1
|
Ventura‐Bort C, Giraudier M, Weymar M. Transcutaneous Auricular Vagus Nerve Stimulation Enhances Emotional Processing and Long-Term Recognition Memory: Electrophysiological Evidence Across Two Studies. Psychophysiology 2025; 62:e70034. [PMID: 40066789 PMCID: PMC11894791 DOI: 10.1111/psyp.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 03/15/2025]
Abstract
Recently, we found that continuous transcutaneous auricular vagus nerve stimulation (taVNS) facilitates the encoding and later recollection of emotionally relevant information, as indicated by differences in the late positive potential (LPP), memory performance, and late ERP Old/New effect. Here, we aimed to conceptually replicate and extend these findings by investigating the effects of different time-dependent taVNS stimulation protocols. In Study 1, an identical paradigm to our previous study was employed with interval stimulation (30-s on/off). Participants viewed unpleasant and neutral scenes on two consecutive days while receiving taVNS or sham stimulation and completed a recognition test 1 week later. Replicating previous results, unpleasant images encoded under taVNS, compared to sham stimulation, elicited larger amplitudes in an earlier window of the LPP during encoding, as well as more pronounced late Old/New differences. However, no effects of taVNS on memory performance were found. In Study 2, we followed up on these findings by synchronizing the stimulation cycle with image presentation to determine the taVNS effects for images encoded during the on and off cycles. We could replicate the enhancing effects of taVNS on brain potentials (early LPP and late Old/New differences) and found that taVNS improved recollection-based memory performance for both unpleasant and neutral images, independently of the stimulation cycle. Overall, our results suggest that taVNS increases electrophysiological correlates of emotional encoding and retrieval in a time-independent manner, substantiating the vagus nerve's role in emotional processing and memory formation, opening new venues for improving mnemonic processes in both clinical and non-clinical populations.
Collapse
Affiliation(s)
- Carlos Ventura‐Bort
- Department of Biological Psychology and Affective Science, Faculty of Human SciencesUniversity of PotsdamPotsdamGermany
| | - Manon Giraudier
- Department of Biological Psychology and Affective Science, Faculty of Human SciencesUniversity of PotsdamPotsdamGermany
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human SciencesUniversity of PotsdamPotsdamGermany
- Faculty of Health Sciences BrandenburgUniversity of PotsdamPotsdamGermany
| |
Collapse
|
2
|
Ma L, Wang HB, Hashimoto K. The vagus nerve: An old but new player in brain-body communication. Brain Behav Immun 2025; 124:28-39. [PMID: 39566667 DOI: 10.1016/j.bbi.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/02/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024] Open
Abstract
The vagus nerve is a crucial component of the parasympathetic nervous system, facilitating communication between the brain and various organs, including the ears, heart, lungs, pancreas, spleen, and gastrointestinal tract. The caudal nucleus of the solitary tract in the brainstem is the initial site regulated by the vagus nerve in brain-body communication, including the interactions with immune system. Increasing evidence suggests that the gut-brain axis, via the vagus nerve, may play a role in the development and progression of psychiatric, neurologic, and inflammation-related disorders. Population-based cohort studies indicate that truncal vagotomy may reduce the risk of neurological disorders such as Parkinson's disease and Alzheimer's disease, underscoring the vagus nerve's significance in these conditions. Given its role in the cholinergic anti-inflammatory pathway, α7 nicotinic acetylcholine receptors present a potential therapeutic target. Additionally, noninvasive transcutaneous auricular vagus nerve stimulation (taVNS) shows promise as a therapeutic tool for these disorders. This article provides a historical review of the vagus nerve and explores its role in brain-body communication. Finally, we discuss future directions, including the potential of noninvasive taVNS as a therapeutic approach.
Collapse
Affiliation(s)
- Li Ma
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, PR China
| | - Han-Bing Wang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, PR China.
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
3
|
Missey F, Acerbo E, Dickey A, Trajlinek J, Studnicka O, Lubrano C, De Araujo E Silva M, Brady E, Vsiansky V, Szabo JP, Dolezalova I, Fabo D, Pail M, Gutekunst CA, Migliore R, Migliore M, Lagarde S, Carron R, Karimi F, Astorga R, Cassara A, Kuster N, Neufeld E, Bartolomei F, Pedersen NP, Gross R, Jirsa V, Drane D, Brazdil M, Williamson A. Non-invasive Temporal Interference Stimulation of the Hippocampus Suppresses Epileptic Biomarkers in Patients with Epilepsy: Biophysical Differences between Kilohertz and Amplitude Modulated Stimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.12.05.24303799. [PMID: 39711722 PMCID: PMC11661391 DOI: 10.1101/2024.12.05.24303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Medication refractory focal epilepsy creates a significant challenge, with approximately 30% of patients ineligible for surgery due to the involvement of eloquent cortex in the epileptogenic network. For such patients with limited surgical options, electrical neuromodulation represents a promising alternative therapy. In this study, we investigate the potential of non-invasive temporal interference (TI) electrical stimulation to reduce epileptic biomarkers in patients with epilepsy by comparing intracerebral recordings obtained before, during, and after TI stimulation, to recordings during low and high kHz frequency (HF) sham stimulation. Thirteen patients with symptoms of mesiotemporal epilepsy (MTLE) and implanted with stereoelectroencephalography (sEEG) depth electrodes received TI stimulation with an amplitude modulation (AM) frequency of 130Hz (df), where the AM was delivered with lower frequency kHz carriers (1kHz + 1.13kHz), or higher frequency carriers (9kHz + 9.13kHz), targeting the hippocampus, a common epileptic focus and consequently stimulation target in MTLE. Our results show that TI stimulation yields a statistically significant decrease in interictal epileptiform discharges (IEDs) and pathological high-frequency oscillations (HFOs) specifically fast ripples (FR), where the suppression is apparent in the hippocampal focus and propagation from the focus is reduced brain-wide. HF sham stimulation at 1kHz frequency also impacted the IED rate in the cortex, but without reaching the hippocampal focus. The HF sham effect diminished with increasing frequencies (2, 5, and 9kHz, respectively), specifically as a function of depth into the cortex. This depth dependence was not observed with the TI, independent of the employed carrier frequency (low or high kHz). Furthermore, a strong carry-over effect, i.e., suppression of epileptic biomarkers for a period of time after the end of stimulation, was observed for TI but not for kHz. Our findings underscore the possible application of TI in epilepsy, as an additional non-invasive brain stimulation tool, potentially offering opportunities to assess brain region response to electrical neuromodulation before committing to a deep brain stimulation (DBS) or responsive neurostimulation (RNS) implants. Our results further demonstrate distinct biophysical differences between kHz and focal AM stimulation.
Collapse
|
4
|
Capone F, Motolese F, Cruciani A, Rossi M, Musumeci G, Norata D, Marano M, Pilato F, Di Lazzaro V. The effects of transcutaneous auricular vagus nerve stimulation (taVNS) on cholinergic neural networks in humans: A neurophysiological study. Clin Neurophysiol 2025; 169:47-52. [PMID: 39612592 DOI: 10.1016/j.clinph.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVE The mechanisms of actions of transcutaneous auricular vagus nerve stimulation (taVNS) are still unclear, however the activity of the cholinergic system seems to be critical for the induction of VNS-mediated plasticity. Transcranial Magnetic Stimulation (TMS) is a well-suited, non-invasive tool to investigate cortical microcircuits involving different neurotransmitters. Herein, we evaluated the effect of taVNS on short-latency afferent inhibition (SAI), a TMS paradigm specifically measuring cholinergic neurotransmission. METHODS Fifteen healthy subjects participated in this randomized placebo-controlled double-blind study. Each subject underwent two different sessions of 1-hour exposure to taVNS (real and sham) separated by a minimum of 48 h. Real taVNS was administered at left external acoustic meatus, while sham stimulation was performed at left ear lobe. We evaluated SAI bilaterally over the motor cortex before and after exposure to taVNS. RESULTS No side effects were reported by any of the participants. Statistical analysis did not show any significant effect of taVNS on SAI. CONCLUSIONS Our study demonstrated that cholinergic circuits explored by SAI are different from circuits engaged by taVNS. SIGNIFICANCE Since the influence of VNS on cholinergic neurotransmission has been exhaustively demonstrated in animal models, further studies are mandatory to understand the actual impact of VNS on cholinergic circuits in humans.
Collapse
Affiliation(s)
- Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy.
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy
| | - Alessandro Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy
| | - Mariagrazia Rossi
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy
| | - Gabriella Musumeci
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy
| | - Davide Norata
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy
| | - Massimo Marano
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy
| | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy
| |
Collapse
|
5
|
Binda KH, Real CC, Simonsen MT, Grove EK, Bender D, Gjedde A, Brooks DJ, Landau AM. Acute transcutaneous auricular vagus nerve stimulation modulates presynaptic SV2A density in healthy rat brain: An in vivo microPET study. Psychophysiology 2025; 62:e14709. [PMID: 39428713 PMCID: PMC11775880 DOI: 10.1111/psyp.14709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
Vagus nerve stimulation (VNS) is the subject of exploration as an adjunct treatment for neurological disorders such as epilepsy, chronic migraine, pain, and depression. A non-invasive form of VNS is transcutaneous auricular VNS (taVNS). Combining animal models and positron emission tomography (PET) may lead to a better understanding of the elusive mechanisms of taVNS. We evaluated the acute effect of electrical stimulation of the left vagus nerve via the ear on brain synaptic vesicle glycoprotein 2A (SV2A) as a measure of presynaptic density and glucose metabolism in naïve rats. Female Sprague-Dawley rats were imaged with [11C]UCB-J (n = 11) or [18F]fluorodeoxyglucose ([18F]FDG) PET (n = 13) on two separate days, (1) at baseline, and (2) after acute unilateral left taVNS or sham stimulation (30 min). We calculated the regional volume of distribution (VT) for [11C]UCB-J and standard uptake values (SUV) for [18F]FDG. We observed regional reductions of [11C]UCB-J binding in response to taVNS ranging from 36% to 59%. The changes in taVNS compared to baseline were significantly larger than those induced by sham stimulation. The differences were observed bilaterally in the frontal cortex, striatum, and midbrain. The [18F]FDG PET uptake remained unchanged following acute taVNS or sham stimulation compared to baseline values. This proof-of-concept study shows for the first time that acute taVNS for 30 min can modulate in vivo synaptic SV2A density in cortical and subcortical regions of healthy rats. Preclinical disease models and PET ligands of different targets can be a powerful combination to assess the therapeutic potential of taVNS.
Collapse
Affiliation(s)
- Karina H. Binda
- Translational Neuropsychiatry Unit, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Caroline C. Real
- Department of Nuclear Medicine and PET, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Mette T. Simonsen
- Department of Nuclear Medicine and PET, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Ebbe K. Grove
- Department of Nuclear Medicine and PET, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Dirk Bender
- Department of Nuclear Medicine and PET, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - David J. Brooks
- Department of Nuclear Medicine and PET, Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Institute of Translational and Clinical Research, University of Newcastle upon TyneNewcastle Upon TyneUK
| | - Anne M. Landau
- Translational Neuropsychiatry Unit, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
6
|
Tavares-Figueiredo I, Pers YM, Duflos C, Herman F, Sztajnzalc B, Lecoq H, Laffont I, Dupeyron AF, Homs AF. Effect of Transcutaneous Auricular Vagus Nerve Stimulation in Chronic Low Back Pain: A Pilot Study. J Clin Med 2024; 13:7601. [PMID: 39768526 PMCID: PMC11677670 DOI: 10.3390/jcm13247601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Chronic low back pain (CLBP) is a common condition with limited long-term treatment options. Vagus nerve stimulation (VNS) has shown potential for pain improvement, but its use in CLBP remains underexplored. Our aim was to evaluate the efficacy, feasibility and tolerability of transcutaneous auricular vagus nerve stimulation (taVNS) in reducing pain and improving functional outcomes in CLBP patients. Methods: Thirty adults with CLBP (VAS ≥ 40/100) participated in this open-label pilot study (NCT05639270). Patients were treated with a taVNS device on the left ear for 30 min daily over a period of 3 months. The primary outcome was a reduction in pain intensity (VAS) at 1 month. Secondary outcomes included pain intensity at 3 months, disability (Oswestry Disability Index, ODI), quality of life (EQ-5D-5L), catastrophizing and psychological distress. In addition, compliance and adverse events were monitored. Results: After 1 month, 27 patients were evaluated. VAS scores decreased significantly by 16.1 (SD = 17.9) mm (p < 0.001) and by 22.5 (25) mm (p < 0.001) after 3 months (24 patients were analyzed). Functional disability improved with an average reduction in ODI of 11.9 (11.1) points (p < 0.001) after 3 months. Other patient-reported outcomes also improved significantly over the 3-month period. Overall, 51.9% of the patients achieved clinically meaningful pain reduction (≥20 mm), and no serious adverse events were reported. Treatment adherence was good, with half of the patients achieving 80% adherence. Conclusions: This pilot study suggests that taVNS is a feasible, safe and potentially effective treatment for CLBP that warrants further investigation in a randomized controlled trial compared to sham stimulation.
