1
|
Zhang Y, Dai H, Lv M, Wang Y, Zheng Y, Luo J, Li S. Edaravone alleviates sepsis-induced diaphragmatic dysfunction via Sirt1/Nrf2 pathway. Int Immunopharmacol 2025; 153:114475. [PMID: 40106902 DOI: 10.1016/j.intimp.2025.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/14/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND The mechanisms underlying the development of sepsis-induced diaphragmatic dysfunction (SIDD) are poorly understood. Activation of the SIRT1/Nrf2 signaling pathway can attenuate oxidative stress damage in skeletal muscle injury. The present study aimed to validate the hypothesis that edaravone (ED) can improve SIDD through modulation of the SIRT1/Nrf2 signaling pathway and to explore the underlying mechanisms. METHODS Animal models (mice) were constructed using the cecal ligation and puncture (CLP) method, while the C2C12 cells were stimulated by lipopolysaccharide (LPS). The diaphragmatic function was accessed by diaphragm ultrasonography. We examined the expression levels of proteins involved in the SIRT1/Nrf2 pathway (Sirt1, Nrf2, and HO-1), oxidative stress markers (SOD, ROS, and GPX4), and muscle atrophy-related proteins (MuRF1 and Atrogin-1) to test the role of ED in SIDD. RESULTS We found that sepsis-induced a significant decrease in both diaphragmatic excursion and contractile velocity. Administration of ED (5 mg/kg) improved the diaphragmatic function in mice. Moreover, sepsis mice showed increased levels of oxidative stress markers and muscle atrophy-related proteins and a down-regulated pathway of SIRT1/Nrf2. The intervention of ED could modulate the SIRT1/Nrf2 pathway, which in turn protects the diaphragm from SIDD. Similar findings were also observed in vitro experiments with small interfering RNAs. CONCLUSIONS Edaravone was demonstrated to potentially alleviate SIDD by activating the SIRT1/Nrf2 pathway.
Collapse
Affiliation(s)
- Youping Zhang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Hongkai Dai
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Man Lv
- Department of Pharmacy, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei, PR China
| | - Yurou Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yingfang Zheng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jinlong Luo
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Shusheng Li
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
2
|
Zheng Y, Gao Y, Zhu W, Bai XG, Qi J. Advances in molecular agents targeting toll-like receptor 4 signaling pathways for potential treatment of sepsis. Eur J Med Chem 2024; 268:116300. [PMID: 38452729 DOI: 10.1016/j.ejmech.2024.116300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/23/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by an infection. Toll-like receptor 4 (TLR4) is activated by endogenous molecules released by injured or necrotic tissues. Additionally, TLR4 is remarkably sensitive to infection of various bacteria and can rapidly stimulate host defense responses. The TLR4 signaling pathway plays an important role in sepsis by activating the inflammatory response. Accordingly, as part of efforts to improve the inflammatory response and survival rate of patients with sepsis, several drugs have been developed to regulate the inflammatory signaling pathways mediated by TLR4. Inhibition of TLR4 signal transduction can be directed toward either TLR4 directly or other proteins in the TLR4 signaling pathway. Here, we review the advances in the development of small-molecule agents and peptides targeting regulation of the TLR4 signaling pathway, which are characterized according to their structural characteristics as polyphenols, terpenoids, steroids, antibiotics, anthraquinones, inorganic compounds, and others. Therefore, regulating the expression of the TLR4 signaling pathway and modulating its effects has broad prospects as a target for the treatment of lung, liver, kidneys, and other important organs injury in sepsis.
