengineered islets. These data demonstrate that the transient codisplay of SA-TM and SA-CD47 proteins on the islet surface is a facile and effective platform to modulate procoagulatory and inflammatory responses with implications for both autologous and allogeneic islet transplantation.
Collapse
Affiliation(s)
- Ali Turan
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Mohammad Tarique
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Lei Zhang
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Shadab Kazmi
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Vahap Ulker
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Mebrahtu G Tedla
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Darshan Badal
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Esma S Yolcu
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Haval Shirwan
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, NextGen Precision Health Institute, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| |
Collapse
|
3
|
Duan K, Liu J, Zhang J, Chu T, Liu H, Lou F, Liu Z, Gao B, Wei S, Wei F. Advancements in innate immune regulation strategies in islet transplantation. Front Immunol 2024; 14:1341314. [PMID: 38288129 PMCID: PMC10823010 DOI: 10.3389/fimmu.2023.1341314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
As a newly emerging organ transplantation technique, islet transplantation has shown the advantages of minimal trauma and high safety since it was first carried out. The proposal of the Edmonton protocol, which has been widely applied, was a breakthrough in this method. However, direct contact between islets and portal vein blood will cause a robust innate immune response leading to massive apoptosis of the graft, and macrophages play an essential role in the innate immune response. Therefore, therapeutic strategies targeting macrophages in the innate immune response have become a popular research topic in recent years. This paper will summarize and analyze recent research on strategies for regulating innate immunity, primarily focusing on macrophages, in the field of islet transplantation, including drug therapy, optimization of islet preparation process, islet engineering and Mesenchymal stem cells cotransplantation. We also expounded the heterogeneity, plasticity and activation mechanism of macrophages in islet transplantation, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Kehang Duan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiao Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tongjia Chu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huan Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fengxiang Lou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ziyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bing Gao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shixiong Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Feng Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Kato H, Miwa T, Quijano J, Medrano L, Ortiz J, Desantis A, Omori K, Wada A, Tatsukoshi K, Kandeel F, Mullen Y, Ku HT, Komatsu H. Microwell culture platform maintains viability and mass of human pancreatic islets. Front Endocrinol (Lausanne) 2022; 13:1015063. [PMID: 36465665 PMCID: PMC9712283 DOI: 10.3389/fendo.2022.1015063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background Transplantation of the human pancreatic islets is a promising approach for specific types of diabetes to improve glycemic control. Although effective, there are several issues that limit the clinical expansion of this treatment, including difficulty in maintaining the quality and quantity of isolated human islets prior to transplantation. During the culture, we frequently observe the multiple islets fusing together into large constructs, in which hypoxia-induced cell damage significantly reduces their viability and mass. In this study, we introduce the microwell platform optimized for the human islets to prevent unsolicited fusion, thus maintaining their viability and mass in long-term cultures. Method Human islets are heterogeneous in size; therefore, two different-sized microwells were prepared in a 35 mm-dish format: 140 µm × 300 µm-microwells for <160 µm-islets and 200 µm × 370 µm-microwells for >160 µm-islets. Human islets (2,000 islet equivalent) were filtered through a 160 µm-mesh to prepare two size categories for subsequent two week-cultures in each microwell dish. Conventional flat-bottomed 35 mm-dishes were used for non-filtered islets (2,000 islet equivalent/2 dishes). Post-cultured islets are collected to combine in each condition (microwells and flat) for the comparisons in viability, islet mass, morphology, function and metabolism. Islets from three donors were independently tested. Results The microwell platform prevented islet fusion during culture compared to conventional flat bottom dishes, which improved human islet viability and mass. Islet viability and mass on the microwells were well-maintained and comparable to those in pre-culture, while flat bottom dishes significantly reduced islet viability and mass in two weeks. Morphology assessed by histology, insulin-secreting function and metabolism by oxygen consumption did not exhibit the statistical significance among the three different conditions. Conclusion Microwell-bottomed dishes maintained viability and mass of human islets for two weeks, which is significantly improved when compared to the conventional flat-bottomed dishes.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | | | - Janine Quijano
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Leonard Medrano
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Jose Ortiz
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Akiko Desantis
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Keiko Omori
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Aya Wada
- AGC Techno Glass, Shizuoka, Japan
| | | | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Yoko Mullen
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Hsun Teresa Ku
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Hirotake Komatsu
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
5
|
Kim MJ, Hwang YH, Hwang JW, Alam Z, Lee DY. Heme oxygenase-1 gene delivery for altering high mobility group box-1 protein in pancreatic islet. J Control Release 2022; 343:326-337. [PMID: 35085698 DOI: 10.1016/j.jconrel.2022.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
Pancreatic islet transplantation is a promising strategy for the treatment of type I diabetes. High-mobility group box-1 (HMGB1), highly expressed in islet cells, is a potent immune stimulator in immune rejection. Heme oxygenase-1 (HO1) gene therapy can modulate the release of HMGB1 by altering intracellular molecules for successful cell transplantation. After delivery of the heme oxygenase-1 (HO1) gene to islet cells using an adeno-associated viral vector (AAV), it was evaluated the changes in cytoplasmic Ca2+ ions and calcineurin activity as well as histone acetyltransferase (HAT) and Poly(ADP) ribose polymerase-1 (PARP-1). Inhibition of HMGB1 release was evaluated through altering these intracellular molecules. Then, after transplantation of HO1-transduced islets, the therapeutic effect of them was evaluated through measuring blood glucose level to diabetic mice and through immunohistochemical analysis. The transduced HO1 gene significantly inhibited HMGB1 release in islets that was under the cell damage by hypoxia exposure. It was confirmed that this result was initially due to the decrease in cytoplasmic Ca2+ ion concentration and calcineurin activity. In addition, the delivered HO1 gene simultaneously reduced the activity of HAT and PARP-1, which are involved in the translocation of HMGB1 from the nucleus to the cytoplasm. As a result, when the HO1 gene-transduced islets were transplanted into diabetic mice, the treatment efficiency of diabetes was effectively improved by increasing the survival rate of the islets. Collectively, these results suggest that HO1 gene transfer can be used for successful islet transplantation by altering the activity of intracellular signal molecules and reducing HMGB1 release.