Collapse
Affiliation(s)
- Isabelle Tavares-Figueiredo
- Department of Physical Medicine and Rehabilitation, CHU Montpellier, University of Montpellier, 34295 Montpellier, France; (I.T.-F.); (B.S.); (H.L.); (I.L.)
- Centre d’Investigation Clinique, CHU Montpellier Montpellier, Inserm, CIC 1411, 34295 Montpellier, France
| | - Yves-Marie Pers
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France;
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Lapeyronie University Hospital, CHU Montpellier, 34295 Montpellier, France
| | - Claire Duflos
- Clinical Research and Epidemiology Unit, CHU Montpellier, University of Montpellier, 34295 Montpellier, France; (C.D.); (F.H.)
| | - Fanchon Herman
- Clinical Research and Epidemiology Unit, CHU Montpellier, University of Montpellier, 34295 Montpellier, France; (C.D.); (F.H.)
| | - Benjamin Sztajnzalc
- Department of Physical Medicine and Rehabilitation, CHU Montpellier, University of Montpellier, 34295 Montpellier, France; (I.T.-F.); (B.S.); (H.L.); (I.L.)
| | - Hugo Lecoq
- Department of Physical Medicine and Rehabilitation, CHU Montpellier, University of Montpellier, 34295 Montpellier, France; (I.T.-F.); (B.S.); (H.L.); (I.L.)
| | - Isabelle Laffont
- Department of Physical Medicine and Rehabilitation, CHU Montpellier, University of Montpellier, 34295 Montpellier, France; (I.T.-F.); (B.S.); (H.L.); (I.L.)
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, 34090 Montpellier, France;
| | - Arnaud F. Dupeyron
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, 34090 Montpellier, France;
- Department of Physical Medicine and Rehabilitation, CHU Nimes, University of Montpellier, 30900 Nimes, France
| | - Alexis F. Homs
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, 34090 Montpellier, France;
- Department of Physical Medicine and Rehabilitation, CHU Nimes, University of Montpellier, 30900 Nimes, France
| |
Collapse
|
7
|
Zhi J, Zhang S, Huang M, Qin H, Xu H, Chang Q, Wang Y. Transcutaneous auricular vagus nerve stimulation as a potential therapy for attention deficit hyperactivity disorder: modulation of the noradrenergic pathway in the prefrontal lobe. Front Neurosci 2024; 18:1494272. [PMID: 39697776 PMCID: PMC11652481 DOI: 10.3389/fnins.2024.1494272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by developmental impairments, inattention, motor hyperactivity, and impulsivity. Currently, there is no effective intervention that can completely cure it. One of the pathogenic mechanisms of ADHD involves abnormalities in the norepinephrine (NE) pathway within the prefrontal cortex (PFC). In recent years, transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive neuromodulation technique, has demonstrated promising potential in the treatment of neurological and psychiatric disorders. However, its application in the management of ADHD remains relatively unexplored. Previous studies have shown that taVNS exerts therapeutic effects on attention, cognition, arousal, perception, and behavioral regulation primarily through activating the vagus nerve conduction pathway, specifically targeting the nucleus tractus solitarius - locus coeruleus - NE pathway. These findings have led to the hypothesis that taVNS may be an effective intervention for ADHD, with NE and its pathway playing a pivotal role in this context. Therefore, this review comprehensively examines the correlation between NE pathway alterations in the PFC and ADHD, the mechanism of action of taVNS, and the potential role of the NE pathway in treating ADHD with taVNS, aiming to provide a theoretical foundation for clinical applications.
Collapse
Affiliation(s)
- Jincao Zhi
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shiwen Zhang
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Meiling Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huan Qin
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - He Xu
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qing Chang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Polini F, Budai R. Multimodal transcutaneous auricular vagus nerve stimulation: An option in the treatment of sleep bruxism in a "polyvagal" context. Cranio 2024; 42:779-787. [PMID: 35322755 DOI: 10.1080/08869634.2022.2055866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To consider the possible role of the vagus nerve (VN) in the pathophysiology of sleep bruxism (SB) and introduce a multimodal protocol of transcutaneous auricular stimulation of the VN in the treatment of SB patients. METHODS Ten patients with SB underwent four sessions of electric transcutaneous auricular vagus nerve stimulation (ta-VNS) in specific auricular areas. The patients were advised to manually stimulate the same areas between sessions. Masticatory muscle activity and sleep parameters were measured by a polysomnography (PSG) before and after the treatment. Heart rate variability (HRV) parameters were measured during each stimulation. RESULTS PSG analysis revealed a statistically significant reduction in tonic SB index and tonic contraction time. HRV parameters showed a statistically significant increase in mean values of the vagal tone after each session of stimulation. No side effect was reported. CONCLUSION The stimulation of the VN might have a role in the treatment of SB.
Collapse
Affiliation(s)
- Francesco Polini
- Maxillofacial Surgery Clinic, University Hospital of Udine, Udine, Italy
| | - Riccardo Budai
- Neurophysiopathology Operative Unit, University Hospital of Udine, Udine, Italy
| |
Collapse
|
9
|
Maestri R, Pinna GD, Robbi E, Cogliati C, Bartoli A, Gambino G, Rengo G, Montano N, La Rovere MT. Impact of optimized transcutaneous auricular vagus nerve stimulation on cardiac autonomic profile in healthy subjects and heart failure patients. Physiol Meas 2024; 45:075007. [PMID: 39016202 DOI: 10.1088/1361-6579/ad5ef6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Objective.To determine the optimal frequency and site of stimulation for transcutaneous vagus nerve stimulation (tVNS) to induce acute changes in the autonomic profile (heart rate (HR), heart rate variability (HRV)) in healthy subjects (HS) and patients with heart failure (HF).Approach.We designed three single-blind, randomized, cross-over studies: (1) to compare the acute effect of left tVNS at 25 Hz and 10 Hz (n= 29, age 60 ± 7 years), (2) to compare the acute effect of left and right tVNS at the best frequency identified in study 1 (n= 28 age 61 ± 7 years), and (3) to compare the acute effect of the identified optimal stimulation protocol with sham stimulation in HS and HF patients (n= 30, age 59 ± 5 years, andn= 32, age 63 ± 7 years, respectively).Main results.In study 1, left tragus stimulation at 25 Hz was more effective than stimulation at 10 Hz in decreasing HR (-1.0 ± 1.2 bpm,p< 0.001 and -0.5 ± 1.6 bpm, respectively) and inducing vagal effects (significant increase in RMSSD, and HF power). In study 2, the HR reduction was greater with left than right tragus stimulation (-0.9 ± 1.5 bpm,p< 0.01 and -0.3 ± 1.4 bpm, respectively). In study 3 in HS, left tVNS at 25 Hz significantly reduced HR, whereas sham stimulation did not (-1.1 ± 1.2 bpm,p< 0.01 and -0.2 ± 2.9 bpm, respectively). In HF patients, both active and sham stimulation produced negligible effects.Significance.Left tVNS at 25 Hz is effective in acute modulation of cardiovascular autonomic control (HR, HRV) in HS but not in HF patients (NCT05789147).
Collapse
Affiliation(s)
- Roberto Maestri
- Department of Biomedical Engineering, Istituti Clinici Scientifici Maugeri, Montescano Institute-IRCCS, Montescano, Italy
| | - Gian Domenico Pinna
- Department of Biomedical Engineering, Istituti Clinici Scientifici Maugeri, Montescano Institute-IRCCS, Montescano, Italy
| | - Elena Robbi
- Department of Cardiology, Istituti Clinici Scientifici Maugeri, Montescano Institute-IRCCS, Montescano, Italy
| | - Chiara Cogliati
- Department of Biomedical and Clinical Sciences, University of Milan and Department of Internal Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Arianna Bartoli
- Department of Biomedical and Clinical Sciences, University of Milan and Department of Internal Medicine, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Giuseppina Gambino
- Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
- Istituti Clinici Scientifici ICS Maugeri, Telese Terme Institute, -IRCCS, Telese, Italy
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Maria Teresa La Rovere
- Department of Cardiology, Istituti Clinici Scientifici Maugeri, Montescano Institute-IRCCS, Montescano, Italy
| |
Collapse
|
10
|
Horinouchi T, Nezu T, Saita K, Date S, Kurumadani H, Maruyama H, Kirimoto H. Transcutaneous auricular vagus nerve stimulation enhances short-latency afferent inhibition via central cholinergic system activation. Sci Rep 2024; 14:11224. [PMID: 38755234 PMCID: PMC11099104 DOI: 10.1038/s41598-024-61958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024] Open
Abstract
The present study examined the effects of transcutaneous auricular vagus nerve stimulation (taVNS) on short-latency afferent inhibition (SAI), as indirect biomarker of cholinergic system activation. 24 healthy adults underwent intermittent taVNS (30 s on/30 s off, 30 min) or continuous taVNS at a frequency of 25 Hz (15 min) along with earlobe temporary stimulation (15 min or 30 min) were performed in random order. The efficiency with which the motor evoked potential from the abductor pollicis brevis muscle by transcranial magnetic stimulation was attenuated by the preceding median nerve conditioning stimulus was compared before taVNS, immediately after taVNS, and 15 min after taVNS. Continuous taVNS significantly increased SAI at 15 min post-stimulation compared to baseline. A positive correlation (Pearson coefficient = 0.563, p = 0.004) was observed between baseline SAI and changes after continuous taVNS. These results suggest that 15 min of continuous taVNS increases the activity of the cholinergic nervous system, as evidenced by the increase in SAI. In particular, the increase after taVNS was more pronounced in those with lower initial SAI. This study provides fundamental insight into the clinical potential of taVNS for cholinergic dysfunction.
Collapse
Affiliation(s)
- Takayuki Horinouchi
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tomohisa Nezu
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Kazuya Saita
- Department of Psychosocial Rehabilitation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shota Date
- Department of Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Kurumadani
- Department of Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hikari Kirimoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
11
|
Haas A, Chung J, Kent C, Mills B, McCoy M. Vertebral Subluxation and Systems Biology: An Integrative Review Exploring the Salutogenic Influence of Chiropractic Care on the Neuroendocrine-Immune System. Cureus 2024; 16:e56223. [PMID: 38618450 PMCID: PMC11016242 DOI: 10.7759/cureus.56223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
In this paper we synthesize an expansive body of literature examining the multifaceted influence of chiropractic care on processes within and modulators of the neuroendocrine-immune (NEI) system, for the purpose of generating an inductive hypothesis regarding the potential impacts of chiropractic care on integrated physiology. Taking a broad, interdisciplinary, and integrative view of two decades of research-documented outcomes of chiropractic care, inclusive of reports ranging from systematic and meta-analysis and randomized and observational trials to case and cohort studies, this review encapsulates a rigorous analysis of research and suggests the appropriateness of a more integrative perspective on the impact of chiropractic care on systemic physiology. A novel perspective on the salutogenic, health-promoting effects of chiropractic adjustment is presented, focused on the improvement of physical indicators of well-being and adaptability such as blood pressure, heart rate variability, and sleep, potential benefits that may be facilitated through multiple neurologically mediated pathways. Our findings support the biological plausibility of complex benefits from chiropractic intervention that is not limited to simple neuromusculoskeletal outcomes and open new avenues for future research, specifically the exploration and mapping of the precise neural pathways and networks influenced by chiropractic adjustment.
Collapse
Affiliation(s)
- Amy Haas
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Jonathan Chung
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Christopher Kent
- Research, Sherman College, Spartanburg, USA
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Brooke Mills
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Matthew McCoy
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| |
Collapse
|
12
|
Yan L, Li H, Qian Y, Zhang J, Cong S, Zhang X, Wu L, Wang Y, Wang M, Yu T. Transcutaneous vagus nerve stimulation: a new strategy for Alzheimer's disease intervention through the brain-gut-microbiota axis? Front Aging Neurosci 2024; 16:1334887. [PMID: 38476661 PMCID: PMC10927744 DOI: 10.3389/fnagi.2024.1334887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Transcutaneous vagus nerve stimulation (tVNS) is an emerging non-invasive technique designed to stimulate branches of the vagus nerve distributed over the body surface. Studies suggest a correlation between the brain-gut-microbiota (BGM) axis and the pathogenesis of Alzheimer's disease (AD). The BGM axis represents a complex bidirectional communication system, with the vagus nerve being a crucial component. Therefore, non-invasive electrical stimulation of the vagus nerve might have the potential to modify-most of the time probably in a non-physiological way-the signal transmission within the BGM axis, potentially influencing the progression or symptoms of AD. This review explores the interaction between percutaneous vagus nerve stimulation and the BGM axis, emphasizing its potential effects on AD. It examines various aspects, such as specific brain regions, gut microbiota composition, maintenance of intestinal environmental homeostasis, inflammatory responses, brain plasticity, and hypothalamic-pituitary-adrenal (HPA) axis regulation. The review suggests that tVNS could serve as an effective strategy to modulate the BGM axis and potentially intervene in the progression or treatment of Alzheimer's disease in the future.
