1
|
Estarellas M, Huntley J, Bor D. Neural markers of reduced arousal and consciousness in mild cognitive impairment. Int J Geriatr Psychiatry 2024; 39:e6112. [PMID: 38837281 DOI: 10.1002/gps.6112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVES People with Alzheimer's Disease (AD) experience changes in their level and content of consciousness, but there is little research on biomarkers of consciousness in pre-clinical AD and Mild Cognitive Impairment (MCI). This study investigated whether levels of consciousness are decreased in people with MCI. METHODS A multi-site site magnetoencephalography (MEG) dataset, BIOFIND, comprising 83 people with MCI and 83 age matched controls, was analysed. Arousal (and drowsiness) was assessed by computing the theta-alpha ratio (TAR). The Lempel-Ziv algorithm (LZ) was used to quantify the information content of brain activity, with higher LZ values indicating greater complexity and potentially a higher level of consciousness. RESULTS LZ was lower in the MCI group versus controls, indicating a reduced level of consciousness in MCI. TAR was higher in the MCI group versus controls, indicating a reduced level of arousal (i.e. increased drowsiness) in MCI. LZ was also found to be correlated with mini-mental state examination (MMSE) scores, suggesting an association between cognitive impairment and level of consciousness in people with MCI. CONCLUSIONS A decline in consciousness and arousal can be seen in MCI. As cognitive impairment worsens, measured by MMSE scores, levels of consciousness and arousal decrease. These findings highlight how monitoring consciousness using biomarkers could help understand and manage impairments found at the preclinical stages of AD. Further research is needed to explore markers of consciousness between people who progress from MCI to dementia and those who do not, and in people with moderate and severe AD, to promote person-centred care.
Collapse
Affiliation(s)
- Mar Estarellas
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Experimental Psychology Department, University College London, London, UK
- Department of Psychology, Cambridge University, Cambridge, UK
| | - Jonathan Huntley
- Division of Psychiatry, University College London, London, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Daniel Bor
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychology, Cambridge University, Cambridge, UK
| |
Collapse
|
2
|
Faghfouri A, Shalchyan V, Toor HG, Amjad I, Niazi IK. A tensor decomposition scheme for EEG-based diagnosis of mild cognitive impairment. Heliyon 2024; 10:e26365. [PMID: 38420472 PMCID: PMC10901001 DOI: 10.1016/j.heliyon.2024.e26365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Mild Cognitive Impairment (MCI) is the primary stage of acute Alzheimer's disease, and early detection is crucial for the person and those around him. It is difficult to recognize since this mild stage does not have clear clinical signs, and its symptoms are between normal aging and severe dementia. Here, we propose a tensor decomposition-based scheme for automatically diagnosing MCI using Electroencephalogram (EEG) signals. A new projection is proposed, which preserves the spatial information of the electrodes to construct a data tensor. Then, using parallel factor analysis (PARAFAC) tensor decomposition, the features are extracted, and a support vector machine (SVM) is used to discriminate MCI from normal subjects. The proposed scheme was tested on two different datasets. The results showed that the tensor-based method outperformed conventional methods in diagnosing MCI with an average classification accuracy of 93.96% and 78.65% for the first and second datasets, respectively. Therefore, it seems that maintaining the spatial topology of the signals plays a vital role in the processing of EEG signals.
Collapse
Affiliation(s)
- Alireza Faghfouri
- Neuroscience & Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Vahid Shalchyan
- Neuroscience & Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | | | - Imran Amjad
- Riphah International University, Islamabad, Pakistan
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| | - Imran Khan Niazi
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland, New Zealand
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
3
|
Fu S, Liang S, Lin C, Wu Y, Xie S, Li M, Lei Q, Li J, Yu K, Yin Y, Hua K, Li W, Wu C, Ma X, Jiang G. Aberrant brain entropy in posttraumatic stress disorder comorbid with major depressive disorder during the coronavirus disease 2019 pandemic. Front Psychiatry 2023; 14:1143780. [PMID: 37333934 PMCID: PMC10272369 DOI: 10.3389/fpsyt.2023.1143780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Aim Previously, neuroimaging studies on comorbid Posttraumatic-Major depression disorder (PTSD-MDD) comorbidity found abnormalities in multiple brain regions among patients. Recent neuroimaging studies have revealed dynamic nature on human brain activity during resting state, and entropy as an indicator of dynamic regularity may provide a new perspective for studying abnormalities of brain function among PTSD-MDD patients. During the COVID-19 pandemic, there has been a significant increase in the number of patients with PTSD-MDD. We have decided to conduct research on resting-state brain functional activity of patients who developed PTSD-MDD during this period using entropy. Methods Thirty three patients with PTSD-MDD and 36 matched TCs were recruited. PTSD and depression symptoms were assessed using multiple clinical scales. All subjects underwent functional magnetic resonance imaging (fMRI) scans. And the brain entropy (BEN) maps were calculated using the BEN mapping toolbox. A two-sample t-test was used to compare the differences in the brain entropy between the PTSD-MDD comorbidity group and TC group. Furthermore, correlation analysis was conducted between the BEN changes in patients with PTSD-MDD and clinical scales. Results Compared to the TCs, PTSD-MDD patients had a reduced BEN in the right middle frontal orbital gyrus (R_MFOG), left putamen, and right inferior frontal gyrus, opercular part (R_IFOG). Furthermore, a higher BEN in the R_MFOG was related to higher CAPS and HAMD-24 scores in the patients with PTSD-MDD. Conclusion The results showed that the R_MFOG is a potential marker for showing the symptom severity of PTSD-MDD comorbidity. Consequently, PTSD-MDD may have reduced BEN in frontal and basal ganglia regions which are related to emotional dysregulation and cognitive deficits.
Collapse
Affiliation(s)
- Shishun Fu
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Sipei Liang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chulan Lin
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yunfan Wu
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shuangcong Xie
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Meng Li
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qiang Lei
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jianneng Li
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Kanghui Yu
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yi Yin
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Kelei Hua
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wuming Li
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Caojun Wu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaofen Ma
- The Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guihua Jiang
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
4
|
Fernández A, Ramírez-Toraño F, Bruña R, Zuluaga P, Esteba-Castillo S, Abásolo D, Moldenhauer F, Shumbayawonda E, Maestú F, García-Alba J. Brain signal complexity in adults with Down syndrome: Potential application in the detection of mild cognitive impairment. Front Aging Neurosci 2022; 14:988540. [PMID: 36337705 PMCID: PMC9631477 DOI: 10.3389/fnagi.2022.988540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Down syndrome (DS) is considered the most frequent cause of early-onset Alzheimer’s disease (AD), and the typical pathophysiological signs are present in almost all individuals with DS by the age of 40. Despite of this evidence, the investigation on the pre-dementia stages in DS is scarce. In the present study we analyzed the complexity of brain oscillatory patterns and neuropsychological performance for the characterization of mild cognitive impairment (MCI) in DS. Materials and methods Lempel-Ziv complexity (LZC) values from resting-state magnetoencephalography recordings and the neuropsychological performance in 28 patients with DS [control DS group (CN-DS) (n = 14), MCI group (MCI-DS) (n = 14)] and 14 individuals with typical neurodevelopment (CN-no-DS) were analyzed. Results Lempel-Ziv complexity was lowest in the frontal region within the MCI-DS group, while the CN-DS group showed reduced values in parietal areas when compared with the CN-no-DS group. Also, the CN-no-DS group exhibited the expected pattern of significant increase of LZC as a function of age, while MCI-DS cases showed a decrease. The combination of reduced LZC values and a divergent trajectory of complexity evolution with age, allowed the discrimination of CN-DS vs. MCI-DS patients with a 92.9% of sensitivity and 85.7% of specificity. Finally, a pattern of mnestic and praxic impairment was significantly associated in MCI-DS cases with the significant reduction of LZC values in frontal and parietal regions (p = 0.01). Conclusion Brain signal complexity measured with LZC is reduced in DS and its development with age is also disrupted. The combination of both features might assist in the detection of MCI within this population.
Collapse
Affiliation(s)
- Alberto Fernández
- Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Sanitary Investigation (IdISSC), Hospital Universitario San Carlos, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
| | - Federico Ramírez-Toraño
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Radiology, Universidad Complutense de Madrid, Madrid, Spain
- Department of Industrial Engineering & IUNE & ITB, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Pilar Zuluaga
- Statistics & Operations Research Department, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Susanna Esteba-Castillo
- Neurodevelopmental Group, Girona Biomedical Research Institute-IDIBGI, Institute of Health Assistance (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Daniel Abásolo
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, University of Surrey, Guildford, United Kingdom
| | - Fernando Moldenhauer
- Adult Down Syndrome Unit, Internal Medicine Department, Health Research Institute, Hospital Universitario de La Princesa, Madrid, Spain
| | - Elizabeth Shumbayawonda
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, University of Surrey, Guildford, United Kingdom
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier García-Alba
- Department of Research and Psychology in Education, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Javier García-Alba,
| |
Collapse
|
5
|
Analysis of complexity and dynamic functional connectivity based on resting-state EEG in early Parkinson’s disease patients with mild cognitive impairment. Cogn Neurodyn 2021; 16:309-323. [PMID: 35401875 PMCID: PMC8934826 DOI: 10.1007/s11571-021-09722-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/12/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022] Open
Abstract
To explore the abnormal brain activity of early Parkinson's disease with mild cognitive impairment (ePD-MCI) patients, the study analyzed the dynamic fluctuation of electroencephalogram (EEG) signals and the dynamic change of information communication between EEG signals of ePD-MCI patients. In this study, we recorded resting-state EEG signals of 30 ePD-MCI patients and 37 early Parkinson's disease without mild cognitive impairment (ePD-nMCI) patients. First, we analyzed the difference of the complexity of EEG signals between the two groups. And we found that the complexity in the ePD-MCI group was significantly higher than that in the ePD-nMCI group. Then, by analyzing the dynamic functional network (DFN) topology based on the optimal sliding-window, we found that the temporal correlation coefficients of ePD-MCI patients were lower in the delta and theta bands than those in the ePD-nMCI patients. The temporal characteristic path length of ePD-MCI patients in the alpha band was higher than that of ePD-nMCI patients. In the theta and alpha bands, the temporal small world degrees of ePD-MCI patients were lower than that of patients with ePD-nMCI. In addition, the functional connectivity strength of ePD-MCI patients affected by cognitive impairment was weaker than that of ePD-nMCI patients, and the stability of dynamic functional connectivity network was decreased. This finding may serve as a biomarker to identify ePD-MCI and contribute to the early intervention treatment of ePD-MCI.