Collapse
Affiliation(s)
- Min Jun Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Yong Hwa Hwang
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin Wook Hwang
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Zahid Alam
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science & Technology (INST), Hanyang University, Seoul 04763, Republic of Korea; Elixir Pharmatech Inc., Seoul 04763, Republic of Korea.
| |
Collapse
|
6
|
Ma J, Zhang Y, Sugai T, Kubota T, Keino H, El-Salhy M, Ozaki M, Umezawa K. Inhibition of Cellular and Animal Inflammatory Disease Models by NF-κB Inhibitor DHMEQ. Cells 2021; 10:2271. [PMID: 34571920 PMCID: PMC8466912 DOI: 10.3390/cells10092271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
General inflammatory diseases include skin inflammation, rheumatoid arthritis, inflammatory bowel diseases, sepsis, arteriosclerosis, and asthma. Although these diseases have been extensively studied, most of them are still difficult to treat. Meanwhile, NF-κB is a transcription factor promoting the expression of many inflammatory mediators. NF-κB is likely to be involved in the mechanism of most inflammatory diseases. We discovered a specific NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), about 20 years ago by molecular design from a natural product. It directly binds to and inactivates NF-κB components. It has been widely used to suppress cellular and animal inflammatory disease models and was shown to be potent in vivo anti-inflammatory activity without any toxicity. We have prepared ointment of DHMEQ for the treatment of severe skin inflammation. It inhibited inflammatory cytokine expressions and lowered the clinical score in mouse models of atopic dermatitis. Intraperitoneal (IP) administration of DHMEQ ameliorated various disease models of inflammation, such as rheumatoid arthritis, sepsis, and also graft rejection. It has been suggested that inflammatory cells in the peritoneal cavity would be important for most peripheral inflammation. In the present review, we describe the synthesis, mechanism of action, and cellular and in vivo anti-inflammatory activities and discuss the clinical use of DHMEQ for inflammatory diseases.
Collapse
Affiliation(s)
- Jun Ma
- Shenzhen Wanhe Pharmaceutical Co., Ltd., Shenzhen 518107, China;
| | - Yuyang Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Takeshi Sugai
- Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan;
| | - Tetsuo Kubota
- Department of Medical Technology, Tsukuba International University, Tsuchiura 300-0051, Japan;
| | - Hiroshi Keino
- Department of Ophthalmology, Kyorin University School of Medicine, Tokyo 181-8611, Japan;
| | - Magdy El-Salhy
- Department of Medicine, Stord Helse-Fonna Hospital, Tysevegen 64, 54 16 Stord, Norway;
| | - Michitaka Ozaki
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan;
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University, Nagakute 480-1195, Japan
| |
Collapse
|
7
|
Shibuya K, Watanabe M, Goto R, Zaitsu M, Ganchiku Y, Taketomi A. The Efficacy of the Hepatocyte Spheroids for Hepatocyte Transplantation. Cell Transplant 2021; 30:9636897211000014. [PMID: 33900126 PMCID: PMC8085376 DOI: 10.1177/09636897211000014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The safety and short-term efficacy of hepatocyte transplantation (HCTx) have been widely proven. However, issues such as reduced viability and/or function of hepatocytes, insufficient engraftment, and lack of a long-term effect have to be overcome for widespread application of HCTx. In this study, we evaluated hepatocyte spheroids (HSs), formed by self-aggregation of hepatocytes, as an alternative to hepatocytes in single-cell suspension. Hepatocytes were isolated from C57BL/6 J mice liver using a three-step collagenase perfusion technique and HSs were formed by the hanging drop method. After the spheroids formation, the HSs showed significantly higher mRNA expression of albumin, ornithine transcarbamylase, glucose-6-phosphate, alpha-1-antitrypsin, low density lipoprotein receptor, coagulation factors, and apolipoprotein E (ApoE) than 2 dimensional (2D)-cultured hepatocytes (p < 0.05). Albumin production by HSs was significantly higher than that by 2D-cultured hepatocytes (9.5 ± 2.5 vs 3.5 ± 1.8 μg/dL, p < 0.05). The HSs, but not single hepatocytes, maintained viability and albumin mRNA expression in suspension (92.0 ± 2.8% and 1.03 ± 0.09 at 6 h). HSs (3.6 × 106 cells) or isolated hepatocytes (fSH, 3.6 × 106 cells) were transplanted into the liver of ApoE knockout (KO-/-) mice via the portal vein. Following transplantation, serum ApoE concentration (ng/mL) of HS-transplanted mice (1w: 63.1 ± 56.7, 4w: 17.0 ± 10.9) was higher than that of fSH-transplanted mice (1 w: 33.4 ± 13.0, 4w: 13.7 ± 9.6). In both groups, the mRNA levels of pro-inflammatory cytokines (IL-6, IL-1β, TNF-α, MCP-1, and MIP-1β) were upregulated in the liver following transplantation; however, no significant differences were observed. Pathologically, transplanted HSs were observed as flat cell clusters in contact with the portal vein wall on day 7. Additionally, ApoE positive cells were observed in the liver parenchyma distant from the portal vein on day 28. Our results indicate that HS is a promising alternative to single hepatocytes and can be applied for HCTx.