Collapse
Affiliation(s)
- Long Yan
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Li
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yulin Qian
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Junfeng Zhang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan Cong
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuemin Zhang
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Wu
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Meng Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Tao Yu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
13
|
Cai Y, Zhang Y, Fang Y, Hu H, Li X, Fang L. Evaluating the efficacy and acceptability of vagus nerve stimulation for fibromyalgia: a PRISMA-compliant protocol for a systematic review and meta-analysis. Front Neurol 2024; 15:1367295. [PMID: 38450074 PMCID: PMC10914987 DOI: 10.3389/fneur.2024.1367295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Fibromyalgia has imposed substantial burdens on patients' health and well-being, yet effective therapeutic options for this condition remain limited. Recently, vagus nerve stimulation (VNS) has emerged as a promising therapy for fibromyalgia. Nonetheless, despite the increasing number of randomized clinical trials (RCTs), current evidence remains inconclusive. Therefore, this protocol of a systematic review and meta-analysis aims to synthesize the existing evidence to clarify the efficacy and acceptability of VNS for treating fibromyalgia. METHODS A comprehensive search for eligible RCTs will be conducted across nine bibliographic databases, namely PubMed, Cochrane Library, Embase, AMED, PsycINFO, PEDro, Chinese BioMedical Literature Database, Chinese National Knowledge Infrastructure, and Wangfang database. Data obtained from the included studies will be synthesized quantitively using RevMan 5.4.1 for meta-analyses. The methodological soundness of included RCTs will be assessed via the Cochrane's updated risk of bias tool (version 2.0). Additionally, sensitivity analyses, publication bias assessment, and subgroup analyses will be conducted as appropriate. Finally, we will utilize the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system to evaluate the certainty for the body of evidence. CONCLUSION The findings of our study are anticipated to ascertain the efficacy and acceptability of VNS as a promising treatment option for fibromyalgia. This will not only fill current research gap but also identify potential areas for future research. The findings will provide essential guidance for evidence-based treatment decisions for fibromyalgia, benefiting both patients and clinicians.
Collapse
Affiliation(s)
- Yunhuo Cai
- Department of Rehabilitation, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yajun Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiyan Fang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hantong Hu
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingling Li
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lianqiang Fang
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
14
|
Zhou Y, Sun Y, He P, Xiong Q, Kang J, Tang Y, Feng Z, Dong X. The efficacy and safety of transcutaneous auricular vagus nerve stimulation for patients with minimally conscious state: a sham-controlled randomized double-blind clinical trial. Front Neurosci 2023; 17:1323079. [PMID: 38156271 PMCID: PMC10752952 DOI: 10.3389/fnins.2023.1323079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Background Transcutaneous auricular vagus nerve stimulation (taVNS) has emerged as a potentially effective neuromodulation technique for addressing neurological disorders, including disorders of consciousness. Expanding upon our prior clinical study, which demonstrated the superior effectiveness of a 4-week taVNS treatment in patients with minimally conscious state (MCS) compared to those in a vegetative state/unresponsive wakefulness state, the aim of this investigation was to evaluate the safety and therapeutic efficacy of taVNS in individuals with MCS through a sham-controlled randomized double-blind clinical trial. Methods A cohort of 50 adult patients (male = 33, female = 17) diagnosed with a MCS were randomly assigned to either the active taVNS (N = 25) or sham taVNS (N = 25) groups. The treatment period lasted for 4 weeks, followed by an 8-week follow-up period. The Coma Recovery Scale-Revised (CRS-R) and Glasgow Coma Scale (GCS) were administered at baseline and weekly during the initial 4 weeks. Additionally, the Disability Rating Scale (DRS) was used to assess the patients' functional abilities via telephone at week 12. Furthermore, various neurophysiological measures, including electroencephalogram (EEG), upper-limb somatosensory evoked potentials (USEP), brainstem auditory evoked potentials (BAEP), and P300 event-related potentials (P300), were employed to monitor changes in brain activity and neural conduction pathways. Results The scores for the active taVNS group in the CRS-R and GCS showed greater improvement over time compared to the sham taVNS group (CRS-R: 1-week, Z = -1.248, p = 0.212; 2-week, Z = -1.090, p = 0.276; 3-week, Z = -2.017, p = 0.044; 4-week, Z = -2.267, p = 0.023. GCS: 1-week, Z = -1.325, p = 0.185; 2-week, Z = -1.245, p = 0.213; 3-week, Z = -1.848, p = 0.065; 4-week, Z = -1.990, p = 0.047). Additionally, the EEG, USEP, BAEP, and P300 also demonstrated significant improvement in the active taVNS group compared to the sham taVNS group at week 4 (EEG, Z = -2.086, p = 0.037; USEP, Z = -2.014, p = 0.044; BAEP, Z = -2.298, p = 0.022; P300 amplitude, Z = -1.974, p = 0.049; P300 latency, t = 2.275, p = 0.027). Subgroup analysis revealed that patients with MCS derived greater benefits from receiving taVNS treatment earlier (CRS-R, Disease duration ≤ 1-month, mean difference = 8.50, 95% CI = [2.22, 14.78], p = 0.027; GCS, Disease duration ≤ 1-month, mean difference = 3.58, 95% CI = [0.14, 7.03], p = 0.044). By week 12, the active taVNS group exhibited lower Disability Rating Scale (DRS) scores compared to the sham taVNS group (Z = -2.105, p = 0.035), indicating a more favorable prognosis for MCS patients who underwent taVNS. Furthermore, no significant adverse events related to taVNS were observed during treatment. Conclusion The findings of this study suggest that taVNS may serve as a potentially effective and safe intervention for facilitating the restoration of consciousness in individuals diagnosed with MCS. This therapeutic approach appears to enhance cerebral functioning and optimize neural conduction pathways. Clinical trial registration http://www.chictr.org.cn, Identifier ChiCTR2200066629.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Yejing Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Pei He
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Qi Xiong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Junwei Kang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Yunliang Tang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Zhen Feng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Xiaoyang Dong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Blaise S, Sinniger V, Seinturier C. Literature review of transcutaneous electrical nerve stimulation in peripheral arterial occlusive disease of the lower limbs. JOURNAL DE MEDECINE VASCULAIRE 2023; 48:116-123. [PMID: 37914456 DOI: 10.1016/j.jdmv.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023]
Abstract
The therapeutic challenge in peripheral arterial occlusive disease (PAD) is often to increase walking distance, improve pain or heal a wound when PAD is symptomatic. Walking rehabilitation or surgical revascularization techniques are limited. Others strategies as alternatives and/or complementary treatments are needed. Among alternative options, Transcutaneous Electrical Nerve Stimulations (TENS) could be of interest, both for improved walking distance or pain reduction. The Transcutaneous Electrical Nerve Stimulation (TENS) is a non-pharmacological, mini-invasive technique involving transcutaneous electrical stimulation. However, there are other transcutaneous electrical nerve stimulation techniques based on the principle of vagus nerve stimulation with different mechanistics. Trans-auricular Vagus nerve stimulation (Ta-VNS) is another TENS technique (electrode on the external ear) which relies on the anti-inflammatory pathways of efferent and afferent vagal fibers. We propose here to review the literature of mini-invasive electrical stimulations, whatever the anatomical zone concerned, in PAD. METHOD The aim was to evaluate the use of non-invasive transcutaneous electrical stimulation therapies (regardless of location) in PAD of the lower limbs, whatever the disease grade. A review of the literature was carried out via a search of the MEDLINE/PubMed database from 1975 to 2023. The articles were selected via abstracts by checking (1) medical indications: PAD patients with claudication were retained, excluding neurological or venous claudication, PAD whatever the disease grade (intermittent claudication or critical limb ischemia [CLI]) and (2) non invasive electrical stimulations were considered (neuromuscular electrical stimulation and spinal cord stimulation were excluded) whatever the anatomical site. Non-electrical stimuli such as acupuncture and reflexotherapy were excluded. RESULTS Only 9 items were selected, including 7 studies with TENS treatment on the calf, one with trans-auricular vagus nerve stimulation and one with electro-acupuncture points of stimulation. CONCLUSION Even if the mechanisms involved are different, TENS on the calves or in the external ears show an improvement of walking distance in PAD patients with intermittent claudication. The results of the studies show few positive effects in arteriopathy but we should keep vigilant in the technics used since mechanisms are different and not fully understood. Electro-stimulation of the calf and external ear appears to be an easy-to-use and accessible therapeutic option, especially since some PAD patients are still failing to be released from pain, despite the rise of endovascular interventional techniques.
Collapse
Affiliation(s)
- S Blaise
- Service de médecine vasculaire, Grenoble University Hospital, BP 217, 38043 Grenoble Cedex 09, France; Université de Grenoble Alpes, Inserm U1300, HP2, Grenoble, France.
| | - V Sinniger
- Université de Grenoble Alpes, U1216, Grenoble Institut des Neurosciences, CHU deGrenoble Alpes, 38000 Grenoble, France
| | - C Seinturier
- Service de médecine vasculaire, Grenoble University Hospital, BP 217, 38043 Grenoble Cedex 09, France
| |
Collapse
|
16
|
Sarma GRK, Sharma AR, John AT. Transcutaneous electrical stimulation of auricular branch of the vagus nerve effectively and rapidly modulates the EEG patterns in patients with possible electrographic status epilepticus. Epileptic Disord 2023; 25:500-509. [PMID: 37158133 DOI: 10.1002/epd2.20068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Invasive vagal nerve stimulation (iVNS) is a known treatment approach for patients with refractory epilepsy. Transcutaneous auricular vagus nerve stimulation (tVNS) was developed to overcome the side effects and surgical complications of iVNS. tVNS is proven beneficial in refractory epilepsy. The effectiveness of tVNS, however, has never been studied in patients with Status Epilepticus. In this study, we explored the effect of tVNS in three patients with possible electrographic status epilepticus. OBJECTIVES To compare the EEG pattern before, during and after tVNS in three patients with possible electrographic status epilepticus. METHODS Three consecutive patients with possible electrographic status epilepticus were included after due consenting process. In addition to the standard care, tVNS was applied on the left ear over the cymba concha in two sessions, 6 h apart, with each session for 45 min. Continuous EEG monitoring was performed as standard of care and the findings before, during and after tVNS were documented. RESULTS The duration of status epilepticus at the time of inclusion of Patients 1, 2, and 3 was 6 weeks, 7 days, and 5 days respectively. All were in coma and on multiple antiseizure medications. Patient 1 and 3 were on anesthetic infusions. Before stimulation, one patient had burst suppression pattern and two had generalized periodic discharges at 1 Hz frequency. We observed a significant reduction/resolution of ongoing EEG patterns in all three patients during the stimulation. The abnormal patterns re-emerged approximately 20 min post cessation of tVNS. No stimulation-related side effects were detected. There was no change in clinical status, but all three patients had severe underlying conditions. SIGNIFICANCE Transcutaneous auricular Vagus Nerve Stimulation (tVNS) is a potential noninvasive adjuvant therapy that can modulate EEG patterns in patients with Status epilepticus. Larger studies in early SE are needed to assess its clinical benefits.
Collapse
Affiliation(s)
| | - Ananya Rakesh Sharma
- Department of Physiotherapy, St. Johns Medical College and Hospitals, Bengaluru, India
| | - Anil T John
- Department of Physiotherapy, St. Johns Medical College and Hospitals, Bengaluru, India
| |
Collapse
|
17
|
Molefi E, McLoughlin I, Palaniappan R. Transcutaneous Auricular Vagus Nerve Stimulation towards Visually Induced Motion Sickness Reduction: A Pilot Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083234 DOI: 10.1109/embc40787.2023.10340374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a novel neuromodulation application for vagal afferent stimulation. Owing to its non-invasive nature, taVNS is a potent therapeutic tool for a diverse array of diseases and disorders that ail us. Herein, we investigated taVNS-induced effects on neural activity of participants during visually induced motion sickness. 64-channel electroencephalography (EEG) recordings were obtained from 15 healthy participants in a randomized, within-subjects, cross-over design during sham and taVNS conditions. To assess motion sickness severity, we used the motion sickness assessment questionnaire (MSAQ). We observed that taVNS attenuated theta (4-8 Hz) brain activity in the right frontal, right parietal and occipital cortices when compared to sham condition. The total MSAQ scores, and central, peripheral and sopite MSAQ categorical scores were significantly lower after taVNS compared to sham. These findings reveal for the first time the potential therapeutic role of taVNS toward counter-motion sickness, and suggest that taVNS may be reliable in alleviating symptoms of motion sickness in real-time, non-pharmacologically.Clinical relevance- This suggests taVNS potential to offset motion sickness-induced nausea; which may be of translational value to counter e.g., chemotherapy-induced nausea.
Collapse
|
18
|
Shao P, Li H, Jiang J, Guan Y, Chen X, Wang Y. Role of Vagus Nerve Stimulation in the Treatment of Chronic Pain. Neuroimmunomodulation 2023; 30:167-183. [PMID: 37369181 PMCID: PMC10614462 DOI: 10.1159/000531626] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Vagus nerve stimulation (VNS) can modulate vagal activity and neuro-immune communication. Human and animal studies have provided growing evidence that VNS can produce analgesic effects in addition to alleviating refractory epilepsy and depression. The vagus nerve (VN) projects to many brain regions related to pain processing, which can be affected by VNS. In addition to neural regulation, the anti-inflammatory property of VNS may also contribute to its pain-inhibitory effects. To date, both invasive and noninvasive VNS devices have been developed, with noninvasive devices including transcutaneous stimulation of auricular VN or carotid VN that are undergoing many clinical trials for chronic pain treatment. This review aimed to provide an update on both preclinical and clinical studies of VNS in the management for chronic pain, including fibromyalgia, abdominal pain, and headaches. We further discuss potential underlying mechanisms for VNS to inhibit chronic pain.