Collapse
|
6
|
Al-Nuaimi AH, Blūma M, Al-Juboori SS, Eke CS, Jammeh E, Sun L, Ifeachor E. Robust EEG Based Biomarkers to Detect Alzheimer's Disease. Brain Sci 2021; 11:1026. [PMID: 34439645 PMCID: PMC8394244 DOI: 10.3390/brainsci11081026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Biomarkers to detect Alzheimer's disease (AD) would enable patients to gain access to appropriate services and may facilitate the development of new therapies. Given the large numbers of people affected by AD, there is a need for a low-cost, easy to use method to detect AD patients. Potentially, the electroencephalogram (EEG) can play a valuable role in this, but at present no single EEG biomarker is robust enough for use in practice. This study aims to provide a methodological framework for the development of robust EEG biomarkers to detect AD with a clinically acceptable performance by exploiting the combined strengths of key biomarkers. A large number of existing and novel EEG biomarkers associated with slowing of EEG, reduction in EEG complexity and decrease in EEG connectivity were investigated. Support vector machine and linear discriminate analysis methods were used to find the best combination of the EEG biomarkers to detect AD with significant performance. A total of 325,567 EEG biomarkers were investigated, and a panel of six biomarkers was identified and used to create a diagnostic model with high performance (≥85% for sensitivity and 100% for specificity).
Collapse
Affiliation(s)
- Ali H. Al-Nuaimi
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; (S.S.A.-J.); (C.S.E.); (E.J.); (L.S.); (E.I.)
- College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Al Adhamiya, Baghdad 10053, Iraq
| | - Marina Blūma
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Shaymaa S. Al-Juboori
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; (S.S.A.-J.); (C.S.E.); (E.J.); (L.S.); (E.I.)
- College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Al Adhamiya, Baghdad 10053, Iraq
| | - Chima S. Eke
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; (S.S.A.-J.); (C.S.E.); (E.J.); (L.S.); (E.I.)
| | - Emmanuel Jammeh
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; (S.S.A.-J.); (C.S.E.); (E.J.); (L.S.); (E.I.)
| | - Lingfen Sun
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; (S.S.A.-J.); (C.S.E.); (E.J.); (L.S.); (E.I.)
| | - Emmanuel Ifeachor
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; (S.S.A.-J.); (C.S.E.); (E.J.); (L.S.); (E.I.)
| |
Collapse
|
7
|
Rodríguez-González V, Gómez C, Hoshi H, Shigihara Y, Hornero R, Poza J. Exploring the Interactions Between Neurophysiology and Cognitive and Behavioral Changes Induced by a Non-pharmacological Treatment: A Network Approach. Front Aging Neurosci 2021; 13:696174. [PMID: 34393759 PMCID: PMC8358307 DOI: 10.3389/fnagi.2021.696174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
Dementia due to Alzheimer's disease (AD) is a neurological syndrome which has an increasing impact on society, provoking behavioral, cognitive, and functional impairments. AD lacks an effective pharmacological intervention; thereby, non-pharmacological treatments (NPTs) play an important role, as they have been proven to ameliorate AD symptoms. Nevertheless, results associated with NPTs are patient-dependent, and new tools are needed to predict their outcome and to improve their effectiveness. In the present study, 19 patients with AD underwent an NPT for 83.1 ± 38.9 days (mean ± standard deviation). The NPT was a personalized intervention with physical, cognitive, and memory stimulation. The magnetoencephalographic activity was recorded at the beginning and at the end of the NPT to evaluate the neurophysiological state of each patient. Additionally, the cognitive (assessed by means of the Mini-Mental State Examination, MMSE) and behavioral (assessed in terms of the Dementia Behavior Disturbance Scale, DBD-13) status were collected before and after the NPT. We analyzed the interactions between cognitive, behavioral, and neurophysiological data by generating diverse association networks, able to intuitively characterize the relationships between variables of a different nature. Our results suggest that the NPT remarkably changed the structure of the association network, reinforcing the interactions between the DBD-13 and the neurophysiological parameters. We also found that the changes in cognition and behavior are related to the changes in spectral-based neurophysiological parameters. Furthermore, our results support the idea that MEG-derived parameters can predict NPT outcome; specifically, a lesser degree of AD neurophysiological alterations (i.e., neural oscillatory slowing, decreased variety of spectral components, and increased neural signal regularity) predicts a better NPT prognosis. This study provides deeper insights into the relationships between neurophysiology and both, cognitive and behavioral status, proving the potential of network-based methodology as a tool to further understand the complex interactions elicited by NPTs.
Collapse
Affiliation(s)
| | - Carlos Gómez
- Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan
| | | | - Roberto Hornero
- Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- IMUVA, Instituto de Investigación en Matemáticas, Universidad de Valladolid, Valladolid, Spain
| | - Jesús Poza
- Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- IMUVA, Instituto de Investigación en Matemáticas, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
8
|
Abstract
Evidence suggests that bilingualism may contribute to neuroplasticity and cognitive reserve, allowing individuals to resist cognitive decline associated with Alzheimer's disease progression, although the idea remains controversial. Here, we argue that the reason for the discrepancy stems from conflating incidence rates of dementia and the age at which the symptoms first appear, as well as statistical and methodological issues in the study designs. To clarify the issues, we conducted a comprehensive meta-analysis on the available literature regarding bilingualism and Alzheimer's disease, including both retrospective and prospective studies, as well as age of onset and incidence rates. Results revealed a moderate effect size for the protective effect of bilingualism on age of onset of symptoms of Alzheimer's disease (Cohen's d = 0.32), and weaker evidence that bilingualism prevents the occurrence of disease incidence itself (Cohen's d = 0.10). Moreover, our results cannot be explained by SES, education, or publication bias. We conclude with a discussion on how bilingualism contributes to cognitive reserve and protects against Alzheimer's disease and recommend that future studies report both age of onset as well as incidence rates when possible.
Collapse
|
9
|
Rodríguez-González V, Gómez C, Shigihara Y, Hoshi H, Revilla-Vallejo M, Hornero R, Poza J. Consistency of local activation parameters at sensor- and source-level in neural signals. J Neural Eng 2020; 17:056020. [PMID: 33055364 DOI: 10.1088/1741-2552/abb582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Although magnetoencephalography and electroencephalography (M/EEG) signals at sensor level are robust and reliable, they suffer from different degrees of distortion due to changes in brain tissue conductivities, known as field spread and volume conduction effects. To estimate original neural generators from M/EEG activity acquired at sensor level, diverse source localisation algorithms have been proposed; however, they are not exempt from limitations and usually involve time-consuming procedures. Connectivity and network-based M/EEG analyses have been found to be affected by field spread and volume conduction effects; nevertheless, the influence of the aforementioned effects on widely used local activation parameters has not been assessed yet. The goal of this study is to evaluate the consistency of various local activation parameters when they are computed at sensor- and source-level. APPROACH Six spectral (relative power, median frequency, and individual alpha frequency) and non-linear parameters (Lempel-Ziv complexity, sample entropy, and central tendency measure) are computed from M/EEG signals at sensor- and source-level using four source inversion methods: weighted minimum norm estimate (wMNE), standardised low-resolution brain electromagnetic tomography (sLORETA), linear constrained minimum variance (LCMV), and dynamical statistical parametric mapping (dSPM). MAIN RESULTS Our results show that the spectral and non-linear parameters yield similar results at sensor- and source-level, showing high correlation values between them for all the source inversion methods evaluated and both modalities of signal, EEG and MEG. Furthermore, the correlation values remain high when performing coarse-grained spatial analyses. SIGNIFICANCE To the best of our knowledge, this is the first study analysing how field spread and volume conduction effects impact on local activation parameters computed from resting-state neural activity. Our findings evidence that local activation parameters are robust against field spread and volume conduction effects and provide equivalent information at sensor- and source-level even when performing regional analyses.
Collapse
|
10
|
Nunes A, Trappenberg T, Alda M. The definition and measurement of heterogeneity. Transl Psychiatry 2020; 10:299. [PMID: 32839448 PMCID: PMC7445182 DOI: 10.1038/s41398-020-00986-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
Abstract
Heterogeneity is an important concept in psychiatric research and science more broadly. It negatively impacts effect size estimates under case-control paradigms, and it exposes important flaws in our existing categorical nosology. Yet, our field has no precise definition of heterogeneity proper. We tend to quantify heterogeneity by measuring associated correlates such as entropy or variance: practices which are akin to accepting the radius of a sphere as a measure of its volume. Under a definition of heterogeneity as the degree to which a system deviates from perfect conformity, this paper argues that its proper measure roughly corresponds to the size of a system's event/sample space, and has units known as numbers equivalent. We arrive at this conclusion through focused review of more than 100 years of (re)discoveries of indices by ecologists, economists, statistical physicists, and others. In parallel, we review psychiatric approaches for quantifying heterogeneity, including but not limited to studies of symptom heterogeneity, microbiome biodiversity, cluster-counting, and time-series analyses. We argue that using numbers equivalent heterogeneity measures could improve the interpretability and synthesis of psychiatric research on heterogeneity. However, significant limitations must be overcome for these measures-largely developed for economic and ecological research-to be useful in modern translational psychiatric science.
