1
|
Bhuiyan P, Zhang W, Liang G, Jiang B, Vera R, Chae R, Kim K, Louis LS, Wang Y, Liu J, Chuang DM, Wei H. Intranasal Delivery of Lithium Salt Suppresses Inflammatory Pyroptosis in the Brain and Ameliorates Memory Loss and Depression-like Behavior in 5XFAD Mice. J Neuroimmune Pharmacol 2025; 20:26. [PMID: 40095208 PMCID: PMC11914297 DOI: 10.1007/s11481-025-10185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a devastating neurodegenerative disease (AD) and has no treatment that can cure or halt the disease progression. This study explored the therapeutic potential of lithium salt dissolved in Ryanodex formulation vehicle (RFV) and delivered to the brain by intranasal application. We first compared lithium concentrations in the brain and blood of wild-type mice following intranasal or oral administration of lithium chloride (LiCl) dissolved in either RFV or water. The beneficial and side effects of intranasal versus oral LiCl in RFV in these mice were assessed and potential mechanisms underlying the efficacy of anti-inflammation and anti-pyroptosis in the brains were also investigated in both wild-type and 5XFAD Alzheimer's Disease (AD) mice brains. METHODS For the study of brain versus blood lithium concentrations, wild-type (WT) B6SJLF1/J mice at 2 months of age were treated with intranasal or oral LiCl (3 mmol/kg) dissolved in RFV or in water. Brain and blood lithium concentrations were measured at various times after drugs administration. Brain/blood lithium concentration ratios were then determined. For studying therapeutic efficacy versus side effects and their underlying mechanisms, 5XFAD and WT B6SJLF1/J mice were treated with intranasal LiCl (3 mmol/kg) daily, Monday to Friday each week, in RFV beginning at 2 or 9 months of age with a 12-week treatment duration. Animal behaviors were assessed for depression (tail suspension), cognition (fear conditioning and Y maze), olfaction (buried food test), and motor functions (rotarod) at the age of 5 and 12 months. Blood and brain tissue were harvested from these mice at 13 months. Blood biomarkers for the functions of thyroid (thyroid stimulating hormone, TSH) and kidney (creatinine) were measured using ELISA. Changes in protein expression levels of the endoplasmic reticulum Ca2+ release channels type 1 InsP3 receptors (InsP3R-1), malondialdehyde (MDA)-modified proteins and 4-hydroxy-2-nonenal (4-HNE), pyroptosis regulatory proteins (NLR family pyrin domain containing 3 (NLRP3), cleaved caspase-1, N-terminal of Gasdermin D (GSDMD)), cytotoxic (IL-1β, IL-18, IL-6, TNF-α) and cytoprotective (IL-10) cytokines and synapse proteins (PSD-95, synapsin-1) were determined using immunoblotting. Mouse body weights were monitored regularly. RESULTS Compared to oral LiCl in RFV nanoparticles, intranasal treatment of WT mice with LiCl in RFV markedly decreased blood concentrations at the time range of 30-120 min. The ratio of brain/blood lithium concentration after intranasal lithium chloride in RFV significantly increased, in comparison to those after oral administration lithium chloride in RFV or intranasal administration of lithium chloride in water. Intranasal lithium chloride in RFV inhibited both memory loss and depressive behavior in adult and aged 5XFAD mice. Additionally intranasal treatment of aged 5XFAD mice with LiCl in RFV effectively suppressed the increases in InsP3R-1, intracellular oxidative stress markers (4-HNE-bound and MDA-modified proteins), pyroptosis activation proteins (NLRP3, cleaved caspase-1, N-terminal GSDMD) and cytotoxic cytokines (IL-1β, IL-6, TNF-α), but reversed the down-regulation of cytoprotective cytokine IL-10. Intranasal LiCl in RFV also alleviated the loss of the postsynaptic synapse proteins PSD-95, but not synapsin-1, in aged 5XFAD mice. Blood level of the kidney function marker creatinine was significantly increased in 5XFAD than in WT mice in an age-dependent manner and this elevation was abolished by intranasal delivery of LiCl in RFV. Intranasal LiCl in RFV for 12 weeks in both WT or 5XFAD mice did not affect blood biomarkers for thyroid function, nor did it affect smell or muscle function or body weight. CONCLUSION Intranasal administration of LiCl in RFV significantly decreased lithium blood concentrations and increased brain/blood lithium concentration ratio, in comparison to its oral administration. Intranasal administration of LiCl in RFV robustly protected against both memory loss and depressive-like behavior, while had no side effects concerning thyroid and kidney toxicity in 5XFAD mice. These lithium-induced beneficial effects were strongly associated with lithium's suppression of InsP3R-1 Ca2+ channel receptor increase, pathological neuroinflammation and activation of the pyroptosis pathway, as well as the loss of the synaptic protein PSD-95. Intranasal delivery of lithium salt in RFV could become an effective and potent inhibitor of pathological inflammation/pyroptosis in the CNS and serve as a new treatment for both AD-associated dementia and depression with minimal unwanted side effects including peripheral organ toxicity.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
| | - Wenjia Zhang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ge Liang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
| | - Bailin Jiang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Robert Vera
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
| | - Rebecca Chae
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
| | - Kyulee Kim
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
| | - Lauren St Louis
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
| | - Ying Wang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Jia Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 26600, People's Republic of China
| | - De-Maw Chuang
- Scientist Emeritus, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building 3620 Hamilton Walk, Philadelphia, PA, 19104, U.S.A..
| |
Collapse
|
2
|
Bhuiyan P, Zhang W, Chae R, Kim K, St Louis L, Wang Y, Liang G, Wei H. Intranasal dantrolene nanoparticles inhibit inflammatory pyroptosis in 5XFAD mice brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625293. [PMID: 39651126 PMCID: PMC11623646 DOI: 10.1101/2024.11.25.625293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background This study investigates the effects of intranasal dantrolene nanoparticles on inflammation and programmed cell death by pyroptosis in 5XFAD Alzheimer's Disease (AD) mice. Methods 5XFAD and wild type (WT) B6SJLF1/J mice were treated with intranasal dantrolene nanoparticles (5 mg/kg), daily, Monday to Friday, for 12 weeks continuously, starting at 9 months of age. Blood and brain were harvested at 13 months of age, one month after completion of 12 weeks intranasal dantrolene nanoparticle treatment. Blood biomarkers function of liver (Alanine transaminase, ALT), kidney (Creatinine), and thyroid (TSH: Thyroid-stimulating hormone) were measured using ELISA. The changes of whole brain tissue proteins on Ca 2+ release channels on membrane of endoplasmic reticulum (type 2 ryanodine and type 1 InsP3 receptors, RyR-2 and InsP3R-1), lipid peroxidation byproduct malondialdehyde (MDA)-modified proteins, 4-HNE, pyroptosis regulatory proteins (NLR family pyrin domain containing 3 (NLRP3), cleaved caspase-1, full length or N-terminal of Gasdermin D (GSDMD), cytotoxic (IL-1, IL-18, IL-6, TNF-a) and cytoprotective (IL-10) cytokines, astrogliosis (GFAP), microgliosis (IBA-1) and synapse proteins (PSD-95, Synapsin-1) were determined using immunoblotting. Body weights were monitored regularly. Results Intranasal dantrolene nanoparticles significantly inhibited the increase of RyR-2 and InsP3R-1 proteins, MDA-modified proteins, 4-NHE, pyroptosis regulatory proteins (NLRP3, cleaved caspase-1, N-terminal GSDMD), cytotoxic cytokine (IL-1β, IL-18, IL-6, TNF-α), biomarkers for astrogliosis (GFAP) and microgliosis (IBA-1), and the decrease of cytoprotective cytokine (IL-10) and synaptic proteins (PSD-95, synpasin-1). Intranasal dantrolene nanoparticles for 12 weeks did not affect blood biomarkers for function of liver, kidney, and thyroid, not did it change body weight significantly. Conclusion Intranasal dantrolene nanoparticles significantly inhibit the increase of RyR-2 and InsP 3 R-1 Ca 2+ channel receptor proteins, ameliorate activation of the pyroptosis pathway and pathological inflammation, and the associated loss of synapse proteins. Intranasal dantrolene nanoparticles for three months did not affect liver, kidney and thyroid functions or cause other side effects.
Collapse
|
3
|
Liu CF, Young ZY, Shih TW, Pan TM, Lee CL. Lactocaseibacillus-deglycosylated isoflavones prevent Aβ 40-induced Alzheimer's disease in a rat model. AMB Express 2024; 14:90. [PMID: 39105988 PMCID: PMC11303605 DOI: 10.1186/s13568-024-01735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/25/2024] [Indexed: 08/07/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, with symptoms appearing in the cerebral cortex and hippocampus. amyloid β peptide (Aβ) has been shown to deposit in the brain, causing oxidative stress and inflammation, leading to impaired memory and learning. Lactocaseibacillus fermentation can produce deglycosylated isoflavones with high physiological activity, which can scavenge free radicals, enhance total antioxidant capacity and inhibit oxidative inflammatory responses. Therefore, in this study, Lactocaseibacillus paracasei subsp. paracasei NTU101 (NTU101) fermented soybean milk and its extracts were used as test substances, and AD model rats were established by infusion of Aβ40 in the brain for 28 days, and the preventive and ameliorating effects of NTU 101 fermented soymilk were discussed. Effects of soymilk and unfermented soymilk on AD, and explore its effects on AD. Main functional ingredients. The results showed that deglycosylated isoflavones in NTU101 fermented soybean milk improved AD symptoms. Mechanisms of actions include the inhibition of oxidative inflammation; reduction in the expression of risk factors for tau protein and apo E protein production, the deposition of Aβ40 around the hippocampus, and the expression of TLR-2 and RAGE proteins in astrocytes and microglia; and improvement in the memory and learning ability.
Collapse
Affiliation(s)
- Chin-Feng Liu
- Continuing Education Program of Food Biotechnology Applications, National Taitung University, Taitung, Taiwan, ROC
| | - Zong-Yang Young
- Department of Life Science, National Taitung University, 369, Sec. 2, University Rd., Taitung, 95092, Taiwan, ROC
| | | | - Tzu-Ming Pan
- SunWay Biotech Co. LTD., Taipei, Taiwan, ROC.