Collapse
Affiliation(s)
- Peiqi Shao
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Huili Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia Jiang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Xueming Chen
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Zhang L, Jin Y, Zhang Q, Liu H, Chen C, Song L, Li X, Ma Z, Yang Q. Transcutaneous Vagus Nerve Stimulation for Insomnia in People Living in Places or Cities with High Altitudes: A Randomized Controlled Trial. Brain Sci 2023; 13:985. [PMID: 37508917 PMCID: PMC10377398 DOI: 10.3390/brainsci13070985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The purpose of this study was to investigate the effectiveness and safety of transcutaneous vagus nerve stimulation (tVNS) to improve insomnia in the special environment of a plateau. METHODS This study was a single-center, single-blind, randomized controlled trial. A total of 100 patients with insomnia at high altitude were randomized into three groups receiving either transcutaneous vagus nerve stimulation intervention in the left ear tragus (treatment group), pseudo-stimulation intervention (sham group), or cognitive behavioral therapy for insomnia (CBTI group). The primary measure was the Pittsburgh Sleep Quality Index (PSQI) score. In addition, we assessed the patients' objective sleep status with polysomnography and evaluated changes in the Insomnia Severity Index Scale (ISI) and Generalized Anxiety Disorder-7 (GAD-7) scores. We used one-way ANOVA and repeated-measures ANOVA for analysis. RESULTS Patients' PSQI, ISI, and GAD-7 scale scores significantly decreased after 4 weeks of tVNS treatment and were greater than those of the control group. Polysomnographic data also demonstrated shortened sleep latency and longer deep sleep in the patients. CONCLUSION tVNS is effective in improving sleep quality and reducing anxiety levels in high-altitude insomnia patients but should be confirmed in future adequate and prolonged trials to guide clinical promotion.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Military Medical Psychology, Air Force Military Medical University, Xi'an 710032, China
| | - Yinchuan Jin
- Department of Military Medical Psychology, Air Force Military Medical University, Xi'an 710032, China
| | - Qintao Zhang
- Department of Military Medical Psychology, Air Force Military Medical University, Xi'an 710032, China
| | - Hongyao Liu
- Department of Military Medical Psychology, Air Force Military Medical University, Xi'an 710032, China
| | - Chen Chen
- Department of Military Medical Psychology, Air Force Military Medical University, Xi'an 710032, China
| | - Lei Song
- Department of Military Medical Psychology, Air Force Military Medical University, Xi'an 710032, China
| | - Xiao Li
- Department of Military Medical Psychology, Air Force Military Medical University, Xi'an 710032, China
| | - Zhujing Ma
- Department of Military Medical Psychology, Air Force Military Medical University, Xi'an 710032, China
| | - Qun Yang
- Department of Military Medical Psychology, Air Force Military Medical University, Xi'an 710032, China
| |
Collapse
|
20
|
Hoxhaj P, Habiya SK, Sayabugari R, Balaji R, Xavier R, Ahmad A, Khanam M, Kachhadia MP, Patel T, Abdin ZU, Haider A, Nazir Z. Investigating the Impact of Epilepsy on Cognitive Function: A Narrative Review. Cureus 2023; 15:e41223. [PMID: 37525802 PMCID: PMC10387362 DOI: 10.7759/cureus.41223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/02/2023] Open
Abstract
It has been noted that people who have epilepsy have an increased propensity for cognitive dysfunction. We explored 25 relevant articles on PubMed and Cochrane Library after implementing inclusion criteria. Different factors have been postulated and studied that may cause cognitive dysfunction in these patients; structural brain abnormalities, polypharmacy of antiepileptic medication, and neuropsychiatric disorders are the most common causes. Cognitive assessments such as Montreal Cognitive Assessment (MOCA) and Mini-Mental State Exam (MMSE) are the mainstay tools used to diagnose the degree of cognitive decline, and alterations in EEG (electroencephalogram) parameters have also been noted in people with cognitive decline. The mechanisms and treatments for cognitive decline are still being studied, while attention has also been directed toward preventive and predictive methods. Early detection and treatment of cognitive impairment can help minimize its impact on the patient's quality of life. Regular cognitive assessments are essential for epileptic patients, particularly those on multiple antiepileptic drugs. While proper management of epilepsy and related comorbidities would reduce cognitive decline and improve the overall quality of life for people with epilepsy.
Collapse
Affiliation(s)
- Pranvera Hoxhaj
- Medicine, University of Medicine, Tirana, Tirana, ALB
- Obstetrics and Gynaecology, Scher & Kerenyi MDS, New York, USA
| | - Sana K Habiya
- Internal Medicine, Indian Institute of Medical Science and Research, Jalna, IND
- Public Health, Northeastern Illinois University, Chicago, USA
| | | | - Roghan Balaji
- Neurology, Ponjesly Super Speciality Hospital, Nagercoil, IND
- Neurology, Sri Manakula Vinayagar Medical College and Hospital, Pondicherry, IND
| | - Roshni Xavier
- Internal Medicine, Rajagiri Hospital, Aluva, IND
- Internal Medicine, Carewell Hospital, Malappuram, IND
| | - Arghal Ahmad
- Internal Medicine, Ziauddin University, Karachi, PAK
| | | | | | - Tirath Patel
- Internal Medicine, American University of Antigua, St John, ATG
| | - Zain U Abdin
- Internal Medicine, District Head Quarter Hospital, Faisalabad, PAK
| | - Ali Haider
- Internal Medicine, Quetta Institute of Medical Sciences, Quetta, PAK
| | - Zahra Nazir
- Internal Medicine Clinical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
21
|
Mortimer G, Nadine H, Nina T, Kirsten S, Anke RS. Effect of transcutaneous auricular vagal nerve stimulation on the fatigue syndrome in patients with gastrointestinal cancers - FATIVA: a randomized, placebo-controlled pilot study protocol. Pilot Feasibility Stud 2023; 9:66. [PMID: 37087481 PMCID: PMC10121416 DOI: 10.1186/s40814-023-01289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/30/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Cancer-related fatigue (CRF) is defined as a "distressing, persistent, subjective sense of physical, emotional, and/or cognitive tiredness or exhaustion related to cancer or cancer treatment that is not proportional to recent activity and interferes with usual functioning." CRF is frequently observed in cancer patients even before the initiation of tumor therapy. Its cause is not clear, but in addition to primary effects of therapy, a tumor-induced elevated level of inflammatory cytokines may play a role. Transcutaneous auricular vagal nerve stimulation (taVNS) is a noninvasive way to activate central nervous pathways and modulate pain perception and the immune system. It has positive effects on autoimmune conditions and can also improve fatigue associated with Sjogren's syndrome. It is the main purpose of this feasibility study to investigate the feasibility of daily taVNS against CRF. Therefore, the stimulation protocol of the newly introduced smartphone app of the manufacturer is evaluated. Additionally, the effect taVNS on CRF and quality of life (QoL) shall be evaluated. METHODS Thirty adult patients with gastrointestinal tumors during or after treatment, relevant CRF (Hornheide questionnaire) and life expectancy > 1 year, are enrolled. Patients are randomized to treatment or sham arm and be informed that they will either feel the stimulation or not. Treatment group will receive left-sided tragus above-threshold stimulation with 25 Hz, 250 µs pulse width, and 28-s/32-s on/off paradigm for 4 h throughout the day for 4 weeks. Sham group will receive no stimulation via a nonfunctional electrode. A daily stimulation protocol with time and average intensity is automatically created by a smartphone app connected to the stimulator via Bluetooth®. Multidimensional Fatigue Inventory-20, Short-Form 36 and Beck Depression Inventory questionnaires will be filled out before and after 4 weeks of stimulation. DISCUSSION Primarily, the patients' daily stimulation time and intensity will be evaluated through the electronic protocol after 4 weeks. Secondarily, the effect of taVNS on cancer-related fatigue and QoL will be measured through the questionnaires. As taVNS seems to modulate inflammatory cytokines, this noninvasive method may - if accepted by the patients - be a promising adjunct in the treatment of cancer-related fatigue. TRIAL REGISTRATION The study was approved by local ethics committee (21-7395) and registered at the DRKS database (DRKS00027481).
Collapse
Affiliation(s)
- Gierthmuehlen Mortimer
- Department of Neurosurgery, University Medical Center Knappschaftskrankenhaus Bochum, In Der Schornau 23-25, 44892, Bochum, Germany.
| | - Höffken Nadine
- Department of Hematology, Oncology and Palliative Medicine, University Medical Center St. Josef-Hospital Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Timmesfeld Nina
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr-University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Schmieder Kirsten
- Department of Neurosurgery, University Medical Center Knappschaftskrankenhaus Bochum, In Der Schornau 23-25, 44892, Bochum, Germany
| | - Reinacher-Schick Anke
- Department of Hematology, Oncology and Palliative Medicine, University Medical Center St. Josef-Hospital Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| |
Collapse
|
22
|
Zhang ZJ, Zhang SY, Yang XJ, Qin ZS, Xu FQ, Jin GX, Hou XB, Liu Y, Cai JF, Xiao HB, Wong YK, Zheng Y, Shi L, Zhang JN, Zhao YY, Xiao X, Zhang LL, Jiao Y, Wang Y, He JK, Chen GB, Rong PJ. Transcutaneous electrical cranial-auricular acupoint stimulation versus escitalopram for mild-to-moderate depression: An assessor-blinded, randomized, non-inferiority trial. Psychiatry Clin Neurosci 2023; 77:168-177. [PMID: 36445151 DOI: 10.1111/pcn.13512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
AIM Transcutaneous electrical cranial-auricular acupoint stimulation (TECAS) is a novel non-invasive therapy that stimulates acupoints innervated by the trigeminal and auricular vagus nerves. An assessor-blinded, randomized, non-inferiority trial was designed to compare the efficacy of TECAS and escitalopram in mild-to-moderate major depressive disorder. METHODS 468 participants received two TECAS sessions per day at home (n = 233) or approximately 10-13 mg/day escitalopram (n = 235) for 8 weeks plus 4-week follow-up. The primary outcome was clinical response, defined as a baseline-to-endpoint ≥50% reduction in Montgomery-Åsberg Depression Rating Scale (MADRS) score. Secondary outcomes included remission rate, changes in the severity of depression, anxiety, sleep and life quality. RESULTS The response rate was 66.4% on TECAS and 63.2% on escitalopram with a 3.2% difference (95% confidence interval [CI], -5.9% to 12.9%) in intention-to-treat analysis, and 68.5% versus 66.2% with a 2.3% difference (95% CI, -6.9% to 11.4%) in per-protocol analysis. The lower limit of 95% CI of the differences fell within the prespecified non-inferiority margin of -10% (P ≤ 0.004 for non-inferiority). Most secondary outcomes did not differ between the two groups. TECAS-treated participants who experienced psychological trauma displayed a markedly greater response than those without traumatic experience (81.3% vs 62.1%, P = 0.013). TECAS caused much fewer adverse events than escitalopram. CONCLUSIONS TECAS was comparable to escitalopram in improving depression and related symptoms, with high acceptability, better safety profile, and particular efficacy in reducing trauma-associated depression. It could serve an effective portable therapy for mild-to-moderate depression.
Collapse
Affiliation(s)
- Zhang-Jin Zhang
- Department of Chinese Medicine, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China.,School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Shui-Yan Zhang
- Department of Chinese Medicine, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Xin-Jing Yang
- Department of Chinese Medicine, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China.,School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Zong-Shi Qin
- Department of Chinese Medicine, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China.,School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Feng-Quan Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Gui-Xing Jin
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiao-Bing Hou
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Yong Liu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ji-Fu Cai
- Department of Neurology, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Hai-Bing Xiao
- Department of Neurology, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Yat Kwan Wong
- Department of Chinese Medicine, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China.,School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Yu Zheng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Lei Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Jin-Niu Zhang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuan-Yuan Zhao
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Liu-Lu Zhang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Jiao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences (CACMS), Beijing, China.,Department of TCM, Tsinghua University Hospital Beijing, Beijing, China
| | - Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Jia-Kai He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Guo-Bing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Pei-Jing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences (CACMS), Beijing, China
| |
Collapse
|
23
|
Lehnertz K, Bröhl T, Wrede RV. Epileptic-network-based prediction and control of seizures in humans. Neurobiol Dis 2023; 181:106098. [PMID: 36997129 DOI: 10.1016/j.nbd.2023.106098] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Epilepsy is now conceptualized as a network disease. The epileptic brain network comprises structurally and functionally connected cortical and subcortical brain regions - spanning lobes and hemispheres -, whose connections and dynamics evolve in time. With this concept, focal and generalized seizures as well as other related pathophysiological phenomena are thought to emerge from, spread via, and be terminated by network vertices and edges that also generate and sustain normal, physiological brain dynamics. Research over the last years has advanced concepts and techniques to identify and characterize the evolving epileptic brain network and its constituents on various spatial and temporal scales. Network-based approaches further our understanding of how seizures emerge from the evolving epileptic brain network, and they provide both novel insights into pre-seizure dynamics and important clues for success or failure of measures for network-based seizure control and prevention. In this review, we summarize the current state of knowledge and address several important challenges that would need to be addressed to move network-based prediction and control of seizures closer to clinical translation.