Collapse
Affiliation(s)
- Abraham Nunes
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Thomas Trappenberg
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
11
|
Tanabe S, Bo A, White M, Parker M, Farahbakhsh Z, Ballweg T, Casey C, Betthauser T, Zetterberg H, Blennow K, Christian B, Bendlin BB, Johnson S, Sanders RD. Cohort study of electroencephalography markers of amyloid-tau-neurodegeneration pathology. Brain Commun 2020; 2:fcaa099. [PMID: 32954343 PMCID: PMC7475697 DOI: 10.1093/braincomms/fcaa099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 01/05/2023] Open
Abstract
Electroencephalography signatures of amyloid-β, tau and neurodegenerative pathologies would aid in screening for, tracking progression of, and critically, understanding the pathogenesis of dementia. We hypothesized that slowing of the alpha peak frequency, as a signature of hyperpolarization-activated cyclic nucleotide gated 'pacemaker' channel activity, would correlate with amyloid and tau pathology burden measured by amyloid (Pittsburgh Compound B) and tau (MK-6240) positron emission tomography or CSF biomarkers. We also hypothesized that EEG power would be associated with neurodegeneration (CSF neurofilament light and hippocampal volume). Wakeful high-density EEG data were collected from 53 subjects. Both amyloid-β and tau pathology were associated with slowing in the alpha peak frequency [Pittsburgh Compound B (+) vs. Pittsburgh Compound B (-) subjects, P = 0.039 and MK-6240 (+) vs. MK-6240 (-) subjects, P = 0.019]. Furthermore, slowing in the peak alpha frequency correlated with CSF Aβ42/40 ratio (r 2 = 0.270; P = 0.003), phosphoTau (pTau181, r 2 = 0.290; P = 0.001) and pTau181/Aβ42 (r 2 = 0.343; P < 0.001). Alpha peak frequency was not associated with neurodegeneration. Higher CSF neurofilament light was associated with lower total EEG power (r 2 = 0.136; P = 0.018), theta power (r 2 = 0.148; P = 0.014) and beta power (r 2 = 0.216; P = 0.002); the latter was also associated with normalized hippocampal volume (r 2 = 0.196; P = 0.002). Amyloid-tau and neurodegenerative pathologies are associated with distinct electrophysiological signatures that may be useful as mechanistic tools and diagnostic/treatment effect biomarkers in clinical trials.
Collapse
Affiliation(s)
- Sean Tanabe
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Amber Bo
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Marissa White
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Margaret Parker
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Zahra Farahbakhsh
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Tyler Ballweg
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Cameron Casey
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Tobey Betthauser
- Department of Medicine, Division of Geriatrics, University of Wisconsin, Madison, WI, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Brad Christian
- Department of Medical Physics and Psychiatry, University of Wisconsin, Madison, WI, USA
| | - Barbara B Bendlin
- Department of Medicine, Division of Geriatrics, University of Wisconsin, Madison, WI, USA
| | - Sterling Johnson
- Department of Medicine, Division of Geriatrics, University of Wisconsin, Madison, WI, USA
| | - Robert D Sanders
- Discipline of Anaesthetics, University of Sydney, Sydney, Australia
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
12
|
Sun J, Wang B, Niu Y, Tan Y, Fan C, Zhang N, Xue J, Wei J, Xiang J. Complexity Analysis of EEG, MEG, and fMRI in Mild Cognitive Impairment and Alzheimer's Disease: A Review. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E239. [PMID: 33286013 PMCID: PMC7516672 DOI: 10.3390/e22020239] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a degenerative brain disease with a high and irreversible incidence. In recent years, because brain signals have complex nonlinear dynamics, there has been growing interest in studying complex changes in the time series of brain signals in patients with AD. We reviewed studies of complexity analyses of single-channel time series from electroencephalogram (EEG), magnetoencephalogram (MEG), and functional magnetic resonance imaging (fMRI) in AD and determined future research directions. A systematic literature search for 2000-2019 was performed in the Web of Science and PubMed databases, resulting in 126 identified studies. Compared to healthy individuals, the signals from AD patients have less complexity and more predictable oscillations, which are found mainly in the left parietal, occipital, right frontal, and temporal regions. This complexity is considered a potential biomarker for accurately responding to the functional lesion in AD. The current review helps to reveal the patterns of dysfunction in the brains of patients with AD and to investigate whether signal complexity can be used as a biomarker to accurately respond to the functional lesion in AD. We proposed further studies in the signal complexities of AD patients, including investigating the reliability of complexity algorithms and the spatial patterns of signal complexity. In conclusion, the current review helps to better understand the complexity of abnormalities in the AD brain and provide useful information for AD diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jie Xiang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; (J.S.); (B.W.); (Y.N.); (Y.T.); (C.F.); (N.Z.); (J.X.); (J.W.)
| |
Collapse
|
13
|
Altuğlu TB, Metin B, Tülay EE, Tan O, Sayar GH, Taş C, Arikan K, Tarhan N. Prediction of treatment resistance in obsessive compulsive disorder patients based on EEG complexity as a biomarker. Clin Neurophysiol 2020; 131:716-724. [PMID: 32000072 DOI: 10.1016/j.clinph.2019.11.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/23/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This study aimed to identify an Electroencephalography (EEG) complexity biomarker that could predict treatment resistance in Obsessive compulsive disorder (OCD) patients. Additionally, the statistical differences between EEG complexity values in treatment-resistant and treatment-responsive patients were determined. Moreover, the existence of correlations between EEG complexity and Yale-Brown Obsessive Compulsive Scale (YBOCS) score were evaluated. METHODS EEG data for 29 treatment-resistant and 28 treatment-responsive OCD patients were retrospectively evaluated. Approximate entropy (ApEn) method was used to extract the EEG complexity from both whole EEG data and filtered EEG data, according to 4 common frequency bands, namely delta, theta, alpha, and beta. The random forests method was used to classify ApEn complexity. RESULTS ApEn complexity extracted from beta band EEG segments discriminated treatment-responsive and treatment-resistant OCD patients with an accuracy of 89.66% (sensitivity: 89.44%; specificity: 90.64%). Beta band EEG complexity was lower in the treatment-resistant patients and the severity of OCD, as measured by YBOCS score, was inversely correlated with complexity values. CONCLUSIONS The results indicate that, EEG complexity could be considered a biomarker for predicting treatment response in OCD patients. SIGNIFICANCE The prediction of treatment response in OCD patients might help clinicians devise and administer individualized treatment plans.
Collapse
Affiliation(s)
- Tuğçe Ballı Altuğlu
- Uskudar University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey.
| | - Barış Metin
- Uskudar University, Faculty of Humanities and Social Sciences, Department of Psychology, Istanbul, Turkey
| | - Emine Elif Tülay
- Uskudar University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
| | - Oğuz Tan
- Uskudar University, Faculty of Humanities and Social Sciences, Department of Psychology, Istanbul, Turkey; NPIstanbul Brain Hospital, Department of Psychiatry, Istanbul, Turkey
| | - Gökben Hızlı Sayar
- Uskudar University, Faculty of Humanities and Social Sciences, Department of Psychology, Istanbul, Turkey; NPIstanbul Brain Hospital, Department of Psychiatry, Istanbul, Turkey
| | - Cumhur Taş
- Uskudar University, Faculty of Humanities and Social Sciences, Department of Psychology, Istanbul, Turkey
| | - Kemal Arikan
- Uskudar University, Faculty of Humanities and Social Sciences, Department of Psychology, Istanbul, Turkey
| | - Nevzat Tarhan
- Uskudar University, Faculty of Humanities and Social Sciences, Department of Psychology, Istanbul, Turkey; NPIstanbul Brain Hospital, Department of Psychiatry, Istanbul, Turkey
| |
Collapse
|
14
|
Echegoyen I, López-Sanz D, Martínez JH, Maestú F, Buldú JM. Permutation Entropy and Statistical Complexity in Mild Cognitive Impairment and Alzheimer's Disease: An Analysis Based on Frequency Bands. ENTROPY 2020; 22:e22010116. [PMID: 33285891 PMCID: PMC7516422 DOI: 10.3390/e22010116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
We present one of the first applications of Permutation Entropy (PE) and Statistical Complexity (SC) (measured as the product of PE and Jensen-Shanon Divergence) on Magnetoencephalography (MEG) recordings of 46 subjects suffering from Mild Cognitive Impairment (MCI), 17 individuals diagnosed with Alzheimer's Disease (AD) and 48 healthy controls. We studied the differences in PE and SC in broadband signals and their decomposition into frequency bands ( δ , θ , α and β ), considering two modalities: (i) raw time series obtained from the magnetometers and (ii) a reconstruction into cortical sources or regions of interest (ROIs). We conducted our analyses at three levels: (i) at the group level we compared SC in each frequency band and modality between groups; (ii) at the individual level we compared how the [PE, SC] plane differs in each modality; and (iii) at the local level we explored differences in scalp and cortical space. We recovered classical results that considered only broadband signals and found a nontrivial pattern of alterations in each frequency band, showing that SC does not necessarily decrease in AD or MCI.
Collapse
Affiliation(s)
- Ignacio Echegoyen
- Laboratory of Biological Networks, Centre for Biomedical Technology, Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain;
- Complex Systems Group, Rey Juan Carlos University, 28933 Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), 28911 Madrid, Spain;
- Correspondence:
| | - David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain; (D.L.-S.); (F.M.)
- Department of Experimental Psychology, Complutense University of Madrid, 28223 Madrid, Spain
| | - Johann H. Martínez
- Grupo Interdisciplinar de Sistemas Complejos (GISC), 28911 Madrid, Spain;
- Biomedical Engineering Department, Universidad de los Andes, Bogotá 111711, Colombia
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain; (D.L.-S.); (F.M.)
- Department of Experimental Psychology, Complutense University of Madrid, 28223 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, 28029 Zaragoza, Spain
| | - Javier M. Buldú
- Laboratory of Biological Networks, Centre for Biomedical Technology, Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain;
- Complex Systems Group, Rey Juan Carlos University, 28933 Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), 28911 Madrid, Spain;
| |
Collapse
|
15
|
What electrophysiology tells us about Alzheimer's disease: a window into the synchronization and connectivity of brain neurons. Neurobiol Aging 2020; 85:58-73. [DOI: 10.1016/j.neurobiolaging.2019.09.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/27/2019] [Accepted: 09/14/2019] [Indexed: 01/14/2023]
|
16
|
Porcelli S, Calabrò M, Crisafulli C, Politis A, Liappas I, Albani D, Raimondi I, Forloni G, Benedetti F, Papadimitriou GN, Serretti A. Alzheimer's Disease and Neurotransmission Gene Variants: Focus on Their Effects on Psychiatric Comorbidities and Inflammatory Parameters. Neuropsychobiology 2019; 78:79-85. [PMID: 31096213 DOI: 10.1159/000497164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 01/19/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder accounting for 60-70% of dementia cases. Genetic origin accounts for 49-79% of disease risk. This paper aims to investigate the association of 17 polymorphisms within 7 genes involved in neurotransmission (COMT, HTR2A, PPP3CC, RORA, SIGMAR1, SIRT1, and SORBS3) and AD. METHODS A Greek and an Italian sample were investigated, for a total of 156 AD subjects and 301 healthy controls. Exploratory analyses on psychosis and depression comorbidities were performed, as well as on other available clinical and serological parameters. RESULTS AD was associated with rs4680 within the COMT gene in the total sample. Trends of association were found in the 2 subsamples. Some nominal associations were found for the depressive phenotype. rs10997871 and rs10997875 within SIRT1 were nominally associated with depression in the total sample and in the Greek subsample. rs174696 within COMT was associated with depression comorbidity in the Italian subsample. DISCUSSION Our data support the role of COMT, and particularly of rs4680, in the pathogenesis of AD. Furthermore, the SIRT1 gene seems to modulate depressive symptomatology in the AD population.
