1
|
Owen MC, Kopecky BJ. Targeting Macrophages in Organ Transplantation: A Step Toward Personalized Medicine. Transplantation 2024; 108:2045-2056. [PMID: 38467591 PMCID: PMC11390981 DOI: 10.1097/tp.0000000000004978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Organ transplantation remains the most optimal strategy for patients with end-stage organ failure. However, prevailing methods of immunosuppression are marred by adverse side effects, and allograft rejection remains common. It is imperative to identify and comprehensively characterize the cell types involved in allograft rejection, and develop therapies with greater specificity. There is increasing recognition that processes mediating allograft rejection are the result of interactions between innate and adaptive immune cells. Macrophages are heterogeneous innate immune cells with diverse functions that contribute to ischemia-reperfusion injury, acute rejection, and chronic rejection. Macrophages are inflammatory cells capable of innate allorecognition that strengthen their responses to secondary exposures over time via "trained immunity." However, macrophages also adopt immunoregulatory phenotypes and may promote allograft tolerance. In this review, we discuss the roles of macrophages in rejection and tolerance, and detail how macrophage plasticity and polarization influence transplantation outcomes. A comprehensive understanding of macrophages in transplant will guide future personalized approaches to therapies aimed at facilitating tolerance or mitigating the rejection process.
Collapse
Affiliation(s)
- Macee C Owen
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MI
| | - Benjamin J Kopecky
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MI
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
2
|
Ahuja HK, Azim S, Maluf D, Mas VR. Immune landscape of the kidney allograft in response to rejection. Clin Sci (Lond) 2023; 137:1823-1838. [PMID: 38126208 DOI: 10.1042/cs20230493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Preventing kidney graft dysfunction and rejection is a critical step in addressing the nationwide organ shortage and improving patient outcomes. While kidney transplants (KT) are performed more frequently, the overall number of patients on the waitlist consistently exceeds organ availability. Despite improved short-term outcomes in KT, comparable progress in long-term allograft survival has not been achieved. Major cause of graft loss at 5 years post-KT is chronic allograft dysfunction (CAD) characterized by interstitial fibrosis and tubular atrophy (IFTA). Accordingly, proactive prevention of CAD requires a comprehensive understanding of the immune mechanisms associated with either further dysfunction or impaired repair. Allograft rejection is primed by innate immune cells and carried out by adaptive immune cells. The rejection process is primarily facilitated by antibody-mediated rejection (ABMR) and T cell-mediated rejection (TCMR). It is essential to better elucidate the actions of individual immune cell subclasses (e.g. B memory, Tregs, Macrophage type 1 and 2) throughout the rejection process, rather than limiting our understanding to broad classes of immune cells. Embracing multi-omic approaches may be the solution in acknowledging these intricacies and decoding these enigmatic pathways. A transition alongside advancing technology will better allow organ biology to find its place in this era of precision and personalized medicine.
Collapse
Affiliation(s)
- Harsimar Kaur Ahuja
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, U.S.A
| | - Shafquat Azim
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, U.S.A
| | - Daniel Maluf
- Program of Transplantation, School of Medicine, 29S Greene St, University of Maryland, Baltimore, MD 21201, U.S.A
| | - Valeria R Mas
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, U.S.A
| |
Collapse
|
3
|
Hurdogan O, Karakus F, Dirim AB, Aksu B, Saygili S, Turkmen A, Yilmaz A, Canpolat N, Solakoglu S, Kilicaslan I, Ozluk Y. Spatial Distribution of Macrophage Subtypes Among Rejection Subtypes in Renal Transplant Biopsies by Dual Immunohistochemistry. Appl Immunohistochem Mol Morphol 2023; 31:224-231. [PMID: 36812388 DOI: 10.1097/pai.0000000000001109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023]
Abstract
We performed dual immunohistochemistry for CD163/CD34 and CD68/CD34 in 108 renal transplant indication biopsies to investigate the presence and distribution of macrophages in various renal compartments. All Banff scores and diagnoses were revised according to the Banff 2019 classification. CD163 and CD68 positive cell counts (CD163pos and CD68pos) were evaluated in the interstitium, glomerular mesangium, and, within glomerular and peritubular capillaries. The diagnosis was antibody-mediated rejection (ABMR) in 38 (35.2%), T-cell mediated rejection (TCMR) in 24 (22.2%), mixed rejection in 30 (27.8%), and no rejection in 16 (14.8%). Banff lesion scores t , i , and ti were correlated with both CD163 and CD68 interstitial inflammation scores ( r > 0.30; P < 0.05). Glomerular total CD163pos was correlated to Banff lesion scores g and cg ( r > 0.30; P < 0.05). Glomerular total, mesangial, and intracapillary CD68pos were correlated with g ( r > 0.30; P < 0.05). Both glomerular total and peritubular capillary CD68pos were correlated with peritubular capillaritis ( r > 0.30; P < 0.05). Glomerular CD163pos were significantly higher in ABMR compared with no rejection, in mixed rejection compared with no rejection and TCMR. CD163pos in peritubular capillaries was significantly higher in mixed rejection compared with no rejection. Glomerular CD68pos was significantly higher in ABMR compared with no rejection. CD68pos per peritubular capillary was higher in mixed rejection, ABMR, and TCMR compared with no rejection. In conclusion, compared with CD68 positive macrophages, localization of CD163 positive macrophages in various renal compartments seems to be different among rejection subtypes and their glomerular infiltration seems to be more specific for the presence of ABMR component.