Collapse
Affiliation(s)
- Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany; Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn, Germany; Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53175 Bonn, Germany.
| | - Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany; Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany
| |
Collapse
|
24
|
Wei T, Ge X, Lu L, Li J, Xu P, Wu Q. Efficacy and safety of vagus nerve stimulation on upper extremity motor function in patients with stroke: A meta-analysis of randomized controlled trials. NeuroRehabilitation 2023; 53:253-267. [PMID: 37694313 DOI: 10.3233/nre-230106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
BACKGROUND In 2021, the U.S. Food and Drug Administration (FDA) approved paired vagus nerve stimulation (VNS) for patients with moderate-to-severe upper extremity motor impairments following chronic ischemic stroke. OBJECTIVE Previous meta-analyses have shown that VNS may impact stroke rehabilitation, but each has some limitations. METHODS PubMed, Ovid, Cochrane Library, ScienceDirect, Web of Science and WHO ICTRP databases were searched until July 14, 2022 for randomized controlled trials (RCTs). We defined primary outcomes as Fugl-Meyer Assessment for Upper Extremity (FMA-UE) and Wolf Motor Function Test (WMFT). Subgroup analyses included types of VNS, time since onset and long-term effects. Secondary outcomes included adverse events of VNS. RESULTS Eight RCTs involving 266 patients were analyzed, of which five used direct VNS and three transcutaneous auricular VNS. The results revealed that VNS enhanced upper extremity function via FMA-UE (SMD = 0.73; 95% CI: 0.48 to 0.99; P < 0.00001) and WMFT (SMD = 0.82; 95% CI:0.52 to 1.13; P < 0.00001) in comparison to the control group, but showed no significant change on long-term effects of FMA-UE (SMD = 0.69; 95% CI: - 0.06 to 1.44; P = 0.07). There was no difference in adverse events between the VNS and control groups (RR = 1.16; 95% CI: 0.46 to 2.92; P = 0.74). CONCLUSION For stroke victims with upper limb disabilities, VNS paired with rehabilitation was significantly safe and effective. More high-quality multicentric RCTs are needed to validate this conclusion.
Collapse
Affiliation(s)
- Tianqi Wei
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing University Medical School, Jiangsu, China
| | - Xiangyang Ge
- Department of Rehabilitation Medicine, Affiliated Maternity and Child Health Care Hospital of Nantong University, Jiangsu, China
| | - Lingfeng Lu
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Jiangsu, China
| | - Jing Li
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing University Medical School, Jiangsu, China
| | - Panpan Xu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing University Medical School, Jiangsu, China
| | - Qinfeng Wu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing University Medical School, Jiangsu, China
| |
Collapse
|
25
|
Zhou YF, Kang JW, Xiong Q, Feng Z, Dong XY. Transauricular vagus nerve stimulation for patients with disorders of consciousness: A randomized controlled clinical trial. Front Neurol 2023; 14:1133893. [PMID: 36937511 PMCID: PMC10017768 DOI: 10.3389/fneur.2023.1133893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Disorders of consciousness (DoCs) are a frequent complication of brain injury disease, and effective treatments are currently lacking. Transauricular vagus nerve stimulation (tVNS) has been proposed as a promising therapeutic method for neurological disorders such as epilepsy and depression. In our previous study, we demonstrated that vagus nerve stimulation promoted recovery in rats with DoCs caused by traumatic brain injury. However, the clinical effect of vagus nerve stimulation on consciousness disorders is unclear. We aimed to investigate the therapeutic efficacy and safety of tVNS in patients with DoCs. Methods We conducted a randomized, double-blinded, sham-controlled trial. Patients (N = 60) with DoCs, including minimally conscious state (MCS) and vegetative state/unresponsive wakefulness syndrome, were enrolled and randomized to groups receiving either active or sham tVNS. A frequency of 20 Hz and pulse wave of 200 us was used in the active-tVNS protocol, which was performed in the auricular branch of the vagus nerve in the left outer ear. The sham-tVNS protocol was the same as the active-tVNS protocol although without current input. Both groups of patients also received conventional treatments. Consciousness was evaluated according to the Coma Recovery Scale-Revised before and after the 4-week intervention. We also recorded the type and number of behavioral responses. Safety was primarily assessed according to the incidence of treatment-emergent adverse events. Each patient's heart rate and blood pressure were monitored during all treatment sessions. Results Ultimately, 57 patients completed the study: 28 patients underwent active tVNS and 29 patients underwent sham tVNS. No significant differences were observed in Coma Recovery Scale-Revised scores between the active- and sham-tVNS groups before the tVNS sessions. Compared with patients in the sham-tVNS group (9.28 ± 4.38), patients with DoCs treated with active tVNS showed improved consciousness (10.93 ± 4.99), although not statistically significant. Further analysis revealed obvious differences between patients with MCS receiving active and sham tVNS, but no significant difference in patients with vegetative state/unresponsive wakefulness syndrome in both groups. All side effects were considered common medical conditions with no obvious correlation to tVNS. Conclusion These preliminary data provide early evidence that tVNS may be an effective and safe approach for promoting the recovery of consciousness, especially in patients with MCS. Clinical trial registration https://www.chictr.org.cn/edit.aspx?pid=175938&htm=4, identifier: ChiCTR2200066629.
Collapse
|
26
|
Transcutaneous vagus nerve stimulation - A brief introduction and overview. Auton Neurosci 2022; 243:103038. [DOI: 10.1016/j.autneu.2022.103038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/25/2022] [Accepted: 09/25/2022] [Indexed: 12/28/2022]
|
27
|
Chunduri A, Reddy SDM, Jahanavi M, Reddy CN. Gut-Brain Axis, Neurodegeneration and Mental Health: A Personalized Medicine Perspective. Indian J Microbiol 2022; 62:505-515. [PMID: 36458229 PMCID: PMC9705676 DOI: 10.1007/s12088-022-01033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022] Open
Abstract
Neurological conditions such as neurodegenerative diseases and mental health disorders are a result of multifactorial underpinnings, leading to individual-based complex phenotypes. Demystification of these multifactorial connections will promote disease diagnosis and treatment. Personalized treatment rather than a one-size-fits-all approach would enable us to cater to the unmet healthcare needs based on protein-protein and gene-environment interactions. Gut-brain axis, as the name suggests, is a two-way biochemical communication pathway between the central nervous system (CNS) and enteric nervous system (ENS), enabling a mutual influence between brain and peripheral intestinal functions. The gut microbiota is a major component of this bidirectional communication, the composition of which is varied depending on the age, and disease conditions, among other factors. Gut microbiota profile is typically unique and personalized therapeutic intervention can aid in treating or delaying neurodegeneration and mental health conditions. Besides, research on the gut microbial influence on these conditions is gaining attention, and a better understanding of this concept can lead to identification of novel targeted therapies. Graphical Abstract
Collapse
Affiliation(s)
- Alisha Chunduri
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana 500075 India
| | - S. Deepak Mohan Reddy
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana 500075 India
| | - M. Jahanavi
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana 500075 India
| | - C. Nagendranatha Reddy
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana 500075 India
| |
Collapse
|
28
|
Forte G, Favieri F, Leemhuis E, De Martino ML, Giannini AM, De Gennaro L, Casagrande M, Pazzaglia M. Ear your heart: transcutaneous auricular vagus nerve stimulation on heart rate variability in healthy young participants. PeerJ 2022; 10:e14447. [PMID: 36438582 PMCID: PMC9686410 DOI: 10.7717/peerj.14447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (taVNS) stimulating the auricular branch of the vagus nerve along a well-defined neuroanatomical pathway, has promising therapeutic efficacy. Potentially, taVNS can modulate autonomic responses. Specifically, taVNS can induce more consistent parasympathetic activation and may lead to increased heart rate variability (HRV). However, the effects of taVNS on HRV remain inconclusive. Here, we investigated changes in HRV due to brief alteration periods of parasympathetic-vagal cardiac activity produced by taVNS on the cymba as opposed to control administration via the helix. MATERIALS AND METHODS We compared the effect of 10 min of active stimulation (i.e., cymba conchae) to sham stimulation (i.e., helix) on peripheral cardiovascular response, in 28 healthy young adults. HRV was estimated in the time domain and frequency domain during the overall stimulation. RESULTS Although active-taVNS and sham-taVNS stimulation did not differ in subjective intensity ratings, the active stimulation of the cymba led to vagally mediated HRV increases in both the time and frequency domains. Differences were significant between active-taVNS and both sham-taVNS and resting conditions in the absence of stimulation for various HRV parameters, but not for the low-frequency index of HRV, where no differences were found between active-taVNS and sham-taVNS conditions. CONCLUSION This work supports the hypothesis that taVNS reliably induces a rapid increase in HRV parameters when auricular stimulation is used to recruit fibers in the cymba compared to stimulation at another site. The results suggest that HRV can be used as a physiological indicator of autonomic tone in taVNS for research and potential therapeutic applications, in line with the established effects of invasive VNS. Knowledge of the physiological effect of taVNS short sessions in modulating cardiovagal processing is essential for enhancing its clinical use.
Collapse
Affiliation(s)
- Giuseppe Forte
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, University of Roma “La Sapienza”, Rome, Italy
| | - Francesca Favieri
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, University of Roma “La Sapienza”, Rome, Italy
| | - Erik Leemhuis
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, University of Roma “La Sapienza”, Rome, Italy
| | - Maria Luisa De Martino
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, University of Roma “La Sapienza”, Rome, Italy
| | | | - Luigi De Gennaro
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, University of Roma “La Sapienza”, Rome, Italy
| | - Maria Casagrande
- Dipartimento di Psicologia Clinica, Dinamica e Salute, University of Roma “La Sapienza”, Rome, Italy
| | - Mariella Pazzaglia
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, University of Roma “La Sapienza”, Rome, Italy
| |
Collapse
|
29
|
Tarasenko A, Guazzotti S, Minot T, Oganesyan M, Vysokov N. Determination of the Effects of Transcutaneous Auricular Vagus Nerve Stimulation on the Heart Rate Variability Using a Machine Learning Pipeline. Bioelectricity 2022; 4:168-177. [PMID: 36168512 PMCID: PMC9508455 DOI: 10.1089/bioe.2021.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background We are all aware of day-to-day healthy stress, but, when sustained for long periods, stress is believed to lead to serious physical and mental health issues. Materials and Methods In this study, we investigated the potential effects of transcutaneous auricular vagus nerve stimulation (taVNS) on stress processing as reflected in the electrocardiogram (ECG)-derived biomarkers of stress adaptability. Stress reflecting biomarkers included a range of heart rate variability metrics: standard deviation of N-N intervals (SDNN), root mean squared of successive differences in heartbeat intervals (RMSSD), low-frequency component, high-frequency component and their ratio (LF, HF, and LF/HF).In addition, we created a machine learning model capable of distinguishing between the stimulated and nonstimulated conditions from the ECG-derive data from various subjects and states. The model consisted of a deep convolutional neural network, which was trained on R-R interval (RRI) data extracted from ECG and time traces of LF, HF, LF/HF, SDNN, and RMSSD. Results Only LF/HF ratio demonstrated a statistically significant change in response to stimulation. Although the LF/HF ratio is expected to increase during exposure to stress, we have observed that stimulation during exposure to stress counteracts this increase or even reduces the LF/HF ratio. This could be an indication that the vagus nerve stimulation decreases the sympathetic activation during stress inducement.Our Machine Learning model achieved an accuracy of 70% with no significant variations across the three states (baseline, stress, and recovery). However, training an analogous neural network to identify the states (baseline, stress, and recovery) proved to be unsuccessful. Conclusion Overall, in this study, we showed further evidence of the beneficial effect of taVNS on stress processing. Importantly we have also demonstrated the promising potential of ECG metrics as a biomarker for the development of closed-loop stimulation systems.
Collapse
Affiliation(s)
| | - Stefano Guazzotti
- BrainPatch Ltd., London, United Kingdom.,School of Physics and CRANN Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | - Nickolai Vysokov
- BrainPatch Ltd., London, United Kingdom.,Address correspondence to: Nickolai Vysokov, PhD, BrainPatch Ltd., Unit 324, Edinburgh House, 170 Kennington Lane, London SE11 5DP, United Kingdom
| |
Collapse
|
30
|
Barra A, Monti M, Thibaut A. Noninvasive Brain Stimulation Therapies to Promote Recovery of Consciousness: Where We Are and Where We Should Go. Semin Neurol 2022; 42:348-362. [PMID: 36100229 DOI: 10.1055/s-0042-1755562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Therapeutic options for patients with disorders of consciousness (DoC) are still underexplored. Noninvasive brain stimulation (NIBS) techniques modulate neural activity of targeted brain areas and hold promise for the treatment of patients with DoC. In this review, we provide a summary of published research using NIBS as therapeutic intervention for DoC patients, with a focus on (but not limited to) randomized controlled trials (RCT). We aim to identify current challenges and knowledge gaps specific to NIBS research in DoC. Furthermore, we propose possible solutions and perspectives for this field. Thus far, the most studied technique remains transcranial electrical stimulation; however, its effect remains moderate. The identified key points that NIBS researchers should focus on in future studies are (1) the lack of large-scale RCTs; (2) the importance of identifying the endotypes of responders; and (3) the optimization of stimulation parameters to maximize the benefits of NIBS.