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan, ROC.
| | - Chun-Lin Lee
- Department of Life Science, National Taitung University, 369, Sec. 2, University Rd., Taitung, 95092, Taiwan, ROC.
| |
Collapse
|
4
|
Gao Y, Li S, Liu X, Si D, Chen W, Yang F, Sun H, Yang P. RyR2 Stabilizer Attenuates Cardiac Hypertrophy by Downregulating TNF-α/NF-κB/NLRP3 Signaling Pathway through Inhibiting Calcineurin. J Cardiovasc Transl Res 2024; 17:481-495. [PMID: 38652413 DOI: 10.1007/s12265-023-10376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/13/2023] [Indexed: 04/25/2024]
Abstract
The effect of Ryanodine receptor2 (RyR2) and its stabilizer on cardiac hypertrophy is not well known. C57/BL6 mice underwent transverse aortic contraction (TAC) or sham surgery were administered dantrolene, the RyR2 stabilizer, or control drug. Dantrolene significantly alleviated TAC-induced cardiac hypertrophy in mice, and RNA sequencing was performed implying calcineurin/NFAT3 and TNF-α/NF-κB/NLRP3 as critical signaling pathways. Further expression analysis and Western blot with heart tissue as well as neonatal rat cardiomyocyte (NRCM) model confirmed dantrolene decreases the activation of calcineurin/NFAT3 signaling pathway and TNF-α/NF-κB/NLRP3 signaling pathway, which was similar to FK506 and might be attenuated by calcineurin overexpression. The present study shows for the first time that RyR2 stabilizer dantrolene attenuates cardiac hypertrophy by inhibiting the calcineurin, therefore downregulating the TNF-α/NF-κB/NLRP3 pathway.
Collapse
MESH Headings
- Animals
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/metabolism
- Ryanodine Receptor Calcium Release Channel/metabolism
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/drug effects
- Calcineurin/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Disease Models, Animal
- NF-kappa B/metabolism
- Down-Regulation
- Dantrolene/pharmacology
- Male
- Calcineurin Inhibitors/pharmacology
- NFATC Transcription Factors/metabolism
- Cells, Cultured
- Cardiomegaly/metabolism
- Cardiomegaly/prevention & control
- Cardiomegaly/pathology
- Cardiomegaly/drug therapy
- Rats, Sprague-Dawley
- Rats
- Hypertrophy, Left Ventricular/prevention & control
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
Collapse
Affiliation(s)
- Yi Gao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial International Joint Research Center of Cardiovascular Disease Precision Medicine, Changchun, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, China
| | - Shuai Li
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xueyan Liu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial International Joint Research Center of Cardiovascular Disease Precision Medicine, Changchun, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, China
| | - Daoyuan Si
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial International Joint Research Center of Cardiovascular Disease Precision Medicine, Changchun, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, China
| | - Weiwei Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial International Joint Research Center of Cardiovascular Disease Precision Medicine, Changchun, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, China
| | - Fenghua Yang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Huan Sun
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China.
- Jilin Provincial International Joint Research Center of Cardiovascular Disease Precision Medicine, Changchun, China.
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, China.
| | - Ping Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China.
- Jilin Provincial International Joint Research Center of Cardiovascular Disease Precision Medicine, Changchun, China.
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, China.
| |
Collapse
|
5
|
Zhang W, Zhao X, Bhuiyan P, Liu H, Wei H. Neuroprotective effects of dantrolene in neurodegenerative disease: Role of inhibition of pathological inflammation. JOURNAL OF ANESTHESIA AND TRANSLATIONAL MEDICINE 2024; 3:27-35. [PMID: 38826587 PMCID: PMC11138240 DOI: 10.1016/j.jatmed.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Neurodegenerative diseases (NDs) refer to a group of diseases in which slow, continuous cell death is the main pathogenic event in the nervous system. Most NDs are characterized by cognitive dysfunction or progressive motor dysfunction. Treatments of NDs mainly target alleviating symptoms, and most NDs do not have disease-modifying drugs. The pathogenesis of NDs involves inflammation and apoptosis mediated by mitochondrial dysfunction. Dantrolene, approved by the US Food and Drug Administration, acts as a RyRs antagonist for the treatment of malignant hyperthermia, spasticity, neuroleptic syndrome, ecstasy intoxication and exertional heat stroke with tolerable side effects. Recently, dantrolene has also shown therapeutic effects in some NDs. Its neuroprotective mechanisms include the reduction of excitotoxicity, apoptosis and neuroinflammation. In summary, dantrolene can be considered as a potential therapeutic candidate for NDs.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xu Zhao
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong 250021, China
| | - Piplu Bhuiyan
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Henry Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Vera R, Hong N, Jiang B, Liang G, Eckenhoff MF, Kincaid HJ, Browne V, Chellaraj V, Gisewhite D, Greenberg M, Ranjan S, Zhu G, Wei H. Effects of Intranasal Dantrolene Nanoparticles on Brain Concentration and Behavior in PS19 Tau Transgenic Mice. J Alzheimers Dis 2024; 98:549-562. [PMID: 38393915 PMCID: PMC11178503 DOI: 10.3233/jad-231337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Background Repurposing dantrolene to treat Alzheimer's disease has been shown to be effective in amyloid transgenic mouse models but has not been examined in a model of tauopathy. Objective The effects of a nanoparticle intranasal formulation, the Eagle Research Formulation of Ryanodex (ERFR), in young adult and aged wild type and PS19 tau transgenic mice was investigated. Methods The bioavailability of intranasal ERFR was measured in 2 and 9-11-month-old C57BL/6J mice. Blood and brain samples were collected 20 minutes after a single ERFR dose, and the plasma and brain concentrations were analyzed. Baseline behavior was assessed in untreated PS19 tau transgenic mice at 6 and 9 months of age. PS19 mice were treated with intranasal ERFR, with or without acrolein (to potentiate cognitive dysfunction), for 3 months, beginning at 2 months of age. Animal behavior was examined, including cognition (cued and contextual fear conditioning, y-maze), motor function (rotarod), and olfaction (buried food test). Results The dantrolene concentration in the blood and brain decreased with age, with the decrease greater in the blood resulting in a higher brain to blood concentration ratio. The behavioral assays showed no significant changes in cognition, olfaction, or motor function in the PS19 mice compared to controls after chronic treatment with intranasal ERFR, even with acrolein. Conclusions Our studies suggest the intranasal administration of ERFR has higher concentrations in the brain than the blood in aged mice and has no serious systemic side effects with chronic use in PS19 mice.
Collapse
Affiliation(s)
- Robert Vera
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas Hong
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bailin Jiang
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Ge Liang
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maryellen F Eckenhoff
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Halle J Kincaid
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Veron Browne
- Eagle Pharmaceuticals, Inc., Woodcliff Lake, NJ, USA
| | | | | | | | - Sudhir Ranjan
- Eagle Pharmaceuticals, Inc., Woodcliff Lake, NJ, USA
| | - Gaozhong Zhu
- Eagle Pharmaceuticals, Inc., Woodcliff Lake, NJ, USA
| | - Huafeng Wei
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Griffioen G. Calcium Dyshomeostasis Drives Pathophysiology and Neuronal Demise in Age-Related Neurodegenerative Diseases. Int J Mol Sci 2023; 24:13243. [PMID: 37686048 PMCID: PMC10487569 DOI: 10.3390/ijms241713243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
This review postulates that age-related neurodegeneration entails inappropriate activation of intrinsic pathways to enable brain plasticity through deregulated calcium (Ca2+) signalling. Ca2+ in the cytosol comprises a versatile signal controlling neuronal cell physiology to accommodate adaptive structural and functional changes of neuronal networks (neuronal plasticity) and, as such, is essential for brain function. Although disease risk factors selectively affect different neuronal cell types across age-related neurodegenerative diseases (NDDs), these appear to have in common the ability to impair the specificity of the Ca2+ signal. As a result, non-specific Ca2+ signalling facilitates the development of intraneuronal pathophysiology shared by age-related NDDs, including mitochondrial dysfunction, elevated reactive oxygen species (ROS) levels, impaired proteostasis, and decreased axonal transport, leading to even more Ca2+ dyshomeostasis. These core pathophysiological processes and elevated cytosolic Ca2+ levels comprise a self-enforcing feedforward cycle inevitably spiralling toward high levels of cytosolic Ca2+. The resultant elevated cytosolic Ca2+ levels ultimately gear otherwise physiological effector pathways underlying plasticity toward neuronal demise. Ageing impacts mitochondrial function indiscriminately of the neuronal cell type and, therefore, contributes to the feedforward cycle of pathophysiology development seen in all age-related NDDs. From this perspective, therapeutic interventions to safely restore Ca2+ homeostasis would mitigate the excessive activation of neuronal destruction pathways and, therefore, are expected to have promising neuroprotective potential.
Collapse
|
8
|
Vera R, Hong N, Jiang B, Liang G, Eckenhoff MF, Kincaid HJ, Browne V, Chellaraj V, Gisewhite D, Greenberg M, Ranjan S, Zhu G, Wei H. Effects of intranasal dantrolene nanoparticles on brain concentration and behavior in PS19 tau transgenic mice. RESEARCH SQUARE 2023:rs.3.rs-2802620. [PMID: 37214948 PMCID: PMC10197765 DOI: 10.21203/rs.3.rs-2802620/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Repurposing dantrolene as a potential disease-modifying treatment for Alzheimer's disease has been shown to be effective in amyloid transgenic mouse models but has not been examined in a model of tauopathy. Objective The effects of a nanoparticle intranasal formulation, the Eagle Research Formulation of Ryanodex (ERFR), in young adult and aged wild type and PS19 tau transgenic mice was investigated. Methods The bioavailability of intranasal ERFR was measured in 2 months and 9-12 month old C57BL/6J male mice. Mice received a single intranasal dose of ERFR and, after 20 min, blood and brain samples were collected. Dantrolene concentrations in the plasma and brain were analyzed by High Performance Liquid Chromatography. Animal behavior was examined in PS19 tau transgenic mice, with/without acrolein treatment to exacerbate cognitive deficits. Behavioral tests included cognition (cued and contextual fear conditioning, y-maze), motor function (rotarod), and olfaction (buried food test). Results Dantrolene concentration in the blood and brain decreased with age, though the decrease was greater in the blood resulting in a higher brain to blood concentration ratio. The behavioral assays showed no significant changes in cognition, olfaction or motor function in the PS19 mice compared to controls after chronic ERFR treatment even with acrolein treatment. Conclusion Our studies suggest that while we did not find PS19 mice to be a reliable Alzheimer animal model to test the therapeutic efficacy of dantrolene, the results suggest a potential for ERFR to be an effective chronic therapy for Alzheimer's disease and that further studies are indicated.
