1
|
Gharat R, Dixit G, Khambete M, Prabhu A. Targets, trials and tribulations in Alzheimer therapeutics. Eur J Pharmacol 2024; 962:176230. [PMID: 38042464 DOI: 10.1016/j.ejphar.2023.176230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by abnormal accumulation of extracellular amyloid beta senile plaques and intracellular neurofibrillary tangles in the parts of the brain responsible for cognition. The therapeutic burden for the management of AD relies solely on cholinesterase inhibitors that provide only symptomatic relief. The urgent need for disease-modifying drugs has resulted in intensive research in this domain, which has led to better understanding of the disease pathology and identification of a plethora of new pathological targets. Currently, there are over a hundred and seventy clinical trials exploring disease modification, cognitive enhancement, and reduction of neuro-psychiatric complications. However, the path to developing safe and efficacious AD therapeutics has not been without challenges. Several clinical trials have been terminated in advanced stages due to lack of therapeutic translation or increased incidence of adverse events. This review presents an in-depth look at the various therapeutic targets of AD and the lessons learnt during their clinical assessment. Comprehensive understanding of the implication of modulating various aspects of Alzheimer brain pathology is crucial for development of drugs with potential to halt disease progression in Alzheimer therapeutics.
Collapse
Affiliation(s)
- Ruchita Gharat
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VM Road, Vile Parle (West), Mumbai, 400056, Maharashtra, India
| | - Gargi Dixit
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VM Road, Vile Parle (West), Mumbai, 400056, Maharashtra, India
| | - Mihir Khambete
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VM Road, Vile Parle (West), Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
2
|
Sun MK, Alkon DL. Treating Alzheimer's Disease: Focusing on Neurodegenerative Consequences. J Alzheimers Dis 2024; 101:S263-S274. [PMID: 39422958 DOI: 10.3233/jad-240479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Neurodegenerative disorders involve progressive dysfunction and loss of synapses and neurons and brain atrophy, slowly declining memories and cognitive skills, throughout a long process. Alzheimer's disease (AD), the leading neurodegenerative disorder, suffers from a lack of effective therapeutic drugs. Decades of efforts targeting its pathologic hallmarks, amyloid plaques and neurofibrillary tangles, in clinical trials have produced therapeutics with marginal benefits that lack meaningful clinical improvements in cognition. Delivering meaningful clinical therapeutics to treat or prevent neurodegenerative disorders thus remains a great challenge to scientists and clinicians. Emerging evidence, however, suggests that dysfunction of various synaptogenic signaling pathways participates in the neurodegenerative progression, resulting in deterioration of operation/structure of the synaptic networks involved in cognition. These derailed endogenous signaling pathways and disease processes are potential pharmacological targets for the therapies. Therapeutics with meaningful clinical benefit in cognition may depend on the effectiveness of arresting and reversing the neurodegenerative process through these targets. In essence, promoting neuro-regeneration may represent the only option to recover degenerated synapses and neurons. These potential directions in clinical trials for AD therapeutics with meaningful clinical benefit in cognitive function are summarized and discussed.
Collapse
|
3
|
Marsool MDM, Prajjwal P, Reddy YB, Marsool ADM, Lam JR, Nandwana V. Newer modalities in the management of Alzheimer's dementia along with the role of aducanumab and lecanemab in the treatment of its refractory cases. Dis Mon 2023; 69:101547. [PMID: 36931947 DOI: 10.1016/j.disamonth.2023.101547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurological condition characterized by a gradual and progressive decline in memory, language, emotion, and cognition. It mainly affects elderly people. Due to the effects of AD, pharmaceutical medications and anticholinesterases have been vigorously promoted and approved by the FDA as a form of AD therapy. However, it was progressively found that these drugs did not address the underlying causes of AD pathogenesis; rather, they focused on the symptoms in order to enhance patients' cognitive outcomes. Consequently, a hunt for superior disease-modifying options is launched. Designing new therapeutic agents requires a thorough understanding of the neuroprotective processes and varied functions carried out by certain genes, and antibodies. In this comprehensive review article, we give an overview of the history of Alzheimer's disease, the significance of the blood-brain barrier in determining the scope of treatment options, as well as the advantages and disadvantages of the current therapeutic treatment options for stem cell therapy, immunotherapy, regenerative therapy, and improved Alzheimer's disease care and diagnosis. We have also included a discussion on the potential role of aducanumab and Lecanemab as a cutting-edge therapy in refractory Alzheimer's disease patients. Lecanemab has been recently approved by the FDA for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Justin Riley Lam
- Internal Medicine, Cebu Institute of Medicine, Cebu, Philippines
| | - Varsha Nandwana
- Neurology, Virginia Tech Carilion School of Medicine, Virginia, USA
| |
Collapse
|
4
|
La Barbera L, Mauri E, D’Amelio M, Gori M. Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer's disease: Current trends and future perspectives. Front Neurosci 2022; 16:939855. [PMID: 35992936 PMCID: PMC9387393 DOI: 10.3389/fnins.2022.939855] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive and multifactorial neurodegenerative disorder whose primary causes are mostly unknown. Due to the increase in life expectancy of world population, including developing countries, AD, whose incidence rises dramatically with age, is at the forefront among neurodegenerative diseases. Moreover, a definitive cure is not yet within reach, imposing substantial medical and public health burdens at every latitude. Therefore, the effort to devise novel and effective therapeutic strategies is still of paramount importance. Genetic, functional, structural and biochemical studies all indicate that new and efficacious drug delivery strategies interfere at different levels with various cellular and molecular targets. Over the last few decades, therapeutic development of nanomedicine at preclinical stage has shown to progress at a fast pace, thus paving the way for its potential impact on human health in improving prevention, diagnosis, and treatment of age-related neurodegenerative disorders, including AD. Clinical translation of nano-based therapeutics, despite current limitations, may present important advantages and innovation to be exploited in the neuroscience field as well. In this state-of-the-art review article, we present the most promising applications of polymeric nanoparticle-mediated drug delivery for bypassing the blood-brain barrier of AD preclinical models and boost pharmacological safety and efficacy. In particular, novel strategic chemical functionalization of polymeric nanocarriers that could be successfully employed for treating AD are thoroughly described. Emphasis is also placed on nanotheranostics as both potential therapeutic and diagnostic tool for targeted treatments. Our review highlights the emerging role of nanomedicine in the management of AD, providing the readers with an overview of the nanostrategies currently available to develop future therapeutic applications against this chronic neurodegenerative disease.