Collapse
Affiliation(s)
- Yunyun Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Yingying Gao
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Weiru Zhu
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Xian-Guang Bai
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China.
| | - Jinxu Qi
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China.
| |
Collapse
|
3
|
Yuan X, Xue F, Yu Y, Cao X, Han Y, Wang F, Zhong L. The molecular mechanism of sepsis-induced diaphragm dysfunction. J Thorac Dis 2023; 15:6831-6847. [PMID: 38249924 PMCID: PMC10797340 DOI: 10.21037/jtd-23-1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
Background No effective drugs for the treatment of sepsis-induced diaphragm dysfunction are currently available. Therefore, it is particularly important to clarify the molecular regulatory mechanism of this condition and subsequently implement effective treatment and prevention of sepsis-induced diaphragm dysfunction. Methods A mouse model of diaphragm dysfunction was established via injection of lipopolysaccharide (LPS). An RNA-sequencing (RNA-seq) technique was used to detect the differentially expressed genes (DEGs) in the diaphragms of mice. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed for functional analysis of DEGs. The protein-protein interaction network obtained from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) website was imported into Cytoscape, the key molecular regulatory network was constructed with CytoNCA, the ClueGo plugin was further used to analyze the core regulatory pathways of key molecular, and finally, the iRegulon plugin was used to the identify key transcription factors. Results The genes upregulated after LPS treatment were involved in biological processes and pathways related to immune response; the genes downregulated after LPS treatment were mainly correlated with the muscle contraction. The expressions of several inflammation-related genes were upregulated after LPS treatment, of which tumor necrosis factor (Tnf), interleukin (Il)-1β, and Il-6 assumed a core regulatory role in the network; meanwhile, the downregulated key genes included Col1a1, Uqcrfs1, Sdhb, and ATP5a1, among others. These key regulatory factors participated in the activation of Toll-like receptor (TLR) signaling pathway, nuclear factor (NF)-κB signaling pathway, and TNF signaling pathway as well as the inhibition of oxidative phosphorylation pathway, cardiac muscle contraction pathway, and citrate cycle pathway. Finally, RelA, IRF1, and STAT3, were identified as the key regulators in the early stage of diaphragmatic inflammatory response. Conclusions Sepsis-induced diaphragm dysfunction in mice is closely correlated with the activation of TLR signaling pathway, NF-κB signaling pathway, and TNF signaling pathway and the inhibition of oxidative phosphorylation pathway, cardiac muscle contraction pathway, and citrate cycle pathway. Our findings provide insight into the molecular mechanism of sepsis-induced diaphragm dysfunction in mice and provide a promising new strategy for targeted treatment of diaphragm dysfunction.
Collapse
Affiliation(s)
- Xiaosa Yuan
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Fangsu Xue
- Department of Respiration, Binhai County People’s Hospital, Yancheng, China
| | - Yunchi Yu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaowen Cao
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yimin Han
- Department of Pediatrics, Medical College, Nantong University, Nantong, China
| | - Fei Wang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Lou Zhong
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
4
|
Gu WJ, Duan XJ, Liu XZ, Cen Y, Tao LY, Lyu J, Yin HY. Association of magnesium sulfate use with mortality in critically ill patients with sepsis: a retrospective propensity score-matched cohort study. Br J Anaesth 2023; 131:861-870. [PMID: 37684164 DOI: 10.1016/j.bja.2023.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Trials have demonstrated lower rates of acute kidney injury in critically ill patients receiving magnesium supplementation, but they have yielded conflicting results regarding mortality. METHODS This is a retrospective cohort study based on the MIMIC-IV (Medical Information Mart in Intensive Care-IV) database. Adult critically ill patients with sepsis were included in the analysis. The exposure was magnesium sulfate use during ICU stay. The primary outcome was 28-day all-cause mortality. Propensity score matching (PSM) was conducted at a 1:1 ratio. Multivariable analyses were used to adjust for confounders. RESULTS The pre-matched and propensity score-matched cohorts included 10 999 and 6052 patients, respectively. In the PSM analysis, 28-day all-cause mortality rate was 20.2% (611/3026) in the magnesium sulfate use group and 25.0% (757/3026) in the no use group. Magnesium sulfate use was associated with lower 28-day all-cause mortality (hazard ratio [HR], 0.70; 95% CI, 0.61-0.79; P<0.001). Lower mortality was observed regardless of baseline serum magnesium status: for hypomagnesaemia, HR, 0.64; 95% confidence interval (CI), 0.45-0.93; P=0.020; for normomagnesaemia, HR, 0.70; 95% CI, 0.61-0.80; P<0.001. Magnesium sulfate use was also associated with lower ICU mortality (odds ratio [OR], 0.52; 95% CI, 0.42-0.64; P<0.001), lower in-hospital mortality (OR, 0.65; 95% CI, 0.55-0.77; P<0.001), and renal replacement therapy (OR, 0.67; 95% CI, 0.52-0.87; P=0.002). A sensitivity analysis using the entire cohort also demonstrated lower 28-day all-cause mortality (HR, 0.62; 95% CI, 0.56-0.69; P<0.001). CONCLUSIONS Magnesium sulfate use was associated with lower mortality in critically ill patients with sepsis. Prospective studies are needed to verify this finding.