Collapse
Affiliation(s)
- Robert Vera
- University of Pennsylvania, Perelman School of Medicine
| | - Nicholas Hong
- University of Pennsylvania, Perelman School of Medicine
| | | | - Grace Liang
- University of Pennsylvania, Perelman School of Medicine Maryellen
| | | | | | | | | | | | | | | | | | - Huafeng Wei
- University of Pennsylvania, Perelman School of Medicine
| |
Collapse
|
9
|
Sylvester CB, Amirkhosravi F, Bortoletto AS, West WJ, Connell JP, Grande-Allen KJ. Dantrolene inhibits lysophosphatidylcholine-induced valve interstitial cell calcific nodule formation via blockade of the ryanodine receptor. Front Cardiovasc Med 2023; 10:1112965. [PMID: 37063962 PMCID: PMC10100588 DOI: 10.3389/fcvm.2023.1112965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/09/2023] [Indexed: 04/01/2023] Open
Abstract
Calcific aortic valve disease (CAVD), a fibrocalcific thickening of the aortic valve leaflets causing obstruction of the left ventricular outflow tract, affects nearly 10 million people worldwide. For those who reach end-stage CAVD, the only treatment is highly invasive valve replacement. The development of pharmaceutical treatments that can slow or reverse the progression in those affected by CAVD would greatly advance the treatment of this disease. The principal cell type responsible for the fibrocalcific thickening of the valve leaflets in CAVD is valvular interstitial cells (VICs). The cellular processes mediating this calcification are complex, but calcium second messenger signaling, regulated in part by the ryanodine receptor (RyR), has been shown to play a role in a number of other fibrocalcific diseases. We sought to determine if the blockade of calcium signaling in VICs could ameliorate calcification in an in vitro model. We previously found that VICs express RyR isotype 3 and that its modulation could prevent VIC calcific nodule formation in vitro. We sought to expand upon these results by further investigating the effects of calcium signaling blockade on VIC gene expression and behavior using dantrolene, an FDA-approved pan-RyR inhibitor. We found that dantrolene also prevented calcific nodule formation in VICs due to cholesterol-derived lysophosphatidylcholine (LPC). This protective effect corresponded with decreases in intracellular calcium flux, apoptosis, and ACTA2 expression but not reactive oxygen species formation caused by LPC. Interestingly, dantrolene increased the expression of the regulator genes RUNX2 and SOX9, indicating complex gene regulation changes. Further investigation via RNA sequencing revealed that dantrolene induced several cytoprotective genes that are likely also responsible for its attenuation of LPC-induced calcification. These results suggest that RyR3 is a viable therapeutic target for the treatment of CAVD. Further studies of the effects of RyR3 inhibition on CAVD are warranted.
Collapse
Affiliation(s)
- Christopher B. Sylvester
- Department of Bioengineering, Rice University, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Farshad Amirkhosravi
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| | - Angelina S. Bortoletto
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
- Center for Cell and Gene, Stem Cells, and Regenerative Medicine Center, Translational and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, United States
| | - William J. West
- Department of Bioengineering, Rice University, Houston, TX, United States
- Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | | | - K. Jane Grande-Allen
- Department of Bioengineering, Rice University, Houston, TX, United States
- Correspondence: K. Jane Grande-Allen
| |
Collapse
|
10
|
Alkazmi L, Al-Kuraishy HM, Al-Gareeb AI, El-Bouseary MM, Ahmed EA, Batiha GES. Dantrolene and ryanodine receptors in COVID-19: The daunting task and neglected warden. Clin Exp Pharmacol Physiol 2023; 50:335-352. [PMID: 36732880 DOI: 10.1111/1440-1681.13756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Dantrolene (DTN) is a ryanodine receptor (RyR) antagonist that inhibits Ca2+ release from stores in the sarcoplasmic reticulum. DTN is mainly used in the management of malignant hyperthermia. RyRs are highly expressed in immune cells and are involved in different viral infections, including severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), because Ca2+ is necessary for viral replication, maturation and release. DTN can inhibit the proliferation of SARS-CoV-2, indicating its potential role in reducing entry and pathogenesis of SARS-CoV-2. DTN may increase clearance of SARS-CoV-2 and promote coronavirus disease 2019 (COVID-19) recovery by shortening the period of infection. DTN inhibits N-methyl-D-aspartate (NMDA) mediated platelets aggregations and thrombosis. Therefore, DTN may inhibit thrombosis and coagulopathy in COVID-19 through suppression of platelet NMDA receptors. Moreover, DTN has a neuroprotective effect against SARS-CoV-2 infection-induced brain injury through modulation of NMDA receptors, which are involved in excitotoxicity, neuronal injury and the development of neuropsychiatric disorders. In conclusion, DTN by inhibiting RyRs may attenuate inflammatory disorders in SARS-CoV-2 infection and associated cardio-pulmonary complications. Therefore, DNT could be a promising drug therapy against COVID-19. Preclinical and clinical studies are warranted in this regards.
Collapse
Affiliation(s)
- Luay Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Maisra M El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
11
|
Mazzo F, Butnaru I, Grubisha O, Ficulle E, Sanger H, Fitzgerald G, Pan F, Pasqui F, Murray T, Monn J, Li X, Hutton M, Bose S, Schiavo G, Sher E. Metabotropic Glutamate Receptors Modulate Exocytotic Tau Release and Propagation. J Pharmacol Exp Ther 2022; 383:117-128. [PMID: 36116796 DOI: 10.1124/jpet.122.001307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/05/2022] [Indexed: 01/07/2023] Open
Abstract
Using synaptosomes purified from the brains of two transgenic mouse models overexpressing mutated human tau (TgP301S and Tg4510) and brains of patients with sporadic Alzheimer's disease, we showed that aggregated and hyperphosphorylated tau was both present in purified synaptosomes and released in a calcium- and synaptosome-associated protein of 25 kDa (SNAP25)-dependent manner. In all mouse and human synaptosomal preparations, tau release was inhibited by the selective metabotropic glutamate receptor 2/3 (mGluR2/3) agonist LY379268, an effect prevented by the selective mGlu2/3 antagonist LY341495. LY379268 was also able to block pathologic tau propagation between primary neurons in an in vitro microfluidic cellular model. These novel results are transformational for our understanding of the molecular mechanisms mediating tau release and propagation at synaptic terminals in Alzheimer's disease and suggest that these processes could be inhibited therapeutically by the selective activation of presynaptic G protein-coupled receptors. SIGNIFICANCE STATEMENT: Pathological tau release and propagation are key neuropathological events underlying cognitive decline in Alzheimer's disease patients. This paper describes the role of regulated exocytosis, and the soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein SNAP25, in mediating tau release from rodent and human synaptosomes. This paper also shows that a selective mGluR2/3 agonist is highly effective in blocking tau release from synaptosomes and tau propagation between neurons, opening the way to the discovery of novel therapeutic approaches to this devastating disease.
Collapse
Affiliation(s)
- Francesca Mazzo
- Eli Lilly and Company Ltd, Neuroscience, Bracknell, United Kingdom (F.M., O.G., E.F., H.S., Fr.P., T.M., S.B., E.S.); UK Dementia Research Institute at UCL, University College London, London, United Kingdom (I.B., G.S.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (G.F., Fe.P., J.M., X.L., M.H.); and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom (G.S.)
| | - Ioana Butnaru
- Eli Lilly and Company Ltd, Neuroscience, Bracknell, United Kingdom (F.M., O.G., E.F., H.S., Fr.P., T.M., S.B., E.S.); UK Dementia Research Institute at UCL, University College London, London, United Kingdom (I.B., G.S.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (G.F., Fe.P., J.M., X.L., M.H.); and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom (G.S.)
| | - Olivera Grubisha
- Eli Lilly and Company Ltd, Neuroscience, Bracknell, United Kingdom (F.M., O.G., E.F., H.S., Fr.P., T.M., S.B., E.S.); UK Dementia Research Institute at UCL, University College London, London, United Kingdom (I.B., G.S.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (G.F., Fe.P., J.M., X.L., M.H.); and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom (G.S.)
| | - Elena Ficulle
- Eli Lilly and Company Ltd, Neuroscience, Bracknell, United Kingdom (F.M., O.G., E.F., H.S., Fr.P., T.M., S.B., E.S.); UK Dementia Research Institute at UCL, University College London, London, United Kingdom (I.B., G.S.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (G.F., Fe.P., J.M., X.L., M.H.); and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom (G.S.)
| | - Helen Sanger
- Eli Lilly and Company Ltd, Neuroscience, Bracknell, United Kingdom (F.M., O.G., E.F., H.S., Fr.P., T.M., S.B., E.S.); UK Dementia Research Institute at UCL, University College London, London, United Kingdom (I.B., G.S.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (G.F., Fe.P., J.M., X.L., M.H.); and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom (G.S.)
| | - Griffin Fitzgerald
- Eli Lilly and Company Ltd, Neuroscience, Bracknell, United Kingdom (F.M., O.G., E.F., H.S., Fr.P., T.M., S.B., E.S.); UK Dementia Research Institute at UCL, University College London, London, United Kingdom (I.B., G.S.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (G.F., Fe.P., J.M., X.L., M.H.); and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom (G.S.)
| | - Feng Pan
- Eli Lilly and Company Ltd, Neuroscience, Bracknell, United Kingdom (F.M., O.G., E.F., H.S., Fr.P., T.M., S.B., E.S.); UK Dementia Research Institute at UCL, University College London, London, United Kingdom (I.B., G.S.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (G.F., Fe.P., J.M., X.L., M.H.); and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom (G.S.)
| | - Francesca Pasqui
- Eli Lilly and Company Ltd, Neuroscience, Bracknell, United Kingdom (F.M., O.G., E.F., H.S., Fr.P., T.M., S.B., E.S.); UK Dementia Research Institute at UCL, University College London, London, United Kingdom (I.B., G.S.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (G.F., Fe.P., J.M., X.L., M.H.); and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom (G.S.)
| | - Tracey Murray
- Eli Lilly and Company Ltd, Neuroscience, Bracknell, United Kingdom (F.M., O.G., E.F., H.S., Fr.P., T.M., S.B., E.S.); UK Dementia Research Institute at UCL, University College London, London, United Kingdom (I.B., G.S.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (G.F., Fe.P., J.M., X.L., M.H.); and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom (G.S.)
| | - James Monn
- Eli Lilly and Company Ltd, Neuroscience, Bracknell, United Kingdom (F.M., O.G., E.F., H.S., Fr.P., T.M., S.B., E.S.); UK Dementia Research Institute at UCL, University College London, London, United Kingdom (I.B., G.S.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (G.F., Fe.P., J.M., X.L., M.H.); and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom (G.S.)
| | - Xia Li
- Eli Lilly and Company Ltd, Neuroscience, Bracknell, United Kingdom (F.M., O.G., E.F., H.S., Fr.P., T.M., S.B., E.S.); UK Dementia Research Institute at UCL, University College London, London, United Kingdom (I.B., G.S.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (G.F., Fe.P., J.M., X.L., M.H.); and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom (G.S.)
| | - Michael Hutton
- Eli Lilly and Company Ltd, Neuroscience, Bracknell, United Kingdom (F.M., O.G., E.F., H.S., Fr.P., T.M., S.B., E.S.); UK Dementia Research Institute at UCL, University College London, London, United Kingdom (I.B., G.S.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (G.F., Fe.P., J.M., X.L., M.H.); and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom (G.S.)
| | - Suchira Bose
- Eli Lilly and Company Ltd, Neuroscience, Bracknell, United Kingdom (F.M., O.G., E.F., H.S., Fr.P., T.M., S.B., E.S.); UK Dementia Research Institute at UCL, University College London, London, United Kingdom (I.B., G.S.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (G.F., Fe.P., J.M., X.L., M.H.); and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom (G.S.)