Collapse
Affiliation(s)
- Kazuaki Shibuya
- Department of Gastroenterological surgery I, 12810Hokkaido university graduate school, kita-ku, Sapporo, Japan
| | - Masaaki Watanabe
- Transplant surgery, 163693Hokkaido University Hospital, kita-ku, Sapporo, Japan
| | - Ryoichi Goto
- Department of Gastroenterological surgery I, 12810Hokkaido university graduate school, kita-ku, Sapporo, Japan
| | - Masaaki Zaitsu
- Department of Gastroenterological surgery I, 12810Hokkaido university graduate school, kita-ku, Sapporo, Japan
| | - Yoshikazu Ganchiku
- Department of Gastroenterological surgery I, 12810Hokkaido university graduate school, kita-ku, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological surgery I, 12810Hokkaido university graduate school, kita-ku, Sapporo, Japan
| |
Collapse
|
8
|
Improvement of Islet Allograft Function Using Cibinetide, an Innate Repair Receptor Ligand. Transplantation 2021; 104:2048-2058. [PMID: 32345869 DOI: 10.1097/tp.0000000000003284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND During intraportal pancreatic islet transplantation (PITx), early inflammatory reactions cause an immediate loss of more than half of the transplanted graft and potentiate subsequent allograft rejection. Previous findings suggest that cibinetide, a selective innate repair receptor agonist, exerts islet protective and antiinflammatory properties and improved transplant efficacy in syngeneic mouse PITx model. In a stepwise approach toward a clinical application, we have here investigated the short- and long-term effects of cibinetide in an allogeneic mouse PITx model. METHODS Streptozotocin-induced diabetic C57BL/6N (H-2) mice were transplanted with 320 (marginal) or 450 (standard) islets from BALB/c (H-2) mice via the portal vein. Recipients were treated perioperative and thereafter daily during 14 d with cibinetide (120 µg/kg), with or without tacrolimus injection (0.4 mg/kg/d) during days 4-14 after transplantation. Graft function was assessed using nonfasting glucose measurements. Relative gene expressions of proinflammatory cytokines and proinsulin of the graft-bearing liver were assessed by quantitative polymerase chain reaction. Cibinetide's effects on dendritic cell maturation were investigated in vitro. RESULTS Cibinetide ameliorated the local inflammatory responses in the liver and improved glycemic control immediately after allogeneic PITx and significantly delayed the onset of allograft loss. Combination treatment with cibinetide and low-dose tacrolimus significantly improved long-term graft survival following allogeneic PITx. In vitro experiments indicated that cibinetide lowered bone-marrow-derived-immature-dendritic cell maturation and subsequently reduced allogeneic T-cell response. CONCLUSIONS Cibinetide reduced the initial transplantation-related severe inflammation and delayed the subsequent alloreactivity. Cibinetide, in combination with low-dose tacrolimus, could significantly improve long-term graft survival in allogeneic PITx.