Collapse
Affiliation(s)
- Wan-Jie Gu
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiang-Jie Duan
- Department of Infectious Diseases, The First People's Hospital of Changde City, Changde, China
| | - Xiao-Zhu Liu
- Medical Data Science Academy, Chongqing Medical University, Chongqing, China
| | - Yun Cen
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li-Yuan Tao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Hai-Yan Yin
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Tonai K, Katayama S, Koyama K, Sata N, Tomioka Y, Imahase H, Nunomiya S. Association between hypomagnesemia and coagulopathy in sepsis: a retrospective observational study. BMC Anesthesiol 2022; 22:359. [PMID: 36424547 PMCID: PMC9685885 DOI: 10.1186/s12871-022-01903-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Hypomagnesemia reportedly has significant associations with poor clinical outcomes such as increased mortality and septic shock in patients with sepsis. Although the mechanism underlying these outcomes mostly remains unclear, some experimental data suggest that magnesium deficiency could potentiate coagulation activation in sepsis. However, in sepsis, the association between serum magnesium levels and coagulopathy, including disseminated intravascular coagulation (DIC), remains unknown. Thus, we aimed to investigate the relationship between serum magnesium levels and coagulation status and the association between hypomagnesemia and DIC in patients with sepsis. METHODS This retrospective observational study was conducted at the intensive care unit (ICU) of a university hospital from June 2011 to December 2017. Patients older than 19 years who met the Sepsis-3 definition were included. We categorized patients into three groups according to their serum magnesium levels: hypomagnesemia (< 1.6 mg/dL), normal serum magnesium level (1.6-2.4 mg/dL), and hypermagnesemia (> 2.4 mg/dL). We investigated the association between serum magnesium levels and overt DIC at the time of ICU admission according to the criteria of the International Society on Thrombosis and Haemostasis. RESULTS Among 753 patients included in this study, 181 had DIC, 105 had hypomagnesemia, 552 had normal serum magnesium levels, and 96 had hypermagnesemia. Patients with hypomagnesemia had a more activated coagulation status indicated by lower platelet counts, lower fibrinogen levels, higher prothrombin time-international normalized ratios, higher thrombin-antithrombin complex, and more frequent DIC than those with normal serum magnesium levels and hypermagnesemia (DIC: 41.9% vs. 20.6% vs. 24.0%, P < 0.001). The coagulation status in patients with hypomagnesemia was more augmented toward suppressed fibrinolysis than that in patients with normal serum magnesium levels and hypermagnesemia. Multivariate logistic regression revealed that hypomagnesemia was independently associated with DIC (odds ratio, 1.69; 95% confidence interval, 1.00-2.84; P = 0.048) after adjusting for several confounding variables. CONCLUSIONS Patients with hypomagnesemia had a significantly activated coagulation status and suppressed fibrinolysis. Hypomagnesemia was independently associated with DIC in patients with sepsis. Therefore, the treatment of hypomagnesemia may be a potential therapeutic strategy for the treatment of coagulopathy in sepsis.