Collapse
Affiliation(s)
- Livia La Barbera
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Emanuele Mauri
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marcello D’Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Manuele Gori
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC) - National Research Council (CNR), Rome, Italy
| |
Collapse
|
5
|
Malik R, Kalra S, Bhatia S, Harrasi AA, Singh G, Mohan S, Makeen HA, Albratty M, Meraya A, Bahar B, Tambuwala MM. Overview of therapeutic targets in management of dementia. Biomed Pharmacother 2022; 152:113168. [PMID: 35701303 DOI: 10.1016/j.biopha.2022.113168] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Dementia is defined as a gradual cognitive impairment that interferes with everyday tasks, and is a leading cause of dependency, disability, and mortality. According to the current scenario, millions of individuals worldwide have dementia. This review provides with an overview of dementia before moving on to its subtypes (neurodegenerative and non-neurodegenerative) and pathophysiology. It also discusses the incidence and severity of dementia, focusing on Alzheimer's disease with its different hypotheses such as Aβ cascade hypothesis, Tau hypothesis, inflammatory hypothesis, cholinergic and oxidative stress hypothesis. Alzheimer's disease is the most common type and a progressive neurodegenerative illness distinct by neuronal loss and resulting cognitive impairment, leading to dementia. Alzheimer's disease (AD) is considered the most familiar neurodegenerative dementias that affect mostly older population. There are still no disease-modifying therapies available for any dementias at this time, but there are various methods for lowering the risk to dementia patients by using suitable diagnostic and evaluation methods. Thereafter, the management and treatment of primary risk elements of dementia are reviewed. Finally, the future perspectives of dementia (AD) focusing on the impact of the new treatment are discussed.
Collapse
Affiliation(s)
- Rohit Malik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sunishtha Kalra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Saurabh Bhatia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Ahmed Al Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Syam Mohan
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim Meraya
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, UK
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, UK.
| |
Collapse
|
6
|
Jeremic D, Jiménez-Díaz L, Navarro-López JD. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer's disease: a systematic review. Ageing Res Rev 2021; 72:101496. [PMID: 34687956 DOI: 10.1016/j.arr.2021.101496] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in ageing, affecting around 46 million people worldwide but few treatments are currently available. The etiology of AD is still puzzling, and new drugs development and clinical trials have high failure rates. Urgent outline of an integral (multi-target) and effective treatment of AD is needed. Accumulation of amyloid-β (Aβ) peptides is considered one of the fundamental neuropathological pillars of the disease, and its dyshomeostasis has shown a crucial role in AD onset. Therefore, many amyloid-targeted therapies have been investigated. Here, we will systematically review recent (from 2014) investigational, follow-up and review studies focused on anti-amyloid strategies to summarize and analyze their current clinical potential. Combination of anti-Aβ therapies with new developing early detection biomarkers and other therapeutic agents acting on early functional AD changes will be highlighted in this review. Near-term approval seems likely for several drugs acting against Aβ, with recent FDA approval of a monoclonal anti-Aβ oligomers antibody -aducanumab- raising hopes and controversies. We conclude that, development of oligomer-epitope specific Aβ treatment and implementation of multiple improved biomarkers and risk prediction methods allowing early detection, together with therapies acting on other factors such as hyperexcitability in early AD, could be the key to slowing this global pandemic.
Collapse
|
7
|
Nimmo JT, Kelly L, Verma A, Carare RO, Nicoll JAR, Dodart JC. Amyloid-β and α-Synuclein Immunotherapy: From Experimental Studies to Clinical Trials. Front Neurosci 2021; 15:733857. [PMID: 34539340 PMCID: PMC8441015 DOI: 10.3389/fnins.2021.733857] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022] Open
Abstract
Alzheimer’s disease and Lewy body diseases are the most common causes of neurodegeneration and dementia. Amyloid-beta (Aβ) and alpha-synuclein (αSyn) are two key proteins involved in the pathogenesis of these neurodegenerative diseases. Immunotherapy aims to reduce the harmful effects of protein accumulation by neutralising toxic species and facilitating their removal. The results of the first immunisation trial against Aβ led to a small percentage of meningoencephalitis cases which revolutionised vaccine design, causing a shift in the field of immunotherapy from active to passive immunisation. While the vast majority of immunotherapies have been developed for Aβ and tested in Alzheimer’s disease, the field has progressed to targeting other proteins including αSyn. Despite showing some remarkable results in animal models, immunotherapies have largely failed final stages of clinical trials to date, with the exception of Aducanumab recently licenced in the US by the FDA. Neuropathological findings translate quite effectively from animal models to human trials, however, cognitive and functional outcome measures do not. The apparent lack of translation of experimental studies to clinical trials suggests that we are not obtaining a full representation of the effects of immunotherapies from animal studies. Here we provide a background understanding to the key concepts and challenges involved in therapeutic design. This review further provides a comprehensive comparison between experimental and clinical studies in Aβ and αSyn immunotherapy and aims to determine the possible reasons for the disconnection in their outcomes.
Collapse
Affiliation(s)
- Jacqui Taryn Nimmo
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Louise Kelly
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ajay Verma
- Yumanity Therapeutics, Boston, MA, United States
| | - Roxana O Carare
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|
8
|
Stoiljkovic M, Horvath TL, Hajós M. Therapy for Alzheimer's disease: Missing targets and functional markers? Ageing Res Rev 2021; 68:101318. [PMID: 33711510 PMCID: PMC8131215 DOI: 10.1016/j.arr.2021.101318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
The development of the next generation therapy for Alzheimer's disease (AD) presents a huge challenge given the number of promising treatment candidates that failed in trials, despite recent advancements in understanding of genetic, pathophysiologic and clinical characteristics of the disease. This review reflects some of the most current concepts and controversies in developing disease-modifying and new symptomatic treatments. It elaborates on recent changes in the AD research strategy for broadening drug targets, and potentials of emerging non-pharmacological treatment interventions. Established and novel biomarkers are discussed, including emerging cerebrospinal fluid and plasma biomarkers reflecting tau pathology, neuroinflammation and neurodegeneration. These fluid biomarkers together with neuroimaging findings can provide innovative objective assessments of subtle changes in brain reflecting disease progression. A particular emphasis is given to neurophysiological biomarkers which are well-suited for evaluating the brain overall neural network integrity and function. Combination of multiple biomarkers, including target engagement and outcome biomarkers will empower translational studies and facilitate successful development of effective therapies.
Collapse
Affiliation(s)
- Milan Stoiljkovic
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Pharmacology, University of Nis School of Medicine, Nis, Serbia.
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mihály Hajós
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Cognito Therapeutics, Cambridge, MA, 02138, USA
| |
Collapse
|
9
|
Masmudi-Martín M, Zhu L, Sanchez-Navarro M, Priego N, Casanova-Acebes M, Ruiz-Rodado V, Giralt E, Valiente M. Brain metastasis models: What should we aim to achieve better treatments? Adv Drug Deliv Rev 2021; 169:79-99. [PMID: 33321154 DOI: 10.1016/j.addr.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Brain metastasis is emerging as a unique entity in oncology based on its particular biology and, consequently, the pharmacological approaches that should be considered. We discuss the current state of modelling this specific progression of cancer and how these experimental models have been used to test multiple pharmacologic strategies over the years. In spite of pre-clinical evidences demonstrating brain metastasis vulnerabilities, many clinical trials have excluded patients with brain metastasis. Fortunately, this trend is getting to an end given the increasing importance of secondary brain tumors in the clinic and a better knowledge of the underlying biology. We discuss emerging trends and unsolved issues that will shape how we will study experimental brain metastasis in the years to come.