Collapse
|
9
|
Parada N, Romero-Trujillo A, Georges N, Alcayaga-Miranda F. Camouflage strategies for therapeutic exosomes evasion from phagocytosis. J Adv Res 2021; 31:61-74. [PMID: 34194832 PMCID: PMC8240105 DOI: 10.1016/j.jare.2021.01.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/29/2020] [Accepted: 01/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background Even though exosome-based therapy has been shown to be able to control the progression of different pathologies, the data revealed by pharmacokinetic studies warn of the low residence time of exogenous exosomes in circulation that can hinder the clinical translation of therapeutic exosomes. The macrophages related to the organs of the mononuclear phagocytic system are responsible primarily for the rapid clearance and retention of exosomes, which strongly limits the amount of exosomal particles available to reach the target tissue, accumulate in it and release with high efficiency its therapeutic cargo in acceptor target cells to exert the desired biological effect. Aim of review Endowing exosomes with surface modifications to evade the immune system is a plausible strategy to contribute to the suppression of exosomal clearance and increase the efficiency of their targeted content delivery. Here, we summarize the current evidence about the mechanisms underlying the recognition and sequestration of therapeutic exosomes by phagocytic cells. Also, we propose different strategies to generate 'invisible' exosomes for the immune system, through the incorporation of different anti-phagocytic molecules on the exosomes’ surface that allow increasing the circulating half-life of therapeutic exosomes with the purpose to increase their bioavailability to reach the target tissue, transfer their therapeutic molecular cargo and improve their efficacy profile. Key scientific concepts of review Macrophage-mediated phagocytosis are the main responsible behind the short half-life in circulation of systemically injected exosomes, hindering their therapeutic effect. Exosomes ‘Camouflage Cloak’ strategy using antiphagocytic molecules can contribute to the inhibition of exosomal clearance, hence, increasing the on-target effect. Some candidate molecules that could exert an antiphagocytic role are CD47, CD24, CD44, CD31, β2M, PD-L1, App1, and DHMEQ. Pre- and post-isolation methods for exosome engineering are compatible with the loading of therapeutic cargo and the expression of antiphagocytic surface molecules.
Collapse
Affiliation(s)
- Nicol Parada
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Alfonso Romero-Trujillo
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Nicolás Georges
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francisca Alcayaga-Miranda
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| |
Collapse
|
10
|
Shrestha P, Batra L, Tariq Malik M, Tan M, Yolcu ES, Shirwan H. Immune checkpoint CD47 molecule engineered islets mitigate instant blood-mediated inflammatory reaction and show improved engraftment following intraportal transplantation. Am J Transplant 2020; 20:2703-2714. [PMID: 32342638 DOI: 10.1111/ajt.15958] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/18/2020] [Accepted: 04/13/2020] [Indexed: 01/25/2023]
Abstract
Instant blood-mediated inflammatory reaction (IBMIR) causes significant destruction of islets transplanted intraportally. Myeloid cells are a major culprit of IBMIR. Given the critical role of CD47 as a negative checkpoint for myeloid cells, we hypothesized that the presence of CD47 on islets will minimize graft loss by mitigating IBMIR. We herein report the generation of a chimeric construct, SA-CD47, encompassing the extracellular domain of CD47 modified to include core streptavidin (SA). SA-CD47 protein was expressed in insect cells and efficiently displayed on biotin-modified mouse islet surface without a negative impact on their viability and function. Rat cells engineered with SA-CD47 were refractory to phagocytosis by mouse macrophages. SA-CD47-engineered islets showed intact structure and minimal infiltration by CD11b+ granulocytes/macrophages as compared with SA-engineered controls in an in vitro loop assay mitigating IBMIR. In a syngeneic marginal mass model of intraportal transplantation, SA-CD47-engineered islets showed better engraftment and function as compared with the SA-control group (87.5% vs 14.3%). Engraftment was associated with low levels of intrahepatic inflammatory cells and mediators of islet destruction, including high-mobility group box-1, tissue factor, and IL-1β. These findings support the use of CD47 as an innate immune checkpoint to mitigate IBMIR for enhanced islet engraftment with translational potential.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Lalit Batra
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Mohammad Tariq Malik
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Min Tan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Esma S Yolcu
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Child Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Haval Shirwan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Child Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
11
|
Umezawa K, Breborowicz A, Gantsev S. Anticancer Activity of Novel NF-kappa B Inhibitor DHMEQ by Intraperitoneal Administration. Oncol Res 2020; 28:541-550. [PMID: 32576339 PMCID: PMC7751220 DOI: 10.3727/096504020x15929100013698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There have been great advances in the therapy of cancer and leukemia. However, there are still many neoplastic diseases that are difficult to treat. For example, it is often difficult to find effective therapies for aggressive cancer and leukemia. An NF-κB inhibitor named dehydroxymethylepoxyquinomicin (DHMEQ) was discovered in 2000. This compound was designed based on the structure of epoxyquinomicin isolated from a microorganism. It was shown to be a specific inhibitor that directly binds to and inactivates NF-κB components. Until now, DHMEQ has been used by many scientists in the world to suppress animal models of cancer and inflammation. Especially, it was shown to suppress difficult cancer models, such as hormone-insensitive breast cancer and prostate cancer, cholangiocarcinoma, and multiple myeloma. No toxicity has been reported so far. DHMEQ was administered via the intraperitoneal (IP) route in most of the animal experiments because of its simplicity. In the course of developmental studies, it was found that IP administration never increased the blood concentration of DHMEQ because of the instability of DHMEQ in the blood. It is suggested that inflammatory cells in the peritoneal cavity would be important for cancer progression, and that IP administration, itself, is important for the effectiveness and safety of DHMEQ. In the present review, we describe mechanism of action, its in vivo anticancer activity, and future clinical use of DHMEQ IP therapy.