Collapse
Affiliation(s)
- Stefano Porcelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy,
| | - Marco Calabrò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Antonis Politis
- 1st Department of Psychiatry, University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Ioannis Liappas
- 1st Department of Psychiatry, University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Diego Albani
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Department of Neuroscience, Milan, Italy
| | - Ilaria Raimondi
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Department of Neuroscience, Milan, Italy
| | - Gianluigi Forloni
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Department of Neuroscience, Milan, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - George N Papadimitriou
- 1st Department of Psychiatry, University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Song D, Chang D, Zhang J, Peng W, Shang Y, Gao X, Wang Z. Reduced brain entropy by repetitive transcranial magnetic stimulation on the left dorsolateral prefrontal cortex in healthy young adults. Brain Imaging Behav 2019; 13:421-429. [PMID: 29629499 DOI: 10.1007/s11682-018-9866-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Entropy indicates system irregularity and the capacity for information processing. Recent research has identified interesting voxel-wise entropy distribution patterns in normal brain and its changes due to aging and brain disorders. A question of great scientific and clinical importance is whether brain entropy (BEN) can be modulated using non-invasive neuromodulations. The purpose of this study was to address this open question using high-frequency repetitive transcranial magnetic stimulation (rTMS). BEN was calculated from resting state fMRI at each voxel acquired before and after applying 20 Hz rTMS or SHAM (control) stimulation. As compared to SHAM, 20 Hz rTMS reduced BEN in medial orbito-frontal cortex and subgenial anterior cingulate cortex (MOFC/sgACC), suggesting a reduced information processing therein, probably as a result of the enhanced top-down regulation by the left DLPFC rTMS. No significant changes were observed to the functional connectivity (FC) between the left DLPFC (the target site) to the rest of the brain, suggesting that rTMS may not affect FC though it might use FC to transfer its effects or the ad hoc information. Our data proved that rTMS can modulate BEN and BEN can be used to monitor rTMS effects.
Collapse
Affiliation(s)
- Donghui Song
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, 126 Wenzhou Road, Building 7, Zhejiang, Province, 310005, Hangzhou, China
| | - Da Chang
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, 126 Wenzhou Road, Building 7, Zhejiang, Province, 310005, Hangzhou, China
| | - Jian Zhang
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, 126 Wenzhou Road, Building 7, Zhejiang, Province, 310005, Hangzhou, China
| | - Wei Peng
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, 126 Wenzhou Road, Building 7, Zhejiang, Province, 310005, Hangzhou, China
| | - Yuanqi Shang
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, 126 Wenzhou Road, Building 7, Zhejiang, Province, 310005, Hangzhou, China
| | - Xin Gao
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, 126 Wenzhou Road, Building 7, Zhejiang, Province, 310005, Hangzhou, China
| | - Ze Wang
- Center for Cognition and Brain Disorders, Department of Psychology, Hangzhou Normal University, 126 Wenzhou Road, Building 7, Zhejiang, Province, 310005, Hangzhou, China. .,Department of Radiology, Lewis Katz School of Medicine, Temple University, 3401 N Broad Street, 1st Floor, Radiology, Philadelphia, PA, 19140, USA.
| |
Collapse
|
18
|
López-Sanz D, Bruña R, de Frutos-Lucas J, Maestú F. Magnetoencephalography applied to the study of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:25-61. [PMID: 31481165 DOI: 10.1016/bs.pmbts.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetoencephalography (MEG) is a relatively modern neuroimaging technique able to study normal and pathological brain functioning with temporal resolution in the order of milliseconds and adequate spatial resolution. Although its clinical applications are still relatively limited, great advances have been made in recent years in the field of dementia and Alzheimer's disease (AD) in particular. In this chapter, we briefly describe the physiological phenomena underlying MEG brain signals and the different metrics that can be computed from these data in order to study the alterations disrupting brain activity not only in demented patients, but also in the preclinical and prodromal stages of the disease. Changes in non-linear brain dynamics, power spectral properties, functional connectivity and network topological changes observed in AD are narratively summarized in the context of the pathophysiology of the disease. Furthermore, the potential of MEG as a potential biomarker to identify AD pathology before dementia onset is discussed in the light of current knowledge and the relationship between potential MEG biomarkers and current established hallmarks of the disease is also reviewed. To this aim, findings from different approaches such as resting state or during the performance of different cognitive paradigms are discussed.Lastly, there is an increasing interest in current scientific literature in promoting interventions aimed at modifying certain lifestyles, such as nutrition or physical activity among others, thought to reduce or delay AD risk. We discuss the utility of MEG as a potential marker of the success of such interventions from the available literature.
Collapse
Affiliation(s)
- David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain; Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Ricardo Bruña
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain; Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Jaisalmer de Frutos-Lucas
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain; Biological and Health Psychology Department, Universidad Autonoma de Madrid, Madrid, Spain; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain; Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain.
| |
Collapse
|
19
|
Maestú F, Cuesta P, Hasan O, Fernandéz A, Funke M, Schulz PE. The Importance of the Validation of M/EEG With Current Biomarkers in Alzheimer's Disease. Front Hum Neurosci 2019; 13:17. [PMID: 30792632 PMCID: PMC6374629 DOI: 10.3389/fnhum.2019.00017] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
Current biomarkers used in research and in clinical practice in Alzheimer's Disease (AD) are the analysis of cerebral spinal fluid (CSF) to detect levels of Aβ42 and phosphorylated-tau, amyloid and FDG-PET, and MRI volumetry. Some of these procedures are still invasive for patients or expensive. Electroencephalography (EEG) and Magnetoencephalography (MEG) are two non-invasive techniques able to detect the early synaptic dysfunction and track the course of the disease. However, in spite of its added value they are not part of the standard of care in clinical practice in dementia. In this paper we review what these neurophysiological techniques can add to the early diagnosis of AD, whether results in both modalities are related to each other or not, as well as the need of its validation against current biomarkers. We discuss their potential implications for the better understanding of the pathophysiological mechanisms of the disease as well as the need of performing simultaneous M/EEG recordings to better understand discrepancies between these two techniques. Finally, more studies are needed studying M/EEG with amyloid and Tau biomarkers.
Collapse
Affiliation(s)
- Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain
- Department of Experimental Psychology, Universidad Complutense de Madrid, Madrid, Spain
- Magnetic Source Imaging Unit, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Pablo Cuesta
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain
- Electrical Engineering and Bioengineering Lab, Department of Industrial Engineering & IUNE Universidad de La Laguna, Tenerife, Spain
| | - Omar Hasan
- McGovern Medical School University of Texas Health Science Center, Houston, TX, United States
| | - Alberto Fernandéz
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain
- Department of Legal Medicine, Psychiatry, and Pathology, Universidad Complutense de Madrid, Madrid, Spain
| | - Michael Funke
- Magnetic Source Imaging Unit, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Paul E. Schulz
- McGovern Medical School University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
20
|
López-Sanz D, Serrano N, Maestú F. The Role of Magnetoencephalography in the Early Stages of Alzheimer's Disease. Front Neurosci 2018; 12:572. [PMID: 30158852 PMCID: PMC6104188 DOI: 10.3389/fnins.2018.00572] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/30/2018] [Indexed: 01/01/2023] Open
Abstract
The ever increasing proportion of aged people in modern societies is leading to a substantial increase in the number of people affected by dementia, and Alzheimer’s Disease (AD) in particular, which is the most common cause for dementia. Throughout the course of the last decades several different compounds have been tested to stop or slow disease progression with limited success, which is giving rise to a strong interest toward the early stages of the disease. Alzheimer’s disease has an extended an insidious preclinical stage in which brain pathology accumulates slowly until clinical symptoms are observable in prodromal stages and in dementia. For this reason, the scientific community is focusing into investigating early signs of AD which could lead to the development of validated biomarkers. While some CSF and PET biomarkers have already been introduced in the clinical practice, the use of non-invasive measures of brain function as early biomarkers is still under investigation. However, the electrophysiological mechanisms and the early functional alterations underlying preclinical Alzheimer’s Disease is still scarcely studied. This work aims to briefly review the most relevant findings in the field of electrophysiological brain changes as measured by magnetoencephalography (MEG). MEG has proven its utility in some clinical areas. However, although its clinical relevance in dementia is still limited, a growing number of studies highlighted its sensitivity in these preclinical stages. Studies focusing on different analytical approaches will be reviewed. Furthermore, their potential applications to establish early diagnosis and determine subsequent progression to dementia are discussed.
