1
|
Pimenta JC, Beltrami VA, Oliveira BDS, Queiroz-Junior CM, Barsalini J, Teixeira DC, de Souza-Costa LP, Lima ALD, Machado CA, Parreira BZSG, Santos FRDS, Costa PAC, Lacerda LDSB, Gonçalves MR, Chaves IDM, Couto MGG, Costa VRDM, Nóbrega NRC, Silva BL, Fonseca T, Resende F, Wnuk NT, Marim FM, Rocha FEO, Umezu HL, Campolina-Silva G, Andrade ACDSP, de Aguiar RS, Costa GMJ, Guimarães PPG, Silva GSF, Rachid MA, Vieira LB, Pinho V, Teixeira AL, Teixeira MM, Miranda AS, Costa VV. Neuropsychiatric sequelae in an experimental model of post-COVID syndrome in mice. Brain Behav Immun 2025; 128:16-36. [PMID: 40120834 DOI: 10.1016/j.bbi.2025.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/17/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
The global impact of the COVID-19 pandemic has been unprecedented, and presently, the world is facing a new challenge known as post-COVID syndrome (PCS). Current estimates suggest that more than 100 million people are grappling with PCS, encompassing several manifestations, including pulmonary, musculoskeletal, metabolic, and neuropsychiatric sequelae (cognitive and behavioral). The mechanisms underlying PCS remain unclear. The present study aimed to: (i) comprehensively characterize the acute effects of pulmonary inoculation of the betacoronavirus MHV-A59 in immunocompetent mice at clinical, cellular, and molecular levels; (ii) examine potential acute and long-term pulmonary, musculoskeletal, and neuropsychiatric sequelae induced by the betacoronavirus MHV-A59; and to (iii) assess sex-specific differences. Male and female C57Bl/6 mice were initially inoculated with varying viral titers (3x103 to 3x105 PFU/30 μL) of the betacoronavirus MHV-A59 via the intranasal route to define the highest inoculum capable of inducing disease without causing mortality. Further experiments were conducted with the 3x104 PFU inoculum. Mice exhibited an altered neutrophil/lymphocyte ratio in the blood in the 2nd and 5th day post-infection (dpi). Marked lung lesions were characterized by hyperplasia of the alveolar walls, infiltration of polymorphonuclear leukocytes (PMN) and mononuclear leukocytes, hemorrhage, increased concentrations of CCL2, CCL3, CCL5, and CXCL1 chemokines, as well as high viral titers until the 5th dpi. While these lung inflammatory signs resolved, other manifestations were observed up to the 60 dpi, including mild brain lesions with gliosis and hyperemic blood vessels, neuromuscular dysfunctions, anhedonic-like behavior, deficits in spatial working memory, and short-term aversive memory. These musculoskeletal and neuropsychiatric complications were exclusive to female mice and prevented after ovariectomy. In summary, our study describes for the first time a novel sex-dependent model of PCS focused on neuropsychiatric and musculoskeletal disorders. This model provides a unique platform for future investigations regarding the effects of acute therapeutic interventions on the long-term sequelae unleashed by betacoronavirus infection.
Collapse
Affiliation(s)
- Jordane Clarisse Pimenta
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vinícius Amorim Beltrami
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruna da Silva Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jéssica Barsalini
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle Cunha Teixeira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz Pedro de Souza-Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anna Luiza Diniz Lima
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline Amaral Machado
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Felipe Rocha da Silva Santos
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro Augusto Carvalho Costa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Matheus Rodrigues Gonçalves
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ian de Meira Chaves
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Manoela Gonzaga Gontijo Couto
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Victor Rodrigues de Melo Costa
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Bárbara Luísa Silva
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Talita Fonseca
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Filipe Resende
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natália Teixeira Wnuk
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernanda Martins Marim
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Felipe Emanuel Oliveira Rocha
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Hanna L Umezu
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabriel Campolina-Silva
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Ana Cláudia Dos Santos Pereira Andrade
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Microbiology and Immunology, Université Laval, Quebec, Canada
| | - Renato Santana de Aguiar
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme Mattos Jardim Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro Pires Goulart Guimarães
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Glauber Santos Ferreira Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milene Alvarenga Rachid
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciene Bruno Vieira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vanessa Pinho
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Biggs Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline Silva Miranda
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Vivian Vasconcelos Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Mix MR, van de Wall S, Heidarian M, Escue EA, Fain CE, Pewe LL, Hancox LS, Arumugam SA, Sievers CM, Badovinac VP, Harty JT. Repetitive antigen stimulation in the periphery dictates the composition and recall responses of brain-resident memory CD8 + T cells. Cell Rep 2025; 44:115247. [PMID: 39903666 PMCID: PMC11867863 DOI: 10.1016/j.celrep.2025.115247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025] Open
Abstract
The human brain harbors virus-specific, tissue-resident memory (TRM) CD8+ T cells. However, the impact of repeated peripheral viral infection on the generation, phenotype, localization, and recall responses of brain TRM remains elusive. Here, utilizing two murine models of peripheral viral infection, we demonstrate that circulating memory CD8+ T cells with previous antigen exposure exhibit a markedly reduced capacity to form brain TRM compared to naive CD8+ T cells. Repetitively stimulated brain TRM also demonstrate differential inhibitory receptor expression, preserved functionality, and divergent localization patterns compared to primary memory counterparts. Despite these differences, repetitively stimulated brain TRM provide similar protection against intracranial infection as primary populations with superior recall-based recruitment of peripheral lymphocytes. As CD8+ T cells may distinctly seed the brain with each repeated infection of the same host, these findings point to heterogeneity in the brain TRM pool that is dictated by prior peripheral antigen stimulation history.