Collapse
Affiliation(s)
- Alice Barra
- Coma Science Group, GIGA Consciousness - GIGA Research, University of Liège, Liège, Belgium.,Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Martin Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, California.,Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness - GIGA Research, University of Liège, Liège, Belgium.,Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
31
|
Long L, Zang Q, Jia G, Fan M, Zhang L, Qi Y, Liu Y, Yu L, Wang S. Transcutaneous Auricular Vagus Nerve Stimulation Promotes White Matter Repair and Improves Dysphagia Symptoms in Cerebral Ischemia Model Rats. Front Behav Neurosci 2022; 16:811419. [PMID: 35493949 PMCID: PMC9051615 DOI: 10.3389/fnbeh.2022.811419] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background Clinical and animal studies have shown that transcutaneous auricular vagus nerve stimulation (ta-VNS) exerts neuroprotection following cerebral ischemia. Studies have revealed that white matter damage after ischemia is related to swallowing defects, and the degree of white matter damage is related to the severity of dysphagia. However, the effect of ta-VNS on dysphagia symptoms and white matter damage in dysphagic animals after an ischemic stroke has not been investigated. Methods Middle cerebral artery occlusion (MCAO) rats were randomly divided into the sham, control and vagus nerve stimulation (VNS) group, which subsequently received ta-VNS for 3 weeks. The swallowing reflex was measured once weekly by electromyography (EMG). White matter remyelination, volume, angiogenesis and the inflammatory response in the white matter were assessed by electron microscopy, immunohistochemistry, stereology, enzyme-linked immunosorbent assay (ELISA) and Western blotting. Results ta-VNS significantly increased the number of swallows within 20 s and reduced the onset latency to the first swallow. ta-VNS significantly improved remyelination but did not alleviate white matter shrinkage after MCAO. Stereology revealed that ta-VNS significantly increased the density of capillaries and increased vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF2) expression in the white matter. ta-VNS significantly alleviated the increase inTLR4, MyD88, phosphorylated MAPK and NF-κB protein levels and suppressed the expression of the proinflammatory factors IL-1β and TNF-α. Conclusion These results indicated ta-VNS slightly improved dysphagia symptoms after ischemic stroke, possibly by increasing remyelination, inducing angiogenesis, and inhibiting the inflammatory response in the white matter of cerebral ischaemia model rats, implying that ta-VNS may be an effective therapeutic strategy for the treatment of dysphagia after ischemic stroke.
Collapse
Affiliation(s)
- Lu Long
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianwen Zang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gongwei Jia
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meng Fan
- Department of Traditional Chinese Medicine, Weinan Central Hospital, Weinan, China
| | - Liping Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingqiang Qi
- Center of Electron Microscope, Institute of Life Science of Chongqing Medical University, Chongqing, China
| | - Yilin Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sanrong Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Sanrong Wang
| |
Collapse
|
32
|
Wang Y, Li L, Li S, Fang J, Zhang J, Wang J, Zhang Z, Wang Y, He J, Zhang Y, Rong P. Toward Diverse or Standardized: A Systematic Review Identifying Transcutaneous Stimulation of Auricular Branch of the Vagus Nerve in Nomenclature. Neuromodulation 2022; 25:366-379. [PMID: 35396069 DOI: 10.1111/ner.13346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/19/2020] [Accepted: 11/23/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES After 20 years of development, there is confusion in the nomenclature of transcutaneous stimulation of the auricular branch of the vagus nerve (ABVN). We performed a systematic review of transcutaneous stimulation of ABVN in nomenclature. MATERIALS AND METHODS A systematic search of the literature was carried out, using the bibliographic search engine PubMed. The search covered articles published up until June 11, 2020. We recorded the full nomenclature and abbreviated nomenclature same or similar to transcutaneous stimulation of ABVN in the selected eligible studies, as well as the time and author information of this nomenclature. RESULTS From 261 studies, 67 full nomenclatures and 27 abbreviated nomenclatures were finally screened out, transcutaneous vagus nerve stimulation and tVNS are the most common nomenclature, accounting for 38.38% and 42.06%, respectively. In a total of 97 combinations of full nomenclatures and abbreviations, the most commonly used nomenclature for the combination of transcutaneous vagus nerve stimulation and tVNS, accounting for 30.28%. Interestingly, the combination of full nomenclatures and abbreviations is not always a one-to-one relationship, there are ten abbreviated nomenclatures corresponding to transcutaneous vagus nerve stimulation, and five full nomenclatures corresponding to tVNS. In addition, based on the analysis of the usage habits of nomenclature in 21 teams, it is found that only three teams have fixed habits, while other different teams or the same team do not always use the same nomenclature in their paper. CONCLUSIONS The phenomenon of confusion in the nomenclature of transcutaneous stimulation of ABVN is obvious and shows a trend of diversity. The nomenclature of transcutaneous stimulation of ABVN needs to become more standardized in the future.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaoyuan Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiliang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinling Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junying Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zixuan Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifei Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiakai He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
33
|
Li S, Rong P, Wang Y, Jin G, Hou X, Li S, Xiao X, Zhou W, Wu Y, Liu Y, Zhang Y, Zhao B, Huang Y, Cao J, Chen H, Hodges S, Vangel M, Kong J. Comparative Effectiveness of Transcutaneous Auricular Vagus Nerve Stimulation vs Citalopram for Major Depressive Disorder: A Randomized Trial. Neuromodulation 2022; 25:450-460. [PMID: 35088753 DOI: 10.1016/j.neurom.2021.10.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Major depressive disorder (MDD) is one of the most common mental illnesses. This study aims to investigate the effectiveness of transcutaneous auricular vagus nerve stimulation (taVNS) compared with the effectiveness of citalopram, a commonly used antidepressant, in patients with depression. MATERIAL AND METHODS A total of 107 male and female patients with MDD (55 in the taVNS group and 52 in the citalopram group) were enrolled in a prospective 12-week, single-blind, comparative effectiveness trial. Participants were recruited from the outpatient departments of three hospitals in China. Participants were randomly assigned to either taVNS treatment (eight weeks, twice per day, with an additional four-week follow-up) or citalopram treatment (12 weeks, 40 mg/d). The primary outcome was the 17-item Hamilton Depression Rating Scale (HAM-D17) measured every two weeks by trained interviewers blinded to the treatment assignment. The secondary end points included the 14-item Hamilton Anxiety Scale and peripheral blood biochemical indexes. RESULTS The HAM-D17 scores were reduced in both treatment groups; however, there was no significant group-by-time interaction (95% CI: -0.07 to 0.15, p = 0.79). Nevertheless, we found that taVNS produced a significantly higher remission rate at week four and week six than citalopram. Both treatments were associated with significant changes in the peripheral blood levels of 5-hydroxytryptamine, dopamine, γ-aminobutyric acid, and noradrenaline, but there was no significant difference between the two groups. CONCLUSION taVNS resulted in symptom improvement similar to that of citalopram; thus, taVNS should be considered as a therapeutic option in the multidisciplinary management of MDD. Nevertheless, owing to the design of this study, it cannot be ruled out that the reduction in depression severity in both treatment groups could be a placebo effect.
Collapse
Affiliation(s)
- Shaoyuan Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guixing Jin
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaobing Hou
- Department of Psychiatry, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Suxia Li
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Xue Xiao
- Department of Psychiatry, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Wei Zhou
- Department of Acupuncture, Huguo Temple Hospital of Traditional Chinese Medicine affiliated with Beijing University of Chinese Medicine, Beijing, China
| | - Yue Wu
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaping Liu
- Department of Acupuncture, Huguo Temple Hospital of Traditional Chinese Medicine affiliated with Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Zhao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiting Huang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jin Cao
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Helen Chen
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sierra Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Mark Vangel
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
34
|
Erb C, Eckert S, Gindorf P, Köhler M, Köhler T, Neuhann L, Neuhann T, Salzmann N, Schmickler S, Ellrich J. Electrical neurostimulation in glaucoma with progressive vision loss. Bioelectron Med 2022; 8:6. [PMID: 35361287 PMCID: PMC8969331 DOI: 10.1186/s42234-022-00089-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023] Open
Abstract
Abstract
Background
The retrospective study provides real-world evidence for long-term clinical efficacy of electrical optic nerve stimulation (ONS) in glaucoma with progressive vision loss.
Methods
Seventy glaucoma patients (45 to 86 y) with progressive vision loss despite therapeutic reduction of intraocular pressure (IOP) underwent electrical ONS. Closed eyes were separately stimulated by bipolar rectangular pulses with stimulus intensities up to 1.2 mA sufficient to provoke phosphenes. Ten daily stimulation sessions within 2 weeks lasted about 80 min each. Right before ONS at baseline (PRE), vision loss was documented by static threshold perimetry and compared to the same assessment approximately 1 year afterwards (POST). Mean defect (MD) was defined as primary outcome parameter. Perimetries with a reliability factor (RF) of max. 20% were considered.
Results
Perimetry follow-up of 101 eyes in 70 patients fulfilled the criterion of a max. 20% RF. Follow-up was performed on average 362.2 days after ONS. MD significantly decreased from PRE 14.0 dB (median) to POST 13.4 dB (p < 0.01). 64 eyes in 49 patients showed constant or reduced MD as compared to baseline (PRE 13.4 dB vs. POST 11.2 dB). In 37 eyes of 30 patients, MD increased from PRE 14.9 dB to POST 15.6 dB.
Conclusions
Innovative treatments that preserve visual function through mechanisms other than lowering IOP are required for glaucoma with progressive vision loss. The present long-term data document progression halt in more than 63% of affected eyes after ONS and, thus, extend existing evidence from clinical trials.
Collapse
|
35
|
Zhang ZQ, Guo ZP, Lv XY, Sörös P, Wang XX, Wang L, Liu CH. Effect and neural mechanisms of the transcutaneous vagus nerve stimulation for relapse prevention in patients with remitted major depressive disorder: protocol for a longitudinal study. BMJ Open 2022; 12:e050446. [PMID: 35193903 PMCID: PMC8867334 DOI: 10.1136/bmjopen-2021-050446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 01/07/2022] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION After the first episode, patients with remitted major depressive disorder (MDD) have a 60% chance of experiencing a second episode. There are currently no accepted, effective methods to prevent the recurrence of MDD in remission. Transcutaneous vagus nerve stimulation (taVNS) is a non-invasive, safe and economical approach based on the efficacy of VNS in improving clinical depression symptoms. This clinical trial will study the efficacy of taVNS in preventing MDD relapse and investigate the underlying mechanisms of this. METHODS AND ANALYSIS We will conduct a multicentre, randomised, patient-blinded and evaluators double-blinded trial. We will randomise 90 eligible participants with recurrent MDD in remission in a 1:1 ratio into a real or sham taVNS group. All participants will be given six biopsychosocial assessments: proinflammatory cytokines, serum monoamine neurotransmitters, cognition, affective neuropsychology, multimodal neuroimaging and endocrinology. After the baseline measurements, all participants will be given corresponding interference for 6 months and then complete a 1-year follow-up. The assessments will be performed three times: at baseline, post-treatment and at the end of 1-year follow-up (except for multimodal MRI scanning, which will be conducted at the first two assessments only). Change in 17-item Hamilton Depression Rating Scale scores for MDD is the primary outcome parameter. ETHICS AND DISSEMINATION The study protocol was approved by the Medical Ethical Committee of Beijing Hospital of Traditional Chinese Medicine on 18 January 2019 (2018BL-076). The trial results will be published in peer-reviewed journals and at conferences. TRIAL REGISTRATION NUMBER ChiCTR1900022618.
Collapse
Affiliation(s)
- Zhu-Qing Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhi-Peng Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xue-Yu Lv
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peter Sörös
- Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Xiao-Xu Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
36
|
Mertens A, Gadeyne S, Lescrauwaet E, Carrette E, Meurs A, De Herdt V, Dewaele F, Raedt R, Miatton M, Boon P, Vonck K. The potential of invasive and non-invasive vagus nerve stimulation to improve verbal memory performance in epilepsy patients. Sci Rep 2022; 12:1984. [PMID: 35132096 PMCID: PMC8821667 DOI: 10.1038/s41598-022-05842-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
Abstract
It has been demonstrated that acute vagus nerve stimulation (VNS) improves word recognition memory in epilepsy patients. Transcutaneous auricular vagus nerve stimulation (taVNS) has gained interest as a non-invasive alternative to improve cognition. In this prospective randomized cross-over study, we investigated the effect of both invasive VNS and taVNS on verbal memory performance in 15 patients with drug-resistant epilepsy. All patients conducted a word recognition memory paradigm in 3 conditions: VNS ON, VNS OFF and taVNS (3-period 3-treatment cross-over study design). For each condition, patients memorized 21 highlighted words from text paragraphs. Afterwards, the intervention was delivered for 30 s. Immediate recall and delayed recognition scores were obtained for each condition. This memory paradigm was repeated after 6 weeks of VNS therapy in 2 conditions: VNS ON and VNS OFF (2-period 2-treatment cross-over study design). Acute VNS and taVNS did not improve verbal memory performance. Immediate recall and delayed recognition scores were significantly improved after 6 weeks of VNS treatment irrespective of the acute intervention. We can conclude that the previously described positive effects of invasive VNS on verbal memory performance could not be replicated with invasive VNS and taVNS. An improved verbal memory performance was seen after 6 weeks of VNS treatment, suggesting that longer and more repetitive stimulation of the vagal pathway is required to modulate verbal memory performance.Clinical trial registration number: NCT05031208.