Collapse
Affiliation(s)
- David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Noelia Serrano
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Technical University of Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| |
Collapse
|
21
|
Multivariate Matching Pursuit Decomposition and Normalized Gabor Entropy for Quantification of Preictal Trends in Epilepsy. ENTROPY 2018; 20:e20060419. [PMID: 33265509 PMCID: PMC7512937 DOI: 10.3390/e20060419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/20/2018] [Accepted: 05/26/2018] [Indexed: 12/02/2022]
Abstract
Quantification of the complexity of signals recorded concurrently from multivariate systems, such as the brain, plays an important role in the study and characterization of their state and state transitions. Multivariate analysis of the electroencephalographic signals (EEG) over time is conceptually most promising in unveiling the global dynamics of dynamical brain disorders such as epilepsy. We employed a novel methodology to study the global complexity of the epileptic brain en route to seizures. The developed measures of complexity were based on Multivariate Matching Pursuit (MMP) decomposition of signals in terms of time–frequency Gabor functions (atoms) and Shannon entropy. The measures were first validated on simulation data (Lorenz system) and then applied to EEGs from preictal (before seizure onsets) periods, recorded by intracranial electrodes from eight patients with temporal lobe epilepsy and a total of 42 seizures, in search of global trends of complexity before seizures onset. Out of five Gabor measures of complexity we tested, we found that our newly defined measure, the normalized Gabor entropy (NGE), was able to detect statistically significant (p < 0.05) nonlinear trends of the mean global complexity across all patients over 1 h periods prior to seizures’ onset. These trends pointed to a slow decrease of the epileptic brain’s global complexity over time accompanied by an increase of the variance of complexity closer to seizure onsets. These results show that the global complexity of the epileptic brain decreases at least 1 h prior to seizures and imply that the employed methodology and measures could be useful in identifying different brain states, monitoring of seizure susceptibility over time, and potentially in seizure prediction.
Collapse
|
22
|
|
23
|
Automated Multiclass Classification of Spontaneous EEG Activity in Alzheimer's Disease and Mild Cognitive Impairment. ENTROPY 2018; 20:e20010035. [PMID: 33265122 PMCID: PMC7512207 DOI: 10.3390/e20010035] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/24/2022]
Abstract
The discrimination of early Alzheimer’s disease (AD) and its prodromal form (i.e., mild cognitive impairment, MCI) from cognitively healthy control (HC) subjects is crucial since the treatment is more effective in the first stages of the dementia. The aim of our study is to evaluate the usefulness of a methodology based on electroencephalography (EEG) to detect AD and MCI. EEG rhythms were recorded from 37 AD patients, 37 MCI subjects and 37 HC subjects. Artifact-free trials were analyzed by means of several spectral and nonlinear features: relative power in the conventional frequency bands, median frequency, individual alpha frequency, spectral entropy, Lempel–Ziv complexity, central tendency measure, sample entropy, fuzzy entropy, and auto-mutual information. Relevance and redundancy analyses were also conducted through the fast correlation-based filter (FCBF) to derive an optimal set of them. The selected features were used to train three different models aimed at classifying the trials: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and multi-layer perceptron artificial neural network (MLP). Afterwards, each subject was automatically allocated in a particular group by applying a trial-based majority vote procedure. After feature extraction, the FCBF method selected the optimal set of features: individual alpha frequency, relative power at delta frequency band, and sample entropy. Using the aforementioned set of features, MLP showed the highest diagnostic performance in determining whether a subject is not healthy (sensitivity of 82.35% and positive predictive value of 84.85% for HC vs. all classification task) and whether a subject does not suffer from AD (specificity of 79.41% and negative predictive value of 84.38% for AD vs. all comparison). Our findings suggest that our methodology can help physicians to discriminate AD, MCI and HC.
Collapse
|
24
|
Gómez C, Juan-Cruz C, Poza J, Ruiz-Gómez SJ, Gomez-Pilar J, Núñez P, García M, Fernández A, Hornero R. Alterations of Effective Connectivity Patterns in Mild Cognitive Impairment: An MEG Study. J Alzheimers Dis 2017; 65:843-854. [PMID: 29103032 DOI: 10.3233/jad-170475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuroimaging techniques have demonstrated over the years their ability to characterize the brain abnormalities associated with different neurodegenerative diseases. Among all these techniques, magnetoencephalography (MEG) stands out by its high temporal resolution and noninvasiveness. The aim of the present study is to explore the coupling patterns of resting-state MEG activity in subjects with mild cognitive impairment (MCI). To achieve this goal, five minutes of spontaneous MEG activity were acquired with a 148-channel whole-head magnetometer from 18 MCI patients and 26 healthy controls. Inter-channel relationships were investigated by means of two complementary coupling measures: coherence and Granger causality. Coherence is a classical method of functional connectivity, while Granger causality quantifies effective (or causal) connectivity. Both measures were calculated in the five conventional frequency bands: delta (δ, 1-4 Hz), theta (θ, 4-8 Hz), alpha (α, 8-13 Hz), beta (β, 13-30 Hz), and gamma (γ, 30-45 Hz). Our results showed that connectivity values were lower for MCI patients than for controls in all frequency bands. However, only Granger causality revealed statistically significant differences between groups (p-values < 0.05, FDR corrected Mann-Whitney U-test), mainly in the beta band. Our results support the role of MCI as a disconnection syndrome, which elicits early alterations in effective connectivity patterns. These findings can be helpful to identify the neural substrates involved in prodromal stages of dementia.
Collapse
Affiliation(s)
- Carlos Gómez
- Biomedical Engineering Group, University of Valladolid, Spain
| | - Celia Juan-Cruz
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jesús Poza
- Biomedical Engineering Group, University of Valladolid, Spain.,IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Spain.,INCYL, Instituto de Neurociencias de Castilla y León, University of Salamanca, Spain
| | | | | | - Pablo Núñez
- Biomedical Engineering Group, University of Valladolid, Spain
| | - María García
- Biomedical Engineering Group, University of Valladolid, Spain
| | - Alberto Fernández
- Department of Psychiatry, Faculty of Medicine, Complutense University of Madrid, Spain.,Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid, Spain
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Spain.,IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Spain.,INCYL, Instituto de Neurociencias de Castilla y León, University of Salamanca, Spain
| |
Collapse
|
25
|
Jia Y, Gu H, Luo Q. Sample entropy reveals an age-related reduction in the complexity of dynamic brain. Sci Rep 2017; 7:7990. [PMID: 28801672 PMCID: PMC5554148 DOI: 10.1038/s41598-017-08565-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Dynamic reconfiguration of the human brain is characterized by the nature of complexity. The purpose of this study was to measure such complexity and also analyze its association with age. We modeled the dynamic reconfiguration process by dynamic functional connectivity, which was established by resting-state functional magnetic resonance imaging (fMRI) data, and we measured complexity within the dynamic functional connectivity by sample entropy (SampEn). A brainwide map of SampEn in healthy subjects shows larger values in the caudate, the olfactory gyrus, the amygdala, and the hippocampus, and lower values in primary sensorimotor and visual areas. Association analysis in healthy subjects indicated that SampEn of the amygdala-cortical connectivity decreases with advancing age. Such age-related loss of SampEn, however, disappears in patients with schizophrenia. These findings suggest that SampEn of the dynamic functional connectivity is a promising indicator of normal aging.
Collapse
Affiliation(s)
- Yanbing Jia
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, P. R. China
| | - Huaguang Gu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, P. R. China.
| | - Qiang Luo
- School of Life Sciences, Fudan University, Shanghai, 200433, P. R. China. .,Institute of Science and Technology of Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, P. R. China.
| |
Collapse
|
26
|
Engels MMA, van der Flier WM, Stam CJ, Hillebrand A, Scheltens P, van Straaten ECW. Alzheimer's disease: The state of the art in resting-state magnetoencephalography. Clin Neurophysiol 2017. [PMID: 28622527 DOI: 10.1016/j.clinph.2017.05.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is accompanied by functional brain changes that can be detected in imaging studies, including electromagnetic activity recorded with magnetoencephalography (MEG). Here, we systematically review the studies that have examined resting-state MEG changes in AD and identify areas that lack scientific or clinical progress. Three levels of MEG analysis will be covered: (i) single-channel signal analysis, (ii) pairwise analyses over time series, which includes the study of interdependencies between two time series and (iii) global network analyses. We discuss the findings in the light of other functional modalities, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Overall, single-channel MEG results show consistent changes in AD that are in line with EEG studies, but the full potential of the high spatial resolution of MEG and advanced functional connectivity and network analysis has yet to be fully exploited. Adding these features to the current knowledge will potentially aid in uncovering organizational patterns of brain function in AD and thereby aid the understanding of neuronal mechanisms leading to cognitive deficits.
Collapse
Affiliation(s)
- M M A Engels
- Alzheimer Centrum and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
| | - W M van der Flier
- Alzheimer Centrum and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; Department of Epidemiology and Biostatistics, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - C J Stam
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - A Hillebrand
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Ph Scheltens
- Alzheimer Centrum and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - E C W van Straaten
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Weighted-Permutation Entropy Analysis of Resting State EEG from Diabetics with Amnestic Mild Cognitive Impairment. ENTROPY 2016. [DOI: 10.3390/e18080307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Hyper-resting brain entropy within chronic smokers and its moderation by Sex. Sci Rep 2016; 6:29435. [PMID: 27377552 PMCID: PMC4932513 DOI: 10.1038/srep29435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/17/2016] [Indexed: 01/29/2023] Open
Abstract
Cigarette smoking is a chronic relapsing brain disorder, and remains a premier cause of morbidity and mortality. Functional neuroimaging has been used to assess differences in the mean strength of brain activity in smokers’ brains, however less is known about the temporal dynamics within smokers’ brains. Temporal dynamics is a key feature of a dynamic system such as the brain, and may carry information critical to understanding the brain mechanisms underlying cigarette smoking. We measured the temporal dynamics of brain activity using brain entropy (BEN) mapping and compared BEN between chronic non-deprived smokers and non-smoking controls. Because of the known sex differences in neural and behavioral smoking characteristics, comparisons were also made between males and females. Associations between BEN and smoking related clinical measures were assessed in smokers. Our data showed globally higher BEN in chronic smokers compared to controls. The escalated BEN was associated with more years of smoking in the right limbic area and frontal region. Female nonsmokers showed higher BEN than male nonsmokers in prefrontal cortex, insula, and precuneus, but the BEN sex difference in smokers was less pronounced. These findings suggest that BEN mapping may provide a useful tool for probing brain mechanisms related to smoking.
Collapse
|
29
|
Poza J, Gómez C, García M, Bachiller A, Fernández A, Hornero R. Analysis of spontaneous MEG activity in mild cognitive impairment and Alzheimer's disease using Jensen's divergence. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2014:1501-4. [PMID: 25570254 DOI: 10.1109/embc.2014.6943886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study was to analyze the changes that mild cognitive impairment (MCI) and Alzheimer's disease (AD) elicit in brain dynamics. For this task, the spontaneous magnetoencephalographic (MEG) activity from 36 AD patients, 18 MCI subjects and 24 healthy controls was analyzed. A disequilibrium measure, Jensen's divergence, was used to estimate the irregularity of neural dynamics. Results revealed that AD patients displayed significant changes (p<;0.05) in the patterns of irregularity in comparison with MCI subjects and healthy controls. Slight differences between MCI subjects and elderly controls were also found. Our results suggest that AD progression is accompanied by region-specific patterns of abnormalities in the neural activity.