Collapse
Affiliation(s)
- Madison R Mix
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Stephanie van de Wall
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Mohammad Heidarian
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Experimental Pathology Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Elizabeth A Escue
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Experimental Pathology Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cori E Fain
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lecia L Pewe
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lisa S Hancox
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Sahaana A Arumugam
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cassie M Sievers
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Vladimir P Badovinac
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Experimental Pathology Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - John T Harty
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Experimental Pathology Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
3
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Dissecting the immune response of CD4 + T cells in Alzheimer's disease. Rev Neurosci 2025; 36:139-168. [PMID: 39238424 DOI: 10.1515/revneuro-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4+ T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4+ T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4+ T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ana Cvetanovic
- Department of Oncology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Jelena Basic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| |
Collapse
|
4
|
Tacke C, Landgraf P, Dieterich DC, Kröger A. The fate of neuronal synapse homeostasis in aging, infection, and inflammation. Am J Physiol Cell Physiol 2024; 327:C1546-C1563. [PMID: 39495249 DOI: 10.1152/ajpcell.00466.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Neuroplasticity is the brain's ability to reorganize and modify its neuronal connections in response to environmental stimuli, experiences, learning, and disease processes. This encompasses a variety of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in neuronal structure and function, and the generation of new neurons. Proper functioning of synapses, which facilitate neuron-to-neuron communication, is crucial for brain activity. Neuronal synapse homeostasis, which involves regulating and maintaining synaptic strength and function in the central nervous system (CNS), is vital for this process. Disruptions in synaptic balance, due to factors like inflammation, aging, or infection, can lead to impaired brain function. This review highlights the main aspects and mechanisms underlying synaptic homeostasis, particularly in the context of aging, infection, and inflammation.
Collapse
Affiliation(s)
- Charlotte Tacke
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Landgraf
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
- Helmholtz Center for Infection Research, Innate Immunity and Infection Group, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
5
|
Fisher TM, Liddelow SA. Emerging roles of astrocytes as immune effectors in the central nervous system. Trends Immunol 2024; 45:824-836. [PMID: 39332912 DOI: 10.1016/j.it.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024]
Abstract
The astrocyte, a major glial cell type in the central nervous system (CNS), is widely regarded as a functionally diverse mediator of homeostasis. During development and throughout adulthood, astrocytes have essential roles, such as providing neuron metabolic support, modulating synaptic function, and maintaining the blood-brain barrier (BBB). Recent evidence continues to underscore their functional heterogeneity and importance for CNS maintenance, as well as how these cells ensure optimal CNS and immune responses to disease, acute trauma, and infection. Advances in our understanding of neuroimmune interactions complement our knowledge of astrocyte functional heterogeneity, where astrocytes are now regarded as key effectors and propagators of immune signaling. This shift in perspective highlights the role of astrocytes not merely as support cells, but as active participants in CNS immune responses.
Collapse
Affiliation(s)
- Theodore M Fisher
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Eroksuz Y, Timurkan MO, Shams F, Seuberlich T, Karabulut B, Incili CA, Kara E, Eroksuz H. Astrovirus induced nonpurulent encephalomyelitis in sheep: First report from Türkiye by high-throughput sequencing. Vet Med Sci 2024; 10:e1499. [PMID: 38879881 PMCID: PMC11180474 DOI: 10.1002/vms3.1499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND This study presents the case of non-purulent encephalomyelitis associated with astrovirus infection in a sheep from Eastern Anatolia, Türkiye. METHODS A necropsy was performed on a sheep showing nervous signs. Afterwards, brain tissue samples were taken and examined with histopathological, immunohistochemical and molecular techniques. RESULTS Neuropathologic changes included neuronal degeneration, diffuse gliosis, multifocal perivascular cuffing, neuronophagy and neuronal necrosis in the cerebrum, the cerebellum and the cervical spinal cord. Aerobic and anaerobic bacterial culture, selective culture for Listeria monocytogenes, and PCR analysis for rabies virus, tick-borne encephalitis virus, Türkiye encephalitis virus, small ruminant lentiviruses and border disease virus were negative. However, the presence of astrovirus RNA in cerebral, cerebellar and spinal cord samples was demonstrated by a pan-astrovirus RT-PCR. Immunohistochemical examinations revealed astrovirus antigens within the neuronal cytoplasm. High-throughput sequencing techniques identified the causative agent as a member of the genotype species Mamastrovirus 13 but representing a distinct genetic lineage with similarity to ovine astrovirus 1 in the open-reading frames (ORF)1ab region and muskox astrovirus in the ORF2 region. CONCLUSION This report provides evidence that astroviruses are potentially encephalitis-causing pathogens in ovine populations in Türkiye, featuring an astrovirus strain distinct from those previously identified in sheep.