Collapse
|
10
|
Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, Fatahi Y, Dinarvand R, Tahriri M, Tayebi L, Hamblin MR, Webster TJ. Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer's Disease. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000076] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Navid Rabiee
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Sepideh Ahmadi
- Student Research Committee Department of Medical Biotechnology School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
- Cellular and Molecular Biology Research Center Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
| | - Ronak Afshari
- Department of Physics Sharif University of Technology P.O. Box 11155‐9161 Tehran Iran
| | - Samira Khalaji
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mohammad Rabiee
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Universal Scientific Education and Research Network (USERN) Tehran 15875‐4413 Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
| | - Mohammadreza Tahriri
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Lobat Tayebi
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston USA
- Department of Dermatology Harvard Medical School Boston USA
- Laser Research Centre Faculty of Health Science University of Johannesburg Doornfontein 2028 South Africa
| | - Thomas J. Webster
- Department of Chemical Engineering Northeastern University Boston MA 02115 USA
| |
Collapse
|
11
|
Koseoglu E. New treatment modalities in Alzheimer's disease. World J Clin Cases 2019; 7:1764-1774. [PMID: 31417922 PMCID: PMC6692264 DOI: 10.12998/wjcc.v7.i14.1764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 06/10/2019] [Indexed: 02/05/2023] Open
Abstract
Alzheimer’s disease (AD) is still a major public health challenge without an effective treatment to prevent or stop it. Routinely used acetylcholinesterase inhibitors and memantine seem to slow disease progression only to a limited extend. Therefore, many investigations on new drugs and other treatment modalities are ongoing in close association with increasing knowledge of the pathophysiology of the disease. Here, we review the studies about the new treatment modalities in AD with a classification based on their main targets, specifically pathologic structures of the disease, amyloid and tau, neural network dysfunction with special interest to the regulation of gamma oscillations, and attempts for the restoration of neural tissue via regenerative medicine. Additionally, we describe the evolving modalities related to gut microbiota, modulation, microglial function, and glucose metabolism.
Collapse
Affiliation(s)
- Emel Koseoglu
- Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
12
|
Leurent C, Goodman JA, Zhang Y, He P, Polimeni JR, Gurol ME, Lindsay M, Frattura L, Sohur US, Viswanathan A, Bednar MM, Smith EE, Greenberg SM. Immunotherapy with ponezumab for probable cerebral amyloid angiopathy. Ann Clin Transl Neurol 2019; 6:795-806. [PMID: 31020004 PMCID: PMC6469253 DOI: 10.1002/acn3.761] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Objective Cerebral amyloid angiopathy (CAA) is caused by cerebrovascular deposition of β‐amyloid fragments leading to cerebrovascular dysfunction and other brain injuries. This phase 2, randomized, double–blind trial in patients with probable CAA assessed the efficacy and safety of ponezumab, a novel monoclonal antibody against Aβ1–40. Methods Thirty‐six participants aged 55–80 years with probable CAA received intravenous placebo (n = 12) or ponezumab (n = 24). The change from baseline to Days 2 and 90 in cerebrovascular reactivity (CVR) was measured in the visual cortex as the natural log of the rising slope of the BOLD fMRI response to a visual stimulus. Safety and tolerability were also assessed. Results The mean change from baseline to Day 90 was 0.817 (ponezumab) and 0.958 (placebo): a mean ratio of 0.852 (90% CI 0.735–0.989) representing a trend towards reduced CVR in the ponezumab group. This trend was not present at Day 2. There was one asymptomatic occurrence of amyloid–related imaging abnormality–edema in the ponezumab group. The total number of new cerebral microbleeds from baseline to day 90 did not differ between groups. The ponezumab group had a participant with nonfatal new cerebral hemorrhage with aphasia and a participant with subdural hemorrhage that site investigators deemed to be nondrug related. In the placebo group one participant had a fatal intracerebral hemorrhage and one participant had migraine with aura. Interpretation Ponezumab was safe and well‐tolerated. The ponezumab group showed a trend towards treatment effect at Day 90 that was opposite to the hypothesized direction. The prespecified efficacy criteria were thus not met.
Collapse
Affiliation(s)
- Claire Leurent
- Pfizer Worldwide Research & Development Cambridge Massachusetts
| | - James A Goodman
- Pfizer Worldwide Research & Development Cambridge Massachusetts
| | - Yao Zhang
- Pfizer Worldwide Research & Development Cambridge Massachusetts
| | - Ping He
- Pfizer Worldwide Research & Development Cambridge Massachusetts
| | | | - Mahmut Edip Gurol
- Massachusetts General Hospital Harvard Medical School Boston Massachusetts
| | - Monica Lindsay
- Pfizer Worldwide Research & Development Cambridge Massachusetts
| | - Linda Frattura
- Pfizer Worldwide Research & Development Cambridge Massachusetts
| | - Usharbudh Shivraj Sohur
- Pfizer Worldwide Research & Development Cambridge Massachusetts.,Massachusetts General Hospital Harvard Medical School Boston Massachusetts
| | - Anand Viswanathan
- Massachusetts General Hospital Harvard Medical School Boston Massachusetts
| | - Martin M Bednar
- Pfizer Worldwide Research & Development Cambridge Massachusetts
| | - Eric E Smith
- Hotchkiss Brain Institute University of Calgary Calgary Alberta Canada
| | | | - Steven M Greenberg
- Massachusetts General Hospital Harvard Medical School Boston Massachusetts
| |
Collapse
|
13
|
Panza F, Lozupone M, Seripa D, Imbimbo BP. Amyloid-β immunotherapy for alzheimer disease: Is it now a long shot? Ann Neurol 2019; 85:303-315. [PMID: 30635926 DOI: 10.1002/ana.25410] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/01/2023]
Abstract
The amyloid-β (Aβ) cascade hypothesis of Alzheimer disease (AD) holds that brain accumulation of Aβ initiates the disease process. Accordingly, drug research has targeted Aβ production, clearance, and deposition as therapeutic strategies. Unfortunately, candidate drugs have failed to show clinical benefit in established, early, or prodromal disease, or in those with high AD risk. Currently, monoclonal antibodies specifically directed against the most neurotoxic Aβ forms are undergoing large-scale trials to confirm initially encouraging results. However, recent findings on the normal physiology of Aβ suggest that accumulation may be compensatory rather than the pathological initiator. If this is true, alternative strategies will be needed to defeat this devastating disease. ANN NEUROL 2019;85:303-315.