Collapse
Affiliation(s)
- Ken Tonai
- grid.410804.90000000123090000Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498 Japan
| | - Shinshu Katayama
- grid.410804.90000000123090000Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498 Japan
| | - Kansuke Koyama
- grid.410804.90000000123090000Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498 Japan
| | - Naho Sata
- grid.410804.90000000123090000Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498 Japan
| | - Yoshihiro Tomioka
- grid.410804.90000000123090000Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498 Japan
| | - Hisashi Imahase
- grid.410804.90000000123090000Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498 Japan
| | - Shin Nunomiya
- grid.410804.90000000123090000Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498 Japan
| |
Collapse
|
6
|
Qi Z, Yan Z, Wang Y, Ji N, Yang X, Zhang A, Li M, Xu F, Zhang J. Ginsenoside Rh2 Inhibits NLRP3 Inflammasome Activation and Improves Exosomes to Alleviate Hypoxia-Induced Myocardial Injury. Front Immunol 2022; 13:883946. [PMID: 35865525 PMCID: PMC9294352 DOI: 10.3389/fimmu.2022.883946] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
The inflammatory microenvironment after acute myocardial infarction (MI) is a key limiting factor in the clinical application of stem cell transplantation and paracrine exosome therapy. Qishen Yiqi Pills contain a saponin ingredient called Ginsenoside Rh2 (Rh2) which exhibits a certain therapeutic effect on MI. However, the mechanism by which Rh2 alleviates the inflammatory microenvironment and improves the therapeutic efficiency of exosomes remains enigmatic. Here, we found that Rh2 attenuated the adverse effect of oxygen-glucose deprivation (OGD)-induced cellular injury, an in vitro pathological model of MI. Confocal microscopy revealed that DiI-labeled BMSCs-derived exosomes exhibited an increased homing ability of cardiomyocytes, which, in turn, inhibited the nuclear translocation of NF-κB p65 and NLRP3 inflammasome activation, thereby alleviating the inflammatory microenvironment and further facilitating the homing of exosomes to cardiomyocytes by forming a feed-forward enhancement loop. Additionally, we found that Rh2 could regulate the HMGB1/NF-κB signaling pathway to improve the OGD environment of cardiomyocytes, increasing the efficiency of the feed-forward loop. In conclusion, we found that Rh2 can improve the inflammatory microenvironment by enhancing the protection of exosomes against myocardial injury, providing new insights into the indirect modification of exosomes by Rh2 in MI treatment.
Collapse
Affiliation(s)
- Zhongwen Qi
- Postdoctoral Research Station of China Academy of Chinese Medical Sciences, Institute of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhipeng Yan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yueyao Wang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Ji
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoya Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ao Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Li
- Institute of Hypertension, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fengqin Xu
- Postdoctoral Research Station of China Academy of Chinese Medical Sciences, Institute of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Abstract
Sepsis, a systemic inflammatory response disease, is the most severe complication of infection and a deadly disease. High mobility group proteins (HMGs) are non-histone nuclear proteins binding nucleosomes and regulate chromosome architecture and gene transcription, which act as a potent pro-inflammatory cytokine involved in the delayed endotoxin lethality and systemic inflammatory response. HMGs increase in serum and tissues during infection, especially in sepsis. A growing number of studies have demonstrated HMGs are not only cytokines which can mediate inflammation, but also potential therapeutic targets in sepsis. To reduce sepsis-related mortality, a better understanding of HMGs is essential. In this review, we described the structure and function of HMGs, summarized the definition, epidemiology and pathophysiology of sepsis, and discussed the HMGs-related mechanisms in sepsis from the perspectives of non-coding RNAs (microRNA, long non-coding RNA, circular RNA), programmed cell death (apoptosis, necroptosis and pyroptosis), drugs and other pathophysiological aspects to provide new targets and ideas for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Guibin Liang
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhihui He