Collapse
Affiliation(s)
- Yesari Eroksuz
- Department of PathologyFaculty of Veterinary MedicineFirat UniversityElazigTurkey
| | | | - Farzane Shams
- Division of Neurological SciencesVetsuisse FacultyUniversity of BernBernSwitzerland
| | - Torsten Seuberlich
- Division of Neurological SciencesVetsuisse FacultyUniversity of BernBernSwitzerland
| | - Burak Karabulut
- Department of PathologyFaculty of Veterinary MedicineFirat UniversityElazigTurkey
| | - Canan Akdeniz Incili
- Department of PathologyFaculty of Veterinary MedicineFirat UniversityElazigTurkey
| | - Emel Kara
- Department of PathologyFaculty of Veterinary MedicineFirat UniversityElazigTurkey
| | - Hatice Eroksuz
- Department of PathologyFaculty of Veterinary MedicineFirat UniversityElazigTurkey
| |
Collapse
|
7
|
Lindman M, Estevez I, Marmut E, DaPrano EM, Chou TW, Newman K, Atkins C, O’Brown NM, Daniels BP. Astrocytic RIPK3 exerts protective anti-inflammatory activity during viral encephalitis via induction of serpin protease inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595181. [PMID: 38826345 PMCID: PMC11142122 DOI: 10.1101/2024.05.21.595181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Flaviviruses pose a significant threat to public health due to their ability to infect the central nervous system (CNS) and cause severe neurologic disease. Astrocytes play a crucial role in the pathogenesis of flavivirus encephalitis through their maintenance of blood-brain barrier (BBB) integrity and their modulation of immune cell recruitment and activation within the CNS. We have previously shown that receptor interacting protein kinase-3 (RIPK3) is a central coordinator of neuroinflammation during CNS viral infection, a function that occurs independently of its canonical function in inducing necroptotic cell death. To date, however, roles for necroptosis-independent RIPK3 signaling in astrocytes are poorly understood. Here, we use mouse genetic tools to induce astrocyte-specific deletion, overexpression, and chemogenetic activation of RIPK3 to demonstrate an unexpected anti-inflammatory function for astrocytic RIPK3. RIPK3 activation in astrocytes was required for host survival in multiple models of flavivirus encephalitis, where it restricted neuropathogenesis by limiting immune cell recruitment to the CNS. Transcriptomic analysis revealed that, despite inducing a traditional pro-inflammatory transcriptional program, astrocytic RIPK3 paradoxically promoted neuroprotection through the upregulation of serpins, endogenous protease inhibitors with broad immunomodulatory activity. Notably, intracerebroventricular administration of SerpinA3N in infected mice preserved BBB integrity, reduced leukocyte infiltration, and improved survival outcomes in mice lacking astrocytic RIPK3. These findings highlight a previously unappreciated role for astrocytic RIPK3 in suppressing pathologic neuroinflammation and suggests new therapeutic targets for the treatment of flavivirus encephalitis.
Collapse
Affiliation(s)
- Marissa Lindman
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Irving Estevez
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Eduard Marmut
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Evan M. DaPrano
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Tsui-Wen Chou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Kimberly Newman
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Colm Atkins
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Natasha M. O’Brown
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian P. Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
8
|
Wang J, Zhu Q, Shen Y, Liang J, Wang Y, Huang Y, Tong G, Wang X, Zhang N, Yu K, Li Y, Zhao Y. CD8 + T cell infiltration and proliferation in the brainstem during experimental cerebral malaria. CNS Neurosci Ther 2024; 30:e14431. [PMID: 37697956 PMCID: PMC10916431 DOI: 10.1111/cns.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 09/13/2023] Open
Abstract
INTRODUCTION Cerebral malaria (CM) is a lethal neuroinflammatory disease caused by Plasmodium infection. Immune cells and brain parenchyma cells contribute to the pathogenesis of CM. However, a systematic examination of the changes that occur in the brain parenchyma region during CM at the single-cell resolution is still poorly studied. AIMS To explore cell composition and CD8+ T cell infiltration, single-cell RNA sequencing (scRNA-seq) was performed on the brainstems of healthy and experimental cerebral malaria (ECM) mice. Then CD8+ T cell infiltration was confirmed by flow cytometry and immunofluorescence assays. Subsequently, the characteristics of the brain-infiltrated CD8+ T cells were analyzed. Finally, the interactions between parenchyma cells and brain-infiltrated CD8+ T cells were studied with an astrocytes-CD8+ T cell cocultured model. RESULTS The brainstem is the most severely damaged site during ECM. ScRNA-seq revealed a large number of CD8+ T cells infiltrating into the brainstem in ECM mice. Brain-infiltrated CD8+ T cells were highly activated according to scRNA-seq, immunofluorescence, and flow cytometry assays. Further analysis found a subset of ki-67+ CD8+ T cells that have a higher transcriptional level of genes related to T cell function, activation, and proliferation, suggesting that they were exposed to specific antigens presented by brain parenchyma cells. Brain-infiltrated CD8+ T cells were the only prominent source of IFN-γ in this single-cell analysis. Astrocytes, which have a high interferon response, act as cross-presenting cells to recruit and re-activate brain-infiltrated CD8+ T cells. We also found that brain-infiltrated CD8+ T cells were highly expressed immune checkpoint molecule PD-1, while parenchyma cells showed up-regulation of PD-L1 after infection. CONCLUSIONS These findings reveal a novel interaction between brain-infiltrated CD8+ T cells and parenchyma cells in the ECM brainstem, suggesting that the PD-1/PD-L1 signal pathway is a promising adjunctive therapeutic strategy for ECM targeting over-activated CD8+ T cells.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi'anChina