Collapse
Affiliation(s)
- Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical UniversityNagakuteJapan
| | - Andrzej Breborowicz
- Department of Pathophysiology, Poznan University of Medical SciencesPoznanPoland
| | - Shamil Gantsev
- Scientific Research Institute of Oncology, Bashkortostan State Medical UniversityUfaRussia
| |
Collapse
|
12
|
Chung H, Hong SJ, Choi SW, Koo JY, Kim M, Kim HJ, Park SB, Park CG. High mobility group box 1 secretion blockade results in the reduction of early pancreatic islet graft loss. Biochem Biophys Res Commun 2019; 514:1081-1086. [DOI: 10.1016/j.bbrc.2019.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/01/2019] [Indexed: 02/01/2023]
|
13
|
Ando Y, Keino H, Kudo A, Hirakata A, Okada AA, Umezawa K. Anti-Inflammatory Effect of Dehydroxymethylepoxyquinomicin, a Nuclear factor-κB Inhibitor, on Endotoxin-Induced Uveitis in Rats In vivo and In vitro. Ocul Immunol Inflamm 2019; 28:240-248. [PMID: 30950670 DOI: 10.1080/09273948.2019.1568502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: To determine the anti-inflammatory effects of dehydroxymethylepoxyquinomicin (DHMEQ), a nuclear factor-κB (NF-κB) inhibitor, on endotoxin-induced uveitis (EIU) in rats.Methods: EIU was induced by a subcutaneous injection of lipopolysaccharide (LPS) in Lewis rats. DHMEQ was injected intraperitoneally concurrently with the LPS. Aqueous humor was collected 24 h after the LPS injection. Isolated peritoneal exudate cells (PECs) were exposed to LPS with or without DHMEQ to determine the production of TNF-α, IL-6, and MCP-1.Results: DHMEQ significantly reduced the number of infiltrating cells, and the concentrations of proteins, TNF-α, and IL-6 in the aqueous humor. DHMEQ suppressed the production of TNF-α, IL-6, and MCP-1 from PECs. Immunochemistry revealed a reduction in the translocation of the NF-κB p65 into the nuclei in DHMEQ-exposed PECs.Conclusions: The results indicate that DHMEQ has anti-inflammatory effects on EIU and may be a promising agent to treat intraocular inflammation.
Collapse
Affiliation(s)
- Yoshimasa Ando
- Department of Ophthalmology, Kyorin University School of Medicine, Tokyo, Japan
| | - Hiroshi Keino
- Department of Ophthalmology, Kyorin University School of Medicine, Tokyo, Japan
| | - Akihiko Kudo
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Akito Hirakata
- Department of Ophthalmology, Kyorin University School of Medicine, Tokyo, Japan
| | - Annabelle A Okada
- Department of Ophthalmology, Kyorin University School of Medicine, Tokyo, Japan
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
14
|
Jiang X, Lan Y, Wei B, Dai C, Gu Y, Ma J, Liu X, Umezawa K, Zhang Y. External application of NF-κB inhibitor DHMEQ suppresses development of atopic dermatitis-like lesions induced with DNCB/OX in BALB/c mice. Immunopharmacol Immunotoxicol 2017; 39:157-164. [PMID: 28418286 DOI: 10.1080/08923973.2017.1312436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Dehydroxymethylepoxyquinomicin (DHMEQ) which is originally developed as an analog of antibiotic epoxyquinomicin C is a specific and potent inhibitor of NF-κB and has been shown to possess promising potential as an anti-inflammatory and anti-tumor agent. OBJECTIVE This study examines DHMEQ's effect on therapeutic potential for atopic dermatitis (AD)-like lesions. MATERIALS AND METHODS AD lesions were chronically induced by the repetitive and alternative application of 2,4-dinitrochlorobenzene (DNCB) and oxazolone (OX) on ears in BALB/c mice. The mice were then externally treated with DHMEQ ointment. Macroscopic and microscopic changes of the skin lesions were observed and recorded. RESULTS DHMEQ inhibited ear swelling and relieved clinical symptoms of the AD-like lesions induced by DNCB/OX in BALB/c mice. Histopathology examination illustrated that it significantly decreased DNCB/OX-induced epidermal thickness, the infiltration of inflammatory cells, and the count of mast cell. The elevated level of immunoglobulin E (IgE) in serum and the mRNA levels of interferon γ (IFN-γ), interleukin 4 (IL-4) and IL-13 in the ear tissues, were also suppressed by DHMEQ. DISCUSSION AND CONCLUSION This study indicated that DHMEQ would be useful for the treatment of AD.