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Kuang ZS, Leng YX, Yang N, Li ZQ, Zong YN, Han DY, Li Y, He JD, Mi XN, Cong ZK, Zhu X, Wu CY, Guo XY. Inhibition of visfatin alleviates sepsis-induced intestinal damage by inhibiting Hippo signaling pathway. Inflamm Res 2022; 71:911-922. [PMID: 35731253 PMCID: PMC9307557 DOI: 10.1007/s00011-022-01593-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 01/11/2023] Open
Abstract
Background The aim of this study is to investigate role of Visfatin, one of the pro-inflammatory adipokines, in sepsis-induced intestinal injury and to clarify the potential mechanism. Methods C57BL/6 mice underwent cecal ligation and puncture (CLP) surgery to establish sepsis model in vivo. Intestinal epithelial cells were stimulated with LPS to mimic sepsis-induced intestinal injury in vitro. FK866 (the inhibitor of Visfatin) with or without XMU-MP-1 (the inhibitor of Hippo signaling) was applied for treatment. The expression levels of Visfatin, NF-κB and Hippo signaling pathways-related proteins were detected by western blot or immunohistochemistry. The intestinal cell apoptosis and intestinal injury were investigated by TUNEL staining and H&E staining, respectively. ELISA was used to determine the production of inflammatory cytokines. Results The expression of Visfatin increased in CLP mice. FK866 reduced intestinal pathological injury, inflammatory cytokines production, and intestinal cell apoptosis in sepsis mice. Meanwhile, FK866 affected NF-κB and Hippo signaling pathways. Additionally, the effects of FK866 on inflammatory response, apoptosis, Hippo signaling and NF-κB signaling were partly abolished by XMU-MP-1, the inhibitor of Hippo signaling. In vitro experiments also revealed that FK866 exhibited a protective role against LPS-induced inflammatory response and apoptosis in intestinal cells, as well as regulating NF-κB and Hippo signaling, whereas addition of XMU-MP-1 weakened the protective effects of FK866. Conclusion In short, this study demonstrated that inhibition of Visfatin might alleviate sepsis-induced intestinal injury through Hippo signaling pathway, supporting a further research on Visfatin as a therapeutic target.
Collapse
Affiliation(s)
- Zhong-Shen Kuang
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing, 100191, China
| | - Yu-Xin Leng
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing, 100191, China
| | - Zheng-Qian Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing, 100191, China
| | - Ya-Nan Zong
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing, 100191, China
| | | | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing, 100191, China
| | - Jin-Dan He
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing, 100191, China
| | - Xing-Ning Mi
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing, 100191, China
| | - Zhu-Kai Cong
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Xi Zhu
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Chang-Yi Wu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing, 100191, China.
| | - Xiang-Yang Guo
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing, 100191, China.
| |
Collapse
|
9
|
Arancibia-Hernández YL, Aranda-Rivera AK, Cruz-Gregorio A, Pedraza-Chaverri J. Antioxidant/anti-inflammatory effect of Mg 2+ in coronavirus disease 2019 (COVID-19). Rev Med Virol 2022; 32:e2348. [PMID: 35357063 PMCID: PMC9111052 DOI: 10.1002/rmv.2348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 12/26/2022]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), characterised by high levels of inflammation and oxidative stress (OS). Oxidative stress induces oxidative damage to lipids, proteins, and DNA, causing tissue damage. Both inflammation and OS contribute to multi-organ failure in severe cases. Magnesium (Mg2+ ) regulates many processes, including antioxidant and anti-inflammatory responses, as well as the proper functioning of other micronutrients such as vitamin D. In addition, Mg2+ participates as a second signalling messenger in the activation of T cells. Therefore, Mg2+ deficiency can cause immunodeficiency, exaggerated acute inflammatory response, decreased antioxidant response, and OS. Supplementation with Mg2+ has an anti-inflammatory response by reducing the levels of nuclear factor kappa B (NF-κB), interleukin (IL) -6, and tumor necrosis factor alpha. Furthermore, Mg2+ supplementation improves mitochondrial function and increases the antioxidant glutathione (GSH) content, reducing OS. Therefore, Mg2+ supplementation is a potential way to reduce inflammation and OS, strengthening the immune system to manage COVID-19. This narrative review will address Mg2+ deficiency associated with a worse disease prognosis, Mg2+ supplementation as a potent antioxidant and anti-inflammatory therapy during and after COVID-19 disease, and suggest that randomised controlled trials are indicated.