| | - Qinghao Zhu
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi'anChina
| | - Yan Shen
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi'anChina
| | - Jiao Liang
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi'anChina
| | - Yi Wang
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi'anChina
| | - Yuxiao Huang
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi'anChina
| | - Guodong Tong
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi'anChina
- College of Life SciencesNorthwest UniversityXi'anChina
| | - Xu Wang
- School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Ningning Zhang
- School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Kangjie Yu
- Department of PathologyAir Force Hospital of Eastern TheaterNanjingChina
| | - Yinghui Li
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi'anChina
| | - Ya Zhao
- Department of Medical Microbiology and ParasitologyFourth Military Medical UniversityXi'anChina
| |
Collapse
|
9
|
Vecchiarelli HA, Tremblay MÈ. Disrupting T cell memory to promote stress resilience: A role for CD74? Brain Behav Immun 2023; 114:240-241. [PMID: 37574175 DOI: 10.1016/j.bbi.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023] Open
Affiliation(s)
- Haley A Vecchiarelli
- Division of Medical Sciences, Centre for Advanced Materials and Related Technology (CAMTEC), and Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Centre for Advanced Materials and Related Technology (CAMTEC), and Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada; Département de médecine moléculaire, Axe neurosciences, Centre de recherche du CHU de Québec, Université Laval, Québec City, QC, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Trevino TN, Fogel AB, Minshall R, Richner JM, Lutz SE. Caveolin-1 mediates neuroinflammation and cognitive impairment in SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563024. [PMID: 37905019 PMCID: PMC10614946 DOI: 10.1101/2023.10.18.563024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Leukocyte infiltration of the CNS can contribute to neuroinflammation and cognitive impairment. Brain endothelial cells regulate adhesion, activation, and diapedesis of T cells across the blood-brain barrier (BBB) in inflammatory diseases. The integral membrane protein Caveolin-1 (Cav-1) critically regulates BBB permeability, but its influence on T cell CNS infiltration in respiratory viral infections is unknown. In this study, we sought to determine the role of Cav-1 at the BBB in neuroinflammation in a COVID-19 mouse model. We used mice genetically deficient in Cav-1 to test the role of this protein in T cell infiltration and cognitive impairment. We found that SARS-CoV-2 infection upregulated brain endothelial Cav-1. Moreover, SARS-CoV-2 infection increased brain endothelial cell vascular cell adhesion molecule-1 (VCAM-1) and CD3+ T cell infiltration of the hippocampus, a region important for short term learning and memory. Concordantly, we observed learning and memory deficits. Importantly, genetic deficiency in Cav-1 attenuated brain endothelial VCAM-1 expression and T cell infiltration in the hippocampus of mice with SARS-CoV-2 infection. Moreover, Cav-1 KO mice were protected from the learning and memory deficits caused by SARS-CoV-2 infection. These results indicate the importance of BBB permeability in COVID-19 neuroinflammation and suggest potential therapeutic value of targeting Cav-1 to improve disease outcomes.
Collapse
|
11
|
Kraus A, Garcia B, Ma J, Herrera KJ, Zwaka H, Harpaz R, Wong RY, Engert F, Salinas I. Olfactory detection of viruses shapes brain immunity and behavior in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533129. [PMID: 37034630 PMCID: PMC10081220 DOI: 10.1101/2023.03.17.533129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Olfactory sensory neurons (OSNs) are constantly exposed to pathogens, including viruses. However, serious brain infection via the olfactory route rarely occurs. When OSNs detect a virus, they coordinate local antiviral immune responses to stop virus progression to the brain. Despite effective immune control in the olfactory periphery, pathogen-triggered neuronal signals reach the CNS via the olfactory bulb (OB). We hypothesized that neuronal detection of a virus by OSNs initiates neuroimmune responses in the OB that prevent pathogen invasion. Using zebrafish ( Danio rerio ) as a model, we demonstrate viral-specific neuronal activation of OSNs projecting into the OB, indicating that OSNs are electrically activated by viruses. Further, behavioral changes are seen in both adult and larval zebrafish after viral exposure. By profiling the transcription of single cells in the OB after OSNs are exposed to virus, we found that both microglia and neurons enter a protective state. Microglia and macrophage populations in the OB respond within minutes of nasal viral delivery followed decreased expression of neuronal differentiation factors and enrichment of genes in the neuropeptide signaling pathway in neuronal clusters. Pituitary adenylate-cyclase-activating polypeptide ( pacap ), a known antimicrobial, was especially enriched in a neuronal cluster. We confirm that PACAP is antiviral in vitro and that PACAP expression increases in the OB 1 day post-viral treatment. Our work reveals how encounters with viruses in the olfactory periphery shape the vertebrate brain by inducing antimicrobial programs in neurons and by altering host behavior.