Collapse
Affiliation(s)
- Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Neurodegenerative Disease Unit, Department of Clinical Research in Neurology, University of Bari Aldo Moro, Cardinal G. Panico Pious Foundation, Tricase, Italy.,Geriatric Unit, Home Relief of Suffering, Institute of Hospitalization and Scientific Care Foundation, San Giovanni Rotondo, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Davide Seripa
- Geriatric Unit, Home Relief of Suffering, Institute of Hospitalization and Scientific Care Foundation, San Giovanni Rotondo, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Pharmaceuticals, Parma, Italy
| |
Collapse
|
14
|
Schilling S, Rahfeld JU, Lues I, Lemere CA. Passive Aβ Immunotherapy: Current Achievements and Future Perspectives. Molecules 2018; 23:molecules23051068. [PMID: 29751505 PMCID: PMC6099643 DOI: 10.3390/molecules23051068] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/28/2022] Open
Abstract
Passive immunotherapy has emerged as a very promising approach for the treatment of Alzheimer’s disease and other neurodegenerative disorders, which are characterized by the misfolding and deposition of amyloid peptides. On the basis of the amyloid hypothesis, the majority of antibodies in clinical development are directed against amyloid β (Aβ), the primary amyloid component in extracellular plaques. This review focuses on the current status of Aβ antibodies in clinical development, including their characteristics and challenges that came up in clinical trials with these new biological entities (NBEs). Emphasis is placed on the current view of common side effects observed with passive immunotherapy, so-called amyloid-related imaging abnormalities (ARIAs), and potential ways to overcome this issue. Among these new ideas, a special focus is placed on molecules that are directed against post-translationally modified variants of the Aβ peptide, an emerging approach for development of new antibody molecules.
Collapse
Affiliation(s)
- Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, 06120 Halle (Saale), Germany.
| | - Jens-Ulrich Rahfeld
- Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, 06120 Halle (Saale), Germany.
| | - Inge Lues
- Probiodrug AG, 06120 Halle (Saale), Germany.
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Womens's Hospital, Harvard Medical School, Boston, MA 02116, USA.
| |
Collapse
|
15
|
van Dyck CH. Anti-Amyloid-β Monoclonal Antibodies for Alzheimer's Disease: Pitfalls and Promise. Biol Psychiatry 2018; 83:311-319. [PMID: 28967385 PMCID: PMC5767539 DOI: 10.1016/j.biopsych.2017.08.010] [Citation(s) in RCA: 374] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/27/2017] [Accepted: 08/12/2017] [Indexed: 12/25/2022]
Abstract
The majority of putative disease-modifying treatments in development for Alzheimer's disease are directed against the amyloid-β (Aβ) peptide. Among the anti-Aβ therapeutic approaches, the most extensively developed is immunotherapy-specifically, passive immunization through administration of exogenous monoclonal antibodies (mAbs). Although testing of mAbs has been fraught with failure and confusing results, the experience gained from these trials has provided important clues for better treatments. This review summarizes the experience to date with anti-Aβ mAbs to enter clinical trials for Alzheimer's disease and examines the evidence for clinical efficacy and the major problems with safety-i.e., amyloid-related imaging abnormalities. As mAbs differ considerably with regard to their epitopes and the conformations of Aβ that they recognize (monomers, oligomers, protofibrils, fibrils), the consequences of targeting different species are also considered. An often-cited explanation for the failure of anti-Aβ mAb trials is that they are set too late in the disease process. New trials are indeed evaluating treatments at prodromal and preclinical stages. We should expect to see additional studies of presymptomatic Alzheimer's disease to join the ongoing prevention trials, for which mAbs continue to serve as the mainstay.
Collapse
Affiliation(s)
- Christopher H. van Dyck
- Alzheimer’s Disease Research Unit and Departments of Psychiatry, Neuroscience, and Neurology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
16
|
Du X, Wang X, Geng M. Alzheimer's disease hypothesis and related therapies. Transl Neurodegener 2018; 7:2. [PMID: 29423193 PMCID: PMC5789526 DOI: 10.1186/s40035-018-0107-y] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause for dementia. There are many hypotheses about AD, including abnormal deposit of amyloid β (Aβ) protein in the extracellular spaces of neurons, formation of twisted fibers of tau proteins inside neurons, cholinergic neuron damage, inflammation, oxidative stress, etc., and many anti-AD drugs based on these hypotheses have been developed. In this review, we will discuss the existing and emerging hypothesis and related therapies.
Collapse
Affiliation(s)
- Xiaoguang Du
- Shanghai GreenValley Pharmaceutical Co., Ltd., 421 Newton Road, Shanghai, 201203 People's Republic of China
| | - Xinyi Wang
- Shanghai GreenValley Pharmaceutical Co., Ltd., 421 Newton Road, Shanghai, 201203 People's Republic of China
| | - Meiyu Geng
- 2State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203 People's Republic of China
| |
Collapse
|
17
|
Lacosta AM, Pascual-Lucas M, Pesini P, Casabona D, Pérez-Grijalba V, Marcos-Campos I, Sarasa L, Canudas J, Badi H, Monleón I, San-José I, Munuera J, Rodríguez-Gómez O, Abdelnour C, Lafuente A, Buendía M, Boada M, Tárraga L, Ruiz A, Sarasa M. Safety, tolerability and immunogenicity of an active anti-Aβ 40 vaccine (ABvac40) in patients with Alzheimer's disease: a randomised, double-blind, placebo-controlled, phase I trial. ALZHEIMERS RESEARCH & THERAPY 2018; 10:12. [PMID: 29378651 PMCID: PMC5789644 DOI: 10.1186/s13195-018-0340-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Background Immunotherapy targeting the amyloid-β (Aβ) peptide is a promising strategy for the treatment of Alzheimer’s disease (AD); however, none of the active or passive vaccines tested have been demonstrated to be effective to date. We have developed the first active vaccine against the C-terminal end of Aβ40, ABvac40, and assessed its safety and tolerability in a phase I clinical trial. Methods A randomised, double-blind, placebo-controlled, parallel-group, phase I study of ABvac40 was conducted with patients aged 50–85 years with mild to moderate AD. Participants were entered into three separate groups according to time of study entry and were randomly allocated to receive ABvac40 or placebo (overall ratio 2:1). The first group received two half-doses of ABvac40 or placebo, whereas the second and third groups received two and three full doses, respectively. All treatments were administered subcutaneously at 4-week intervals. Patients, carers and investigators were blind to treatment allocation throughout the study. The primary objective was to assess the safety and tolerability of ABvac40 by registering all adverse events (AEs). All patients who received at least one dose of treatment were included in the safety analysis. The secondary objective was to evaluate the immunogenicity of ABvac40 by titration of specific anti-Aβ40 antibodies in plasma. Results Twenty-four patients were randomly allocated: 16 patients to the ABvac40 group and 8 patients to the placebo group. All randomised patients completed the study, therefore the intention-to-treat and safety populations were identical. Overall, 71 AEs affecting 18 patients were recorded: 11 (69%) in the ABvac40 group and 7 (88%) in the placebo group (p = 0.6214). Neither incident vasogenic oedema nor sulcal effusion (amyloid-related imaging abnormalities corresponding to vasogenic oedema and sulcal effusions) nor microhaemorrhages (amyloid-related imaging abnormalities corresponding to microhaemorrhages and hemosiderin deposits) were detected throughout the study period in the ABvac40-treated patients. Eleven of 12 (~92%) individuals receiving three injections of ABvac40 developed specific anti-Aβ40 antibodies. Conclusions ABvac40 showed a favourable safety and tolerability profile while eliciting a consistent and specific immune response. An ongoing phase II clinical trial is needed to confirm these results and to explore the clinical efficacy of ABvac40. Trial registration ClinicalTrials.gov, NCT03113812. Retrospectively registered on 14 April 2017. Electronic supplementary material The online version of this article (10.1186/s13195-018-0340-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Pedro Pesini
- Araclon Biotech, Vía Hispanidad 21, 50009, Zaragoza, Spain.