Collapse
Affiliation(s)
| | - Ana Karina Aranda-Rivera
- Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Cruz-Gregorio
- Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Laboratorio F-315, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
10
|
Trapani V, Rosanoff A, Baniasadi S, Barbagallo M, Castiglioni S, Guerrero-Romero F, Iotti S, Mazur A, Micke O, Pourdowlat G, Scarpati G, Wolf FI, Maier JA. The relevance of magnesium homeostasis in COVID-19. Eur J Nutr 2021; 61:625-636. [PMID: 34687321 PMCID: PMC8540865 DOI: 10.1007/s00394-021-02704-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Purpose In less than one and a half year, the COVID-19 pandemic has nearly brought to a collapse our health care and economic systems. The scientific research community has concentrated all possible efforts to understand the pathogenesis of this complex disease, and several groups have recently emphasized recommendations for nutritional support in COVID-19 patients. In this scoping review, we aim at encouraging a deeper appreciation of magnesium in clinical nutrition, in view of the vital role of magnesium and the numerous links between the pathophysiology of SARS-CoV-2 infection and magnesium-dependent functions. Methods By searching PubMed and Google Scholar from 1990 to date, we review existing evidence from experimental and clinical studies on the role of magnesium in chronic non-communicable diseases and infectious diseases, and we focus on recent reports of alterations of magnesium homeostasis in COVID-19 patients and their association with disease outcomes. Importantly, we conduct a census on ongoing clinical trials specifically dedicated to disclosing the role of magnesium in COVID-19. Results Despite many methodological limitations, existing data seem to corroborate an association between deranged magnesium homeostasis and COVID-19, and call for further and better studies to explore the prophylactic or therapeutic potential of magnesium supplementation. Conclusion We propose to reconsider the relevance of magnesium, frequently overlooked in clinical practice. Therefore, magnesemia should be monitored and, in case of imbalanced magnesium homeostasis, an appropriate nutritional regimen or supplementation might contribute to protect against SARS-CoV-2 infection, reduce severity of COVID-19 symptoms and facilitate the recovery after the acute phase.
Collapse
Affiliation(s)
- Valentina Trapani
- Sezione di Patologia Generale, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy.,Alleanza Contro Il Cancro, Rome, Italy
| | - Andrea Rosanoff
- CMER Center for Magnesium Education and Research, Pahoa, Hawaii, USA
| | - Shadi Baniasadi
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mario Barbagallo
- Geriatric Unit, Department of Medicine, University of Palermo, Palermo, Italy
| | - Sara Castiglioni
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Via G.B. Grassi 74, 20157, Milan, Italy
| | | | - Stefano Iotti
- Department of Pharmacy and Biotechnology (FaBit) National Institute of Biostructures and Biosystems, Università di Bologna, Bologna, Italy
| | - André Mazur
- Unité de Nutrition Humaine, INRAE, UNH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Oliver Micke
- Department of Radiotherapy and Radiation Oncology, Franziskus Hospital, Bielefeld, Germany
| | - Guitti Pourdowlat
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Giuliana Scarpati
- Anestesiologia e Rianimazione, Dipartimento di Medicina e Chirurgia, Università Degli Studi di Salerno, Fisciano, Italy
| | - Federica I Wolf
- Sezione di Patologia Generale, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy.
| | - Jeanette A Maier
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Via G.B. Grassi 74, 20157, Milan, Italy.