| | - Giampietro Schiavo
- Eli Lilly and Company Ltd, Neuroscience, Bracknell, United Kingdom (F.M., O.G., E.F., H.S., Fr.P., T.M., S.B., E.S.); UK Dementia Research Institute at UCL, University College London, London, United Kingdom (I.B., G.S.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (G.F., Fe.P., J.M., X.L., M.H.); and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom (G.S.)
| | - Emanuele Sher
- Eli Lilly and Company Ltd, Neuroscience, Bracknell, United Kingdom (F.M., O.G., E.F., H.S., Fr.P., T.M., S.B., E.S.); UK Dementia Research Institute at UCL, University College London, London, United Kingdom (I.B., G.S.); Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (G.F., Fe.P., J.M., X.L., M.H.); and Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom (G.S.)
| |
Collapse
|
12
|
Lin YK, Liang CS, Tsai CK, Tsai CL, Lee JT, Sung YF, Chou CH, Shang HS, Yang BH, Lin GY, Su MW, Yang FC. A Metallomic Approach to Assess Associations of Plasma Metal Levels with Amnestic Mild Cognitive Impairment and Alzheimer's Disease: An Exploratory Study. J Clin Med 2022; 11:jcm11133655. [PMID: 35806940 PMCID: PMC9267221 DOI: 10.3390/jcm11133655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) involves the abnormal activity of transition metals and metal ion dyshomeostasis; however, the potential of trace metal biomarkers in predicting cognitive decline has not been evaluated. This study aimed to assess the potential of 36 trace elements in predicting cognitive decline in patients with amnestic mild cognitive impairment (aMCI) or AD. Participants (9 controls, 23 aMCI due to AD, and 8 AD dementia) underwent comprehensive cognitive tests, including the Mini-Mental State Examination (MMSE) and trace metal analysis. The correlations between the plasma trace element levels and annual MMSE changes during follow-up were analyzed. We found that an increase in disease severity was linked to lower plasma levels of boron (B), bismuth (Bi), thorium (Th), and uranium (U) (adjusted p < 0.05). Higher baseline calcium levels (r = 0.50, p = 0.026) were associated with less annual cognitive decline; those of B (r = −0.70, p = 0.001), zirconium (r = −0.58, p = 0.007), and Th (r = −0.52, p = 0.020) with rapid annual cognitive decline in the aMCI group; and those of manganese (r = −0.91, p = 0.035) with rapid annual cognitive decline in the AD group. Overall, our exploratory study suggests that plasma metal levels have great potential as in vivo biomarkers for aMCI and AD. Larger sample studies are necessary to confirm these results.
Collapse
Affiliation(s)
- Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-K.L.); (C.-K.T.); (C.-L.T.); (J.-T.L.); (Y.-F.S.); (C.-H.C.); (G.-Y.L.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan;
| | - Chih-Sung Liang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei 112, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-K.L.); (C.-K.T.); (C.-L.T.); (J.-T.L.); (Y.-F.S.); (C.-H.C.); (G.-Y.L.)
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-K.L.); (C.-K.T.); (C.-L.T.); (J.-T.L.); (Y.-F.S.); (C.-H.C.); (G.-Y.L.)
| | - Jiunn-Tay Lee
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-K.L.); (C.-K.T.); (C.-L.T.); (J.-T.L.); (Y.-F.S.); (C.-H.C.); (G.-Y.L.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan;
| | - Yueh-Feng Sung
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-K.L.); (C.-K.T.); (C.-L.T.); (J.-T.L.); (Y.-F.S.); (C.-H.C.); (G.-Y.L.)
| | - Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-K.L.); (C.-K.T.); (C.-L.T.); (J.-T.L.); (Y.-F.S.); (C.-H.C.); (G.-Y.L.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan;
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-S.S.); (B.-H.Y.)
| | - Bing-Heng Yang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-S.S.); (B.-H.Y.)
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-K.L.); (C.-K.T.); (C.-L.T.); (J.-T.L.); (Y.-F.S.); (C.-H.C.); (G.-Y.L.)
- Department of Neurology, Songshan Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei 105, Taiwan
| | - Ming-Wei Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-K.L.); (C.-K.T.); (C.-L.T.); (J.-T.L.); (Y.-F.S.); (C.-H.C.); (G.-Y.L.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan;
- Correspondence: ; Tel.: +886-2-87923311; Fax: +886-87927174
| |
Collapse
|
13
|
Neuroimaging of Mouse Models of Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10020305. [PMID: 35203515 PMCID: PMC8869427 DOI: 10.3390/biomedicines10020305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/23/2022] Open
Abstract
Magnetic resonance imaging (MRI) and positron emission tomography (PET) have made great strides in the diagnosis and our understanding of Alzheimer’s Disease (AD). Despite the knowledge gained from human studies, mouse models have and continue to play an important role in deciphering the cellular and molecular evolution of AD. MRI and PET are now being increasingly used to investigate neuroimaging features in mouse models and provide the basis for rapid translation to the clinical setting. Here, we provide an overview of the human MRI and PET imaging landscape as a prelude to an in-depth review of preclinical imaging in mice. A broad range of mouse models recapitulate certain aspects of the human AD, but no single model simulates the human disease spectrum. We focused on the two of the most popular mouse models, the 3xTg-AD and the 5xFAD models, and we summarized all known published MRI and PET imaging data, including contrasting findings. The goal of this review is to provide the reader with broad framework to guide future studies in existing and future mouse models of AD. We also highlight aspects of MRI and PET imaging that could be improved to increase rigor and reproducibility in future imaging studies.
Collapse
|
14
|
Ovcjak A, Xiao A, Kim JS, Xu B, Szeto V, Turlova E, Abussaud A, Chen NH, Miller SP, Sun HS, Feng ZP. Ryanodine receptor inhibitor dantrolene reduces hypoxic-ischemic brain injury in neonatal mice. Exp Neurol 2022; 351:113985. [DOI: 10.1016/j.expneurol.2022.113985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/04/2022]
|
15
|
Liu Y, Yao J, Song Z, Guo W, Sun B, Wei J, Estillore JP, Back TG, Chen SRW. Limiting RyR2 open time prevents Alzheimer's disease-related deficits in the 3xTG-AD mouse model. J Neurosci Res 2021; 99:2906-2921. [PMID: 34352124 DOI: 10.1002/jnr.24936] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/11/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022]
Abstract
Increasing evidence suggests that Alzheimer's disease (AD) progression is driven by a vicious cycle of soluble β-amyloid (Aβ)-induced neuronal hyperactivity. Thus, breaking this vicious cycle by suppressing neuronal hyperactivity may represent a logical approach to stopping AD progression. In support of this, we have recently shown that genetically and pharmacologically limiting ryanodine receptor 2 (RyR2) open time prevented neuronal hyperactivity, memory impairment, dendritic spine loss, and neuronal cell death in a rapid, early onset AD mouse model (5xFAD). Here, we assessed the impact of limiting RyR2 open time on AD-related deficits in a relatively late occurring, slow developing AD mouse model (3xTG-AD) that bears more resemblance (compared to 5xFAD) to that of human AD. Using behavioral tests, long-term potentiation recordings, and Golgi and Nissl staining, we found that the RyR2-E4872Q mutation, which markedly shortens the open duration of the RyR2 channel, prevented learning and memory impairment, defective long-term potentiation, dendritic spine loss, and neuronal cell death in the 3xTG-AD mice. Furthermore, pharmacologically shortening the RyR2 open time with R-carvedilol rescued these AD-related deficits in 3xTG mice. Therefore, limiting RyR2 open time may offer a promising, neuronal hyperactivity-targeted anti-AD strategy.
Collapse
Affiliation(s)
- Yajing Liu
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada.,Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinjing Yao
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Zhenpeng Song
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Wenting Guo
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Bo Sun
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada.,Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jinhong Wei
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - John Paul Estillore
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Thomas G Back
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Shi Y, Zhang L, Gao X, Zhang J, Ben Abou M, Liang G, Meng Q, Hepner A, Eckenhoff MF, Wei H. Intranasal Dantrolene as a Disease-Modifying Drug in Alzheimer 5XFAD Mice. J Alzheimers Dis 2021; 76:1375-1389. [PMID: 32623395 PMCID: PMC7505009 DOI: 10.3233/jad-200227] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background/Objective: This study compares the effectiveness and safety of intranasal versus subcutaneous administration of dantrolene in 5XFAD Alzheimer’s disease (AD) mice. Methods: 5XFAD and wild type (WT) B6SJLF1/J mice were treated with intranasal or subcutaneous dantrolene (5 mg/kg, 3×/wk), or vehicle. The early (ETG) and late (LTG) treatment groups began treatment at 2 or 6 months of age, respectively, and both treatment groups finished at12 months of age. Behavior was assessed for olfaction (buried food test), motor function (rotarod), and cognition (fear conditioning, Morris water maze). Liver histology (H & E staining) and function, synaptic proteins, and brain amyloid immunohistochemistry were examined. Plasma and brain dantrolene concentrations were determined in a separate cohort after intranasal or subcutaneous administration. Results: Intranasal dantrolene achieved higher brain and lower plasma concentrations than subcutaneous administration. Dantrolene administration at both approaches significantly improved hippocampal-dependent and -independent memory in the ETG, whereas only intranasal dantrolene improved cognition in the LTG. Dantrolene treatment had no significant change in the amyloid burden or synaptic proteins and no significant side effects on mortality, olfaction, motor, or liver functions in 5XFAD mice. Intranasal dantrolene treatment significantly ameliorated memory loss when it was started either before or after the onset of AD symptoms in 5XFAD mice. Conclusions: The long-term intranasal administration of dantrolene had therapeutic effects on memory compared to the subcutaneous approach even started after onset of AD symptoms, suggesting use as a disease-modifying drug, without significant effects on amyloid plaques, side effects, or mortality.