Collapse
|
12
|
Qi Z, Zhao J, Li Y, Zhang B, Hu S, Chen Y, Ma J, Shu Y, Wang Y, Cheng P. Live-attenuated Japanese encephalitis virus inhibits glioblastoma growth and elicits potent antitumor immunity. Front Immunol 2023; 14:982180. [PMID: 37114043 PMCID: PMC10126305 DOI: 10.3389/fimmu.2023.982180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastomas (GBMs) are highly aggressive brain tumors that have developed resistance to currently available conventional therapies, including surgery, radiation, and systemic chemotherapy. In this study, we investigated the safety of a live attenuated Japanese encephalitis vaccine strain (JEV-LAV) virus as an oncolytic virus for intracerebral injection in mice. We infected different GBM cell lines with JEV-LAV to investigate whether it had growth inhibitory effects on GBM cell lines in vitro. We used two models for evaluating the effect of JEV-LAV on GBM growth in mice. We investigated the antitumor immune mechanism of JEV-LAV through flow cytometry and immunohistochemistry. We explored the possibility of combining JEV-LAV with PD-L1 blocking therapy. This work suggested that JEV-LAV had oncolytic activity against GBM tumor cells in vitro and inhibited their growth in vivo. Mechanistically, JEV-LAV increased CD8+ T cell infiltration into tumor tissues and remodeled the immunosuppressive GBM microenvironment that is non-conducive to immunotherapy. Consequently, the results of combining JEV-LAV with immune checkpoint inhibitors indicated that JEV-LAV therapy improved the response of aPD-L1 blockade therapy against GBM. The safety of intracerebrally injected JEV-LAV in animals further supported the clinical use of JEV-LAV for GBM treatment.
Collapse
Affiliation(s)
- Zhongbing Qi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhao
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yuhua Li
- Department of Arboviruses Vaccine, National Institute for Food and Drug Control, Beijing, China
| | - Bin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shichuan Hu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhu Ma
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yongheng Shu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yunmeng Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ping Cheng,
| |
Collapse
|
13
|
Kann O, Almouhanna F, Chausse B. Interferon γ: a master cytokine in microglia-mediated neural network dysfunction and neurodegeneration. Trends Neurosci 2022; 45:913-927. [PMID: 36283867 DOI: 10.1016/j.tins.2022.10.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Traditionally, lymphocytic interferon γ (IFN-γ) was considered to be a simple 'booster' of proinflammatory responses by microglia (brain-resident macrophages) during bacterial or viral infection. Recent slice culture (in situ) and in vivo studies suggest, however, that IFN-γ has a unique role in microglial activation. Priming by IFN-γ results in proliferation (microgliosis), enhanced synapse elimination, and moderate nitric oxide release sufficient to impair synaptic transmission, gamma rhythm activity, and cognitive functions. Moreover, IFN-γ is pivotal for driving Toll-like receptor (TLR)-activated microglia into neurotoxic phenotypes that induce energetic and oxidative stress, severe network dysfunction, and neuronal death. Pharmacological targeting of activated microglia could be beneficial during elevated IFN-γ levels, blood-brain barrier leakage, and parenchymal T lymphocyte infiltration associated with, for instance, encephalitis, multiple sclerosis, and Alzheimer's disease.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, D-69120 Heidelberg, Germany.
| | - Fadi Almouhanna
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Bruno Chausse
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
14
|
Mix MR, Harty JT. Keeping T cell memories in mind. Trends Immunol 2022; 43:1018-1031. [PMID: 36369103 PMCID: PMC9691610 DOI: 10.1016/j.it.2022.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022]
Abstract
The mammalian central nervous system (CNS) contains a vibrant community of resident adaptive immune cells at homeostasis. Among these are memory CD8+ and CD4+ T cells, which reside in the CNS in the settings of health, aging, and neurological disease. These T cells commonly exhibit a tissue-resident memory (TRM) phenotype, suggesting that they are antigen-experienced and remain separate from the circulation. Despite these characterizations, T cell surveillance of the CNS has only recently been studied through the lens of TRM immunology. In this Review, we outline emerging concepts of CNS TRM generation, localization, maintenance, function, and specificity. In this way, we hope to highlight roles of CNS TRM in health and disease to inform future studies of adaptive neuroimmunity.