Collapse
|
30
|
Alberdi A, Aztiria A, Basarab A. On the early diagnosis of Alzheimer's Disease from multimodal signals: A survey. Artif Intell Med 2016; 71:1-29. [PMID: 27506128 DOI: 10.1016/j.artmed.2016.06.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/23/2016] [Accepted: 06/07/2016] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The number of Alzheimer's Disease (AD) patients is increasing with increased life expectancy and 115.4 million people are expected to be affected in 2050. Unfortunately, AD is commonly diagnosed too late, when irreversible damages have been caused in the patient. OBJECTIVE An automatic, continuous and unobtrusive early AD detection method would be required to improve patients' life quality and avoid big healthcare costs. Thus, the objective of this survey is to review the multimodal signals that could be used in the development of such a system, emphasizing on the accuracy that they have shown up to date for AD detection. Some useful tools and specific issues towards this goal will also have to be reviewed. METHODS An extensive literature review was performed following a specific search strategy, inclusion criteria, data extraction and quality assessment in the Inspec, Compendex and PubMed databases. RESULTS This work reviews the extensive list of psychological, physiological, behavioural and cognitive measurements that could be used for AD detection. The most promising measurements seem to be magnetic resonance imaging (MRI) for AD vs control (CTL) discrimination with an 98.95% accuracy, while electroencephalogram (EEG) shows the best results for mild cognitive impairment (MCI) vs CTL (97.88%) and MCI vs AD distinction (94.05%). Available physiological and behavioural AD datasets are listed, as well as medical imaging analysis steps and neuroimaging processing toolboxes. Some issues such as "label noise" and multi-site data are discussed. CONCLUSIONS The development of an unobtrusive and transparent AD detection system should be based on a multimodal system in order to take full advantage of all kinds of symptoms, detect even the smallest changes and combine them, so as to detect AD as early as possible. Such a multimodal system might probably be based on physiological monitoring of MRI or EEG, as well as behavioural measurements like the ones proposed along the article. The mentioned AD datasets and image processing toolboxes are available for their use towards this goal. Issues like "label noise" and multi-site neuroimaging incompatibilities may also have to be overcome, but methods for this purpose are already available.
Collapse
Affiliation(s)
- Ane Alberdi
- Mondragon University, Electronics and Computing Department, Goiru Kalea, 2, Arrasate 20500, Spain.
| | - Asier Aztiria
- Mondragon University, Electronics and Computing Department, Goiru Kalea, 2, Arrasate 20500, Spain.
| | - Adrian Basarab
- Université de Toulouse, Institut de Recherche en Informatique de Toulouse, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5505, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
31
|
Zhou F, Zhuang Y, Gong H, Zhan J, Grossman M, Wang Z. Resting State Brain Entropy Alterations in Relapsing Remitting Multiple Sclerosis. PLoS One 2016; 11:e0146080. [PMID: 26727514 PMCID: PMC4699711 DOI: 10.1371/journal.pone.0146080] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/11/2015] [Indexed: 01/01/2023] Open
Abstract
Brain entropy (BEN) mapping provides a novel approach to characterize brain temporal dynamics, a key feature of human brain. Using resting state functional magnetic resonance imaging (rsfMRI), reliable and spatially distributed BEN patterns have been identified in normal brain, suggesting a potential use in clinical populations since temporal brain dynamics and entropy may be altered in disease conditions. The purpose of this study was to characterize BEN in multiple sclerosis (MS), a neurodegenerative disease that affects millions of people. Since currently there is no cure for MS, developing treatment or medication that can slow down its progression represents a high research priority, for which validating a brain marker sensitive to disease and the related functional impairments is essential. Because MS can start long time before any measurable symptoms and structural deficits, assessing the dynamic brain activity and correspondingly BEN may provide a critical way to study MS and its progression. Because BEN is new to MS, we aimed to assess BEN alterations in the relapsing-remitting MS (RRMS) patients using a patient versus control design, to examine the correlation of BEN to clinical measurements, and to check the correlation of BEN to structural brain measures which have been more often used in MS studies. As compared to controls, RRMS patients showed increased BEN in motor areas, executive control area, spatial coordinating area, and memory system. Increased BEN was related to greater disease severity as measured by the expanded disability status scale (EDSS) and greater tissue damage as indicated by the mean diffusivity. Patients also showed decreased BEN in other places, which was associated with less disability or fatigue, indicating a disease-related BEN re-distribution. Our results suggest BEN as a novel and useful tool for characterizing RRMS.
Collapse
Affiliation(s)
- Fuqing Zhou
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, China
- * E-mail: (FZ); (ZW)
| | - Ying Zhuang
- Department of Oncology, the Second Hospital of Nanchang, Nanchang, Jiangxi Province, China
| | - Honghan Gong
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, China
| | - Jie Zhan
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, China
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ze Wang
- Department of Psychology, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
- * E-mail: (FZ); (ZW)
| |
Collapse
|
32
|
Zarafshan H, Khaleghi A, Mohammadi MR, Moeini M, Malmir N. Electroencephalogram complexity analysis in children with attention-deficit/hyperactivity disorder during a visual cognitive task. J Clin Exp Neuropsychol 2015; 38:361-9. [PMID: 26678277 DOI: 10.1080/13803395.2015.1119252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The aim of this study was to investigate electroencephalogram (EEG) dynamics using complexity analysis in children with attention-deficit/hyperactivity disorder (ADHD) compared with healthy control children when performing a cognitive task. METHOD Thirty 7-12-year-old children meeting Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) criteria for ADHD and 30 healthy control children underwent an EEG evaluation during a cognitive task, and Lempel-Ziv complexity (LZC) values were computed. There were no significant differences between ADHD and control groups on age and gender. RESULTS The mean LZC of the ADHD children was significantly larger than healthy children over the right anterior and right posterior regions during the cognitive performance. In the ADHD group, complexity of the right hemisphere was higher than that of the left hemisphere, but the complexity of the left hemisphere was higher than that of the right hemisphere in the normal group. CONCLUSION Although fronto-striatal dysfunction is considered conclusive evidence for the pathophysiology of ADHD, our arithmetic mental task has provided evidence of structural and functional changes in the posterior regions and probably cerebellum in ADHD.
Collapse
Affiliation(s)
- Hadi Zarafshan
- a Psychiatry & Psychology Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Ali Khaleghi
- a Psychiatry & Psychology Research Center , Tehran University of Medical Sciences , Tehran , Iran.,b Department of Biomedical Engineering , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Mohammad Reza Mohammadi
- a Psychiatry & Psychology Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Mahdi Moeini
- a Psychiatry & Psychology Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Nastaran Malmir
- a Psychiatry & Psychology Research Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
33
|
Fuzzy approximate entropy analysis of resting state fMRI signal complexity across the adult life span. Med Eng Phys 2015; 37:1082-90. [PMID: 26475494 DOI: 10.1016/j.medengphy.2015.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 08/20/2015] [Accepted: 09/06/2015] [Indexed: 11/23/2022]
Abstract
In this study, we present a method for measuring functional magnetic resonance imaging (fMRI) signal complexity using fuzzy approximate entropy (fApEn) and compare it with the established sample entropy (SampEn). Here we use resting state fMRI dataset of 86 healthy adults (41 males) with age ranging from 19 to 85 years. We expect the complexity of the resting state fMRI signals measured to be consistent with the Goldberger/Lipsitz model for robustness where healthier (younger) and more robust systems exhibit more complexity in their physiological output and system complexity decrease with age. The mean whole brain fApEn demonstrated significant negative correlation (r = -0.472, p<0.001) with age. In comparison, SampEn produced a non-significant negative correlation (r = -0.099, p = 0.367). fApEn also demonstrated a significant (p < 0.05) negative correlation with age regionally (frontal, parietal, limbic, temporal and cerebellum parietal lobes). There was no significant correlation regionally between the SampEn maps and age. These results support the Goldberger/Lipsitz model for robustness and have shown that fApEn is potentially a sensitive new method for the complexity analysis of fMRI data.
Collapse
|
34
|
Nardelli M, Valenza G, Cristea IA, Gentili C, Cotet C, David D, Lanata A, Scilingo EP. Characterizing psychological dimensions in non-pathological subjects through autonomic nervous system dynamics. Front Comput Neurosci 2015; 9:37. [PMID: 25859212 PMCID: PMC4373375 DOI: 10.3389/fncom.2015.00037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/06/2015] [Indexed: 11/17/2022] Open
Abstract
The objective assessment of psychological traits of healthy subjects and psychiatric patients has been growing interest in clinical and bioengineering research fields during the last decade. Several experimental evidences strongly suggest that a link between Autonomic Nervous System (ANS) dynamics and specific dimensions such as anxiety, social phobia, stress, and emotional regulation might exist. Nevertheless, an extensive investigation on a wide range of psycho-cognitive scales and ANS non-invasive markers gathered from standard and non-linear analysis still needs to be addressed. In this study, we analyzed the discerning and correlation capabilities of a comprehensive set of ANS features and psycho-cognitive scales in 29 non-pathological subjects monitored during resting conditions. In particular, the state of the art of standard and non-linear analysis was performed on Heart Rate Variability, InterBreath Interval series, and InterBeat Respiration series, which were considered as monovariate and multivariate measurements. Experimental results show that each ANS feature is linked to specific psychological traits. Moreover, non-linear analysis outperforms the psychological assessment with respect to standard analysis. Considering that the current clinical practice relies only on subjective scores from interviews and questionnaires, this study provides objective tools for the assessment of psychological dimensions.