Collapse
Affiliation(s)
- Ann Mertens
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium.
| | - Stefanie Gadeyne
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium
| | - Emma Lescrauwaet
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium
| | - Evelien Carrette
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium
| | - Alfred Meurs
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium
| | - Veerle De Herdt
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium
| | - Frank Dewaele
- Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
| | - Robrecht Raedt
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium
| | - Marijke Miatton
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium
| | - Paul Boon
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Kristl Vonck
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium
| |
Collapse
|
37
|
Mehranfard D, Speth RC. Cholinergic anti-inflammatory pathway and COVID-19. BIOIMPACTS : BI 2022; 12:171-174. [PMID: 35411295 PMCID: PMC8905591 DOI: 10.34172/bi.2022.23980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 01/09/2023]
Abstract
The cholinergic anti-inflammatory pathway (CAP) first described by Wang et al, 2003 has contemporary interest arising from the COVID-19 pandemic. While tobacco smoking has been considered an aggravating factor in the severity of COVID-19 infections, it has been suggested by some that the nicotine derived from tobacco could lessen the severity of COVID-19 infections. This spotlight briefly describes the CAP and its potential role as a therapeutic target for the treatment of COVID-19 infections using vagus nerve stimulation or selective alpha7 nicotinic acetylcholine receptor agonists.
Collapse
Affiliation(s)
- Danial Mehranfard
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Robert C. Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Pharmacology and Physiology, School of Medicine, Georgetown University, Washington, DC, USA
| |
Collapse
|
38
|
Tynan A, Brines M, Chavan SS. Control of inflammation using non-invasive neuromodulation: past, present and promise. Int Immunol 2022; 34:119-128. [PMID: 34558623 PMCID: PMC8783606 DOI: 10.1093/intimm/dxab073] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
The nervous system has been increasingly recognized as a novel and accessible target in the regulation of inflammation. The use of implantable and invasive devices targeting neural circuits has yielded successful results in clinical settings but does have some risk or adverse effects. Recent advances in technology and understanding of mechanistic pathways have opened new avenues of non-invasive neuromodulation. Through this review we discuss the novel research and outcomes of major modalities of non-invasive neuromodulation in the context of inflammation including transcutaneous electrical, magnetic and ultrasound neuromodulation. In addition to highlighting the scientific observations and breakthroughs, we discuss the underlying mechanisms and pathways for neural regulation of inflammation.
Collapse
Affiliation(s)
- Aisling Tynan
- Laboratory of Biomedical Science, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, USA
| | - Michael Brines
- Laboratory of Biomedical Science, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, USA
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra University, Hempstead, NY, USA
| |
Collapse
|
39
|
Molero-Chamizo A, Nitsche MA, Bolz A, Andújar Barroso RT, Alameda Bailén JR, García Palomeque JC, Rivera-Urbina GN. Non-Invasive Transcutaneous Vagus Nerve Stimulation for the Treatment of Fibromyalgia Symptoms: A Study Protocol. Brain Sci 2022; 12:brainsci12010095. [PMID: 35053839 PMCID: PMC8774206 DOI: 10.3390/brainsci12010095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Stimulation of the vagus nerve, a parasympathetic nerve that controls the neuro-digestive, vascular, and immune systems, induces pain relief, particularly in clinical conditions such as headache and rheumatoid arthritis. Transmission through vagal afferents towards the nucleus of the solitary tract (NST), the central relay nucleus of the vagus nerve, has been proposed as the main physiological mechanism that reduces pain intensity after vagal stimulation. Chronic pain symptoms of fibromyalgia patients might benefit from stimulation of the vagus nerve via normalization of altered autonomic and immune systems causing their respective symptoms. However, multi-session non-invasive vagal stimulation effects on fibromyalgia have not been evaluated in randomized clinical trials. We propose a parallel group, sham-controlled, randomized study to modulate the sympathetic–vagal balance and pain intensity in fibromyalgia patients by application of non-invasive transcutaneous vagus nerve stimulation (tVNS) over the vagal auricular and cervical branches. We will recruit 136 fibromyalgia patients with chronic moderate to high pain intensity. The primary outcome measure will be pain intensity, and secondary measures will be fatigue, health-related quality of life, sleep disorders, and depression. Heart rate variability and pro-inflammatory cytokine levels will be obtained as secondary physiological measures. We hypothesize that multiple tVNS sessions (five per week, for 4 weeks) will reduce pain intensity and improve quality of life as a result of normalization of the vagal control of nociception and immune–autonomic functions. Since both vagal branches project to the NST, we do not predict significantly different results between the two stimulation protocols.
Collapse
Affiliation(s)
- Andrés Molero-Chamizo
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (R.T.A.B.); (J.R.A.B.)
- Correspondence: ; Tel.: +34-959218478
| | - Michael A. Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany;
- Department of Neurology, University Medical Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Armin Bolz
- tVNS Technologies GmbH, Ebrardstr. 31, 91052 Erlangen, Germany;
| | - Rafael Tomás Andújar Barroso
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (R.T.A.B.); (J.R.A.B.)
| | - José R. Alameda Bailén
- Department of Clinical and Experimental Psychology, University of Huelva, 21007 Huelva, Spain; (R.T.A.B.); (J.R.A.B.)
| | - Jesús Carlos García Palomeque
- Department of the Histology, School of Medicine, Cadiz University and District Jerez Costa-N., Andalusian Health Service, 11003 Cádiz, Spain;
| | | |
Collapse
|
40
|
Guo ZP, Sörös P, Zhang ZQ, Yang MH, Liao D, Liu CH. Use of Transcutaneous Auricular Vagus Nerve Stimulation as an Adjuvant Therapy for the Depressive Symptoms of COVID-19: A Literature Review. Front Psychiatry 2021; 12:765106. [PMID: 34975571 PMCID: PMC8714783 DOI: 10.3389/fpsyt.2021.765106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) comprises more than just severe acute respiratory syndrome. It also interacts with the cardiovascular, nervous, renal, and immune systems at multiple levels, increasing morbidity in patients with underlying cardiometabolic conditions and inducing myocardial injury or dysfunction. Transcutaneous auricular vagus nerve stimulation (taVNS), which is derived from auricular acupuncture, has become a popular therapy that is increasingly accessible to the general public in modern China. Here, we begin by outlining the historical background of taVNS, and then describe important links between dysfunction in proinflammatory cytokine release and related multiorgan damage in COVID-19. Furthermore, we emphasize the important relationships between proinflammatory cytokines and depressive symptoms. Finally, we discuss how taVNS improves immune function via the cholinergic anti-inflammatory pathway and modulates brain circuits via the hypothalamic-pituitary-adrenal axis, making taVNS an important treatment for depressive symptoms on post-COVID-19 sequelae. Our review suggests that the link between anti-inflammatory processes and brain circuits could be a potential target for treating COVID-19-related multiorgan damage, as well as depressive symptoms using taVNS.
Collapse
Affiliation(s)
- Zhi-Peng Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Peter Sörös
- Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Zhu-Qing Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ming-Hao Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Dan Liao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
41
|
Zaehle T, Galazky I, Krauel K. The LC-NE system as a potential target for neuromodulation to ameliorate non-motor symptoms in Parkinson's disease. Auton Neurosci 2021; 236:102901. [PMID: 34757309 DOI: 10.1016/j.autneu.2021.102901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/06/2021] [Accepted: 10/15/2021] [Indexed: 01/24/2023]
Abstract
Parkinson's disease (PD) is associated with severe motor symptoms but also with several non-motor symptoms (NMS). A substantial reduction of norepinephrine (NE) levels in various brain regions reflecting an extensive loss of innervation from the LC has been assumed as causal for the development of NMS and specifically of attentional impairments in PD. Transcutaneous auricular vagus nerve stimulation (taVNS) is a new, non-invasive neurostimulation method supposed to modulate the LC-NE system in humans. In the current opinion paper, we introduce taVNS as a systemic approach to directly affect NE neurotransmission in healthy as well as clinical populations and discuss its potential as therapeutic option for the treatment of NMS, specifically attentional deficits, in patients with PD. Here, we first describe the LC-NE system and discuss how LC-NE dysfunction might affects cognition in PD before detailing the mode of action of taVNS and proposing its use to modulate cognitive deficits in these patients.
Collapse
Affiliation(s)
- Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39106, Germany
| | - Imke Galazky
- Department of Neurology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Kerstin Krauel
- Center for Behavioral Brain Sciences (CBBS), Magdeburg 39106, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
42
|
de Gurtubay IG, Bermejo P, Lopez M, Larraya I, Librero J. Evaluation of different vagus nerve stimulation anatomical targets in the ear by vagus evoked potential responses. Brain Behav 2021; 11:e2343. [PMID: 34551214 PMCID: PMC8613407 DOI: 10.1002/brb3.2343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/05/2021] [Accepted: 08/09/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Electrical auricular vagus nerve stimulation (taVNS) is an emerging therapy. Stimuli are transported to brainstem nuclei, whereby its multiple projections reach to many subcortical and cortical areas, thus allowing the neuromodulation of several systemic physiological processes. We aim to define the best auricular target for taVNS through vagus somatosensory evoked potential (VSEP) elicited stimulating different auricular areas with different electrode sizes. METHODS Twenty-six subjects were enrolled. Three stimulation areas were studied: simultaneous cymba and cavum (CC), cymba (C) and earlobe (L); and two electrode sizes: extra-large (X) and small (S). We studied the effect of five combinations (CCX, CCS, CS, LX and LS) on VSEP´s latency and amplitude, and sensory and pain threshold (Pt) using a lineal mixed model regression analysis. We used CS combination, used in a commercial device, as reference model. RESULTS Valid VSEP were obtained for CCX, CCS and CS but not in LX and LS. Both CCS and CCX tests showed significant amplitude increases. The same effect was observed in CCX using CCS as reference. Significant increases in Pt were found for CCX and LX. The same effect was observed in CCX using LX as reference. CONCLUSION The results suggest that CC and C areas are active targets for taVNS but not for earlobe, as anatomical data support. Considering that amplitude reflects the synchronized electrical activity generated, we conclude the most effective topography is the simultaneous stimulation of cymba and concha. The use of X-sized electrodes increases the amplitudes and makes the stimulation more comfortable.
Collapse
Affiliation(s)
| | - Pedro Bermejo
- Department of Neurology, Puerta de Hierro Hospital, Madrid, Spain.,Walden Medical Neurodigital Therapies, Gijón, Spain
| | - Miguel Lopez
- Walden Medical Neurodigital Therapies, Gijón, Spain
| | | | - Julian Librero
- Biomedical Research Centre of the Government of Navarre, Pamplona, Spain
| |
Collapse
|
43
|
Carnevale L, Perrotta M, Lembo G. A Focused Review of Neural Recording and Stimulation Techniques With Immune-Modulatory Targets. Front Immunol 2021; 12:689344. [PMID: 34646261 PMCID: PMC8502970 DOI: 10.3389/fimmu.2021.689344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
The complex interactions established between the nervous and immune systems have been investigated for a long time. With the advent of small and portable devices to record and stimulate nerve activity, researchers from many fields began to be interested in how nervous activity can elicit immune responses and whether this activity can be manipulated to trigger specific immune responses. Pioneering works demonstrated the existence of a cholinergic inflammatory reflex, capable of controlling the systemic inflammatory response through a vagus nerve-mediated modulation of the spleen. This work inspired many different areas of technological and conceptual advancement, which are here reviewed to provide a concise reference for the main works expanding the knowledge on vagus nerve immune-modulatory capabilities. In these works the enabling technologies of peripheral nervous activity recordings were implemented and embody the current efforts aimed at controlling neural activity with modulating functions in immune response, both in experimental and clinical contexts.