Collapse
Affiliation(s)
- Madison R Mix
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - John T Harty
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
15
|
Rosen SF, Soung AL, Yang W, Ai S, Kanmogne M, Davé VA, Artyomov M, Magee JA, Klein RS. Single-cell RNA transcriptome analysis of CNS immune cells reveals CXCL16/CXCR6 as maintenance factors for tissue-resident T cells that drive synapse elimination. Genome Med 2022; 14:108. [PMID: 36153630 PMCID: PMC9509564 DOI: 10.1186/s13073-022-01111-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/05/2022] [Indexed: 12/31/2022] Open
Abstract
Background Emerging RNA viruses that target the central nervous system (CNS) lead to cognitive sequelae in survivors. Studies in humans and mice infected with West Nile virus (WNV), a re-emerging RNA virus associated with learning and memory deficits, revealed microglial-mediated synapse elimination within the hippocampus. Moreover, CNS-resident memory T (TRM) cells activate microglia, limiting synapse recovery and inducing spatial learning defects in WNV-recovered mice. The signals involved in T cell-microglia interactions are unknown. Methods Here, we examined immune cells within the murine WNV-recovered forebrain using single-cell RNA sequencing to identify putative ligand-receptor pairs involved in intercellular communication between T cells and microglia. Clustering and differential gene analyses were followed by protein validation and genetic and antibody-based approaches utilizing an established murine model of WNV recovery in which microglia and complement promote ongoing hippocampal synaptic loss. Results Profiling of host transcriptome immune cells at 25 days post-infection in mice revealed a shift in forebrain homeostatic microglia to activated subpopulations with transcriptional signatures that have previously been observed in studies of neurodegenerative diseases. Importantly, CXCL16/CXCR6, a chemokine signaling pathway involved in TRM cell biology, was identified as critically regulating CXCR6 expressing CD8+ TRM cell numbers within the WNV-recovered forebrain. We demonstrate that CXCL16 is highly expressed by all myeloid cells, and its unique receptor, CXCR6, is highly expressed on all CD8+ T cells. Using genetic and pharmacological approaches, we demonstrate that CXCL16/CXCR6 not only is required for the maintenance of WNV-specific CD8 TRM cells in the post-infectious CNS, but also contributes to their expression of TRM cell markers. Moreover, CXCR6+CD8+ T cells are required for glial activation and ongoing synapse elimination. Conclusions We provide a comprehensive assessment of the role of CXCL16/CXCR6 as an interaction link between microglia and CD8+ T cells that maintains forebrain TRM cells, microglial and astrocyte activation, and ongoing synapse elimination in virally recovered animals. We also show that therapeutic targeting of CXCL16 in mice during recovery may reduce CNS CD8+ TRM cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01111-0.
Collapse
|
16
|
Yenyuwadee S, Sanchez-Trincado Lopez JL, Shah R, Rosato PC, Boussiotis VA. The evolving role of tissue-resident memory T cells in infections and cancer. SCIENCE ADVANCES 2022; 8:eabo5871. [PMID: 35977028 PMCID: PMC9385156 DOI: 10.1126/sciadv.abo5871] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/05/2022] [Indexed: 06/12/2023]
Abstract
Resident memory T cells (TRM) form a distinct type of T memory cells that stably resides in tissues. TRM form an integral part of the immune sensing network and have the ability to control local immune homeostasis and participate in immune responses mediated by pathogens, cancer, and possibly autoantigens during autoimmunity. TRM express residence gene signatures, functional properties of both memory and effector cells, and remarkable plasticity. TRM have a well-established role in pathogen immunity, whereas their role in antitumor immune responses and immunotherapy is currently evolving. As TRM form the most abundant T memory cell population in nonlymphoid tissues, they are attractive targets for therapeutic exploitation. Here, we provide a concise review of the development and physiological role of CD8+ TRM, their involvement in diseases, and their potential therapeutic exploitation.
Collapse
Affiliation(s)
- Sasitorn Yenyuwadee
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jose Luis Sanchez-Trincado Lopez
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Laboratory of Immunomedicine, School of Medicine, Complutense University of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Rushil Shah
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Cornell University, Ithaca, NY 14850 , USA
| | - Pamela C Rosato
- The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
17
|
van Olst L, Coenen L, Nieuwland JM, Rodriguez-Mogeda C, de Wit NM, Kamermans A, Middeldorp J, de Vries HE. Crossing borders in Alzheimer's disease: A T cell's perspective. Adv Drug Deliv Rev 2022; 188:114398. [PMID: 35780907 DOI: 10.1016/j.addr.2022.114398] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide. While different immunotherapies are imminent, currently only disease-modifying medications are available and a cure is lacking. Over the past decade, immunological interfaces of the central nervous system (CNS) and their role in neurodegenerative diseases received increasing attention. Specifically, emerging evidence shows that subsets of circulating CD8+ T cells cross the brain barriers and associate with AD pathology. To gain more insight into how the adaptive immune system is involved in disease pathogenesis, we here provide a comprehensive overview of the contribution of T cells to AD pathology, incorporating changes at the brain barriers. In addition, we review studies that provide translation of these findings by targeting T cells to combat AD pathology and cognitive decline. Importantly, these data show that immunological changes in AD are not confined to the CNS and that AD-associated systemic immune changes appear to affect brain homeostasis.