Collapse
Affiliation(s)
| | | | | | - Bagdagul Aksu
- Department of Pediatrics, Subdivision of Pediatric Nephrology, Istanbul University
| | - Seha Saygili
- Department of Pediatrics, Subdivision of Pediatric Nephrology, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Aydin Turkmen
- Department of Internal Medicine, Subdivision of Nephrology
| | - Alev Yilmaz
- Department of Pediatrics, Subdivision of Pediatric Nephrology, Istanbul University
| | - Nur Canpolat
- Department of Pediatrics, Subdivision of Pediatric Nephrology, Istanbul University Cerrahpasa, Istanbul, Turkey
| | | | | | | |
Collapse
|
4
|
Kopecky BJ, Dun H, Amrute JM, Lin CY, Bredemeyer AL, Terada Y, Bayguinov PO, Koenig AL, Frye CC, Fitzpatrick JAJ, Kreisel D, Lavine KJ. Donor Macrophages Modulate Rejection After Heart Transplantation. Circulation 2022; 146:623-638. [PMID: 35880523 PMCID: PMC9398940 DOI: 10.1161/circulationaha.121.057400] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/07/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND Cellular rejection after heart transplantation imparts significant morbidity and mortality. Current immunosuppressive strategies are imperfect, target recipient T cells, and have adverse effects. The innate immune response plays an essential role in the recruitment and activation of T cells. Targeting the donor innate immune response would represent the earliest interventional opportunity within the immune response cascade. There is limited knowledge about donor immune cell types and functions in the setting of cardiac transplantation, and no current therapeutics exist for targeting these cell populations. METHODS Using genetic lineage tracing, cell ablation, and conditional gene deletion, we examined donor mononuclear phagocyte diversity and macrophage function during acute cellular rejection of transplanted hearts in mice. We performed single-cell RNA sequencing on donor and recipient macrophages and monocytes at multiple time points after transplantation. On the basis of our imaging and single-cell RNA sequencing data, we evaluated the functional relevance of donor CCR2+ (C-C chemokine receptor 2) and CCR2- macrophages using selective cell ablation strategies in donor grafts before transplant. Last, we performed functional validation that donor macrophages signal through MYD88 (myeloid differentiation primary response protein 88) to facilitate cellular rejection. RESULTS Donor macrophages persisted in the rejecting transplanted heart and coexisted with recipient monocyte-derived macrophages. Single-cell RNA sequencing identified donor CCR2+ and CCR2- macrophage populations and revealed remarkable diversity among recipient monocytes, macrophages, and dendritic cells. Temporal analysis demonstrated that donor CCR2+ and CCR2- macrophages were transcriptionally distinct, underwent significant morphologic changes, and displayed unique activation signatures after transplantation. Although selective depletion of donor CCR2- macrophages reduced allograft survival, depletion of donor CCR2+ macrophages prolonged allograft survival. Pathway analysis revealed that donor CCR2+ macrophages are activated through MYD88/nuclear factor kappa light chain enhancer of activated B cells signaling. Deletion of MYD88 in donor macrophages resulted in reduced antigen-presenting cell recruitment, reduced ability of antigen-presenting cells to present antigen to T cells, decreased emergence of allograft-reactive T cells, and extended allograft survival. CONCLUSIONS Distinct populations of donor and recipient macrophages coexist within the transplanted heart. Donor CCR2+ macrophages are key mediators of allograft rejection, and deletion of MYD88 signaling in donor macrophages is sufficient to suppress rejection and extend allograft survival. This highlights the therapeutic potential of donor heart-based interventions.