Collapse
Affiliation(s)
- Yun Shi
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Anesthesiology, Children's Hospital of Fudan University, Shanghai, China
| | - Lei Zhang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Anesthesiology, People's Hospital of Beijing Daxing District, Beijing, China
| | - Xue Gao
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Matan Ben Abou
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ge Liang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qingcheng Meng
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adrian Hepner
- Eagle Pharmaceuticals, Inc., Woodcliff Lake, NJ, USA
| | - Maryellen F Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Yao J, Sun B, Institoris A, Zhan X, Guo W, Song Z, Liu Y, Hiess F, Boyce AKJ, Ni M, Wang R, Ter Keurs H, Back TG, Fill M, Thompson RJ, Turner RW, Gordon GR, Chen SRW. Limiting RyR2 Open Time Prevents Alzheimer's Disease-Related Neuronal Hyperactivity and Memory Loss but Not β-Amyloid Accumulation. Cell Rep 2021; 32:108169. [PMID: 32966798 PMCID: PMC7532726 DOI: 10.1016/j.celrep.2020.108169] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/23/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
Neuronal hyperactivity is an early primary dysfunction in Alzheimer’s disease (AD) in humans and animal models, but effective neuronal hyperactivity-directed anti-AD therapeutic agents are lacking. Here we define a previously unknown mode of ryanodine receptor 2 (RyR2) control of neuronal hyperactivity and AD progression. We show that a single RyR2 point mutation, E4872Q, which reduces RyR2 open time, prevents hyperexcitability, hyperactivity, memory impairment, neuronal cell death, and dendritic spine loss in a severe early-onset AD mouse model (5xFAD). The RyR2-E4872Q mutation upregulates hippocampal CA1-pyramidal cell A-type K+ current, a well-known neuronal excitability control that is downregulated in AD. Pharmacologically limiting RyR2 open time with the R-carvedilol enantiomer (but not racemic carvedilol) prevents and rescues neuronal hyperactivity, memory impairment, and neuron loss even in late stages of AD. These AD-related deficits are prevented even with continued β-amyloid accumulation. Thus, limiting RyR2 open time may be a hyperactivity-directed, non-β-amyloid-targeted anti-AD strategy. Yao et al. show that genetically or pharmacologically limiting the open duration of ryanodine receptor 2 upregulates the A-type potassium current and prevents neuronal hyperexcitability and hyperactivity, memory impairment, neuronal cell death, and dendritic spine loss in a severe early-onset Alzheimer’s disease mouse model, even with continued accumulation of β-amyloid.
Collapse
Affiliation(s)
- Jinjing Yao
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Bo Sun
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; Medical School, Kunming University of Science and Technology, Kunming 650504, China
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Xiaoqin Zhan
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Wenting Guo
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Zhenpeng Song
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Yajing Liu
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Florian Hiess
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Andrew K J Boyce
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mingke Ni
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ruiwu Wang
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Henk Ter Keurs
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Thomas G Back
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Michael Fill
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Roger J Thompson
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ray W Turner
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Grant R Gordon
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
18
|
Enhancing calmodulin binding to ryanodine receptor is crucial to limit neuronal cell loss in Alzheimer disease. Sci Rep 2021; 11:7289. [PMID: 33790404 PMCID: PMC8012710 DOI: 10.1038/s41598-021-86822-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive neuronal cell loss. Recently, dysregulation of intracellular Ca2+ homeostasis has been suggested as a common proximal cause of neural dysfunction in AD. Here, we investigated (1) the pathogenic role of destabilization of ryanodine receptor (RyR2) in endoplasmic reticulum (ER) upon development of AD phenotypes in AppNL-G-F mice, which harbor three familial AD mutations (Swedish, Beyreuther/Iberian, and Arctic), and (2) the therapeutic effect of enhanced calmodulin (CaM) binding to RyR2. In the neuronal cells from AppNL-G-F mice, CaM dissociation from RyR2 was associated with AD-related phenotypes, i.e. Aβ accumulation, TAU phosphorylation, ER stress, neuronal cell loss, and cognitive dysfunction. Surprisingly, either genetic (by V3599K substitution in RyR2) or pharmacological (by dantrolene) enhancement of CaM binding to RyR2 reversed almost completely the aforementioned AD-related phenotypes, except for Aβ accumulation. Thus, destabilization of RyR2 due to CaM dissociation is most likely an early and fundamental pathogenic mechanism involved in the development of AD. The discovery that neuronal cell loss can be fully prevented simply by stabilizing RyR2 sheds new light on the treatment of AD.
Collapse
|
19
|
Plascencia-Villa G, Perry G. Preventive and Therapeutic Strategies in Alzheimer's Disease: Focus on Oxidative Stress, Redox Metals, and Ferroptosis. Antioxid Redox Signal 2021; 34:591-610. [PMID: 32486897 PMCID: PMC8098758 DOI: 10.1089/ars.2020.8134] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Significance: Alzheimer's disease (AD) is the most common cause of dementia in the elderly. AD is currently ranked as the sixth leading cause of death, but some sources put it as third, after heart disease and cancer. Currently, there are no effective therapeutic approaches to treat or slow the progression of chronic neurodegeneration. In addition to the accumulation of amyloid-β (Aβ) and tau, AD patients show progressive neuronal loss and neuronal death, also high oxidative stress that correlates with abnormal levels or overload of brain metals. Recent Advances: Several promising compounds targeting oxidative stress, redox metals, and neuronal death are under preclinical or clinical evaluation as an alternative or complementary therapeutic strategy in mild cognitive impairment and AD. Here, we present a general analysis and overview, discuss limitations, and suggest potential directions for these treatments for AD and related dementia. Critical Issues: Most of the disease-modifying therapeutic strategies for AD under evaluation in clinical trials have focused on components of the amyloid cascade, including antibodies to reduce levels of Aβ and tau, as well as inhibitors of secretases. Unfortunately, several of the amyloid-focused therapeutics have failed the clinical outcomes or presented side effects, and numerous clinical trials of compounds have been halted, reducing realistic options for the development of effective AD treatments. Future Directions: The focus of research on AD and related dementias is shifting to alternative or innovative areas, such as ApoE, lipids, synapses, oxidative stress, cell death mechanisms, neuroimmunology, and neuroinflammation, as well as brain metabolism and bioenergetics.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| | - George Perry
- Department of Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| |
Collapse
|
20
|
Wang K, Zhang W. Mitochondria-associated endoplasmic reticulum membranes: At the crossroad between familiar and sporadic Alzheimer's disease. Synapse 2021; 75:e22196. [PMID: 33559220 DOI: 10.1002/syn.22196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and is incurable. The widely accepted amyloid hypothesis failed to produce efficient clinical therapies. In contrast, there is increasing evidence suggesting that the disruption of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) is a critical upstream event of AD pathogenesis. Here, we review MAM's role in some AD symptoms such as plaque formation, tau hyperphosphorylation, synaptic loss, aberrant lipid synthesis, disturbed calcium homeostasis, and abnormal autophagy. At last, we proposed that MAM plays a central role in familial AD (FAD) and sporadic AD (SAD).
Collapse
Affiliation(s)
- Kangrun Wang
- Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wenling Zhang
- The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
21
|
Wang ZJ, Zhao F, Wang CF, Zhang XM, Xiao Y, Zhou F, Wu MN, Zhang J, Qi JS, Yang W. Xestospongin C, a Reversible IP3 Receptor Antagonist, Alleviates the Cognitive and Pathological Impairments in APP/PS1 Mice of Alzheimer's Disease. J Alzheimers Dis 2020; 72:1217-1231. [PMID: 31683484 DOI: 10.3233/jad-190796] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Exaggerated Ca2+ signaling might be one of primary causes of neural dysfunction in Alzheimer's disease (AD). And the intracellular Ca2+ overload has been closely associated with amyloid-β (Aβ)-induced endoplasmic reticulum (ER) stress and memory impairments in AD. Here we showed for the first time the neuroprotective effects of Xestospongin C (XeC), a reversible IP3 receptor antagonist, on the cognitive behaviors and pathology of APP/PS1 AD mice. Male APP/PS1-AD mice (n = 20) were injected intracerebroventricularly with XeC (3μmol) via Alzet osmotic pumps for four weeks, followed by cognition tests, Aβ plaque examination, and ER stress-related protein measurement. The results showed that XeC pretreatment significantly improved the cognitive behavior of APP/PS1-AD mice, raising the spontaneous alteration accuracy in Y maze, decreasing the escape latency and increasing the target quadrant swimming time in Morris water maze; XeC pretreatment also reduced the number of Aβ plaques and the overexpression of ER stress proteins 78 kDa glucose-regulated protein (GRP-78), caspase-12, and CAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) in the hippocampus of APP/PS1 mice. In addition, in vitro experiments showed that XeC effectively ameliorated Aβ1 - 42-induced early neuronal apoptosis and intracellular Ca2+ overload in the primary hippocampal neurons. Taken together, IP3R-mediated Ca2+ disorder plays a key role in the cognitive deficits and pathological damages in AD mice. By targeting the IP3 R, XeC might be considered as a novel therapeutic strategy in AD.
Collapse
Affiliation(s)
- Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Fang Zhao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Chen-Fang Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Xiu-Min Zhang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Yi Xiao
- Department of Cardiology, the Third of Kunming People's Hospital, Yunnan, China
| | - Fang Zhou
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Jun Zhang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Jin-Shun Qi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Wei Yang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| |
Collapse
|
22
|
Therapeutic Strategies to Target Calcium Dysregulation in Alzheimer's Disease. Cells 2020; 9:cells9112513. [PMID: 33233678 PMCID: PMC7699688 DOI: 10.3390/cells9112513] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, affecting millions of people worldwide. Unfortunately, none of the current treatments are effective at improving cognitive function in AD patients and, therefore, there is an urgent need for the development of new therapies that target the early cause(s) of AD. Intracellular calcium (Ca2+) regulation is critical for proper cellular and neuronal function. It has been suggested that Ca2+ dyshomeostasis is an upstream factor of many neurodegenerative diseases, including AD. For this reason, chemical agents or small molecules aimed at targeting or correcting this Ca2+ dysregulation might serve as therapeutic strategies to prevent the development of AD. Moreover, neurons are not alone in exhibiting Ca2+ dyshomeostasis, since Ca2+ disruption is observed in other cell types in the brain in AD. In this review, we examine the distinct Ca2+ channels and compartments involved in the disease mechanisms that could be potential targets in AD.
Collapse
|
23
|
Sun L, Wei H. Ryanodine Receptors: A Potential Treatment Target in Various Neurodegenerative Disease. Cell Mol Neurobiol 2020; 41:1613-1624. [PMID: 32833122 DOI: 10.1007/s10571-020-00936-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
Progressive neuronal demise is a key contributor to the key pathogenic event implicated in many different neurodegenerative disorders (NDDs). There are several therapeutic strategies available; however, none of them are particularly effective. Targeted neuroprotective therapy is one such therapy, which seems a compelling option, yet remains challenging due to the internal heterogeneity of the mechanisms underlying various NDDs. An alternative method to treat NDDs is to exploit common modalities involving molecularly distinct subtypes and thus develop specialized drugs with broad-spectrum characteristics. There is mounting evidence which supports for the theory that dysfunctional ryanodine receptors (RyRs) disrupt intracellular Ca2+ homeostasis, contributing to NDDs significantly. This review aims to provide direct and indirect evidence on the intersection of NDDs and RyRs malfunction, and to shed light on novel strategies to treat RyRs-mediated disease, modifying pharmacological therapies such as the potential therapeutic role of dantrolene, a RyRs antagonist.