Collapse
Affiliation(s)
- L van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - L Coenen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - J M Nieuwland
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - C Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - N M de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - A Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - J Middeldorp
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - H E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Hum NR, Bourguet FA, Sebastian A, Lam D, Phillips AM, Sanchez KR, Rasley A, Loots GG, Weilhammer DR. MAVS mediates a protective immune response in the brain to Rift Valley fever virus. PLoS Pathog 2022; 18:e1010231. [PMID: 35584192 PMCID: PMC9154093 DOI: 10.1371/journal.ppat.1010231] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/31/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a highly pathogenic mosquito-borne virus capable of causing hepatitis, encephalitis, blindness, hemorrhagic syndrome, and death in humans and livestock. Upon aerosol infection with RVFV, the brain is a major site of viral replication and tissue damage, yet pathogenesis in this organ has been understudied. Here, we investigated the immune response in the brain of RVFV infected mice. In response to infection, microglia initiated robust transcriptional upregulation of antiviral immune genes, as well as increased levels of activation markers and cytokine secretion that is dependent on mitochondrial antiviral-signaling protein (MAVS) and independent of toll-like receptors 3 and 7. In vivo, Mavs-/- mice displayed enhanced susceptibility to RVFV as determined by increased brain viral burden and higher mortality. Single-cell RNA sequence analysis identified defects in type I interferon and interferon responsive gene expression within microglia in Mavs-/- mice, as well as dysregulated lymphocyte infiltration. The results of this study provide a crucial step towards understanding the precise molecular mechanisms by which RVFV infection is controlled in the brain and will help inform the development of vaccines and antiviral therapies that are effective in preventing encephalitis. Rift Valley fever virus causes severe disease in humans and livestock and in some cases can be fatal. There is concern about the use of Rift Valley fever virus as a bioweapon since it can be transmitted through the air, and there are no vaccines or antiviral treatments. Airborne transmission of the virus causes severe inflammation of the brain, yet little is known about the immune response against the virus in this organ. Here, we investigated the immune response in the brain to Rift Valley fever virus following intranasal infection. We determined that microglia, the resident immune cells of the brain, initiate a robust response to Rift Valley fever virus infection and identified a key immune pathway that is critical for the ability of microglia to respond to infection. When this immune pathway is rendered non-functional, mice have a dysregulated response to infection in the brain. This study provides insight into how the immune response can control Rift Valley fever virus infection of the brain.
Collapse
Affiliation(s)
- Nicholas R. Hum
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Feliza A. Bourguet
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Aimy Sebastian
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Doris Lam
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Ashlee M. Phillips
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Kristina R. Sanchez
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Amy Rasley
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Gabriela G. Loots
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Dina R. Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Beneficial and detrimental functions of microglia during viral encephalitis. Trends Neurosci 2021; 45:158-170. [PMID: 34906391 DOI: 10.1016/j.tins.2021.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/28/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Microglia are resident immune cells of the central nervous system (CNS) with multiple functions in health and disease. Their response during encephalitis depends on whether inflammation is triggered in a sterile or infectious manner, and in the latter case on the type of the infecting pathogen. Even though recent technological innovations advanced the understanding of the broad spectrum of microglia responses during viral encephalitis (VE), it is not entirely clear which microglia gene expression profiles are associated with antiviral and detrimental activities. Here, we review novel approaches to study microglia and the latest concepts of their function in VE. Improved understanding of microglial functions will be essential for the development of new therapeutic interventions for VE.
Collapse
|
20
|
Shinjyo N, Kita K. Infection and Immunometabolism in the Central Nervous System: A Possible Mechanistic Link Between Metabolic Imbalance and Dementia. Front Cell Neurosci 2021; 15:765217. [PMID: 34795562 PMCID: PMC8592913 DOI: 10.3389/fncel.2021.765217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndromes are frequently associated with dementia, suggesting that the dysregulation of energy metabolism can increase the risk of neurodegeneration and cognitive impairment. In addition, growing evidence suggests the link between infections and brain disorders, including Alzheimer's disease. The immune system and energy metabolism are in an intricate relationship. Infection triggers immune responses, which are accompanied by imbalance in cellular and organismal energy metabolism, while metabolic disorders can lead to immune dysregulation and higher infection susceptibility. In the brain, the activities of brain-resident immune cells, including microglia, are associated with their metabolic signatures, which may be affected by central nervous system (CNS) infection. Conversely, metabolic dysregulation can compromise innate immunity in the brain, leading to enhanced CNS infection susceptibility. Thus, infection and metabolic imbalance can be intertwined to each other in the etiology of brain disorders, including dementia. Insulin and leptin play pivotal roles in the regulation of immunometabolism in the CNS and periphery, and dysfunction of these signaling pathways are associated with cognitive impairment. Meanwhile, infectious complications are often comorbid with diabetes and obesity, which are characterized by insulin resistance and leptin signaling deficiency. Examples include human immunodeficiency virus (HIV) infection and periodontal disease caused by an oral pathogen Porphyromonas gingivalis. This review explores potential interactions between infectious agents and insulin and leptin signaling pathways, and discuss possible mechanisms underlying the relationship between infection, metabolic dysregulation, and brain disorders, particularly focusing on the roles of insulin and leptin.