Collapse
Affiliation(s)
- Benjamin J Kopecky
- Cardiovascular Division, Department of Medicine, Washington
University School of Medicine, St. Louis, Missouri, USA
| | - Hao Dun
- Department of Surgery, Washington University School of
Medicine, Saint Louis, Missouri, USA
| | - Junedh M Amrute
- Cardiovascular Division, Department of Medicine, Washington
University School of Medicine, St. Louis, Missouri, USA
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington
University School of Medicine, Saint Louis, Missouri, USA
| | - Andrea L Bredemeyer
- Cardiovascular Division, Department of Medicine, Washington
University School of Medicine, St. Louis, Missouri, USA
| | - Yuriko Terada
- Department of Surgery, Washington University School of
Medicine, Saint Louis, Missouri, USA
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging,
Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew L Koenig
- Cardiovascular Division, Department of Medicine, Washington
University School of Medicine, St. Louis, Missouri, USA
| | - Christian C Frye
- Department of Surgery, Washington University School of
Medicine, Saint Louis, Missouri, USA
| | - James AJ Fitzpatrick
- Washington University Center for Cellular Imaging,
Washington University School of Medicine, St. Louis, Missouri, USA
- Departments of Neuroscience and Cell Biology &
Physiology, Washington University School of Medicine, Saint Louis, Missouri,
USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of
Medicine, Saint Louis, Missouri, USA
- Department of Pathology and Immunology, Washington
University School of Medicine, Saint Louis, Missouri, USA
| | - Kory J Lavine
- Cardiovascular Division, Department of Medicine, Washington
University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington
University School of Medicine, Saint Louis, Missouri, USA
- Department of Developmental Biology, Washington University
School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
5
|
Liu X, Lu Y, Lian Y, Chen Z, Xia J, Meng L, Qi Z. Macrophage Depletion Improves Chronic Rejection in Rats With Allograft Heart Transplantation. Transplant Proc 2020; 52:992-1000. [PMID: 32122662 DOI: 10.1016/j.transproceed.2019.12.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/11/2019] [Accepted: 12/15/2019] [Indexed: 10/24/2022]
Abstract
BACKGROUND Macrophages may be important in chronic rejection after organ transplantation. This study aimed to investigate the possibility of depleting macrophages for a certain amount of time to alleviate chronic rejection in a heart transplant model of Fischer to Lewis rats. METHODS Clodronate liposome was injected abdominally to deplete macrophages for 2 time frames. The expression levels of ectodysplasin 1, arginase 1 (Arg1), chitinase-like lectin (Ym1), interferon gamma, tumor necrosis factor α (TNF-α), smooth muscle α-actin (α-SMA), monocyte chemoattractant protein 1 (MCP-1), and interleukin 10 (IL-10) were detected. RESULTS 1. The expression levels of α-SMA, interferon gamma, TNF-α, and MCP-1 and the transformation of peripheral T cells were lower after macrophage depletion for 2 or 4 weeks. 2. The expression levels of α-SMA, TNF-α, and MCP-1 and the transformation of peripheral T cells were even lower after 4 weeks compared with 2 weeks, except for interferon gamma. 3. A higher level of expression of Arg1 and Ym1 after macrophage depletion for 2 weeks was observed. 4. A higher level of expression of IL-10 after macrophage depletion for 2 weeks, but not 4 weeks, was also observed. CONCLUSIONS Macrophage clearance after heart transplantation alleviated chronic rejection probably via M2 polarization of regenerated macrophages, reduced T-lymphocyte proliferation, and changed the expression levels of interferon gamma, TNF-α, MCP-1, and IL-10.