Collapse
Affiliation(s)
- Liang Sun
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA
- Department of Anesthesiology, Peking University People's Hospital, Beijing, 100044, China
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Wang Y, Liang G, Liang S, Mund R, Shi Y, Wei H. Dantrolene Ameliorates Impaired Neurogenesis and Synaptogenesis in Induced Pluripotent Stem Cell Lines Derived from Patients with Alzheimer's Disease. Anesthesiology 2020; 132:1062-1079. [PMID: 32149777 PMCID: PMC7160009 DOI: 10.1097/aln.0000000000003224] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Overactivation of ryanodine receptors and the resulting impaired calcium homeostasis contribute to Alzheimer's disease-related pathophysiology. This study hypothesized that exposing neuronal progenitors derived from induced pluripotent stems cells of patients with Alzheimer's disease to dantrolene will increase survival, proliferation, neurogenesis, and synaptogenesis. METHODS Induced pluripotent stem cells obtained from skin fibroblast of healthy subjects and patients with familial and sporadic Alzheimer's disease were used. Biochemical and immunohistochemical methods were applied to determine the effects of dantrolene on the viability, proliferation, differentiation, and calcium dynamics of these cells. RESULTS Dantrolene promoted cell viability and proliferation in these two cell lines. Compared with the control, differentiation into basal forebrain cholinergic neurons significantly decreased by 10.7% (32.9 ± 3.6% vs. 22.2 ± 2.6%, N = 5, P = 0.004) and 9.2% (32.9 ± 3.6% vs. 23.7 ± 3.1%, N = 5, P = 0.017) in cell lines from sporadic and familial Alzheimer's patients, respectively, which were abolished by dantrolene. Synapse density was significantly decreased in cortical neurons generated from stem cells of sporadic Alzheimer's disease by 58.2% (237.0 ± 28.4 vs. 99.0 ± 16.6 arbitrary units, N = 4, P = 0.001) or familial Alzheimer's disease by 52.3% (237.0 ± 28.4 vs.113.0 ± 34.9 vs. arbitrary units, N = 5, P = 0.001), which was inhibited by dantrolene in the familial cell line. Compared with the control, adenosine triphosphate (30 µM) significantly increased higher peak elevation of cytosolic calcium concentrations in the cell line from sporadic Alzheimer's patients (84.1 ± 27.0% vs. 140.4 ± 40.2%, N = 5, P = 0.049), which was abolished by the pretreatment of dantrolene. Dantrolene inhibited the decrease of lysosomal vacuolar-type H-ATPase and the impairment of autophagy activity in these two cell lines from Alzheimer's disease patients. CONCLUSIONS Dantrolene ameliorated the impairment of neurogenesis and synaptogenesis, in association with restoring intracellular Ca homeostasis and physiologic autophagy, cell survival, and proliferation in induced pluripotent stem cells and their derived neurons from sporadic and familial Alzheimer's disease patients.
Collapse
Affiliation(s)
- Yong Wang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ge Liang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuqing Liang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology, the First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Rachel Mund
- Undergraduate Student, College of Art and Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yun Shi
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology, Children’s hospital of Fudan University, Shanghai, 201102, China
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Güell-Bosch J, Lope-Piedrafita S, Esquerda-Canals G, Montoliu-Gaya L, Villegas S. Progression of Alzheimer's disease and effect of scFv-h3D6 immunotherapy in the 3xTg-AD mouse model: An in vivo longitudinal study using Magnetic Resonance Imaging and Spectroscopy. NMR IN BIOMEDICINE 2020; 33:e4263. [PMID: 32067292 DOI: 10.1002/nbm.4263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/19/2019] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is an incurable disease that affects most of the 47 million people estimated as living with dementia worldwide. The main histopathological hallmarks of AD are extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein. In recent years, Aβ-immunotherapy has been revealed as a potential tool in AD treatment. One strategy consists of using single-chain variable fragments (scFvs), which avoids the fragment crystallizable (Fc) effects that are supposed to trigger a microglial response, leading to microhemorrhages and vasogenic edemas, as evidenced in clinical trials with bapineuzumab. The scFv-h3D6 generated by our research group derives from this monoclonal antibody, which targets the N-terminal of the Aβ peptide and recognizes monomers, oligomers and fibrils. In this study, 3xTg-AD mice were intraperitoneally and monthly treated with 100 μg of scFv-h3D6 (a dose of ~3.3 mg/kg) or PBS, from 5 to 12 months of age (-mo), the age at which the mice were sacrificed and samples collected for histological and biochemical analyses. During treatments, four monitoring sessions using magnetic resonance imaging and spectroscopy (MRI/MRS) were performed at 5, 7, 9, and 12 months of age. MRI/MRS techniques are widely used in both human and mouse research, allowing to draw an in vivo picture of concrete aspects of the pathology in a non-invasive manner and allowing to monitor its development across time. Compared with the genetic background, 3xTg-AD mice presented a smaller volume in almost all cerebral regions and ages examined, an increase in both the intra and extracellular Aβ1-42 at 12-mo, and an inflammation process at this age, in both the hippocampus (IL-6 and mIns) and cortex (IL-6). In addition, treatment with scFv-h3D6 partially recovered the values in brain volume, and Aβ, IL-6, and mIns concentrations, among others, encouraging further studies with this antibody fragment.
Collapse
Affiliation(s)
- J Güell-Bosch
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - S Lope-Piedrafita
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - G Esquerda-Canals
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - L Montoliu-Gaya
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - S Villegas
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
26
|
Wang J, Shi Y, Yu S, Wang Y, Meng Q, Liang G, Eckenhoff MF, Wei H. Intranasal administration of dantrolene increased brain concentration and duration. PLoS One 2020; 15:e0229156. [PMID: 32160210 PMCID: PMC7065741 DOI: 10.1371/journal.pone.0229156] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
Dantrolene has been demonstrated to be neuroprotective for multiple neurodegenerative diseases. However, dantrolene's limited penetration into the CNS hampers its effectiveness as a neuroprotective agent. Here, we studied whether the intranasal administration of dantrolene provided better penetration into the brain than the commonly used oral approach. C57BL/6 mice, aged 2-4 months, received a single dose of either intranasal or oral dantrolene (5mg/kg). Inhibition of dantrolene clearance from the brain was examined by co-administration with P-gp/BCRP inhibitors, nimodipine or elacridar. The concentration of dantrolene in the brain and plasma was measured at 10, 20, 30, 50, 70, 120, 150 and 180 minutes after administration. Separate cohorts of mice were given intranasal dantrolene (5mg/kg) or vehicle, 3 times/ week, for either 3 weeks or 4 months, to examine potential adverse side effects on olfaction and motor coordination, respectively. We found that Dantrolene concentrations were sustained in the brain after intranasal administration for 180 min, while concentrations fell to zero at 120 min for oral administration. Chronic use of intranasal dantrolene did not impair olfaction or motor function in these mice. Blood brain barrier pump inhibitors did not further increase dantrolene peak concentrations in the brain. Our results suggested that Intranasal administration of dantrolene is an effective route to increase its concentration and duration in the brain compared to the oral approach, without any obvious side effects on olfaction or motor function.
Collapse
Affiliation(s)
- Jintao Wang
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Shi
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
- Department of Anesthesiology, Children’s Hospital of Fudan University, Shanghai, China
| | - Shuchun Yu
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
- Department of Anesthesiology, The Second Affiliated Hospital to Nanchang University, Nanchang, Jiangxi, China
| | - Yan Wang
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qingcheng Meng
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Ge Liang
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Maryellen F. Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| |
Collapse
|
27
|
Todorova VK, Siegel ER, Kaufmann Y, Kumarapeli A, Owen A, Wei JY, Makhoul I, Klimberg VS. Dantrolene Attenuates Cardiotoxicity of Doxorubicin Without Reducing its Antitumor Efficacy in a Breast Cancer Model. Transl Oncol 2020; 13:471-480. [PMID: 31918212 PMCID: PMC7031101 DOI: 10.1016/j.tranon.2019.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of calcium homeostasis is a major mechanism of doxorubicin (DOX)-induced cardiotoxicity. Treatment with DOX causes activation of sarcoplasmic reticulum (SR) ryanodine receptor (RYR) and rapid release of Ca2+ in the cytoplasm resulting in depression of myocardial function. The aim of this study was to examine the effect of dantrolene (DNT) a RYR blocker on both the cardiotoxicity and antitumor activity of DOX in a rat model of breast cancer. Female F344 rats with implanted MAT B III breast cancer cells were randomized to receive intraperitoneal DOX twice per week (12 mg/kg total dose), 5 mg/kg/day oral DNT or a combination of DOX + DNT for 3 weeks. Echocardiography and blood troponin I levels were used to measure myocardial injury. Hearts and tumors were evaluated for histopathological alterations. Blood glutathione was assessed as a measure of oxidative stress. The results showed that DNT improved DOX-induced alterations in the echocardiographic parameters by 50%. Histopathologic analysis of hearts showed reduced DOX induced cardiotoxicity in the group treated with DOX + DNT as shown by reduced interstitial edema, cytoplasmic vacuolization, and myofibrillar disruption, compared with DOX-only–treated hearts. Rats treated with DNT lost less body weight, had higher blood GSH levels and lower troponin I levels than DOX-treated rats. These data indicate that DNT is able to provide protection against DOX cardiotoxicity without reducing its antitumor activity. Further studies are needed to determine the optimal dosing of DNT and DOX in a tumor-bearing host.
Collapse
Affiliation(s)
- Valentina K Todorova
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, USA.
| | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Yihong Kaufmann
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Asangi Kumarapeli
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Aaron Owen
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Jeanne Y Wei
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Issam Makhoul
- Division of Medical Oncology, University of Arkansas for Medical Sciences, Little Rock, USA
| | - V Suzanne Klimberg
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, USA
| |
Collapse
|
28
|
Abou MB, Sun L, Wei H. Approaches to Optimizing Dantrolene Neuroprotection for the Treatment of Alzheimer's Disease. Curr Alzheimer Res 2020; 17:324-328. [PMID: 32442084 PMCID: PMC7705762 DOI: 10.2174/1567205017666200522204722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 02/24/2020] [Accepted: 05/11/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD), a neurodegenerative disorder with high incidence and mortality, is leading its way to the top of the list of the deadliest diseases without an effective disease-modifying drug. Ca2+ dysregulation, specifically abnormal release of Ca2+ via over activated ryanodine receptor (RyR), has been increasingly considered as an alternative upstream mechanism in AD pathology. Consequently, dantrolene, a RyR antagonist and FDA approved drug to treat malignant hyperthermia and chronic muscle spasms, has been shown to ameliorate memory loss in AD transgenic mice. However, the inefficiency of dantrolene to pass the Blood Brain Barrier (BBB) and penetrate the Central Nervous System needs to be resolved, considering its dose-dependent neuroprotection in AD and other neurodegenerative diseases. In this mini-review, we will discuss the current status of dantrolene neuroprotection in AD treatment and a strategy to maximize its beneficial effects, such as intranasal administration of dantrolene.