Collapse
Affiliation(s)
- Mimma Nardelli
- Department of Information Engineering & Research Centre E. Piaggio, Faculty of Engineering, University of PisaPisa, Italy
| | - Gaetano Valenza
- Department of Information Engineering & Research Centre E. Piaggio, Faculty of Engineering, University of PisaPisa, Italy
| | - Ioana A. Cristea
- Section of Psychology, Department of Surgical, Medical, Molecular, and Critical Area Pathology, University of PisaPisa, Italy
- Department of Clinical Psychology and Pychotherapy, Babes-Bolyai UniversityCluj-Napoca, Romania
| | - Claudio Gentili
- Section of Psychology, Department of Surgical, Medical, Molecular, and Critical Area Pathology, University of PisaPisa, Italy
| | - Carmen Cotet
- Department of Clinical Psychology and Pychotherapy, Babes-Bolyai UniversityCluj-Napoca, Romania
| | - Daniel David
- Department of Clinical Psychology and Pychotherapy, Babes-Bolyai UniversityCluj-Napoca, Romania
| | - Antonio Lanata
- Department of Information Engineering & Research Centre E. Piaggio, Faculty of Engineering, University of PisaPisa, Italy
| | - Enzo P. Scilingo
- Department of Information Engineering & Research Centre E. Piaggio, Faculty of Engineering, University of PisaPisa, Italy
| |
Collapse
|
35
|
Idris Z, Kandasamy R, Reza F, Abdullah JM. Neural oscillation, network, eloquent cortex and epileptogenic zone revealed by magnetoencephalography and awake craniotomy. Asian J Neurosurg 2015; 9:144-52. [PMID: 25685205 PMCID: PMC4323898 DOI: 10.4103/1793-5482.142734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Magnetoencephalography (MEG) is a method of functional neuroimaging. The concomitant use of MEG and electrocorticography has been found to be useful in elucidating neural oscillation and network, and to localize epileptogenic zone and functional cortex. We describe our early experience using MEG in neurosurgical patients, emphasizing on its impact on patient management as well as the enrichment of our knowledge in neurosciences. MATERIALS AND METHODS A total of 10 subjects were included; five patients had intraaxial tumors, one with an extraaxial tumor and brain compression, two with arteriovenous malformations, one with cerebral peduncle hemorrhage and one with sensorimotor cortical dysplasia. All patients underwent evoked and spontaneous MEG recordings. MEG data was processed at band-pass filtering frequency of between 0.1 and 300 Hz with a sampling rate of 1 kHz. MEG source localization was performed using either overdetermined equivalent current dipoles or underdetermined inversed solution. Neuromag collection of events software was used to study brain network and epileptogenic zone. The studied data were analyzed for neural oscillation in three patients; brain network and clinical manifestation in five patients; and for the location of epileptogenic zone and eloquent cortex in two patients. RESULTS We elucidated neural oscillation in three patients. One demonstrated oscillatory phenomenon on stimulation of the motor-cortex during awake surgery, and two had improvement in neural oscillatory parameters after surgery. Brain networks corresponding to clinico-anatomical relationships were depicted in five patients, and two networks were illustrated here. Finally, we demonstrated epilepsy cases in which MEG data was found to be useful in localizing the epileptogenic zones and functional cortices. CONCLUSION The application of MEG while enhancing our knowledge in neurosciences also has a useful role in epilepsy and awake surgery.
Collapse
Affiliation(s)
- Zamzuri Idris
- Center for Neuroscience Service and Research, School of Medical Sciences, Center for Neuroscience Service and Research, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia ; Department of Neurosciences, School of Medical Sciences, Center for Neuroscience Service and Research, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| | - Regunath Kandasamy
- Department of Neurosciences, School of Medical Sciences, Center for Neuroscience Service and Research, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| | - Faruque Reza
- Department of Neurosciences, School of Medical Sciences, Center for Neuroscience Service and Research, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| | - Jafri M Abdullah
- Center for Neuroscience Service and Research, School of Medical Sciences, Center for Neuroscience Service and Research, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia ; Department of Neurosciences, School of Medical Sciences, Center for Neuroscience Service and Research, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
36
|
Abstract
Entropy is an important trait for life as well as the human brain. Characterizing brain entropy (BEN) may provide an informative tool to assess brain states and brain functions. Yet little is known about the distribution and regional organization of BEN in normal brain. The purpose of this study was to examine the whole brain entropy patterns using a large cohort of normal subjects. A series of experiments were first performed to validate an approximate entropy measure regarding its sensitivity, specificity, and reliability using synthetic data and fMRI data. Resting state fMRI data from a large cohort of normal subjects (n = 1049) from multi-sites were then used to derive a 3-dimensional BEN map, showing a sharp low-high entropy contrast between the neocortex and the rest of brain. The spatial heterogeneity of resting BEN was further studied using a data-driven clustering method, and the entire brain was found to be organized into 7 hierarchical regional BEN networks that are consistent with known structural and functional brain parcellations. These findings suggest BEN mapping as a physiologically and functionally meaningful measure for studying brain functions.
Collapse
|
37
|
Poza J, Gómez C, García M, Corralejo R, Fernández A, Hornero R. Analysis of neural dynamics in mild cognitive impairment and Alzheimer's disease using wavelet turbulence. J Neural Eng 2014; 11:026010. [PMID: 24608272 DOI: 10.1088/1741-2560/11/2/026010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Current diagnostic guidelines encourage further research for the development of novel Alzheimer's disease (AD) biomarkers, especially in its prodromal form (i.e. mild cognitive impairment, MCI). Magnetoencephalography (MEG) can provide essential information about AD brain dynamics; however, only a few studies have addressed the characterization of MEG in incipient AD. APPROACH We analyzed MEG rhythms from 36 AD patients, 18 MCI subjects and 27 controls, introducing a new wavelet-based parameter to quantify their dynamical properties: the wavelet turbulence. MAIN RESULTS Our results suggest that AD progression elicits statistically significant regional-dependent patterns of abnormalities in the neural activity (p < 0.05), including a progressive loss of irregularity, variability, symmetry and Gaussianity. Furthermore, the highest accuracies to discriminate AD and MCI subjects from controls were 79.4% and 68.9%, whereas, in the three-class setting, the accuracy reached 67.9%. SIGNIFICANCE Our findings provide an original description of several dynamical properties of neural activity in early AD and offer preliminary evidence that the proposed methodology is a promising tool for assessing brain changes at different stages of dementia.
Collapse
Affiliation(s)
- Jesús Poza
- Biomedical Engineering Group, Department TSCIT, ETS. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain. IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Valladolid, Spain. INCYL, Instituto de Neurociencias de Castilla y León, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Fernández A, Gómez C, Hornero R, López-Ibor JJ. Complexity and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:267-76. [PMID: 22507763 DOI: 10.1016/j.pnpbp.2012.03.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/27/2012] [Accepted: 03/31/2012] [Indexed: 11/17/2022]
Abstract
Complexity estimators have been broadly utilized in schizophrenia investigation. Early studies reported increased complexity in schizophrenia patients, associated with a higher variability or "irregularity" of their brain signals. However, further investigations showed reduced complexities, thus introducing a clear divergence. Nowadays, both increased and reduced complexity values are reported. The explanation of such divergence is a critical issue to understand the role of complexity measures in schizophrenia research. Considering previous arguments a complementary hypothesis is advanced: if the increased irregularity of schizophrenia patients' neurophysiological activity is assumed, a "natural" tendency to increased complexity in EEG and MEG scans should be expected, probably reflecting an abnormal neuronal firing pattern in some critical regions such as the frontal lobes. This "natural" tendency to increased complexity might be modulated by the interaction of three main factors: medication effects, symptomatology, and age effects. Therefore, young, medication-naïve, and highly symptomatic (positive symptoms) patients are expected to exhibit increased complexities. More importantly, the investigation of these interacting factors by means of complexity estimators might help to elucidate some of the neuropathological processes involved in schizophrenia.
Collapse
Affiliation(s)
- Alberto Fernández
- Departamento de Psiquiatría y Psicología Médica, Facultad de Medicina, Universidad Conmplutense, Madrid, Spain.
| | | | | | | |
Collapse
|
39
|
Is mental illness complex? From behavior to brain. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:253-7. [PMID: 23089053 DOI: 10.1016/j.pnpbp.2012.09.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 09/05/2012] [Accepted: 09/27/2012] [Indexed: 11/23/2022]
Abstract
A defining but elusive feature of the human brain is its astonishing complexity. This complexity arises from the interaction of numerous neuronal circuits that operate over a wide range of temporal and spatial scales, enabling the brain to adapt to the constantly changing environment and to perform various amazing mental functions. In mentally ill patients, such adaptability is often impaired, leading to either ordered or random patterns of behavior. Quantification and classification of these abnormal human behaviors exhibited during mental illness is one of the major challenges of contemporary psychiatric medicine. In the past few decades, attempts have been made to apply concepts adopted from complexity science to better understand complex human behavior. Although considerable effort has been devoted to studying the abnormal dynamic processes involved in mental illness, unfortunately, the primary features of complexity science are typically presented in a form suitable for mathematicians, physicists, and engineers; thus, they are difficult for practicing psychiatrists or neuroscientists to comprehend. Therefore, this paper introduces recent applications of methods derived from complexity science for examining mental illness. We propose that mental illness is loss of brain complexity and the complexity of mental illness can be studied under a general framework by quantifying the order and randomness of dynamic macroscopic human behavior and microscopic neuronal activity. Additionally, substantial effort is required to identify the link between macroscopic behaviors and microscopic changes in the neuronal dynamics within the brain.
Collapse
|
40
|
D'Amelio M, Rossini PM. Brain excitability and connectivity of neuronal assemblies in Alzheimer's disease: from animal models to human findings. Prog Neurobiol 2012; 99:42-60. [PMID: 22789698 DOI: 10.1016/j.pneurobio.2012.07.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 06/08/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
Abstract
The human brain contains about 100 billion neurons forming an intricate network of innumerable connections, which continuously adapt and rewire themselves following inputs from external and internal environments as well as the physiological synaptic, dendritic and axonal sculpture during brain maturation and throughout the life span. Growing evidence supports the idea that Alzheimer's disease (AD) targets selected and functionally connected neuronal networks and, specifically, their synaptic terminals, affecting brain connectivity well before producing neuronal loss and compartmental atrophy. The understanding of the molecular mechanisms underlying the dismantling of neuronal circuits and the implementation of 'clinically oriented' methods to map-out the dynamic interactions amongst neuronal assemblies will enhance early/pre-symptomatic diagnosis and monitoring of disease progression. More important, this will open the avenues to innovative treatments, bridging the gap between molecular mechanisms and the variety of symptoms forming disease phenotype. In the present review a set of evidence supports the idea that altered brain connectivity, exhausted neural plasticity and aberrant neuronal activity are facets of the same coin linked to age-related neurodegenerative dementia of Alzheimer type. Investigating their respective roles in AD pathophysiology will help in translating findings from basic research to clinical applications.