Collapse
Affiliation(s)
- Xiaoxue Jiang
- a Department of Pharmacology, School of Life Science and Biopharmaceutics , Shenyang Pharmaceutical University , Shenyang , China
| | - Yi Lan
- a Department of Pharmacology, School of Life Science and Biopharmaceutics , Shenyang Pharmaceutical University , Shenyang , China
| | - Bing Wei
- a Department of Pharmacology, School of Life Science and Biopharmaceutics , Shenyang Pharmaceutical University , Shenyang , China
| | - Cailing Dai
- a Department of Pharmacology, School of Life Science and Biopharmaceutics , Shenyang Pharmaceutical University , Shenyang , China
| | - Yaru Gu
- a Department of Pharmacology, School of Life Science and Biopharmaceutics , Shenyang Pharmaceutical University , Shenyang , China
| | - Jun Ma
- b Department of Research and Development , Shenzhen Wanhe Pharmaceutical Co., Ltd. , Shenzhen , China
| | - Xiaoyan Liu
- b Department of Research and Development , Shenzhen Wanhe Pharmaceutical Co., Ltd. , Shenzhen , China
| | - Kazuo Umezawa
- c Department of Molecular Target Medicine , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Yuyang Zhang
- a Department of Pharmacology, School of Life Science and Biopharmaceutics , Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
15
|
Foster GA, García AJ. Bio-synthetic materials for immunomodulation of islet transplants. Adv Drug Deliv Rev 2017; 114:266-271. [PMID: 28532691 PMCID: PMC5581997 DOI: 10.1016/j.addr.2017.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Abstract
Clinical islet transplantation is an effective therapy in restoring physiological glycemic control in type 1 diabetics. However, allogeneic islets derived from cadaveric sources elicit immune responses that result in acute and chronic islet destruction. To prevent immune destruction of islets, transplant recipients require lifelong delivery of immunosuppressive drugs, which are associated with debilitating side effects. Biomaterial-based strategies to eliminate the need for immunosuppressive drugs are an emerging therapy for improving islet transplantation. In this context, two main approaches have been used: 1) encapsulation of islets to prevent infiltration and contact of immune cells, and 2) local release of immunomodulatory molecules from biomaterial systems that suppress local immunity. Synthetic biomaterials provide excellent control over material properties, molecule presentation, and therapeutic release, and thus, are an emerging platform for immunomodulation to facilitate islet transplantation. This review highlights various synthetic biomaterial-based strategies for preventing immune rejection of islet allografts.
Collapse
Affiliation(s)
- Greg A Foster
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
16
|
Hwang YH, Kim MJ, Lee YK, Lee M, Lee DY. HMGB1 modulation in pancreatic islets using a cell-permeable A-box fragment. J Control Release 2017; 246:155-163. [DOI: 10.1016/j.jconrel.2016.12.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/19/2016] [Accepted: 12/25/2016] [Indexed: 12/11/2022]
|
17
|
Wang Y, Zhong J, Zhang X, Liu Z, Yang Y, Gong Q, Ren B. The Role of HMGB1 in the Pathogenesis of Type 2 Diabetes. J Diabetes Res 2016; 2016:2543268. [PMID: 28101517 PMCID: PMC5215175 DOI: 10.1155/2016/2543268] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/08/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022] Open
Abstract
Significance. With an alarming increase in recent years, diabetes mellitus has become a global challenge. Despite advances in treatment of diabetes mellitus, currently, medications available are unable to control the progression of diabetes and its complications. Growing evidence suggests that inflammation is an important pathogenic mediator in the development of diabetes mellitus. The perspectives including suggestions for new therapies involving the shift from metabolic stress to inflammation should be taken into account. Critical Issues. High-mobility group box 1 (HMGB1), a nonhistone nuclear protein regulating gene expression, was rediscovered as an endogenous danger signal molecule to trigger inflammatory responses when released into extracellular milieu in the late 1990s. Given the similarities of inflammatory response in the development of T2D, we will discuss the potential implication of HMGB1 in the pathogenesis of T2D. Importantly, we will summarize and renovate the role of HMGB1 and HMGB1-mediated inflammatory pathways in adipose tissue inflammation, insulin resistance, and islet dysfunction. Future Directions. HMGB1 and its downstream receptors RAGE and TLRs may serve as potential antidiabetic targets. Current and forthcoming projects in this territory will pave the way for prospective approaches targeting the center of HMGB1-mediated inflammation to improve T2D and its complications.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Immunology, Medical School, Yangtze University, Jingzhou 434023, China
| | - Jixin Zhong
- Department of Immunology, Medical School, Yangtze University, Jingzhou 434023, China
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiangzhi Zhang
- Department of Medicine, Hospital of Yangtze University, Jingzhou 434000, China
| | - Ziwei Liu
- Department of Immunology, Medical School, Yangtze University, Jingzhou 434023, China
| | - Yuan Yang
- Department of Immunology, Medical School, Yangtze University, Jingzhou 434023, China
| | - Quan Gong
- Department of Immunology, Medical School, Yangtze University, Jingzhou 434023, China
| | - Boxu Ren
- Department of Immunology, Medical School, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
18
|
A Nonhematopoietic Erythropoietin Analogue, ARA 290, Inhibits Macrophage Activation and Prevents Damage to Transplanted Islets. Transplantation 2016; 100:554-62. [PMID: 26683514 DOI: 10.1097/tp.0000000000001026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Erythropoietin exerts anti-inflammatory, antiapoptotic, and cytoprotective effects in addition to its hematopoietic action. A nonhematopoietic erythropoietin analogue, ARA 290, has similar properties. The efficacy of pancreatic islet transplantation (PITx) is reduced due to islet damage that occurs during isolation and from the severe inflammatory reactions caused by the transplantation procedure. We investigated whether ARA 290 protects islets and ameliorates inflammatory responses following PITx thus improving engraftment. METHODS The effects of ARA 290 on pancreatic islets of C57BL/6J (H-2) mice and on murine macrophages were investigated using an in vitro culture model. As a marginal PITx, 185 islets were transplanted into the liver of streptozotocin-induced diabetic mice (H-2) via the portal vein. Recipients were given ARA 290 (120 μg/kg) intraperitoneally just before and at 0, 6, and 24 hours after PITx. Liver samples were obtained at 12 hours after PITx, and expression levels of proinflammatory cytokines were assessed. RESULTS ARA 290 protected islets from cytokine-induced damage and apoptosis. Secretion of pro-inflammatory cytokines (IL-6, IL-12, and TNF-α) from macrophages was significantly inhibited by ARA 290. After the marginal PITx, ARA 290 treatment significantly improved the blood glucose levels when compared to those of control animals (P < 0.001). Upregulation of monocyte chemoattractant protein-1, macrophage inflammatory protein-1β, IL-1β, and IL-6 messenger RNA expression within the liver was suppressed by ARA 290 treatment. CONCLUSIONS ARA 290 protected pancreatic islets from cytokine-induced damage and apoptosis and ameliorated the inflammatory response after PITx. ARA 290 appears to be a promising candidate for improvement of PITx.