| | - Diego Casabona
- Araclon Biotech, Vía Hispanidad 21, 50009, Zaragoza, Spain
| | | | | | - Leticia Sarasa
- Araclon Biotech, Vía Hispanidad 21, 50009, Zaragoza, Spain
| | - Jesus Canudas
- Araclon Biotech, Vía Hispanidad 21, 50009, Zaragoza, Spain
| | - Hassnae Badi
- Araclon Biotech, Vía Hispanidad 21, 50009, Zaragoza, Spain
| | | | | | - Josep Munuera
- Institut de Diagnòstic per la Imatge, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Octavio Rodríguez-Gómez
- Memory Clinic and Research Centre, Fundació ACE Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Carla Abdelnour
- Memory Clinic and Research Centre, Fundació ACE Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Asunción Lafuente
- Memory Clinic and Research Centre, Fundació ACE Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Mar Buendía
- Memory Clinic and Research Centre, Fundació ACE Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Mercè Boada
- Memory Clinic and Research Centre, Fundació ACE Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Lluis Tárraga
- Memory Clinic and Research Centre, Fundació ACE Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Agustín Ruiz
- Memory Clinic and Research Centre, Fundació ACE Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Manuel Sarasa
- Araclon Biotech, Vía Hispanidad 21, 50009, Zaragoza, Spain
| |
Collapse
|
18
|
Mahajan D, Votruba M. Can the retina be used to diagnose and plot the progression of Alzheimer's disease? Acta Ophthalmol 2017; 95:768-777. [PMID: 29220126 DOI: 10.1111/aos.13472] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 04/03/2017] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most common cause of senile dementia. It impairs the quality of life of a person and their family, posing a serious economic and social threat in developed countries. The fact that the diagnosis can only be definitively made post-mortem, or when the disease is fairly advanced, presents a serious problem if novel therapeutic interventions are to be devised and used early in the course of the disease. There is therefore a pressing need for more sensitive and specific diagnostic tests with which we can detect AD in the preclinical stage. The tau proteins and beta-amyloid proteins start to accumulate 20 years before the symptoms begin to manifest. Detecting them in the preclinical stage would be a potential breakthrough in the management of AD. A high degree of clinical suspicion is needed to correlate problems in cognition with the changes in the eye, particularly the retina, pupil and ocular movements, so that the disease can be detected early and managed in the prodromal phase. In this systematic review, we ask the question whether the retina can be used to make a specific and early diagnosis of AD.
Collapse
Affiliation(s)
- Deepti Mahajan
- School of Optometry and Vision Sciences; Cardiff University; Cardiff UK
| | - Marcela Votruba
- School of Optometry and Vision Sciences; Cardiff University; Cardiff UK
- University Hospital of Wales; Cardiff UK
| |
Collapse
|
19
|
Banerjee G, Carare R, Cordonnier C, Greenberg SM, Schneider JA, Smith EE, Buchem MV, Grond JVD, Verbeek MM, Werring DJ. The increasing impact of cerebral amyloid angiopathy: essential new insights for clinical practice. J Neurol Neurosurg Psychiatry 2017; 88:982-994. [PMID: 28844070 PMCID: PMC5740546 DOI: 10.1136/jnnp-2016-314697] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/26/2017] [Accepted: 05/18/2017] [Indexed: 12/29/2022]
Abstract
Cerebral amyloid angiopathy (CAA) has never been more relevant. The last 5 years have seen a rapid increase in publications and research in the field, with the development of new biomarkers for the disease, thanks to advances in MRI, amyloid positron emission tomography and cerebrospinal fluid biomarker analysis. The inadvertent development of CAA-like pathology in patients treated with amyloid-beta immunotherapy for Alzheimer's disease has highlighted the importance of establishing how and why CAA develops; without this information, the use of these treatments may be unnecessarily restricted. Our understanding of the clinical and radiological spectrum of CAA has continued to evolve, and there are new insights into the independent impact that CAA has on cognition in the context of ageing and intracerebral haemorrhage, as well as in Alzheimer's and other dementias. While the association between CAA and lobar intracerebral haemorrhage (with its high recurrence risk) is now well recognised, a number of management dilemmas remain, particularly when considering the use of antithrombotics, anticoagulants and statins. The Boston criteria for CAA, in use in one form or another for the last 20 years, are now being reviewed to reflect these new wide-ranging clinical and radiological findings. This review aims to provide a 5-year update on these recent advances, as well as a look towards future directions for CAA research and clinical practice.
Collapse
Affiliation(s)
- Gargi Banerjee
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Roxana Carare
- Division of Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Charlotte Cordonnier
- Department of Neurology, Université de Lille, Inserm U1171, Degenerative and Vascular Cognitive Disorders, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - Steven M Greenberg
- J P Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julie A Schneider
- Departments of Pathology and Neurological Sciences, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Eric E Smith
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Mark van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel M Verbeek
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Departments of Neurology and Laboratory Medicine, Radboud Alzheimer Center, Nijmegen, The Netherlands
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
20
|
Gallardo G, Holtzman DM. Antibody Therapeutics Targeting Aβ and Tau. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024331. [PMID: 28062555 DOI: 10.1101/cshperspect.a024331] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The astonishing findings that active and passive immunization against amyloid-β (Aβ) in mouse models of Alzheimer's disease (AD) dramatically decreased amyloid burden led to a rapid initiation of human clinical trials with much enthusiasm. However, methodological issues and adverse effects relating to these clinical trials arose, challenging the effectiveness and safety of these reagents. Efforts are now underway to develop safer immunotherapeutic approaches toward Aβ and the treatment of individuals at risk for AD before or in the earliest stages of cognitive decline with new hopes. Furthermore, several studies have shown tau as a potential immunotherapeutic target for the treatment of tauopathy-related diseases including frontotemporal lobar dementia (FTLD). Both active and passive immunization targeting tau in mouse models of tauopathy effectively decreased tau pathology while improving cognitive performance. These preclinical studies have highlighted tau as an alternative target with much anticipation of clinical trials to be undertaken.