Collapse
Affiliation(s)
- Lorenzo Carnevale
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Department of Angiocardioneurology and Translational Medicine, Pozzilli (IS), Italy
| | - Marialuisa Perrotta
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Giuseppe Lembo
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Department of Angiocardioneurology and Translational Medicine, Pozzilli (IS), Italy.,Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
44
|
Wu ML, Hu DM, Wang JJ, Liu XL, Liu L, Li Y, Jing W. Pre- and postoperative heart rate variability and vagus nerve stimulation in patients with drug-resistant epilepsy - A meta-analysis. Epilepsy Behav 2021; 123:108247. [PMID: 34418640 DOI: 10.1016/j.yebeh.2021.108247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The effect of vagus nerve stimulation (VNS), an important auxiliary therapy for treating drug-resistant epilepsy (DRE), on autonomic nerve function is still controversial. Heart rate variability is a widely used indicator of autonomic nerve function. To clarify the relationship between VNS and heart rate variability (HRV), we performed a meta-analysis to systematically evaluate the effect of VNS on HRV in patients with epilepsy. METHODS We performed a systematic review by searching the following online databases: PubMed, Web of Science, EMBASE and the Cochrane Library. The key search terms were "vagal nerve stimulation," "epilepsy" and "heart rate variability". Other features of VNS in patients with epilepsy include postoperative changes in low-frequency (LF), high-frequency (HF) and low-frequency/high-frequency (LF/HF) heart rate variability, which were used as evaluation indices, and the Newcastle-Ottawa Quality Assessment Scale and Stata 14.0 statistical software were used for literature quality evaluation and meta-analysis. RESULTS Twelve studies published in English were obtained, and 229 patients with epilepsy who underwent VNS were ultimately included after elimination of duplicate articles and those that did not meet the inclusion criteria. Regarding LF heart rate variability, in the response subgroup, patients with DRE with VNS presented a lower value (-0.58) before surgery than after surgery, with a 95% confidence interval (CI) ranging from -1.00 to -0.15. For HF heart rate variability, patients with DRE with VNS had a lower value (-0.45) before surgery than after surgery in the response subgroup, with a 95% CI ranging from -0.74 to -0.17. No differences were found for LF/HF values or the LF and HF values of other subgroups. CONCLUSION VNS has little effect on the balance of sympathetic and parasympathetic nerve activity and would not be expected to cause cardiovascular autonomic dysfunction in patients with DRE. For patients with DRE, VNS can control seizures and has little effect on autonomic nervous function.
Collapse
Affiliation(s)
- Mao-Lin Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Dan-Mei Hu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | | | - Xiao-Lei Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Lei Liu
- University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Yuan Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China.
| | - Wei Jing
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China.
| |
Collapse
|
45
|
Hsieh CM, Lin WC, Peng HY, Chen HC, Ho YC, Li CJ, Wu XG, Chung JY, Lee SD, Lin TB. Shoulder transcutaneous electric nerve stimulation decreases heart rate via potentiating vagal tone. Sci Rep 2021; 11:19168. [PMID: 34580404 PMCID: PMC8476641 DOI: 10.1038/s41598-021-98690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
By enhancing vagal activity, auricle transcutaneous electric nerve stimulation (TENS) is developed as a non-invasive therapy for heart failure. Nevertheless, though shoulder TENS used for treating adhesive capsulitis could affect vagal tone, its potential impact on heart functions remains unclear. In this study, electrocardiogram (ECG) and heart rate (HR) of subjects in response to sham, right-sided, or left-sided shoulder TENS (TENS-S, TENS-R, and TENS-L, respectively; 5 min) were recorded and analyzed. During the stimulation period, TENS-R constantly and TENS-L transiently decreased the HR of subjects; both TENS-R and TENS-L increased powers of the low- and high-frequency spectra. While TENS-R exhibiting no effect, TENS-L increased the ratio of low/high-frequency power spectrum indicating TENS-R decreased the HR through potentiating cardiac vagal tone. Collectively, these results suggest TENS could be an early and non-invasive therapy for heart failure patients before considering implant devices or devices are not feasible; moreover, therapists/physicians need to carefully monitor the potential adverse events during treatment for patient safety. Trial registration: The study protocol was registered in ClinicalTrials.gov (NCT03982472; 11/06/2019).
Collapse
Affiliation(s)
- Chun-Ming Hsieh
- Division of Physical Therapy, St. Paul's Hospital, Taoyuan, Taiwan
| | - Wan-Chen Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei, 11031, Taiwan.,National Taiwan University Hospital, Taipei, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Huang-Chung Chen
- Department of Rehabilitation, St. Paul's Hospital, Taoyuan, Taiwan
| | - Yu-Cheng Ho
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Chi-Jui Li
- Division of Physical Therapy, St. Paul's Hospital, Taoyuan, Taiwan
| | - Xi-Guan Wu
- Division of Physical Therapy, St. Paul's Hospital, Taoyuan, Taiwan
| | - Jen-Yi Chung
- Division of Physical Therapy, St. Paul's Hospital, Taoyuan, Taiwan
| | - Shin-Da Lee
- Department of Occupational Therapy, Asia University, Taichung, Taiwan.,Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei, 11031, Taiwan. .,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan. .,Department of Biotechnology, Asia University, Taichung, Taiwan. .,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
46
|
Straube A, Eren O. tVNS in the management of headache and pain. Auton Neurosci 2021; 236:102875. [PMID: 34500261 DOI: 10.1016/j.autneu.2021.102875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
First clinical observations of the therapeutic effect of vagus nerve stimulation were of patients who were treated for refractory epilepsy with a fully implanted vagus nerve stimulator, who also reported an improvement of their migraine and cluster headache. With the development of non-invasive vagus nerve stimulation, first clinical studies concerning a possible therapeutic effect in migraine and cluster headache were performed. In a controlled study, transcutaneous cervical vagus nerve stimulation (tcVNS) showed a significant but limited effect in acute treatment of a migraine attack. There was no significant prophylactic effect in episodic migraine. Concerning cluster headache, there was a clear beneficial effect in the prophylaxis of chronic cluster headache and in the attack treatment in episodic cluster headache. There are fewer studies in the literature on the effect of transcutaneous auricular vagus nerve stimulation (taVNS), with a partial overlap with studies on electrical ear acupuncture. In a small controlled clinical trial, there was a significant effect of taVNS in the prevention of chronic migraine. In less defined clinical studies, there were some positive signs that the method may be beneficial in chronic back pain and in unspecific gastro-intestinal pain in adolescents. Based on the available evidence, it is probable that vagus nerve stimulation can have a clinically meaningful influence on pain syndromes, but there are still several questions (e.g. frequency of the stimulation; duration of the stimulation; differential effects of auricular vagus stimulation and cervical vagus stimulation) to answer before vagus stimulation can be used widely in the clinic.
Collapse
Affiliation(s)
- Andreas Straube
- Department of Neurology, University Hospital LMU, Munich, Ludwig-Maximilian-University, Munich, 81377 Munich, Germany.
| | - Ozan Eren
- Department of Neurology, University Hospital LMU, Munich, Ludwig-Maximilian-University, Munich, 81377 Munich, Germany
| |
Collapse
|
47
|
Rings T, von Wrede R, Bröhl T, Schach S, Helmstaedter C, Lehnertz K. Impact of Transcutaneous Auricular Vagus Nerve Stimulation on Large-Scale Functional Brain Networks: From Local to Global. Front Physiol 2021; 12:700261. [PMID: 34489724 PMCID: PMC8417898 DOI: 10.3389/fphys.2021.700261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a novel non-invasive brain stimulation technique considered as a potential supplementary treatment option for a wide range of diseases. Although first promising findings were obtained so far, the exact mode of action of taVNS is not fully understood yet. We recently developed an examination schedule to probe for immediate taVNS-induced modifications of large-scale epileptic brain networks. With this schedule, we observed short-term taVNS to have a topology-modifying, robustness- and stability-enhancing immediate effect on large-scale functional brain networks from subjects with focal epilepsies. We here expand on this study and investigate the impact of short-term taVNS on various local and global characteristics of large-scale evolving functional brain networks from a group of 30 subjects with and without central nervous system diseases. Our findings point to differential, at first glance counterintuitive, taVNS-mediated alterations of local and global topological network characteristics that result in a reconfiguration of networks and a modification of their stability and robustness properties. We propose a model of a stimulation-related stretching and compression of evolving functional brain networks that may help to better understand the mode of action of taVNS.
Collapse
Affiliation(s)
- Thorsten Rings
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Sophia Schach
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | | | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|
48
|
Harper RM, Hertling D, Curtis A, Sauerland EK, De Giorgio CM. Pilot Safety and Feasibility Study of Non-invasive Limb Proprioceptive Cerebellar Stimulation for Epilepsy. Front Neurol 2021; 12:675947. [PMID: 34484096 PMCID: PMC8415900 DOI: 10.3389/fneur.2021.675947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Cerebellar stimulation reduces seizures in animals and in humans with drug-resistant epilepsy. In a pilot safety and feasibility study, we applied continuous cutaneous vibratory stimulation (limb proprioceptive cerebellar stimulation) to foot limb proprioceptive receptors to activate cerebellar, pontine, and thalamic structures in drug-resistant epilepsy patients for 8-h nocturnally up to 6-months after a 4-week pre-treatment control baseline. Seizure frequency was evaluated during the baseline control period, and at 6, 12, and 24 weeks after the control recordings. Five-subjects completed at least the first 6-week treatment. At 12-weeks, the median reduction in seizure frequency was -27.8% (mean reduction = -22.3%). Two subjects continued for 24 weeks, with a decline of -44.1 and -45.4%. This pilot study provides support for further clinical studies into the safety and efficacy of limb proprioceptive cerebellar stimulation for epilepsy.
Collapse
Affiliation(s)
- Ronald M. Harper
- Department of Neurobiology, David Geffen School of Medicine, Univeersity of California, Los Angeles, Los Angeles, CA, United States
| | - Dieter Hertling
- Department of Neurology, Olive View Medical Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ashley Curtis
- Department of Neurology, Olive View Medical Center, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Christopher M. De Giorgio
- Department of Neurology, Olive View Medical Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
49
|
Cao J, Zhang Y, Li H, Yan Z, Liu X, Hou X, Chen W, Hodges S, Kong J, Liu B. Different modulation effects of 1 Hz and 20 Hz transcutaneous auricular vagus nerve stimulation on the functional connectivity of the periaqueductal gray in patients with migraine. J Transl Med 2021; 19:354. [PMID: 34404427 PMCID: PMC8371886 DOI: 10.1186/s12967-021-03024-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/05/2021] [Indexed: 01/02/2023] Open
Abstract
Background A growing body of evidence suggests that transcutaneous auricular vagus nerve stimulation (taVNS) may relieve symptoms of migraineurs. Frequency is one of the key stimulation parameters. The aim of this study is to investigate the modulation effect of taVNS frequency on the descending pain modulation system (DPMS) in patients with migraine. Methods Twenty-four episodic migraineurs without aura (21 females) were recruited for the single-blind, crossover, functional magnetic resonance imaging (fMRI) study. Each participant attended two separate fMRI scan sessions, one for 1 Hz and another for 20 Hz taVNS, in a random order. Seed-based functional connectivity analysis was applied using the ventrolateral periaqueductal gray (PAG) as the region of interest. Results Compared with the pre-taVNS resting state, continuous 1 Hz taVNS (during) produced a significant increase in functional connectivity between the PAG and the bilateral middle cingulate cortex (MCC), right precuneus, left middle frontal gyrus (MFG), and left cuneus. Compared with 20 Hz taVNS, 1 Hz taVNS produced greater PAG connectivity increases with the MCC, right precuneus/posterior cingulate cortex, left insula, and anterior cingulate cortex (ACC). A significant negative correlation was observed between the number of migraine attacks in the previous 4 weeks and the PAG-MCC functional connectivity in the pre-taVNS resting-state before 1 Hz taVNS. Conclusions Our findings suggest that taVNS with different frequencies may produce different modulation effects on the descending pain modulation system, demonstrating the important role of stimulation frequency in taVNS treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03024-9.
Collapse
Affiliation(s)
- Jin Cao
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui Li
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhaoxian Yan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xian Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoyan Hou
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weicui Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Sierra Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Bo Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
50
|
An Overview of Noninvasive Brain Stimulation: Basic Principles and Clinical Applications. Can J Neurol Sci 2021; 49:479-492. [PMID: 34238393 DOI: 10.1017/cjn.2021.158] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The brain has the innate ability to undergo neuronal plasticity, which refers to changes in its structure and functions in response to continued changes in the environment. Although these concepts are well established in animal slice preparation models, their application to a large number of human subjects could only be achieved using noninvasive brain stimulation (NIBS) techniques. In this review, we discuss the mechanisms of plasticity induction using NIBS techniques including transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), random noise stimulation (RNS), transcranial ultrasound stimulation (TUS), vagus nerve stimulation (VNS), and galvanic vestibular stimulation (GVS). We briefly introduce these techniques, explain the stimulation parameters and potential clinical implications. Although their mechanisms are different, all these NIBS techniques can be used to induce plasticity at the systems level, to examine the neurophysiology of brain circuits and have potential therapeutic use in psychiatric and neurological disorders. TMS is the most established technique for the treatment of brain disorders, and repetitive TMS is an approved treatment for medication-resistant depression. Although the data on the clinical utility of the other modes of stimulation are more limited, the electrical stimulation techniques (tDCS, tACS, RNS, VNS, GVS) have the advantage of lower cost, portability, applicability at home, and can readily be combined with training or rehabilitation. Further research is needed to expand the clinical utility of NIBS and test the combination of different modes of NIBS to optimize neuromodulation induced clinical benefits.
Collapse
|