Collapse
|
19
|
Yoshida T, Yamashita K, Watanabe M, Koshizuka Y, Kuraya D, Ogura M, Asahi Y, Ono H, Emoto S, Mizukami T, Kobayashi N, Shibasaki S, Tomaru U, Kamachi H, Matsushita M, Shiozawa S, Hirono S, Todo S. The Impact of c-Fos/Activator Protein-1 Inhibition on Allogeneic Pancreatic Islet Transplantation. Am J Transplant 2015; 15:2565-75. [PMID: 26012352 DOI: 10.1111/ajt.13338] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023]
Abstract
Unpreventable allograft rejection is one of the main problems in pancreatic islet transplantation (PIT). Therefore, it is imperative to develop a more effective immunosuppressive strategy. The blockade of transcription factors has been a central part of T cell-depleting immunosuppressive therapies, as typified by the use of calcineurin inhibitors. The inhibition of activator protein-1 (AP-1) offers a novel strategy for immunosuppression in PIT, although to date, no reports on the effects of AP-1 inhibition are available. In this study, we investigated the immunosuppressive effects of T-5224, a c-Fos/AP-1-selective inhibitor, on murine T cells activated by αCD3+αCD28 mAbs. T-5224 inhibited proliferation, CD25 up-regulation, and the production of IL-2 and interferon-γ. In addition, T-5224 blocked the nuclear translocation of c-Fos/AP-1 in activated murine T cells. In BALB/c (H-2(d) )-to-C57BL/6J (H-2(b) ) mouse PIT, the 2-week administration of T-5224 prolonged survival of 600 islet allografts in a dose-dependent manner. When combined with a 2-week low-dose tacrolimus, the T-5224 treatment markedly prolonged allograft survival to over 300 days, while the efficacy was indeterminate when transplanted islet allograft mass was reduced to 300. We conclude that the c-Fos/AP-1 inhibition by T-5224 is a potentially attractive strategy for allogeneic PIT.
Collapse
Affiliation(s)
- T Yoshida
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - K Yamashita
- Department of Transplant Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - M Watanabe
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Y Koshizuka
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - D Kuraya
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - M Ogura
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Y Asahi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - H Ono
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - S Emoto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - T Mizukami
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - N Kobayashi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - S Shibasaki
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - U Tomaru
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - H Kamachi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - M Matsushita
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - S Shiozawa
- Department of Medicine, Kyushu University Beppu Hospital, Beppu, Japan
| | - S Hirono
- Laboratory of Physical Chemistry for Drug Design, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - S Todo
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
20
|
Yamanouchi S, Adachi Y, Shimo T, Umezawa K, Okigaki M, Tsuji S, Li M, Takaya J, Kuge T, Ikehara S, Kaneko K. A nuclear factor-κB inhibitor, dehydroxymethylepoxyquinomicin, ameliorates GVHD in allogeneic bone marrow transplantation. Immunobiology 2015; 220:1059-1066. [PMID: 26004346 DOI: 10.1016/j.imbio.2015.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/11/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
GVHD is a crucial mortality factor in allogeneic bone marrow transplantation (ABMT). In this paper, we show that dehydroxymethylepoxyquinomicin (DHMEQ), a novel inhibitor of nuclear factor-κB, suppresses GVHD, resulting in an improved mortality rate in a mouse ABMT model. Bone marrow cells from C57BL/6 mice (B6 mice) were transplanted into lethally irradiated BALB/c mice. Two weeks later, spleen cells from B6 mice were transplanted into the irradiated BALB/c mice. From one week after the injection of spleen cells, when the mice started to show GVHD, the mice were also injected intraperitoneally daily with DHMEQ or vehicle only (DMSO) for 4 weeks. By 80 days after the ABMT, 6/14 of the vehicle-injected mice (43%) had died because of GVHD, whereas all DHMEQ-injected mice survived this observation period and developed milder GVHD than the vehicle-injected mice. When regulatory T cells were reduced by the injection of anti-folate receptor 4 (FR4) antibody, the effects of DHMEQ were reduced. These findings suggest that administration of DHMEQ could become a new strategy for preventing fatalities from GVHD.