Collapse
Affiliation(s)
- Marcello D'Amelio
- IRCCS S. Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | | |
Collapse
|
41
|
Brain oscillatory complexity across the life span. Clin Neurophysiol 2012; 123:2154-62. [PMID: 22647457 DOI: 10.1016/j.clinph.2012.04.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Considering the increasing use of complexity estimates in neuropsychiatric populations, a normative study is critical to define the 'normal' behaviour of brain oscillatory complexity across the life span. METHOD This study examines changes in resting-state magnetoencephalogram (MEG) complexity - quantified with the Lempel-Ziv complexity (LZC) algorithm - due to age and gender in a large sample of 222 (100 males/122 females) healthy participants with ages ranging from 7 to 84 years. RESULTS A significant quadratic (curvilinear) relationship (p<0.05) between age and complexity was found, with LZC maxima being reached by the sixth decade of life. Once that peak was crossed, complexity values slowly decreased until late senescence. Females exhibited higher LZC values than males, with significant differences in the anterior, central and posterior regions (p<0.05). CONCLUSIONS These results suggest that the evolution of brain oscillatory complexity across the life span might be considered a new illustration of a 'normal' physiological rhythm. SIGNIFICANCE Previous and forthcoming clinical studies using complexity estimates might be interpreted from a more complete and dynamical perspective. Pathologies not only cause an 'abnormal' increase or decrease of complexity values but they actually 'break' the 'normal' pattern of oscillatory complexity evolution as a function of age.
Collapse
|
42
|
Bruña R, Poza J, Gómez C, García M, Fernández A, Hornero R. Analysis of spontaneous MEG activity in mild cognitive impairment and Alzheimer's disease using spectral entropies and statistical complexity measures. J Neural Eng 2012; 9:036007. [PMID: 22571870 DOI: 10.1088/1741-2560/9/3/036007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Over the last few years, a considerable effort has been devoted to exploring new biomarkers. Nevertheless, a better understanding of brain dynamics is still required to optimize therapeutic strategies. In this regard, the characterization of mild cognitive impairment (MCI) is crucial, due to the high conversion rate from MCI to AD. However, only a few studies have focused on the analysis of magnetoencephalographic (MEG) rhythms to characterize AD and MCI. In this study, we assess the ability of several parameters derived from information theory to describe spontaneous MEG activity from 36 AD patients, 18 MCI subjects and 26 controls. Three entropies (Shannon, Tsallis and Rényi entropies), one disequilibrium measure (based on Euclidean distance ED) and three statistical complexities (based on Lopez Ruiz-Mancini-Calbet complexity LMC) were used to estimate the irregularity and statistical complexity of MEG activity. Statistically significant differences between AD patients and controls were obtained with all parameters (p < 0.01). In addition, statistically significant differences between MCI subjects and controls were achieved by ED and LMC (p < 0.05). In order to assess the diagnostic ability of the parameters, a linear discriminant analysis with a leave-one-out cross-validation procedure was applied. The accuracies reached 83.9% and 65.9% to discriminate AD and MCI subjects from controls, respectively. Our findings suggest that MCI subjects exhibit an intermediate pattern of abnormalities between normal aging and AD. Furthermore, the proposed parameters provide a new description of brain dynamics in AD and MCI.
Collapse
Affiliation(s)
- Ricardo Bruña
- Biomedical Engineering Group, Departmento T.S.C.I.T., E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Méndez MA, Zuluaga P, Hornero R, Gómez C, Escudero J, Rodríguez-Palancas A, Ortiz T, Fernández A. Complexity analysis of spontaneous brain activity: effects of depression and antidepressant treatment. J Psychopharmacol 2012; 26:636-43. [PMID: 21708836 DOI: 10.1177/0269881111408966] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnetoencephalography (MEG) allows the real-time recording of neural activity and oscillatory activity in distributed neural networks. We applied a non-linear complexity analysis to resting-state neural activity as measured using whole-head MEG. Recordings were obtained from 20 unmedicated patients with major depressive disorder and 19 matched healthy controls. Subsequently, after 6 months of pharmacological treatment with the antidepressant mirtazapine 30 mg/day, patients received a second MEG scan. A measure of the complexity of neural signals, the Lempel-Ziv Complexity (LZC), was derived from the MEG time series. We found that depressed patients showed higher pre-treatment complexity values compared with controls, and that complexity values decreased after 6 months of effective pharmacological treatment, although this effect was statistically significant only in younger patients. The main treatment effect was to recover the tendency observed in controls of a positive correlation between age and complexity values. Importantly, the reduction of complexity with treatment correlated with the degree of clinical symptom remission. We suggest that LZC, a formal measure of neural activity complexity, is sensitive to the dynamic physiological changes observed in depression and may potentially offer an objective marker of depression and its remission after treatment.
Collapse
Affiliation(s)
- María Andreina Méndez
- Departamento de Psiquiatría y Psicología Médica, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Gómez C, Olde Dubbelink KTE, Stam CJ, Abásolo D, Berendse HW, Hornero R. Complexity Analysis of Resting-State MEG Activity in Early-Stage Parkinson’s Disease Patients. Ann Biomed Eng 2011; 39:2935-44. [DOI: 10.1007/s10439-011-0416-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/20/2011] [Indexed: 11/30/2022]
|
45
|
The correlation between white-matter microstructure and the complexity of spontaneous brain activity: A difussion tensor imaging-MEG study. Neuroimage 2011; 57:1300-7. [DOI: 10.1016/j.neuroimage.2011.05.079] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 04/18/2011] [Accepted: 05/30/2011] [Indexed: 01/02/2023] Open
|
46
|
Hot P, Rauchs G, Bertran F, Denise P, Desgranges B, Clochon P, Eustache F. Changes in sleep theta rhythm are related to episodic memory impairment in early Alzheimer's disease. Biol Psychol 2011; 87:334-9. [DOI: 10.1016/j.biopsycho.2011.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 01/13/2011] [Accepted: 04/07/2011] [Indexed: 01/05/2023]
|
47
|
Chadwick W, Mitchell N, Caroll J, Zhou Y, Park SS, Wang L, Becker KG, Zhang Y, Lehrmann E, Wood WH, Martin B, Maudsley S. Amitriptyline-mediated cognitive enhancement in aged 3×Tg Alzheimer's disease mice is associated with neurogenesis and neurotrophic activity. PLoS One 2011; 6:e21660. [PMID: 21738757 PMCID: PMC3124550 DOI: 10.1371/journal.pone.0021660] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 06/07/2011] [Indexed: 01/22/2023] Open
Abstract
Approximately 35 million people worldwide suffer from Alzheimer's disease (AD). Existing therapeutics, while moderately effective, are currently unable to stem the widespread rise in AD prevalence. AD is associated with an increase in amyloid beta (Aβ) oligomers and hyperphosphorylated tau, along with cognitive impairment and neurodegeneration. Several antidepressants have shown promise in improving cognition and alleviating oxidative stress in AD but have failed as long-term therapeutics. In this study, amitriptyline, an FDA-approved tricyclic antidepressant, was administered orally to aged and cognitively impaired transgenic AD mice (3×TgAD). After amitriptyline treatment, cognitive behavior testing demonstrated that there was a significant improvement in both long- and short-term memory retention. Amitriptyline treatment also caused a significant potentiation of non-toxic Aβ monomer with a concomitant decrease in cytotoxic dimer Aβ load, compared to vehicle-treated 3×TgAD controls. In addition, amitriptyline administration caused a significant increase in dentate gyrus neurogenesis as well as increases in expression of neurosynaptic marker proteins. Amitriptyline treatment resulted in increases in hippocampal brain-derived neurotrophic factor protein as well as increased tyrosine phosphorylation of its cognate receptor (TrkB). These results indicate that amitriptyline has significant beneficial actions in aged and damaged AD brains and that it shows promise as a tolerable novel therapeutic for the treatment of AD.
Collapse
Affiliation(s)
- Wayne Chadwick
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Nick Mitchell
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Jenna Caroll
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yu Zhou
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sung-Soo Park
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Liyun Wang
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kevin G. Becker
- Genomics Unit, Research Resources Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yongqing Zhang
- Genomics Unit, Research Resources Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Elin Lehrmann
- Genomics Unit, Research Resources Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - William H. Wood
- Genomics Unit, Research Resources Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
48
|
Fernández A, López-Ibor MI, Turrero A, Santos JM, Morón MD, Hornero R, Gómez C, Méndez MA, Ortiz T, López-Ibor JJ. Lempel-Ziv complexity in schizophrenia: a MEG study. Clin Neurophysiol 2011; 122:2227-35. [PMID: 21592856 DOI: 10.1016/j.clinph.2011.04.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 04/01/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The neurodevelopmental-neurodegenerative debate is a basic issue in the field of the neuropathological basis of schizophrenia (SCH). Neurophysiological techniques have been scarcely involved in such debate, but nonlinear analysis methods may contribute to it. METHODS Fifteen patients (age range 23-42 years) matching DSM IV-TR criteria for SCH, and 15 sex- and age-matched control subjects (age range 23-42 years) underwent a resting-state magnetoencephalographic evaluation and Lempel-Ziv complexity (LZC) scores were calculated. RESULTS Regression analyses indicated that LZC values were strongly dependent on age. Complexity scores increased as a function of age in controls, while SCH patients exhibited a progressive reduction of LZC values. A logistic model including LZC scores, age and the interaction of both variables allowed the classification of patients and controls with high sensitivity and specificity. CONCLUSIONS Results demonstrated that SCH patients failed to follow the "normal" process of complexity increase as a function of age. In addition, SCH patients exhibited a significant reduction of complexity scores as a function of age, thus paralleling the pattern observed in neurodegenerative diseases. SIGNIFICANCE Our results support the notion of a progressive defect in SCH, which does not contradict the existence of a basic neurodevelopmental alteration.
Collapse
Affiliation(s)
- Alberto Fernández
- Department of Psychiatry and Psychological Medicine, Complutense University, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|