Collapse
Affiliation(s)
- Noriko Shinjyo
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
21
|
Goddery EN, Fain CE, Lipovsky CG, Ayasoufi K, Yokanovich LT, Malo CS, Khadka RH, Tritz ZP, Jin F, Hansen MJ, Johnson AJ. Microglia and Perivascular Macrophages Act as Antigen Presenting Cells to Promote CD8 T Cell Infiltration of the Brain. Front Immunol 2021; 12:726421. [PMID: 34526998 PMCID: PMC8435747 DOI: 10.3389/fimmu.2021.726421] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
CD8 T cell infiltration of the central nervous system (CNS) is necessary for host protection but contributes to neuropathology. Antigen presenting cells (APCs) situated at CNS borders are thought to mediate T cell entry into the parenchyma during neuroinflammation. The identity of the CNS-resident APC that presents antigen via major histocompatibility complex (MHC) class I to CD8 T cells is unknown. Herein, we characterize MHC class I expression in the naïve and virally infected brain and identify microglia and macrophages (CNS-myeloid cells) as APCs that upregulate H-2Kb and H-2Db upon infection. Conditional ablation of H-2Kb and H-2Db from CNS-myeloid cells allowed us to determine that antigen presentation via H-2Db, but not H-2Kb, was required for CNS immune infiltration during Theiler's murine encephalomyelitis virus (TMEV) infection and drives brain atrophy as a consequence of infection. These results demonstrate that CNS-myeloid cells are key APCs mediating CD8 T cell brain infiltration.
Collapse
Affiliation(s)
- Emma N. Goddery
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Cori E. Fain
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Chloe G. Lipovsky
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | | | - Lila T. Yokanovich
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Courtney S. Malo
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Roman H. Khadka
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Zachariah P. Tritz
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Fang Jin
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | | | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
22
|
The Influence of Virus Infection on Microglia and Accelerated Brain Aging. Cells 2021; 10:cells10071836. [PMID: 34360004 PMCID: PMC8303900 DOI: 10.3390/cells10071836] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system contributing substantially to health and disease. There is increasing evidence that inflammatory microglia may induce or accelerate brain aging, by interfering with physiological repair and remodeling processes. Many viral infections affect the brain and interfere with microglia functions, including human immune deficiency virus, flaviviruses, SARS-CoV-2, influenza, and human herpes viruses. Especially chronic viral infections causing low-grade neuroinflammation may contribute to brain aging. This review elucidates the potential role of various neurotropic viruses in microglia-driven neurocognitive deficiencies and possibly accelerated brain aging.
Collapse
|
23
|
Constitutive and latent immune mechanisms exert 'silent' control of virus infections in the central nervous system. Curr Opin Immunol 2021; 72:158-166. [PMID: 34062364 DOI: 10.1016/j.coi.2021.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Viral infections in the central nervous system (CNS) can lead to severe disease manifestations often mediated by a combination of viral cytopathic effects and immunopathology. Moreover, neuronal tissue and brain activities are highly sensitive to excessive inflammation that disturb homeostasis. Immune responses to virus infections in the CNS should therefore be tightly balanced and limited in magnitude and duration to avoid immunopathology and tissue damage. Recent data from genetic studies of patients with viral infections in the CNS as well as experimental cell and animal models have provided evidence of non-redundant roles for constitutive and latent immune mechanisms, which mediate a first line of antiviral control without significantly triggering inflammatory activities. Collectively, accumulating data suggest the existence of a layer of immune mechanisms in the CNS exerting immediate control of infection, hence buffering the need for activation of more potent immune reactions with inherent potential to induce immunopathology and disease.
Collapse
|
24
|
Stonedahl S, Clarke P, Tyler KL. The Role of Microglia during West Nile Virus Infection of the Central Nervous System. Vaccines (Basel) 2020; 8:E485. [PMID: 32872152 PMCID: PMC7563127 DOI: 10.3390/vaccines8030485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
Abstract
Encephalitis resulting from viral infections is a major cause of hospitalization and death worldwide. West Nile Virus (WNV) is a substantial health concern as it is one of the leading causes of viral encephalitis in the United States today. WNV infiltrates the central nervous system (CNS), where it directly infects neurons and induces neuronal cell death, in part, via activation of caspase 3-mediated apoptosis. WNV infection also induces neuroinflammation characterized by activation of innate immune cells, including microglia and astrocytes, production of inflammatory cytokines, breakdown of the blood-brain barrier, and infiltration of peripheral leukocytes. Microglia are the resident immune cells of the brain and monitor the CNS for signs of injury or pathogens. Following infection with WNV, microglia exhibit a change in morphology consistent with activation and are associated with increased expression of proinflammatory cytokines. Recent research has focused on deciphering the role of microglia during WNV encephalitis. Microglia play a protective role during infections by limiting viral growth and reducing mortality in mice. However, it also appears that activated microglia are triggered by T cells to mediate synaptic elimination at late times during infection, which may contribute to long-term neurological deficits following a neuroinvasive WNV infection. This review will discuss the important role of microglia in the pathogenesis of a neuroinvasive WNV infection. Knowledge of the precise role of microglia during a WNV infection may lead to a greater ability to treat and manage WNV encephalitis.
Collapse
Affiliation(s)
- Sarah Stonedahl
- Department of Immunology and Microbiology University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Penny Clarke
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L. Tyler
- Department of Immunology and Microbiology, Infectious Disease, Medicine and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs, Aurora, CO 80045, USA
| |
Collapse
|