Collapse
Affiliation(s)
- Gilbert Gallardo
- Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri 63110
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri 63110
| |
Collapse
|
21
|
Landen JW, Cohen S, Billing CB, Cronenberger C, Styren S, Burstein AH, Sattler C, Lee JH, Jack CR, Kantarci K, Schwartz PF, Duggan WT, Zhao Q, Sprenger K, Bednar MM, Binneman B. Multiple-dose ponezumab for mild-to-moderate Alzheimer's disease: Safety and efficacy. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2017; 3:339-347. [PMID: 29067341 PMCID: PMC5651443 DOI: 10.1016/j.trci.2017.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Multiple intravenous doses of ponezumab, an anti-amyloid antibody, were evaluated in subjects with mild-to-moderate Alzheimer's disease (AD). METHODS In part A, 77 subjects were randomized to ponezumab 0.1, 0.5, or 1 mg/kg (75 treated) and 26 to placebo (24 treated). In part B, 63 subjects were randomized and treated with ponezumab 3 or 8.5 mg/kg and 32 with placebo. Subjects received 10 infusions over 18 months and were followed for 6 months thereafter. RESULTS Ponezumab was generally safe and well tolerated. Most common adverse events were fall (16.7% ponezumab, 21.4% placebo), headache (13.8%, 21.4%), and cerebral microhemorrhage (13.8%, 19.6%). Plasma ponezumab increased dose-dependently with limited accumulation. Cerebrospinal fluid penetration was low. Plasma Aβ1-x and Aβ1-40 showed robust increases, but cerebrospinal fluid biomarkers showed no dose response. Ponezumab had no effects on cognitive/functional outcomes or brain volume. CONCLUSIONS Multiple-dose ponezumab was generally safe, but not efficacious, in mild-to-moderate AD.
Collapse
Affiliation(s)
| | - Sharon Cohen
- Toronto Memory Program, Toronto, Ontario, Canada
| | | | | | | | | | | | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, Seoul, Korea
| | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Olsson B, Schott JM, Blennow K, Zetterberg H. The use of cerebrospinal fluid biomarkers to measure change in neurodegeneration in Alzheimer’s disease clinical trials. Expert Rev Neurother 2017; 17:767-775. [DOI: 10.1080/14737175.2017.1341311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Bob Olsson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jonathan M. Schott
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute, London, UK
| |
Collapse
|
23
|
Landen JW, Andreasen N, Cronenberger CL, Schwartz PF, Börjesson-Hanson A, Östlund H, Sattler CA, Binneman B, Bednar MM. Ponezumab in mild-to-moderate Alzheimer's disease: Randomized phase II PET-PIB study. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2017; 3:393-401. [PMID: 29067345 PMCID: PMC5651442 DOI: 10.1016/j.trci.2017.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The safety, pharmacokinetics, and effect on peripheral and central amyloid β (Aβ) of multiple doses of ponezumab, an anti-Aβ monoclonal antibody, were characterized in subjects with mild-to-moderate Alzheimer's disease treated for 1 year. METHODS Subjects were aged ≥50 years with Mini-Mental State Examination scores 16 to 26. Cohort Q was randomized to ponezumab 10 mg/kg (n = 12) or placebo (n = 6) quarterly. Cohort M was randomized to a loading dose of ponezumab 10 mg/kg or placebo, followed by monthly ponezumab 7.5 mg/kg (n = 12) or placebo (n = 6), respectively. RESULTS Ponezumab was generally well tolerated. Plasma concentrations increased dose dependently, but cerebrospinal fluid (CSF) penetration was low. Plasma Aβ increased dose dependently with ponezumab, but CSF biomarkers, brain amyloid burden, cognition, and function were not affected. CONCLUSIONS Both ponezumab dosing schedules were generally safe and well tolerated but did not alter CSF biomarkers, brain amyloid burden, or clinical outcomes.
Collapse
|
24
|
Portelius E, Mattsson N, Pannee J, Zetterberg H, Gisslén M, Vanderstichele H, Gkanatsiou E, Crespi GAN, Parker MW, Miles LA, Gobom J, Blennow K. Ex vivo 18O-labeling mass spectrometry identifies a peripheral amyloid β clearance pathway. Mol Neurodegener 2017; 12:18. [PMID: 28219449 PMCID: PMC5317049 DOI: 10.1186/s13024-017-0152-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/06/2017] [Indexed: 01/26/2023] Open
Abstract
Background Proteolytic degradation of amyloid β (Aβ) peptides has been intensely studied due to the central role of Aβ in Alzheimer’s disease (AD) pathogenesis. While several enzymes have been shown to degrade Aβ peptides, the main pathway of Aβ degradation in vivo is unknown. Cerebrospinal fluid (CSF) Aβ42 is reduced in AD, reflecting aggregation and deposition in the brain, but low CSF Aβ42 is, for unknown reasons, also found in some inflammatory brain disorders such as bacterial meningitis. Method Using 18O-labeling mass spectrometry and immune-affinity purification, we examined endogenous proteolytic processing of Aβ in human CSF. Results The Aβ peptide profile was stable in CSF samples from healthy controls but in CSF samples from patients with bacterial meningitis, showing increased leukocyte cell count, 18O-labeling mass spectrometry identified proteolytic activities degrading Aβ into several short fragments, including abundant Aβ1–19 and 1–20. After antibiotic treatment, no degradation of Aβ was detected. In vitro experiments located the source of the proteolytic activity to blood components, including leukocytes and erythrocytes, with insulin-degrading enzyme as the likely protease. A recombinant version of the mid-domain anti-Aβ antibody solanezumab was found to inhibit insulin-degrading enzyme-mediated Aβ degradation. Conclusion 18O labeling-mass spectrometry can be used to detect endogenous proteolytic activity in human CSF. Using this technique, we found an enzymatic activity that was identified as insulin-degrading enzyme that cleaves Aβ in the mid-domain of the peptide, and could be inhibited by a recombinant version of the mid-domain anti-Aβ antibody solanezumab. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0152-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erik Portelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, University Hospital, SE-431 80, Mölndal, Sweden
| | - Niklas Mattsson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Josef Pannee
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, University Hospital, SE-431 80, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, University Hospital, SE-431 80, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Eleni Gkanatsiou
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | | | - Michael W Parker
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Luke A Miles
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Johan Gobom
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden. .,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, University Hospital, SE-431 80, Mölndal, Sweden.
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, University Hospital, SE-431 80, Mölndal, Sweden
| |
Collapse
|
25
|
St-Amour I, Cicchetti F, Calon F. Immunotherapies in Alzheimer's disease: Too much, too little, too late or off-target? Acta Neuropathol 2016; 131:481-504. [PMID: 26689922 DOI: 10.1007/s00401-015-1518-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/12/2015] [Accepted: 12/03/2015] [Indexed: 12/19/2022]
Abstract
Years of research have highlighted the importance of the immune system in Alzheimer's disease (AD), a system that, if manipulated during strategic time windows, could potentially be tackled to treat this disorder. However, to minimize adverse effects, it is essential to first grasp which exact aspect of it may be targeted. Several clues have been collected over the years regarding specific immune players strongly modulated during different stages of AD progression. However, the inherent complexity of the immune system as well as conflicting data make it quite challenging to pinpoint a specific immune target in AD. In this review, we discuss immune-related abnormalities observed in the periphery as well as in the brain of AD patients, in relation to known risk factors of AD such as genetics, type-2 diabetes or obesity, aging, physical inactivity and hypertension. Although not investigated yet in clinical trials, C5 complement system component, CD40/CD40L interactions and the CXCR2 pathway are altered in AD patients and may represent potential therapeutic targets. Immunotherapies tested in a clinical context, those aiming to attenuate the innate immune response and those used to facilitate the removal of pathological proteins, are further discussed to try and understand the causes of the limited success reached. The prevailing eagerness to move basic research data to clinic should not overshadow the fact that a careful preclinical characterization of a drug is still required to ultimately improve the chance of clinical success. Finally, specific elements to consider prior to initiate large-scale trials are highlighted and include the replication of preclinical data, the use of small-scale human studies, the sub-typing of AD patients and the determination of pharmacokinetic and pharmacodynamics parameters such as brain bioavailability and target engagement.