Collapse
Affiliation(s)
- Matan B. Abou
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liang Sun
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology, Peking University People’s Hospital, Beijing 100044, China
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Escrig A, Canal C, Sanchis P, Fernández-Gayol O, Montilla A, Comes G, Molinero A, Giralt M, Giménez-Llort L, Becker-Pauly C, Rose-John S, Hidalgo J. IL-6 trans-signaling in the brain influences the behavioral and physio-pathological phenotype of the Tg2576 and 3xTgAD mouse models of Alzheimer's disease. Brain Behav Immun 2019; 82:145-159. [PMID: 31401302 DOI: 10.1016/j.bbi.2019.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/09/2019] [Accepted: 08/07/2019] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most commonly diagnosed dementia but its underlying pathological mechanisms still unclear. Neuroinflammation and secretion of cytokines such as interleukin-6 (IL-6) accompany the main hallmarks of the disease: amyloid plaques and neurofibrillary tangles. In this study, we analyzed the role of IL-6 trans-signaling in two mouse models of AD, Tg2576 and 3xTg-AD mice. The inhibition of IL-6 trans-signaling partially rescued the AD-induced mortality in females of both models. Before amyloid plaques deposition, it reversed AD-induced changes in exploration and anxiety (but did not affect locomotion) in Tg2576 female mice. However, after plaque deposition the only behavioral trait affected by the inhibition of IL-6 trans-signaling was locomotion. Results in the Morris water maze suggest that cognitive flexibility was reduced by the blocking of the IL-6 trans-signaling in young and old Tg2576 female mice. The inhibition of IL-6 trans-signaling also decreased amyloid plaque burden in cortex and hippocampus, and Aβ40 and Aβ42 levels in the cortex, of Tg2576 female mice. The aforementioned changes might be correlated with changes in blood vessels and matrix structure and organization rather than changes in neuroinflammation. 3xTgAD mice showed a very mild phenotype regarding amyloid cascade, but results were in accordance with those of Tg2576 mice. These results strongly suggest that the inhibition of the IL-6 trans-signaling could represent a powerful therapeutic target in AD.
Collapse
Affiliation(s)
- Anna Escrig
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Carla Canal
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Paula Sanchis
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Olaya Fernández-Gayol
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Alejandro Montilla
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Gemma Comes
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Amalia Molinero
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Mercedes Giralt
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Lydia Giménez-Llort
- Institute of Neurosciences and Department of Psychiatry and Forensic Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193, Spain
| | - Christoph Becker-Pauly
- Department of Biochemistry, Medical Faculty, Christian-Albrechts-Universität zu Kiel, 24098, Germany
| | - Stefan Rose-John
- Department of Biochemistry, Medical Faculty, Christian-Albrechts-Universität zu Kiel, 24098, Germany
| | - Juan Hidalgo
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain.
| |
Collapse
|
30
|
Adlimoghaddam A, Snow WM, Stortz G, Perez C, Djordjevic J, Goertzen AL, Ko JH, Albensi BC. Regional hypometabolism in the 3xTg mouse model of Alzheimer's disease. Neurobiol Dis 2019; 127:264-277. [PMID: 30878533 DOI: 10.1016/j.nbd.2019.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/22/2019] [Accepted: 03/12/2019] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive age-related neurodegenerative disease. Although neurofibrillary tangles and amyloid beta are classic hallmarks of AD, the earliest deficits in AD progression may be caused by unknown factors. One suspected factor has to do with brain energy metabolism. To investigate this factor, brain metabolic activity in 3xTg-AD mice and age-matched controls were measured with FDG-PET. Significant hypometabolic changes (p < .01) in brain metabolism were detected in the cortical piriform and insular regions of AD brains relative to controls. These regions are associated with olfaction, which is a potential clinical marker for AD progression as well as neurogenesis. The activity of the terminal component of the mitochondrial respiratory chain (complex IV) and the expression of complex I-V were significantly decreased (p < .05), suggesting that impaired metabolic activity coupled with impaired oxidative phosphorylation leads to decreased mitochondrial bioenergetics and subsequent Neurodegeneration. Although there is an association between neuroinflammatory pathological markers (microglial) and hypometabolism in AD, there was no association found between neuropathological (Aβ, tau, and astrocytes) and functional changes in AD sensitive brain regions, also suggesting that brain hypometabolism occurs prior to AD pathology. Therefore, targeting metabolic mechanisms in cortical piriform and insular regions at early stages may be a promising approach for preventing, slowing, and/or blocking the onset of AD and preserving neurogenesis.
Collapse
Affiliation(s)
- Aida Adlimoghaddam
- St. Boniface Hospital Research, Canada; Dept. of Pharmacology & Therapeutics, University of Manitoba, Canada.
| | | | | | - Claudia Perez
- St. Boniface Hospital Research, Canada; Dept. of Pharmacology & Therapeutics, University of Manitoba, Canada
| | - Jelena Djordjevic
- St. Boniface Hospital Research, Canada; Dept. of Pharmacology & Therapeutics, University of Manitoba, Canada
| | | | - Ji Hyun Ko
- Dept. of Human Anatomy and Cell Science, University of Manitoba, Canada; Health Sciences Centre, Canada
| | - Benedict C Albensi
- St. Boniface Hospital Research, Canada; Dept. of Pharmacology & Therapeutics, University of Manitoba, Canada.
| |
Collapse
|
31
|
Synaptopodin Deficiency Ameliorates Symptoms in the 3xTg Mouse Model of Alzheimer's Disease. J Neurosci 2019; 39:3983-3992. [PMID: 30872324 DOI: 10.1523/jneurosci.2920-18.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/18/2019] [Accepted: 02/18/2019] [Indexed: 11/21/2022] Open
Abstract
Disruption in calcium homeostasis is linked to several pathologies and is suggested to play a pivotal role in the cascade of events leading to Alzheimer's disease (AD). Synaptopodin (SP) residing in dendritic spines has been associated with ryanodine receptor (RyR), such that spines lacking SP release less calcium from stores. In this work, we mated SPKO with 3xTg mice (3xTg/SPKO) to test the effect of SP deficiency in the AD mouse. We found that 6-month-old male 3xTg/SPKO mice restored normal spatial learning in the Barns maze, LTP in hippocampal slices, and expression levels of RyR in the hippocampus that were altered in the 3xTg mice. In addition, there was a marked reduction in 3xTg-associated phosphorylated tau, amyloid β plaques, and activated microglia in 3xTg/SPKO male and female mice. These experiments indicate that a reduction in the expression of SP ameliorates AD-associated phenotype in 3xTg mice.SIGNIFICANCE STATEMENT This study strengthens the proposed role of calcium stores in the development of AD-associated phenotype in the 3xTg mouse model, in that a genetic reduction of the functioning of ryanodine receptors using synaptopodin-knock-out mice ameliorates AD symptoms at the behavioral, electrophysiological, and morphological levels of analysis.
Collapse
|
32
|
Wang X, Zheng W. Ca 2+ homeostasis dysregulation in Alzheimer's disease: a focus on plasma membrane and cell organelles. FASEB J 2019; 33:6697-6712. [PMID: 30848934 DOI: 10.1096/fj.201801751r] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence indicates that Ca2+ is a vital factor in modulating the pathogenesis of Alzheimer's disease (AD). In healthy neurons, Ca2+ concentration is balanced to maintain a lower level in the cytosol than in the extracellular space or certain intracellular compartments such as endoplasmic reticulum (ER) and the lysosome, whereas this homeostasis is broken in AD. On the plasma membrane, the AD hallmarks amyloid-β (Aβ) and tau interact with ligand-gated or voltage-gated Ca2+-influx channels and inhibit the Ca2+-efflux ATPase or exchangers, leading to an elevated intracellular Ca2+ level and disrupted Ca2+ signal. In the ER, the disabled presenilin "Ca2+ leak" function and the direct implications of Aβ and presenilin mutants contribute to Ca2+-signal disorder. The enhanced ryanodine receptor (RyR)-mediated and inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release from the ER aggravates cytosolic Ca2+ disorder and triggers apoptosis; the down-regulated ER Ca2+ sensor, stromal interaction molecule (STIM), alleviates store-operated Ca2+ entry in plasma membrane, leading to spine loss. The increased transfer of Ca2+ from ER to mitochondria through mitochondria-associated ER membrane (MAM) causes Ca2+ overload in the mitochondrial matrix and consequently opens the cellular damage-related channel, mitochondrial permeability transition pore (mPTP). In this review, we discuss the effects of Aβ, tau and presenilin on neuronal Ca2+ signal, focusing on the receptors and regulators in plasma membrane and ER; we briefly introduce the involvement of MAM-mediated Ca2+ transfer and mPTP opening in AD pathogenesis.-Wang, X., Zheng, W. Ca2+ homeostasis dysregulation in Alzheimer's disease: a focus on plasma membrane and cell organelles.
Collapse
Affiliation(s)
- Xingjian Wang
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
33
|
Shi Y, Wang Y, Wei H. Dantrolene : From Malignant Hyperthermia to Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2019; 18:668-676. [PMID: 29921212 PMCID: PMC7754833 DOI: 10.2174/1871527317666180619162649] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/07/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
Dantrolene, a ryanodine receptor antagonist, is primarily known as the only clinically acceptable and effective treatment for Malignant Hyperthermia (MH). Inhibition of Ryanodine Receptor (RyR) by dantrolene decreases the abnormal calcium release from the Sarcoplasmic Reticulum (SR) or Endoplasmic Reticulum (ER), where RyR is located. Recently, emerging researches on dissociated cells, brains slices, live animal models and patients have demonstrated that altered RyR expression and function can also play a vital role in the pathogenesis of Alzheimer's Disease (AD). Therefore, dantrolene is now widely studied as a novel treatment for AD, targeting the blockade of RyR channels or another alternative pathway, such as the inhibitory effects of NMDA glutamate receptors and the effects of ER-mitochondria connection. However, the therapeutic effects are not consistent. In this review, we focus on the relationship between the altered RyR expression and function and the pathogenesis of AD, and the potential application of dantrolene as a novel treatment for the disease.