Collapse
Affiliation(s)
- Sohsaku Yamanouchi
- Department of Pediatrics, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| | - Yasushi Adachi
- Division of Surgical Pathology, Toyooka Hospital, Toyooka City, Hyogo 668-8501, Japan; Department of Stem Cell Disorders, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan.
| | - Tomohiko Shimo
- Department of Pediatrics, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| | - Kazuo Umezawa
- Department of Molecular Target Medicine Screening, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Mitsuhiko Okigaki
- Department of Internal Medicine, Otokoyama Hospital, Yawata City, Kyoto 614-8366, Japan
| | - Shoji Tsuji
- Department of Pediatrics, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| | - Ming Li
- Department of Stem Cell Disorders, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| | - Junji Takaya
- Department of Pediatrics, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| | - Tomohiro Kuge
- Department of Clinical Laboratory, Toyooka Hospital, Tobera, Toyooka City, Hyogo 668-8501, Japan
| | - Susumu Ikehara
- Department of Stem Cell Disorders, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| | - Kazunari Kaneko
- Department of Pediatrics, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| |
Collapse
|
21
|
Bae UJ, Song MY, Jang HY, Lim JM, Lee SY, Ryu JH, Park BH. Emodin isolated from Rheum palmatum prevents cytokine-induced β-cell damage and the development of type 1 diabetes. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
22
|
Yang EY, Kronenfeld JP, Stabler CL. Engineering biomimetic materials for islet transplantation. Curr Diabetes Rev 2015; 11:163-9. [PMID: 25776871 PMCID: PMC4447569 DOI: 10.2174/1573399811666150317130440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/30/2022]
Abstract
A closed-loop system that provides both the sensing of glucose and the appropriate dosage of insulin could dramatically improve treatment options for insulin-dependent diabetics. The intrahepatic implantation of allogeneic islets has the potential to provide this intimate control, by transplanting the very cells that have this inherent sensing and secretion capacity. Limiting islet transplantation, however, is the significant loss and dysfunction of islets following implantation, due to the poor engraftment environment and significant immunological attack. In this review, we outline approaches that seek to address these challenges via engineering biomimetic materials. These materials can serve to mimic natural processes that work toward improving engraftment, minimizing inflammation, and directing immunological responses. Biomimetic materials can serve to house cells, recapitulate native microenvironments, release therapeutic agents in a physiological manner, and/or present agents to direct cells towards desired responses. By integrating these approaches, superior platforms capable of improving long-term engraftment and acceptance of transplanted islets are on the horizon.
Collapse
Affiliation(s)
| | | | - Cherie L Stabler
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
23
|
Efficacy of DHMEQ, a NF-κB inhibitor, in islet transplantation: II. Induction DHMEQ treatment ameliorates subsequent alloimmune responses and permits long-term islet allograft acceptance. Transplantation 2013; 96:454-62. [PMID: 23860082 DOI: 10.1097/tp.0b013e31829b077f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Long-term graft deterioration remains a major obstacle in the success of pancreatic islet transplantation (PITx). Antigen-independent inflammatory and innate immune responses strengthen subsequent antigen-dependent immunity; further, activation of nuclear factor (NF)-κB plays a key role during these responses. In this study, we tested our hypothesis that, by the inhibition of NF-κB activation, the suppression of these early responses after PITx could facilitate graft acceptance. METHODS Full major histocompatibility complex (MHC)-mismatched BALB/c (H-2) mice islets were transplanted into streptozotocin-induced diabetic C57BL/6 (B6: H-2) mice. The NF-κB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) was administered for either 3 or 14 days after PITx. To some PITx recipients, tacrolimus was also administered. Islet allograft survival, alloimmune responses, and in vitro effects of DHMEQ on dendritic cells (DCs) were assessed. RESULTS With a vehicle treatment, 600 islet allografts were promptly rejected after PITx. In contrast, 3-day treatment with DHMEQ, followed by 2-week treatment with tacrolimus, allowed permanent acceptance of islet allografts. The endogenous danger-signaling molecule high mobility group complex 1 (HMGB1) was elevated in sera shortly after PITx, whereas DHMEQ administration abolished this elevation. DHMEQ suppressed HMGB1-driven cellular activation and proinflammatory cytokine secretion in mouse bone marrow-derived DCs and significantly reduced the capacity of DCs to prime allogeneic T-cell proliferation in vitro. Finally, the DHMEQ plus tacrolimus regimen reverted the diabetic state with only 300 islet allografts. CONCLUSIONS Inhibition of NF-κB activation by DHMEQ shortly after PITx suppresses HMGB1, which activates DCs and strengthens the magnitude of alloimmune responses; this permits long-term islet allograft acceptance, even in case of fewer islet allografts.
Collapse
|