Collapse
Affiliation(s)
- Isabelle St-Amour
- Axe Neurosciences, Centre de Recherche du CHU de Québec, 2705, Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
- Département de Psychiatrie & Neurosciences, Faculté de médecine, Université Laval, Quebec, QC, Canada
- Faculté de pharmacie, Université Laval, Quebec, QC, Canada
| | - Francesca Cicchetti
- Axe Neurosciences, Centre de Recherche du CHU de Québec, 2705, Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
- Département de Psychiatrie & Neurosciences, Faculté de médecine, Université Laval, Quebec, QC, Canada
| | - Frédéric Calon
- Axe Neurosciences, Centre de Recherche du CHU de Québec, 2705, Boulevard Laurier, Quebec, QC, G1V 4G2, Canada.
- Faculté de pharmacie, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
26
|
Awasthi M, Singh S, Pandey VP, Dwivedi UN. Alzheimer's disease: An overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products. J Neurol Sci 2016; 361:256-71. [DOI: 10.1016/j.jns.2016.01.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 01/09/2023]
|
27
|
Neves V, Aires-da-Silva F, Corte-Real S, Castanho MA. Antibody Approaches To Treat Brain Diseases. Trends Biotechnol 2016. [DOI: 10.1016/j.tibtech.2015.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Ritter A, Cummings J. Fluid Biomarkers in Clinical Trials of Alzheimer's Disease Therapeutics. Front Neurol 2015; 6:186. [PMID: 26379620 PMCID: PMC4553391 DOI: 10.3389/fneur.2015.00186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/10/2015] [Indexed: 02/02/2023] Open
Abstract
With the demographic shift of the global population toward longer life expectancy, the number of people living with Alzheimer’s disease (AD) has rapidly expanded and is projected to triple by the year 2050. Current treatments provide symptomatic relief but do not affect the underlying pathology of the disease. Therapies that prevent or slow the progression of the disease are urgently needed to avoid this growing public health emergency. Insights gained from decades of research have begun to unlock the pathophysiology of this complex disease and have provided targets for disease-modifying therapies. In the last decade, few therapeutic agents designed to modify the underlying disease process have progressed to clinical trials and none have been brought to market. With the focus on disease modification, biomarkers promise to play an increasingly important role in clinical trials. Six biomarkers have now been included in diagnostic criteria for AD and are regularly incorporated into clinical trials. Three biomarkers are neuroimaging measures – hippocampal atrophy measured by magnetic resonance imaging (MRI), amyloid uptake as measured by Pittsburg compound B positron emission tomography (PiB-PET), and decreased fluorodeoxyglucose (18F) uptake as measured by PET (FDG-PET) – and three are sampled from fluid sources – cerebrospinal fluid levels of amyloid β42 (Aβ42), total tau, and phosphorylated tau. Fluid biomarkers are important because they can provide information regarding the underlying biochemical processes that are occurring in the brain. The purpose of this paper is to review the literature regarding the existing and emerging fluid biomarkers and to examine how fluid biomarkers have been incorporated into clinical trials.
Collapse
Affiliation(s)
- Aaron Ritter
- Cleveland Clinic Lou Ruvo Center for Brain Health , Las Vegas, NV , USA
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health , Las Vegas, NV , USA
| |
Collapse
|
29
|
Yamada M. Cerebral amyloid angiopathy: emerging concepts. J Stroke 2015; 17:17-30. [PMID: 25692104 PMCID: PMC4325636 DOI: 10.5853/jos.2015.17.1.17] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/15/2014] [Accepted: 12/24/2014] [Indexed: 12/15/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) involves cerebrovascular amyloid deposition and is classified into several types according to the amyloid protein involved. Of these, sporadic amyloid β-protein (Aβ)-type CAA is most commonly found in older individuals and in patients with Alzheimer's disease (AD). Cerebrovascular Aβ deposits accompany functional and pathological changes in cerebral blood vessels (CAA-associated vasculopathies). CAA-associated vasculopathies lead to development of hemorrhagic lesions [lobar intracerebral macrohemorrhage, cortical microhemorrhage, and cortical superficial siderosis (cSS)/focal convexity subarachnoid hemorrhage (SAH)], ischemic lesions (cortical infarction and ischemic changes of the white matter), and encephalopathies that include subacute leukoencephalopathy caused by CAA-associated inflammation/angiitis. Thus, CAA is related to dementia, stroke, and encephalopathies. Recent advances in diagnostic procedures, particularly neuroimaging, have enabled us to establish a clinical diagnosis of CAA without brain biopsies. Sensitive magnetic resonance imaging (MRI) methods, such as gradient-echo T2* imaging and susceptibility-weighted imaging, are useful for detecting cortical microhemorrhages and cSS. Amyloid imaging with amyloid-binding positron emission tomography (PET) ligands, such as Pittsburgh Compound B, can detect CAA, although they cannot discriminate vascular from parenchymal amyloid deposits. In addition, cerebrospinal fluid markers may be useful, including levels of Aβ40 for CAA and anti-Aβ antibody for CAA-related inflammation. Moreover, cSS is closely associated with transient focal neurological episodes (TFNE). CAA-related inflammation/angiitis shares pathophysiology with amyloid-related imaging abnormalities (ARIA) induced by Aβ immunotherapies in AD patients. This article reviews CAA and CAA-related disorders with respect to their epidemiology, pathology, pathophysiology, clinical features, biomarkers, diagnosis, treatment, risk factors, and future perspectives.
Collapse
Affiliation(s)
- Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
30
|
Cash DM, Rohrer JD, Ryan NS, Ourselin S, Fox NC. Imaging endpoints for clinical trials in Alzheimer's disease. Alzheimers Res Ther 2014; 6:87. [PMID: 25621018 PMCID: PMC4304258 DOI: 10.1186/s13195-014-0087-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As the need to develop a successful disease-modifying treatment for Alzheimer's disease (AD) becomes more urgent, imaging is increasingly used in therapeutic trials. We provide an overview of how the different imaging modalities are used in AD studies and the current regulatory guidelines for their use in clinical trials as endpoints. We review the current literature for results of imaging endpoints of efficacy and safety in published clinical trials. We start with trials in mild to moderate AD, where imaging (largely magnetic resonance imaging (MRI)) has long played a role in inclusion and exclusion criteria; more recently, MRI has been used to identify adverse events and to measure rates of brain atrophy. The advent of amyloid imaging using positron emission tomography has led to trials incorporating amyloid measurements as endpoints and incidentally to the recognition of the high proportion of amyloid-negative individuals that may be recruited into these trials. Ongoing and planned trials now commonly include multimodality imaging: amyloid positron emission tomography, MRI and other modalities. At the same time, the failure of recent large profile trials in mild to moderate AD together with the realisation that there is a long prodromal period to AD has driven a push to move studies to earlier in the disease. Imaging has particularly important roles, alongside other biomarkers, in assessing efficacy because conventional clinical outcomes may have limited ability to detect treatment effects in these early stages.