Collapse
Affiliation(s)
- Yun Shi
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
- Department of Anesthesiology, Children’s Hospital of Fudan University, Shanghai, China
| | - Yong Wang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Heard DS, Tuttle CSL, Lautenschlager NT, Maier AB. Repurposing Proteostasis-Modifying Drugs to Prevent or Treat Age-Related Dementia: A Systematic Review. Front Physiol 2018; 9:1520. [PMID: 30425653 PMCID: PMC6218672 DOI: 10.3389/fphys.2018.01520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Dementia has a significant impact on quality of life of older individuals. Impaired proteostasis has been implicated as a potential cause of dementia, that can be therapeutically targeted to improve patient outcomes. This review aimed to collate all current evidence of the potential for targeting proteostasis with repurposed drugs as an intervention for age-related dementia and cognitive decline. Methods: PubMed, Web of Science and Embase databases were searched from inception until 4th July 2017 for studies published in English. Interventional studies of repurposed proteostasis-modifying drugs in Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body disease, vascular dementia, and cognitive aging, in either animal models or humans with change in cognition as the outcome were included. The SYRCLE and Cochrane tools were used to assess risk of bias for included studies. Results: Overall 47 trials, 38 animal and 9 human, were isolated for inclusion in this review. Drugs tested in animals and humans included lithium, rapamycin, rifampicin, and tyrosine kinase inhibitors. Drugs tested only in animals included Macrophage and Granulocyte-Macrophage Colony Stimulating Factors, methylene blue, dantrolene, geranylgeranylacetone, minocycline and phenylbutyric acid. Lithium (n = 10 animal, n = 6 human) and rapamycin (n = 12 animal, n = 1 human) were the most studied proteostasis modifying drugs influencing cognition. Nine of ten animal studies of lithium showed a statistically significant benefit in Alzheimer's models. Rapamycin demonstrated a significant benefit in models of vascular dementia, aging, and Alzheimer's, but may not be effective in treating established Alzheimer's pathology. Lithium and nilotinib had positive outcomes in human studies including Alzheimer's and Parkinson's patients respectively, while a human study of rifampicin in Alzheimer's failed to demonstrate benefit. Microdose lithium showed a strongly significant benefit in both animals and humans. While the risk of bias was relatively low in human studies, the risk of bias in animal studies was largely unclear. Conclusion: Overall, the collective findings support the hypothesis that targeting proteostasis for treatment of dementia may be beneficial, and therefore future studies in humans with repurposed proteostasis modifying drugs are warranted. Larger human clinical trials focusing on safety, efficacy, tolerability, and reproducibility are required to translate these therapeutics into clinical practice.
Collapse
Affiliation(s)
- Daniel S Heard
- North West Mental Health, Melbourne Health, Melbourne, VIC, Australia
| | - Camilla S L Tuttle
- @AgeMelbourne, Department of Medicine and Aged Care, University of Melbourne, Melbourne, VIC, Australia
| | - Nicola T Lautenschlager
- North West Mental Health, Melbourne Health, Melbourne, VIC, Australia.,Academic Unit for Psychiatry of Old Age, Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Andrea B Maier
- @AgeMelbourne, Department of Medicine and Aged Care, University of Melbourne, Melbourne, VIC, Australia.,@AgeAmsterdam, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|
35
|
Tong BCK, Wu AJ, Li M, Cheung KH. Calcium signaling in Alzheimer's disease & therapies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1745-1760. [PMID: 30059692 DOI: 10.1016/j.bbamcr.2018.07.018] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and is characterized by the accumulation of amyloid (Aβ) plaques and neurofibrillary tangles in the brain. Much attention has been given to develop AD treatments based on the amyloid cascade hypothesis; however, none of these drugs had good efficacy at improving cognitive functions in AD patients suggesting that Aβ might not be the disease origin. Thus, there are urgent needs for the development of new therapies that target on the proximal cause of AD. Cellular calcium (Ca2+) signals regulate important facets of neuronal physiology. An increasing body of evidence suggests that age-related dysregulation of neuronal Ca2+ homeostasis may play a proximal role in the pathogenesis of AD as disrupted Ca2+ could induce synaptic deficits and promote the accumulation of Aβ plaques and neurofibrillary tangles. Given that Ca2+ disruption is ubiquitously involved in all AD pathologies, it is likely that using chemical agents or small molecules specific to Ca2+ channels or handling proteins on the plasma membrane and membranes of intracellular organelles to correct neuronal Ca2+ dysregulation could open up a new approach to AD prevention and treatment. This review summarizes current knowledge on the molecular mechanisms linking Ca2+ dysregulation with AD pathologies and discusses the possibility of correcting neuronal Ca2+ disruption as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Benjamin Chun-Kit Tong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Aston Jiaxi Wu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - King-Ho Cheung
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| |
Collapse
|
36
|
Huber CM, Yee C, May T, Dhanala A, Mitchell CS. Cognitive Decline in Preclinical Alzheimer's Disease: Amyloid-Beta versus Tauopathy. J Alzheimers Dis 2018; 61:265-281. [PMID: 29154274 PMCID: PMC5734131 DOI: 10.3233/jad-170490] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We perform a large-scale meta-analysis of 51 peer-reviewed 3xTg-AD mouse publications to compare Alzheimer’s disease (AD) quantitative clinical outcome measures, including amyloid-β (Aβ), total tau, and phosphorylated tau (pTau), with cognitive performance in Morris water maze (MWM) and Novel Object Recognition (NOR). “High” levels of Aβ (Aβ40, Aβ42) showed significant but weak trends with cognitive decline (MWM: slope = 0.336, R2 = 0.149, n = 259, p < 0.001; NOR: slope = 0.156, R2 = 0.064, n = 116, p < 0.05); only soluble Aβ or directly measured Aβ meaningfully contribute. Tau expression in 3xTg-AD mice was within 10–20% of wild type and not associated with cognitive decline. In contrast, increased pTau is directly and significantly correlated with cognitive decline in MWM (slope = 0.408, R2 = 0.275, n = 371, p < < 0.01) and NOR (slope = 0.319, R2 = 0.176, n = 113, p < 0.05). While a variety of pTau epitopes (AT8, AT270, AT180, PHF-1) were examined, AT8 correlated most strongly with cognition (slope = 0.586, R2 = 0.521, n = 185, p < < 0.001). Multiple linear regression confirmed pTau is a stronger predictor of MWM performance than Aβ. Despite pTau’s lower physical concentration than Aβ, pTau levels more directly and quantitatively correlate with 3xTg-AD cognitive decline. pTau’s contribution to neurofibrillary tangles well after Aβ levels plateau makes pTau a viable treatment target even in late-stage clinical AD. Principal component analysis, which included hyperphosphorylation induced by kinases (pGSK3β, GSK3β, CDK5), identified phosphorylated ser9 GSK3β as the primary contributor to MWM variance. In summary, meta-analysis of cognitive decline in preclinical AD finds tauopathy more impactful than Aβ. Nonetheless, complex AD interactions dictate successful therapeutics harness synergy between Aβ and pTau, possibly through the GSK3 pathway.
Collapse
Affiliation(s)
- Colin M Huber
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.,Department of Bioengineering, University of Pennsylvania School of Engineering and Applied Sciences, Philadelphia, PA, USA
| | - Connor Yee
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Taylor May
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Apoorva Dhanala
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Cassie S Mitchell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
37
|
Snow WM, Dale R, O'Brien-Moran Z, Buist R, Peirson D, Martin M, Albensi BC. In Vivo Detection of Gray Matter Neuropathology in the 3xTg Mouse Model of Alzheimer's Disease with Diffusion Tensor Imaging. J Alzheimers Dis 2018; 58:841-853. [PMID: 28505976 DOI: 10.3233/jad-170136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A diagnosis of Alzheimer's disease (AD), a neurodegenerative disorder accompanied by severe functional and cognitive decline, is based on clinical findings, with final confirmation of the disease at autopsy by the presence of amyloid-β (Aβ) plaques and neurofibrillary tangles. Given that microstructural brain alterations occur years prior to clinical symptoms, efforts to detect brain changes early could significantly enhance our ability to diagnose AD sooner. Diffusion tensor imaging (DTI), a type of MRI that characterizes the magnitude, orientation, and anisotropy of the diffusion of water in tissues, has been used to infer neuropathological changes in vivo. Its utility in AD, however, is still under investigation. The current study used DTI to examine brain regions susceptible to AD-related pathology; the cerebral cortex, entorhinal cortex, and hippocampus, in 12-14-month-old 3xTg AD mice that possess both Aβ plaques and neurofibrillary tangles. Mean diffusivity did not differ between 3xTg and control mice in any region. Decreased fractional anisotropy (p < 0.01) and axial diffusivity (p < 0.05) were detected only in the hippocampus, in which both congophilic Aβ plaques and hyperphosphorylated tau accumulation, consistent with neurofibrillary tangle formation, were detected. Pathological tau accumulation was seen in the cortex. The entorhinal cortex was largely spared from AD-related neuropathology. This is the first study to demonstrate DTI abnormalities in gray matter in a mouse model of AD in which both pathological hallmarks are present, suggesting the feasibility of DTI as a non-invasive means of detecting brain pathology in vivo in early-stage AD.
Collapse
Affiliation(s)
- Wanda M Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Ryan Dale
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | | | - Richard Buist
- Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Danial Peirson
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Melanie Martin
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada.,Department of Physics, University of Winnipeg, Winnipeg, MB, Canada.,Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
38
|
Alzheimer's disease pathology and the unfolded protein response: prospective pathways and therapeutic targets. Behav Pharmacol 2018; 28:161-178. [PMID: 28252521 DOI: 10.1097/fbp.0000000000000299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many vital interdependent cellular functions including proteostasis, lipogenesis and Ca homeostasis are executed by the endoplasmic reticulum (ER). Exogenous insults can impair ER performance: this must be rapidly corrected or cell death will ensue. Protective adaptations can boost the functional capacity of the ER and form the basis of the unfolded protein response (UPR). Activated in response to the accumulation of misfolded proteins, the UPR can halt protein translation while increasing protein-handling chaperones and the degradation of erroneous proteins through a conserved three-tier molecular cascade. However, prolonged activation of the UPR can result in the maladaptation of the system, resulting in the activation of inflammatory and apoptotic effectors. Recently, UPR and its involvement in neurodegenerative disease has attracted much interest and numerous potentially 'drugable' points of crosstalk are now emerging. Here, we summarize the functions of the ER and UPR, and highlight evidence for its potential role in the pathogenesis of Alzheimer's disease, before discussing several key targets with therapeutic potential.
Collapse
|
39
|
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder and the most common cause of dementia among aged people whose population is rapidly increasing. AD not only seriously affects the patient's physical health and quality of life, but also adds a heavy burden to the patient's family and society. It is urgent to understand AD pathogenesis and develop the means of prevention and treatment. AD is a chronic devastating neurodegenerative disease without effective treatment. Current approaches for management focus on helping patients relieve or delay the symptoms of cognitive dysfunction. The calcium ion (Ca2+) is an important second messenger in the function and structure of nerve cell circuits in the brain such as neuronal growth, exocytosis, as well as in synaptic and cognitive function. Increasing numbers of studies suggested that disruption of intracellular Ca2+ homeostasis, especially the abnormal and excessive Ca2+ release from the endoplasmic reticulum (ER) via the ryanodine receptor (RYR), plays important roles in orchestrating the dynamic of the neuropathology of AD and associated memory loss, cognitive dysfunction. Dantrolene, a known antagonist of the RYR and a clinically available drug to treat malignant hyperthermia, can ameliorate the abnormal Ca2+ release from the RYR in AD and the subsequent pathogenesis, such as increased β-secretase and γ-secretase activities, production of Amyloid-β 42 (Aβ 42) and its oligomer, impaired autophagy, synapse dysfunction, and memory loss. However, more studies are needed to confirm the efficacy and safety repurposing dantrolene as a therapeutic drug in AD.
Collapse
Affiliation(s)
- Yong Wang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yun Shi
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Anesthesiology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|