| |
Collapse
|
11
|
Story MJ. Essential sufficiency of zinc, ω-3 polyunsaturated fatty acids, vitamin D and magnesium for prevention and treatment of COVID-19, diabetes, cardiovascular diseases, lung diseases and cancer. Biochimie 2021; 187:94-109. [PMID: 34082041 PMCID: PMC8166046 DOI: 10.1016/j.biochi.2021.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Despite the development of a number of vaccines for COVID-19, there remains a need for prevention and treatment of the virus SARS-CoV-2 and the ensuing disease COVID-19. This report discusses the key elements of SARS-CoV-2 and COVID-19 that can be readily treated: viral entry, the immune system and inflammation, and the cytokine storm. It is shown that the essential nutrients zinc, ω-3 polyunsaturated fatty acids (PUFAs), vitamin D and magnesium provide the ideal combination for prevention and treatment of COVID-19: prevention of SARS-CoV-2 entry to host cells, prevention of proliferation of SARS-CoV-2, inhibition of excessive inflammation, improved control of the regulation of the immune system, inhibition of the cytokine storm, and reduction in the effects of acute respiratory distress syndrome (ARDS) and associated non-communicable diseases. It is emphasized that the non-communicable diseases associated with COVID-19 are inherently more prevalent in the elderly than the young, and that the maintenance of sufficiency of zinc, ω-3 PUFAs, vitamin D and magnesium is essential for the elderly to prevent the occurrence of non-communicable diseases such as diabetes, cardiovascular diseases, lung diseases and cancer. Annual checking of levels of these essential nutrients is recommended for those over 65 years of age, together with appropriate adjustments in their intake, with these services and supplies being at government cost. The cost:benefit ratio would be huge as the cost of the nutrients and the testing of their levels would be very small compared with the cost savings of specialists and hospitalization.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
12
|
The protective role of fosfomycin in lung injury due to oxidative stress and inflammation caused by sepsis. Life Sci 2021; 279:119662. [PMID: 34081989 DOI: 10.1016/j.lfs.2021.119662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/02/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
AIM Early and prompt treatment of sepsis by effective antibiotics against susceptible organisms may be lifesaving. However, increased antibiotic resistance and side effects of chemotherapeutic agents limiting their tolerability result in a restricted use of medications. This has led to an increased search for solution oriented novel treatments and therapeutic targets, as well as investigations on the pathogenesis and physiology of sepsis. In this study, we aimed to examine the antioxidant and anti-inflammatory effects of fosfomycin in sepsis resulting from other causes. MAIN METHODS Sprague Dawley rats were assigned into three groups. Randomly selected control rats received intraperitoneal saline solution only. Only caecal puncture and ligation were carried out in the caecal ligation and puncture (CLP) group, while in the CLP + fosfomycin group (CLP + FOS), together with sepsis due to caecal puncture and ligation, 500 mg/kg of FOS was administered intraperitoneally (i.p.). KEY FINDINGS As compared to the control group, elevated TBARS and TNF-α levels as well as increased expression of NF-kB/p65 and TLR-4 and reduced -SH levels were found in the lung tissue of CLP rats. On the other hand, TBARS and TNF-α levels were reduced and NF-kB/p65 and TLR-4 expressions were decreased together with increase in total -SH levels among CLP + FOS (500 mg/kg i.p.) rats. SIGNIFICANCE FOS treatment may represent a promising agent in terms of reducing the sepsis-related lung injury due to its antimicrobial effects as well as its antioxidant and anti-inflammatory properties.
Collapse
|
13
|
Maier JA, Castiglioni S, Locatelli L, Zocchi M, Mazur A. Magnesium and inflammation: Advances and perspectives. Semin Cell Dev Biol 2020; 115:37-44. [PMID: 33221129 DOI: 10.1016/j.semcdb.2020.11.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022]
Abstract
Magnesium is an essential element of life, involved in the regulation of metabolism and homeostasis of all the tissues. It also regulates immunological functions, acting on the cells of innate and adaptive immune systems. Magnesium deficiency primes phagocytes, enhances granulocyte oxidative burst, activates endothelial cells and increases the levels of cytokines, thus promoting inflammation. Consequently, a low magnesium status, which is often underdiagnosed, potentiates the reactivity to various immune challenges and is implicated in the pathophysiology of many common chronic diseases. Here we summarize recent advances supporting the link between magnesium deficiency, inflammatory responses and diseases, and offer new hints towards a better understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Jeanette A Maier
- Università di Milano, Department Biomedical and Clinical Sciences L. Sacco, Via GB Grassi 74, I20157 Milano, Italy.
| | - Sara Castiglioni
- Università di Milano, Department Biomedical and Clinical Sciences L. Sacco, Via GB Grassi 74, I20157 Milano, Italy
| | - Laura Locatelli
- Università di Milano, Department Biomedical and Clinical Sciences L. Sacco, Via GB Grassi 74, I20157 Milano, Italy
| | - Monica Zocchi
- Università di Milano, Department Biomedical and Clinical Sciences L. Sacco, Via GB Grassi 74, I20157 Milano, Italy
| | - André Mazur
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine, UNH, Clermont-Ferrand, France
| |
Collapse
|