Collapse
Affiliation(s)
- David M Cash
- />Dementia Research Centre, Box 16, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG UK
- />Translational Imaging Group, Centre for Medical Image Computing, University College of London, 3rd Floor, Wolfson House, 4 Stephenson Way, London, NW1 2HE UK
| | - Jonathan D Rohrer
- />Dementia Research Centre, Box 16, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG UK
| | - Natalie S Ryan
- />Dementia Research Centre, Box 16, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG UK
| | - Sebastien Ourselin
- />Dementia Research Centre, Box 16, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG UK
- />Translational Imaging Group, Centre for Medical Image Computing, University College of London, 3rd Floor, Wolfson House, 4 Stephenson Way, London, NW1 2HE UK
| | - Nick C Fox
- />Dementia Research Centre, Box 16, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG UK
| |
Collapse
|
31
|
Spencer B, Masliah E. Immunotherapy for Alzheimer's disease: past, present and future. Front Aging Neurosci 2014; 6:114. [PMID: 24959143 PMCID: PMC4051211 DOI: 10.3389/fnagi.2014.00114] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/21/2014] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable, progressive, neurodegenerative disorder affecting over 5 million people in the US alone. This neurological disorder is characterized by widespread neurodegeneration throughout the association cortex and limbic system caused by deposition of Aβ resulting in the formation of plaques and tau resulting in the formation of neurofibrillary tangles. Active immunization for Aβ showed promise in animal models of AD; however, the models were unable to predict the off-target immune effects in human patients. A few patients in the initial trial suffered cerebral meningoencephalitis. Recently, passive immunization has shown promise in the lab with less chance of off-target immune effects. Several trials have attempted using passive immunization for Aβ, but again, positive end points have been elusive. The next generation of immunotherapy for AD may involve the marriage of anti-Aβ antibodies with technology aimed at improving transport across the blood-brain barrier (BBB). Receptor mediated transport of antibodies may increase CNS exposure and improve the therapeutic index in the clinic.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of CaliforniaSan Diego, La Jolla, CA, USA
- Department of Pathology, University of CaliforniaSan Diego, La Jolla, CA, USA
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW We reviewed clinical trials on active and passive anti-β-amyloid (Aβ) immunotherapy for the treatment of Alzheimer's disease with a particular focus on monoclonal antibodies against Aβ. RECENT FINDINGS Studies on anti-Alzheimer's disease immunotherapy published in the period from January 2012 to October 2013 were reviewed. SUMMARY Both active and passive anti-Aβ immunotherapies were shown to clear brain Aβ deposits. However, an active anti-Aβ vaccine (AN1792) has been discontinued because it caused meningoencephalitis in 6% of Alzheimer's disease patients treated. Among passive immunotherapeutics, two Phase III clinical trials in mild-to-moderate Alzheimer's disease patients with bapineuzumab, a humanized monoclonal antibody directed at the N-terminal sequence of Aβ, were disappointing. Another antibody, solanezumab, directed at the mid-region of Aβ, failed in two Phase III clinical trials in mild-to-moderate Alzheimer's disease patients. A third Phase III study with solanezumab is ongoing in mildly affected Alzheimer's disease patients based on encouraging results in this subgroup of patients. Second-generation active Aβ vaccines (ACC-001, CAD106, and Affitope AD02) and new passive anti-Aβ immunotherapies (gantenerumab and crenezumab) are being tested in prodromal Alzheimer's disease patients, in presymptomatic individuals with Alzheimer's disease-related mutations, or in asymptomatic individuals at risk of developing Alzheimer's disease to definitely test the Aβ cascade hypothesis of Alzheimer's disease.
Collapse
|
33
|
Panza F, Solfrizzi V, Imbimbo BP, Tortelli R, Santamato A, Logroscino G. Amyloid-based immunotherapy for Alzheimer's disease in the time of prevention trials: the way forward. Expert Rev Clin Immunol 2014; 10:405-19. [DOI: 10.1586/1744666x.2014.883921] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Léger GC, Massoud F. Novel disease-modifying therapeutics for the treatment of Alzheimer’s disease. Expert Rev Clin Pharmacol 2014; 6:423-42. [DOI: 10.1586/17512433.2013.811237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Blennow K, Hampel H, Zetterberg H. Biomarkers in amyloid-β immunotherapy trials in Alzheimer's disease. Neuropsychopharmacology 2014; 39:189-201. [PMID: 23799530 PMCID: PMC3857643 DOI: 10.1038/npp.2013.154] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 12/21/2022]
Abstract
Drug candidates directed against amyloid-β (Aβ) are mainstream in Alzheimer's disease (AD) drug development. Active and passive Aβ immunotherapy is the principle that has come furthest, both in number and in stage of clinical trials. However, an increasing number of reports on major difficulties in identifying any clinical benefit in phase II-III clinical trials on this type of anti-Aβ drug candidates have caused concern among researchers, pharmaceutical companies, and other stakeholders. This has provided critics of the amyloid cascade hypothesis with fire for their arguments that Aβ deposition may merely be a bystander, and not the cause, of the disease or that the amyloid hypothesis may only be valid for the familial form of AD. On the other hand, most researchers argue that it is the trial design that will need refinement to allow for identifying a positive clinical effect of anti-Aβ drugs. A consensus in the field is that future trials need to be performed in an earlier stage of the disease and that biomarkers are essential to guide and facilitate drug development. In this context, it is reassuring that, in contrast to most brain disorders, research advances in the AD field have led to both imaging (magnetic resonance imaging (MRI) and PET) and cerebrospinal fluid (CSF) biomarkers for the central pathogenic processes of the disease. AD biomarkers will have a central role in future clinical trials to enable early diagnosis, and Aβ biomarkers (CSF Aβ42 and amyloid PET) may be essential to allow for testing a drug on patients with evidence of brain Aβ pathology. Pharmacodynamic Aβ and amyloid precursor protein biomarkers will be of use to verify target engagement of a drug candidate in humans, thereby bridging the gap between mechanistic data from transgenic AD models (that may not be relevant to the neuropathology of human AD) and large and expensive phase III trials. Last, downstream biomarker evidence (CSF tau proteins and MRI volumetry) that the drug ameliorates neurodegeneration will, together with beneficial clinical effects on cognition and functioning, be essential for labeling an anti-Aβ drug as disease modifying.
Collapse
Affiliation(s)
- Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Harald Hampel
- Department of Psychiatry, University of Frankfurt, Frankfurt, Germany
- Department of Neurology, University of Belgrade, Belgrade, Serbia
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
- University College London Institute of Neurology, Queen Square, London, UK
| |
Collapse
|