Collapse
Affiliation(s)
- X Liu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, China; Department of General Surgery, Affiliated Xiang'an Hospital of Xiamen University, Xiamen, China.
| | - Y Lu
- Department of General Surgery, Affiliated Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Y Lian
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, China; Department of Thoracic Surgery, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Z Chen
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, China; Department of General Surgery, The Second Hospital of Xiamen City, Xiamen, China
| | - J Xia
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, China
| | - L Meng
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, China
| | - Z Qi
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Ryu JH, Ko HJ, Shim JR, Lee TB, Yang KH, Lee JH, Lee HJ, Kim T, Choi BH. Eosinophil-to-monocyte ratio is an excellent predictor of acute cellular rejection in pancreas transplant alone recipients. Clin Transplant 2020; 34:e13785. [PMID: 31957063 DOI: 10.1111/ctr.13785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 01/23/2023]
Abstract
Serum pancreatic enzymes (serum amylase and lipase) are sensitive markers for monitoring acute rejection in pancreatic transplant recipients. However, those enzymes are not specific, as their levels are elevated in other conditions. We evaluated the eosinophil-to-monocyte ratio (EMR) in peripheral blood as a biomarker of acute rejection in the clinical setting in recipients of pancreatic transplant alone. We performed 32 cases of pancreatic transplantation alone since 2015. Nine patients were diagnosed with rejection. Serum amylase and lipase levels and eosinophil and monocytes counts were analyzed and compared retrospectively between the non-rejection and rejection groups. The serum eosinophil count, eosinophil fraction of the complete blood count, and serum amylase and lipase levels were significant predictors of rejection according to the receiver operation characteristic (ROC) curve. However, the EMR was the best indicator of rejection based on the ROC curve (area under the curve 0.918, sensitivity 100%, specificity 76.2% at the cutoff value 0.80, P < .001). The combination of EMR and the lipase level had 100% sensitivity and 90.5% specificity. The EMR is a simple and excellent predictor of acute rejection in recipients of pancreatic transplant alone.
Collapse
Affiliation(s)
- Je Ho Ryu
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyo Jung Ko
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jae Ryong Shim
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Tae Beom Lee
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Kwang Ho Yang
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jung Hee Lee
- Department of Pathology, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyun Ji Lee
- Department of Laboratory medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Taeun Kim
- Department of Radiology, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Byung Hyun Choi
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
7
|
Zhang H, Gao S, Yan L, Zhu G, Zhu Q, Gu Y, Shao F. EPO Derivative ARA290 Attenuates Early Renal Allograft Injury in Rats by Targeting NF-κB Pathway. Transplant Proc 2018; 50:1575-1582. [DOI: 10.1016/j.transproceed.2018.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/01/2018] [Indexed: 02/06/2023]
|
8
|
Alternatively activated macrophages in the pathogenesis of chronic kidney allograft injury. Pediatr Nephrol 2015; 30:1007-17. [PMID: 25487670 DOI: 10.1007/s00467-014-3023-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/05/2014] [Accepted: 11/20/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Prevention of chronic kidney allograft injury (CAI) is a major goal in improving kidney allograft survival; however, the mechanisms of CAI are not clearly understood. The current study investigated whether alternatively activated M2-type macrophages are involved in the development of CAI. METHODS A retrospective study examined kidney allograft protocol biopsies (at 1 h and at years 1, 5, and 10--a total of 41 biopsies) obtained from 13 children undergoing transplantation between 1991 and 2008 who were diagnosed with CAI: interstitial fibrosis and tubular atrophy (IF/TA) not otherwise specified (IF/TA-NOS). RESULTS Immunostaining identified a significant increase in interstitial fibrosis with accumulation of CD68 + CD163+ M2-type macrophages. CD163+ cells were frequently localized to areas of interstitial fibrosis exhibiting collagen I deposition and accumulation of α-smooth muscle actin (SMA) + myofibroblasts. There was a significant correlation between interstitial CD163+ cells and the parameters of interstitial fibrosis (p < 0.0001), and kidney function (r =-0.82, p < 0.0001). The number of interstitial CD163+ cells at years 1 and 5 also correlated with parameters of interstitial fibrosis at years 5 and 10 respectively. Notably, urine CD163 levels correlated with interstitial CD163+ cells (r = 0.79, p < 0.01) and parameters of interstitial fibrosis (p < 0.0001). However, CD3+ T lymphocytic infiltration did not correlate with macrophage accumulation or fibrosis. In vitro, dexamethasone up-regulated expression of CD163 and cytokines (TGF-β1, FGF-2, CTGF) in human monocyte-derived macrophages, indicating a pro-fibrotic phenotype. CONCLUSIONS Our findings identify a major population of M2-type macrophages in patients with CAI, and suggest that these M2-type macrophages might promote the development of interstitial fibrosis in IF/TA-NOS.
Collapse
|